JP2004009108A - Hot-rolled steel strip manufacturing method - Google Patents

Hot-rolled steel strip manufacturing method Download PDF

Info

Publication number
JP2004009108A
JP2004009108A JP2002167297A JP2002167297A JP2004009108A JP 2004009108 A JP2004009108 A JP 2004009108A JP 2002167297 A JP2002167297 A JP 2002167297A JP 2002167297 A JP2002167297 A JP 2002167297A JP 2004009108 A JP2004009108 A JP 2004009108A
Authority
JP
Japan
Prior art keywords
rolling
rolled
temperature
hot
steel strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002167297A
Other languages
Japanese (ja)
Inventor
Yukio Takashima
高嶋 由紀雄
Masaru Miyake
三宅 勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002167297A priority Critical patent/JP2004009108A/en
Publication of JP2004009108A publication Critical patent/JP2004009108A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Metal Rolling (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hot-rolled steel strip manufacturing method for consistently manufacturing a hot-rolled steel strip having fine structure by reverse transformation over the total length of a work to be rolled. <P>SOLUTION: In manufacturing a hot-rolled steel strip by performing finish rolling by a continuous tandem finish rolling mill, a heater to heat a work is installed on an inlet side of the finish rolling mill to control of the temperature of the work on the inlet side of the finish rolling mill to be substantially constant value of not higher than Ar<SB>3</SB>in the longitudinal direction. Also, the rolling speed from a leading end to a rear end of the work is set to be constant to generate the work heat accompanied by a substantially constant rolling of the work in the longitudinal direction, and reverse transformation from ferrite to austenite is performed by a same rolling stand from the leading end to the rear end of the work. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、平均粒径が3μm以下の微細フェライト組織を有し、強度・靭性に優れた熱延鋼帯の製造方法に関するものである。
【0002】
【従来の技術】
タンデム圧延中に逆変態を生じさせる圧延方法が従来から多数提案されている。
【0003】
たとえば、特開平11−152522号には、連続熱延の仕上げ圧延における加工発熱、及び、又は、鋼板の復熱による温度上昇を利用して、フェライト(α)をオーステナイト(γ)に逆変態させることを特徴とする深絞り性に優れた薄鋼板の製造方法が示されている。
【0004】
また、特公平7−9033号には、連続鋳造鋳片又はインゴットを熱片又は熱塊状態から冷却し、(a)Ar点以下の温度域で合計圧下率30%以上の圧延を施す、(b)続いてAc点〜〔Ac点+100℃〕の温度域に10℃/秒以上の加熱速度で昇温し、フェライトからオーステナイトへ逆変態を生じさせる、(c)そして、該オーステナイト相温度域で合計圧下率10%以上の圧延を施す、 なる工程で順次加工熱処理し冷却することを特徴とする、超微細組織鋼板の製造方法が示されている。 さらに、連続鋳造鋳片又はインゴットを熱片又は熱塊状態のまま乃至は加熱炉に装入してから再結晶温度域で合計圧下率30%以上の圧延を行った後、これを冷却し、(a)Ar以下の温度域で合計圧下率30%以上の圧延を施す、 (b)続いてAc点〜〔Ac点+100℃〕の温度域に10℃/秒以上の加熱速度で昇温し、フェライトからオーステナイトへ逆変態を生じさせる、(c)そして、該オーステナイト相温度域で合計圧下率10%以上の圧延を施す、なる工程で順次加工熱処理し冷却することを特徴とする、超微細組織鋼板の製造方法が示されている。
【0005】
また、特開平10−8142号には、重量比で C: 0.0005〜0.0150% Si:0.2%以下 Mn:0.05〜0.6% P: 0.02%以下 S: 0.02%以下 Al:0.15%以下 N: 0.02%以下を含み、さらに必要に応じて Nb:0.003〜0.020% Ti:0.003〜0.020% B: 0.0002〜0.0020% Cu:0.5%以下 Ni:0.5%以下 Cr:0.5%以下 Mo:0.2%以下の1種又は2種以上を含み、残部はFeおよび可避不純物よりなる組成の鋼スラブに、 熱間粗圧延を全圧下量80%以上、そのうち、最終パスを20%以上とする条件下で行い、 仕上熱間圧延を、被圧延材の温度が仕上圧延機列のいずれかの圧延スタンド通過の際、圧延加工に伴う発熱により逆変態させ、仕上圧延温度がAr−50℃以上となるように終了し、 550〜750℃の温度で巻取って熱間圧延鋼帯を得、 該熱間圧延鋼帯に対してスケール除去、冷間圧延、再結晶焼鈍および30%以下の調質圧延を行うことを特徴とする加工性が良好でかつ肌荒れのない製缶用鋼板の製造方法が示されている。
【0006】
【発明が解決しようとする課題】
上記の従来技術には、いずれもタンデム圧延中に逆変態を生じさせる圧延方法が示されているが、圧下率、温度範囲を規定しているものの、被圧延材の全長に亘って均一な材質の鋼板を製造する具体的な方法が示されていない。
【0007】
一般に被圧延材の仕上圧延機入側における温度は、放射、対流による材料の温度降下により、先端で高く後端に向かうほど低くなる。これを補償するためにタンデム圧延では圧延速度を後端になるほど加速する加速圧延が行われている。
【0008】
逆変態をタンデム仕上圧延機の特定のスタンドで被圧延材の先端から後端まで安定して生じさせるためには、当該スタンドにおける被圧延材の温度と加工発熱量を長手方向にほぼ一定に保つ必要がある。ところが、通常のタンデム圧延では被圧延材の温度は最終スタンドで一定であるものの、それ以外のスタンドでは圧延位置により異なり、前段スタンドほど圧延中の材料温度低下が著しい。また、加速圧延を行えば圧延加工のひずみ速度が徐々に速くなるため、材料の変形抵抗が上昇し、加工発熱量が増加することとなる。
【0009】
これらの現象をすべて考慮に入れ、特定の同一の圧延スタンドで圧延材の先端から後端まで安定して逆変態を生じるよう、圧延条件を設定することは極めて困難であり、従来技術では圧延材の全長に亘って逆変態による微細組織を有する鋼板を製造することはできなかった。
【0010】
本発明は、上記のような従来技術の問題点を解決し、圧延材の全長に亘って逆変態による微細組織を有する熱延鋼帯を安定して製造することのできる熱延鋼帯の製造方法を提供することを目的とする。
【0011】
【課題を解決するための手段】
すなわち、本発明の熱延鋼帯の製造方法は以下のような特徴を有する。
【0012】
(1)連続タンデム仕上圧延機により仕上圧延して熱延鋼帯を製造するに際し、仕上圧延機入側に被圧延材を加熱するための加熱装置を設置して、被圧延材の仕上圧延機入側温度を長手方向にAr以下の略一定温度に制御するとともに、被圧延材先端から後端までの圧延速度を一定とすることにより、被圧延材の長手方向に略一定の圧延加工に伴う加工発熱を生じさせ、被圧延材の先端から後端まで同一の圧延スタンドでフェライトからオーステナイトに逆変態させることを特徴とする熱延鋼帯の製造方法。
【0013】
(2)仕上圧延の最終圧延パス終了直後の急速冷却を、50℃/秒以上の冷却速度で行うことを特徴とする上記(1)に記載の熱延鋼帯の製造方法。
【0014】
【発明の実施の形態】
図1は、本発明の実施に供される熱延鋼帯の製造設備列の一実施形態を示す説明図である。
【0015】
図1に示す熱延鋼帯の製造ラインは、所定温度に加熱されたスラブを所定の粗さの粗バ−に圧延するための粗圧延機1と、粗圧延機出側直近に設置された中間冷却装置2と、粗バ−を加熱するための加熱装置3と、この加熱装置3により長手方向に温度を一定に制御された粗バ−を所定の厚さの熱延鋼帯に圧延するための仕上圧延機4と、仕上圧延機出側直近に位置し、熱延鋼帯を急速冷却するための急速冷却装置5と、巻取り温度を調整するための冷却装置6と、この熱延鋼帯を巻取るための巻取り機7とを備えている。
【0016】
前記中間冷却装置2は、粗圧延最終圧延スタンドの出側直近に設置し、粗圧延後の粒成長を防止するとともに、被圧延材の仕上圧延機入側温度を長手方向にAr以下の略一定温度とする前の温度調整冷却を行う冷却装置である。
【0017】
粗圧延での圧下にて生成された再結晶粒オ−ステナイト粒は、通常は粗圧延と仕上圧延の間の数十秒の間に大きな粒成長挙動を示す。オーステナイトから変態して生じるフェライト組織の粒径はオーステナイト粒径が小さいほど小さくなるため、またAr以下の温度で残留するオーステナイト粒径をできるだけ微細に保つため、粗圧延後は直ちに冷却することが望ましい。
【0018】
前記加熱装置3は、中間冷却装置2で温度調整冷却された被圧延材を加熱して、被圧延材の仕上圧延機入側温度を長手方向にAr以下の略一定温度に制御するための加熱装置である。このような加熱装置として、誘導加熱装置を使用すれば、制御応答性がよく、仕上圧延機4の入側における粗バーの温度をその長さ方向全長に亘って一定温度に加熱することができる。
【0019】
急速冷却装置5は、圧延直後の急速冷却により粒成長を抑制するとともに、フェライトへの変態核成長速度を速め、より微細な組織を得るための冷却装置である。この仕上圧延の最終圧延パス終了直後の急速冷却を50℃/秒以上の冷却速度で行うことが好ましい。
【0020】
圧延機直後での急速冷却を可能とするため、極力圧延機出側直近に配置することが望ましく、図1の実施形態では仕上圧延機出側直近に急速冷却装置を配置している。
【0021】
また、材質調整の観点からは、巻取り機7に巻取られた後の温度も重要であり、図1の実施形態では、巻取り機7の直前に巻取り温度調整用の冷却装置6を設置している。
【0022】
以下、上記装置構成を用いた本発明法の一実施形態を説明する。また、図2には、上記装置構成における被圧延材の長手方向中央部の断面平均温度の変化を示す。
【0023】
図1に示す熱延鋼帯の製造ラインにおいて、所定温度に加熱されたスラブを粗圧延機1により所定の厚さの粗バ−に減厚して圧延する。次に圧延された粗バーを、粗圧延機出側直近に設置した中間冷却装置2により仕上圧延で目標とする温度付近への温度調整冷却を行う。温度調整冷却を行った粗バ−を、仕上圧延機入側温度が粗バー全長に亘ってAr以下の略一定温度となるように加熱装置3で加熱する。次に加熱装置3で加熱された粗バーを仕上圧延機4により所定の厚さの熱延鋼帯に減厚して圧延する。このとき被圧延材先端から後端までの圧延速度を一定とすることにより、被圧延材の長手方向に略一定の圧延加工に伴う加工発熱を生じさせ、被圧延材の先端から後端まで同一の圧延スタンドでフェライトからオーステナイトに逆変態させている。
【0024】
上記の被圧延材先端から後端までの圧延速度を一定とするとは、仕上圧延機4の全圧延スタンドについての圧延速度をそれぞれ略一定とすることである。
【0025】
ここで、加工発熱での温度上昇は30〜40℃が限界で、かろうじて逆変態を生じさせられる程度である。一方、組織微細化の観点からは、逆変態前の温度をできるだけ低くし、フェライト相の比率を多くしておいた後に逆変態させることが望ましい、つまり、粗圧延後の中間冷却ではより低温にする方が微細化鋼の製造に有利となる。ところが、中間冷却での温度を低くすると逆変態温度までの昇温量が大きくなり、加工発熱だけでは不足する。そこで図1に示すように加熱装置によりある程度の加熱を行い、仕上圧延機のいずれかの圧延スタンド通過の際に、加工発熱で逆変態が生じる温度に仕上圧延機入側温度を制御すればよい。
【0026】
具体的には、例えば、第5スタンドで逆変態を生じさせる場合、仕上圧延機入側から第5スタンド圧延終了までに被圧延材が受ける冷却などによる温度降下ΔTc、加工発熱および摩擦発熱による温度上昇ΔThは計算による予測が可能で、被圧延材の逆変態温度をAc、加熱装置の入側温度をTとすると、加熱装置での目標昇温温度ΔTは下記の(1)式で表される。
【0027】
ΔT=Ac−(ΔTh−ΔTc)−T …(1)
さらに、上記の仕上圧延においては、逆変態を生じさせるスタンドにおける被圧延材の温度と加工発熱量を長手方向にほぼ一定に保つ必要があるため、加速圧延は行なわないで被圧延材先端から後端までの圧延速度を一定として圧延する。
【0028】
その後、熱延鋼帯を急速冷却するための急速冷却装置5により仕上圧延の最終圧延パス終了直後に50℃/秒以上の冷却速度で急速冷却し、巻取り温度を調整するための冷却装置6で温度調整後、巻取り機7で鋼帯を巻取る。
【0029】
図2に示す被圧延材の長手方向中央部の断面平均温度の変化において、粗バーが中間冷却装置を出て、加熱装置に入る間に若干温度が下がる区間を「搬送」と表示する。この他の「粗圧延機」、「冷却装置」、「急速加熱」、「仕上圧延機」、「急速冷却」の表示は、それぞれ図1に示す熱延鋼帯の製造ラインにおいて粗圧延機1、中間冷却装置2、加熱装置3、仕上圧延機4、急速冷却装置5でのプロセスに対応している。
【0030】
【実施例】
図1に示す熱延鋼帯の製造ラインを用いて、板厚250mmの低炭素鋼スラブを加熱炉にて約1100℃に加熱後、該スラブを粗圧延機での5パスの圧延にて50mmまで減厚し、粗バーとした。この粗バーを中間冷却装置により830℃程度まで冷却して、Ar(860℃)以下の温度とした後、仕上圧延機の入側温度が時間の経過とともに低下する温度降下を誘導加熱装置により補償し、仕上圧延機入側の被圧延材温度を全長に亘ってほぼ一定の850℃に制御して、被圧延材の先端から後端にかけて全圧延スタンドでの圧延速度をそれぞれ一定速度にて7パスの仕上圧延を行った。このときの圧延条件は、仕上板厚4mm、仕上圧延速度1000mpmとした。
【0031】
また、この鋼種の逆変態温度が875℃であったため、逆変態の生じるスタンドを5スタンド目とし、このスタンドでの圧延後の温度が880℃となるよう、3スタンド目から5スタンド目にかけての被圧延材の圧下率を調整した。仕上圧延速度を一定にして圧延を行ったところ、各スタンドの温度は以下に示す値で被圧延材の全長に亘りほぼ一定であった。
【0032】

Figure 2004009108
これに対し、従来の方法による仕上圧延4mmの熱延鋼帯の仕上圧延として、仕上圧延機入側での加熱を行わず、被圧延材先端から後端へ圧延が進行するにつれて最終スタンドの圧延速度を900mpmから1100mpmまで加速する条件での圧延を行った。被圧延材の先端では5スタンド目の圧延温度が880℃となっていたが、後端になるにしたがって温度低下が生じ、被圧延材全長のほぼ半分まで圧延したときに圧延温度が875℃まで低下した。さらに後端付近では5スタンド目における被圧延材の温度は870℃まで低下した。
【0033】
以上の条件で製造した本発明と比較例の熱延鋼帯から、先端、中央、後端の3箇所でサンプルを切り出し、それぞれのフェライト粒径を調査した。その結果、本発明の熱延鋼帯では圧延方向のフェライト粒径がほぼ2μmで一定であったのに対して、比較例の熱延鋼帯ではフェライト粒径が圧延方向で2〜9μmまで変化しており、先端で微細粒、後端では5μm以上のフェライト粒径の組織となっていた。つまり比較例の熱延鋼帯では先端以外は逆変態してなかったと考えられる。
【0034】
【発明の効果】
以上説明したように、本発明によれば、合金元素を添加することなく、粒径3μm以下の極微細なフェライト組織を有する熱延鋼板が製造でき、高強度・高靭性を有する鋼板の製造が可能となる。
【図面の簡単な説明】
【図1】本発明の実施に供される熱延鋼帯の製造設備列の一実施形態を示す説明図
【図2】図1に示す装置構成における被圧延材の長手方向中央部の断面平均温度の変化を示すグラフ
【符号の説明】
1 粗圧延機
2 中間冷却装置
3 加熱装置
4 仕上圧延機
5 急速冷却装置
6 冷却装置
7 巻取り機[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a hot-rolled steel strip having a fine ferrite structure having an average particle diameter of 3 μm or less and having excellent strength and toughness.
[0002]
[Prior art]
Many rolling methods for causing reverse transformation during tandem rolling have been conventionally proposed.
[0003]
For example, Japanese Patent Application Laid-Open No. H11-152522 discloses that a ferrite (α) is inversely transformed into austenite (γ) by utilizing the heat generated during processing in the finish rolling of continuous hot rolling and / or the temperature rise due to reheating of a steel sheet. A method for producing a thin steel sheet excellent in deep drawability, characterized by the above, is disclosed.
[0004]
Japanese Patent Publication No. Hei 7-9033 discloses that a continuous cast slab or ingot is cooled from a hot slab or a hot lump state, and (a) is subjected to rolling at a total reduction rate of 30% or more in a temperature range of three points or less of Ar. (B) Subsequently, the temperature is raised to a temperature range of from Ac 3 points to [Ac 3 points + 100 ° C.] at a heating rate of 10 ° C./sec or more to cause reverse transformation from ferrite to austenite. (C) A method for producing an ultrafine-structured steel sheet is characterized in that rolling is performed in a phase temperature region at a total reduction rate of 10% or more. Furthermore, after rolling the continuous cast slab or ingot in a hot slab or hot lump state or in a heating furnace and then performing rolling at a total reduction rate of 30% or more in a recrystallization temperature range, this is cooled, (A) Rolling is performed with a total draft of 30% or more in a temperature range of Ar 3 or less. (B) Subsequently, a heating rate of 10 ° C./sec or more is applied to a temperature range of Ac 3 points to [Ac 3 points + 100 ° C.]. (C) rolling at a total reduction of 10% or more in the austenite phase temperature range; and sequentially working and cooling. , A method for producing an ultrafine-structured steel sheet.
[0005]
Japanese Patent Application Laid-Open No. 10-8142 discloses that, by weight, C: 0.0005 to 0.0150% Si: 0.2% or less Mn: 0.05 to 0.6% P: 0.02% or less S: 0.02% or less Al: 0.15% or less N: 0.02% or less, and if necessary, Nb: 0.003 to 0.020% Ti: 0.003 to 0.020% B: 0 0.0002% to 0.0020% Cu: 0.5% or less Ni: 0.5% or less Cr: 0.5% or less Mo: One or more of 0.2% or less, the balance being Fe and Hot rough rolling is performed on a steel slab with a composition consisting of impurities to avoid total rolling reduction of 80% or more, of which the final pass is 20% or more. When passing through any of the rolling stands in the rolling mill row, reverse transformation occurs due to the heat generated by rolling. Finish rolling temperature is completed so that the Ar 3 -50 ° C. or more, to obtain a hot rolled steel strip by winding at a temperature of 550 to 750 ° C., descaling against heat-rolled steel strip, cold rolled A method for producing a steel sheet for cans with good workability and without roughening, characterized by performing recrystallization annealing and temper rolling at 30% or less.
[0006]
[Problems to be solved by the invention]
In the above prior art, any rolling method that causes reverse transformation during tandem rolling is shown. However, although the rolling reduction and the temperature range are specified, uniform rolling is performed over the entire length of the material to be rolled. No specific method for producing the steel sheet is disclosed.
[0007]
Generally, the temperature of the material to be rolled at the entrance to the finishing mill is higher at the leading end and lower toward the rear end due to the temperature drop of the material due to radiation and convection. In order to compensate for this, in tandem rolling, accelerated rolling in which the rolling speed is accelerated toward the rear end is performed.
[0008]
In order to generate the reverse transformation stably from the front end to the rear end of the material to be rolled at a specific stand of the tandem finish rolling mill, the temperature of the material to be rolled and the calorific value of the work at the stand are kept substantially constant in the longitudinal direction. There is a need. However, in ordinary tandem rolling, although the temperature of the material to be rolled is constant at the final stand, it varies depending on the rolling position in other stands, and the temperature of the material during rolling is more remarkable in the former stand. In addition, when the accelerated rolling is performed, the strain rate of the rolling process is gradually increased, so that the deformation resistance of the material is increased, and the calorific value of the process is increased.
[0009]
Taking all these phenomena into account, it is extremely difficult to set the rolling conditions so that the reverse transformation occurs stably from the leading end to the trailing end of the rolled material at the same specific rolling stand. A steel sheet having a microstructure by reverse transformation over the entire length of the steel sheet could not be manufactured.
[0010]
The present invention solves the above-mentioned problems of the prior art, and manufactures a hot-rolled steel strip capable of stably manufacturing a hot-rolled steel strip having a microstructure by reverse transformation over the entire length of a rolled material. The aim is to provide a method.
[0011]
[Means for Solving the Problems]
That is, the method for producing a hot-rolled steel strip of the present invention has the following features.
[0012]
(1) When a hot-rolled steel strip is manufactured by finish rolling by a continuous tandem finishing mill, a heating device for heating the material to be rolled is installed on the entrance side of the finishing mill, and the finishing mill for the material to be rolled is installed. By controlling the entry temperature to a substantially constant temperature of Ar 3 or less in the longitudinal direction and keeping the rolling speed from the leading end to the trailing end of the material to be rolled, a substantially constant rolling process in the longitudinal direction of the material to be rolled is achieved. A method for producing a hot-rolled steel strip, which generates accompanying heat generated by processing and reversely transforms ferrite to austenite in the same rolling stand from the front end to the rear end of the material to be rolled.
[0013]
(2) The method for producing a hot-rolled steel strip according to the above (1), wherein the rapid cooling immediately after the final rolling pass of the finish rolling is performed at a cooling rate of 50 ° C./sec or more.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Drawing 1 is an explanatory view showing one embodiment of a manufacturing equipment row of a hot-rolled steel strip used for carrying out the present invention.
[0015]
The hot-rolled steel strip production line shown in FIG. 1 is installed near a rough rolling mill 1 for rolling a slab heated to a predetermined temperature into a rough bar having a predetermined roughness, and in the vicinity of a rough rolling mill outlet side. An intermediate cooling device 2, a heating device 3 for heating the rough bar, and a rough bar whose temperature is controlled to be constant in the longitudinal direction by the heating device 3 are rolled into a hot-rolled steel strip having a predetermined thickness. Mill 4 for cooling the hot-rolled steel strip, a cooling device 6 for adjusting the winding temperature, and a cooling device 6 for cooling the hot-rolled steel strip, which is located immediately adjacent to the exit side of the finishing mill. And a winding machine 7 for winding a steel strip.
[0016]
The intermediate cooling device 2 is installed in the vicinity of the exit side of the rough rolling final rolling stand to prevent grain growth after the rough rolling, and to reduce the temperature of the material to be rolled into the finishing mill at the entry side of Ar 3 or less in the longitudinal direction. This is a cooling device that performs temperature-adjusted cooling before a constant temperature is reached.
[0017]
The recrystallized austenite grains produced under the rough rolling reduction usually show large grain growth behavior during several tens of seconds between the rough rolling and the finish rolling. Since the grain size of the ferrite structure formed by transformation from austenite becomes smaller as the austenite grain size becomes smaller, and in order to keep the austenite grain size remaining at a temperature of Ar 3 or less as small as possible, it is necessary to immediately cool the steel after rough rolling. desirable.
[0018]
The heating device 3 heats the material to be rolled, the temperature of which is controlled and cooled by the intermediate cooling device 2, and controls the temperature of the material to be rolled into the finishing mill at the longitudinal direction to a substantially constant temperature of Ar 3 or less in the longitudinal direction. It is a heating device. If an induction heating device is used as such a heating device, the control responsiveness is good, and the temperature of the coarse bar on the entry side of the finishing mill 4 can be heated to a constant temperature over its entire length in the longitudinal direction. .
[0019]
The rapid cooling device 5 is a cooling device for suppressing grain growth by rapid cooling immediately after rolling, increasing the rate of growth of transformation nuclei into ferrite, and obtaining a finer structure. It is preferable to perform the rapid cooling immediately after the final rolling pass of the finish rolling at a cooling rate of 50 ° C./sec or more.
[0020]
In order to enable rapid cooling immediately after the rolling mill, it is desirable to arrange as close as possible to the exit side of the rolling mill. In the embodiment of FIG. 1, the rapid cooling device is arranged immediately near the exit side of the finishing mill.
[0021]
In addition, from the viewpoint of material adjustment, the temperature after winding by the winder 7 is also important. In the embodiment of FIG. 1, the cooling device 6 for adjusting the winding temperature is provided immediately before the winder 7. Has been installed.
[0022]
Hereinafter, an embodiment of the method of the present invention using the above-described apparatus configuration will be described. FIG. 2 shows the change in the cross-sectional average temperature at the center in the longitudinal direction of the material to be rolled in the above-described apparatus configuration.
[0023]
In the production line of a hot-rolled steel strip shown in FIG. 1, a slab heated to a predetermined temperature is reduced to a rough bar having a predetermined thickness by a rough rolling mill 1 and rolled. Next, the rolled rough bar is subjected to temperature adjustment and cooling to near the target temperature in finish rolling by the intermediate cooling device 2 installed in the immediate vicinity of the rough rolling mill outlet side. The rough bar which has been subjected to the temperature control cooling is heated by the heating device 3 so that the temperature on the finishing mill entry side is substantially constant at not more than Ar 3 over the entire length of the rough bar. Next, the rough bar heated by the heating device 3 is reduced in thickness to a hot-rolled steel strip having a predetermined thickness by the finish rolling mill 4 and rolled. At this time, by making the rolling speed from the front end to the rear end of the material to be rolled constant, processing heat is generated due to substantially constant rolling in the longitudinal direction of the material to be rolled, and the same heat is generated from the front end to the rear end of the material to be rolled. Reverse transformation from ferrite to austenite at a rolling stand.
[0024]
To make the rolling speed from the front end to the rear end of the material to be rolled constant means to make the rolling speeds of all the rolling stands of the finishing mill 4 substantially constant.
[0025]
Here, the temperature rise due to the heat generated during processing is limited to 30 to 40 ° C., which is a degree at which reverse transformation can be barely caused. On the other hand, from the viewpoint of refining the structure, it is desirable to lower the temperature before the reverse transformation as much as possible and to reverse the transformation after increasing the ratio of the ferrite phase, that is, to lower the temperature in the intermediate cooling after the rough rolling. This is advantageous for the production of micronized steel. However, if the temperature in the intermediate cooling is lowered, the amount of temperature rise up to the reverse transformation temperature becomes large, so that the heat generated by processing alone is insufficient. Therefore, as shown in FIG. 1, a certain degree of heating is performed by a heating device, and when passing through any one of the rolling stands of the finishing rolling mill, the temperature on the finishing rolling mill entrance side may be controlled to a temperature at which reverse transformation occurs due to processing heat. .
[0026]
Specifically, for example, when the reverse transformation is caused in the fifth stand, the temperature drop ΔTc due to cooling or the like to the material to be rolled from the entrance of the finishing mill to the end of the fifth stand rolling, the temperature due to processing heat and frictional heat The rise ΔTh can be predicted by calculation. Assuming that the reverse transformation temperature of the material to be rolled is Ac 3 and the inlet side temperature of the heating device is T, the target heating temperature ΔT in the heating device is expressed by the following equation (1). Is done.
[0027]
ΔT = Ac 3 − (ΔTh−ΔTc) −T (1)
Furthermore, in the above-mentioned finish rolling, since it is necessary to keep the temperature of the material to be rolled and the calorific value of the processing at the stand that causes the reverse transformation almost constant in the longitudinal direction, the rolling from the leading end of the material to be rolled is performed without performing the accelerated rolling. Rolling is performed at a constant rolling speed to the end.
[0028]
Thereafter, the cooling device 5 for rapidly cooling the hot-rolled steel strip at a cooling rate of 50 ° C./sec or more immediately after the end of the final rolling pass of the finish rolling by the rapid cooling device 5 for adjusting the winding temperature. Then, the steel strip is wound by the winder 7.
[0029]
In the change in the cross-sectional average temperature at the center in the longitudinal direction of the material to be rolled shown in FIG. 2, a section where the temperature of the coarse bar slightly decreases while leaving the intermediate cooling device and entering the heating device is indicated as “transport”. The other indications of “rough rolling mill”, “cooling device”, “rapid heating”, “finishing rolling mill” and “rapid cooling” are respectively used in the hot rolling steel strip production line shown in FIG. , An intermediate cooling device 2, a heating device 3, a finishing mill 4, and a rapid cooling device 5.
[0030]
【Example】
Using a hot-rolled steel strip manufacturing line shown in FIG. 1, a low-carbon steel slab having a thickness of 250 mm was heated to about 1100 ° C. in a heating furnace, and then the slab was rolled into a 50 mm rough-rolling machine with 5 passes. To a coarse bar. The coarse bar is cooled to about 830 ° C. by an intermediate cooling device to reach a temperature of Ar 3 (860 ° C.) or less, and then the temperature drop at which the inlet side temperature of the finishing mill decreases over time is reduced by an induction heating device. Compensate and control the temperature of the material to be rolled on the entrance side of the finishing mill to 850 ° C., which is almost constant over the entire length, and set the rolling speed at all rolling stands from the front end to the rear end of the material to be rolled at a constant speed. 7 passes of finish rolling were performed. The rolling conditions at this time were a finished plate thickness of 4 mm and a finish rolling speed of 1000 mpm.
[0031]
Further, since the reverse transformation temperature of this steel type was 875 ° C., the stand where the reverse transformation occurred was set to the fifth stand, and the temperature after the rolling at this stand was set to 880 ° C., so that the stand from the third stand to the fifth stand was set. The rolling reduction of the material to be rolled was adjusted. When rolling was performed at a constant finish rolling speed, the temperature of each stand was substantially constant over the entire length of the material to be rolled at the following values.
[0032]
Figure 2004009108
On the other hand, as the finish rolling of the hot-rolled steel strip of 4 mm in the finish rolling according to the conventional method, the heating at the entrance side of the finishing rolling mill is not performed, and the rolling of the final stand is performed as the rolling progresses from the leading end to the trailing end of the material to be rolled. Rolling was performed under the condition of increasing the speed from 900 mpm to 1100 mpm. The rolling temperature at the 5th stand at the leading end of the material to be rolled was 880 ° C., but the temperature dropped toward the rear end, and the rolling temperature reached 875 ° C. when rolling was performed to almost half of the total length of the material to be rolled. Dropped. Further, near the rear end, the temperature of the material to be rolled at the fifth stand dropped to 870 ° C.
[0033]
From the hot-rolled steel strips of the present invention and the comparative example manufactured under the above conditions, samples were cut out at three points of the front end, the center, and the rear end, and the ferrite grain size of each was investigated. As a result, the ferrite grain size in the rolling direction was constant at approximately 2 μm in the hot-rolled steel strip of the present invention, whereas the ferrite grain size changed from 2 to 9 μm in the rolling direction in the hot-rolled steel strip of the comparative example. The structure had a fine grain at the front end and a ferrite grain size of 5 μm or more at the rear end. That is, it is considered that the hot rolled steel strip of the comparative example did not undergo reverse transformation except at the tip.
[0034]
【The invention's effect】
As described above, according to the present invention, a hot-rolled steel sheet having an ultrafine ferrite structure with a grain size of 3 μm or less can be manufactured without adding an alloying element, and a steel sheet having high strength and high toughness can be manufactured. It becomes possible.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing one embodiment of a hot-rolled steel strip manufacturing facility line used for carrying out the present invention; FIG. Graph showing temperature change [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Rough rolling mill 2 Intermediate cooling device 3 Heating device 4 Finish rolling mill 5 Rapid cooling device 6 Cooling device 7 Winding machine

Claims (2)

連続タンデム仕上圧延機により仕上圧延して熱延鋼帯を製造するに際し、仕上圧延機入側に被圧延材を加熱するための加熱装置を設置して、被圧延材の仕上圧延機入側温度を長手方向にAr以下の略一定温度に制御するとともに、被圧延材先端から後端までの圧延速度を一定とすることにより、被圧延材の長手方向に略一定の圧延加工に伴う加工発熱を生じさせ、被圧延材の先端から後端まで同一の圧延スタンドでフェライトからオーステナイトに逆変態させることを特徴とする熱延鋼帯の製造方法。When producing a hot-rolled steel strip by finish rolling with a continuous tandem finish rolling mill, a heating device for heating the material to be rolled is installed on the entrance side of the finish rolling mill, and the temperature of the finish rolling mill entrance side of the material to be rolled is installed. Is controlled to a substantially constant temperature of not more than Ar 3 in the longitudinal direction and the rolling speed from the leading end to the trailing end of the material to be rolled is kept constant, so that the heat generated during the rolling process is substantially constant in the longitudinal direction of the material to be rolled. And producing a reverse transformation from ferrite to austenite in the same rolling stand from the leading end to the trailing end of the material to be rolled. 仕上圧延の最終圧延パス終了直後の急速冷却を、50℃/秒以上の冷却速度で行うことを特徴とする請求項1に記載の熱延鋼帯の製造方法。The method for producing a hot-rolled steel strip according to claim 1, wherein the rapid cooling immediately after the final rolling pass of the finish rolling is performed at a cooling rate of 50 ° C / sec or more.
JP2002167297A 2002-06-07 2002-06-07 Hot-rolled steel strip manufacturing method Pending JP2004009108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002167297A JP2004009108A (en) 2002-06-07 2002-06-07 Hot-rolled steel strip manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002167297A JP2004009108A (en) 2002-06-07 2002-06-07 Hot-rolled steel strip manufacturing method

Publications (1)

Publication Number Publication Date
JP2004009108A true JP2004009108A (en) 2004-01-15

Family

ID=30434593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002167297A Pending JP2004009108A (en) 2002-06-07 2002-06-07 Hot-rolled steel strip manufacturing method

Country Status (1)

Country Link
JP (1) JP2004009108A (en)

Similar Documents

Publication Publication Date Title
EP2546004B1 (en) Hot-rolled steel sheet manufacturing method and manufacturing device
JP2014505172A (en) Manufacturing method of hot rolled flat steel products
EP1143019B1 (en) Method for manufacturing a coiled steel sheet
JP2011068997A (en) Strip made of iron-carbon-manganese alloy
JP5335179B2 (en) Hot rolled coil and manufacturing method thereof
CN104245970B (en) Low yield ratio, high strength electricresistance welded steel pipe, for the steel band of this electricresistance welded steel pipe and their manufacture method
JP2003320402A (en) Method and apparatus for manufacturing hot rolled steel strip
JP3915460B2 (en) High strength hot rolled steel sheet and method for producing the same
CN111531138B (en) Method for producing non-oriented electrical steel by thin slab continuous casting and rolling
JP4412418B2 (en) Method for producing hot-rolled steel sheet having fine ferrite structure, and hot-rolled steel sheet
JP2010090480A (en) Method for producing high-carbon hot-rolled steel sheet
JP4687255B2 (en) Steel plate manufacturing method
JP2007331017A (en) Method and apparatus of manufacturing hot-rolled steel sheet
JP2007046128A (en) Method for manufacturing hot-rolled steel sheet having fine ferrite structure
JP2001207244A (en) Cold rolled ferritic stainless steel sheet excellent in ductility, workability and ridging resistance, and its manufacturing method
EP1574588B1 (en) High strength steel product with improved formability and steel manufacturing process
JP2004009108A (en) Hot-rolled steel strip manufacturing method
JP2005169454A (en) Steel strip manufacturing equipment and method
US20090065104A1 (en) Method of producing a cold-rolled strip with a ferritic structure
JP2008189958A (en) Hot rolled steel sheet with uniform and fine ferritic structure, and its manufacturing method
JP7226458B2 (en) Manufacturing method for high-strength hot-rolled steel sheet
JP2004090065A (en) Heavy reduction rolling method and method for manufacturing hot-rolled steel strip by using the same
JP4158034B2 (en) Hot rolling method for thin steel sheet
JP4466252B2 (en) Manufacturing method of high carbon hot rolled steel sheet
JP2004136321A (en) Hot-rolled steel sheet manufacturing method