【0001】
〔産業上の利用分野〕
本発明は、最近の電子機器及び半導体部品の小型化、微細化、高度化に伴ない、益々微細ダクトの存在や付着が、製品の品質や保留り、機器・製造ラインの寿命に大きな影響を与える。その為に、ウエハや電子部品等の表面上に付着した微細ダクトの捕集効率を向上させる手段として、エアクリーナ・ヘッドの断面形状と断面構造に関するものである。
【0002】
〔従来の技術〕
従来から利用されている半導体製造装置におけるプッシュ・プル式エアクリーナ装置は図1に表示する様な構成で成り立っている。この方式は、クローズドループ(閉回路)方式であり、1台のブロワ2に高速エアの供給と微細ダクトを吸引するバキューム機能を有したエア循環式配管であり、エアを循環している為に、クリーンルーム等の設置においても室内のエアバランスを崩すことなく、設備コストも安価な利点がある。
ブロワ2の昇圧時には、エアの圧縮熱でエア温度が上昇するので、放熱条件と温度影響を受け易い、製品や材料に対しては、留意する必要がある。
構成は、クリーナ・ヘッド1、プレッシャ及びバキュームエア源であるブロワ2、クリーナヘッドの供給高速エアを浄化するHEPAフィルタ3、クリーナヘッドから吸引された微細ダクトを捕集するPRAフィルタ4、風量(圧力)を調整するダンパ5、及びこれらを接続するホース、パイプ6、等の配管でなる。
次にエアクリーナヘッド1、の断面形状を図2に表示する。構造は中央にプレッシャ室7とその出口がプッシュ口10、両側にバキューム室8を有して、その吸込用バキューム口11があり、平滑平面なダクト捕集面9でなる。
【0003】
エアの流れは、コンベア上を移動中の対象製品上にクリーンな圧縮をプレッシャ室7からプッシュ口10を通して吹きつけることで、付着微細ダクト14を飛散させて、両端部のバキューム口11から吸引捕集するシステムで成っている。
【0004】
〔発明が解決しようとする課題〕
従来のエアクリーナ装置において、コンベア上を移動中の対象製品に付着している微細ダクトをいかに効率良く捕集できるかが課題となっている。その為にはクリーナヘッドのプレッシャ室7内の圧縮エアの風量を増大し、プッシュ口10から噴出速度を速くすると共に、風量の質を変化させて、ダクト捕集面9の断面形状を平滑面から波形断面に変えることでエアの流れも変えることで、解決の糸口を見い出せるものと考える。
【0005】
〔課題を解決するための手段〕
本発明はエアクリーナ・ヘッドのダクト捕集面の断面形状を平滑面から連続した波形や半円形に加工することで、図4に表示する様に、圧縮エアがプッシュ口10から噴出した後、対象製品(ウエハ等)16に衝突して反転する繰り返えす流れを経て、バキューム口11に到着する過程で流れの中に渦流が発生して乱流拡散になり従来の一元的な流れと比較して、より複雑な流れが付着微細ダクト14の飛散を誘発して、捕集効率が向上すること見い出した。
【0006】
そしてプレッシャ室7内に薄板17(0.03〜0.3mm)を図5に表示する様に圧縮エアに直交する方向に取付位置をズラして片側を固定してその一方が自由に振動できる構造とする。圧縮エアに対して薄板17が振動することで、エア密度に変化を付与し、それらに供ないエア振動を発生することで、圧縮エアの質を変化させることで、対象製品16表面上の付着微細ダクト14の剥離効率を向上させることで、捕集効率の向上に寄与する。
【0007】
更にプレッシャ室7内に外部から2次エアを吸い込む2次エアパイプ18を左右各々に設置することで、圧縮エア量を増大させプッシュ口10から噴出速度を速くして、対象製品16表面上の付着微細ダクト14の剥離効率を向上させることで、捕集効率の向上に寄与する。
【0008】
〔発明の実施の形態〕
本発明のエアクリーナ・ヘッド1のダクト捕集面9の断面形状図を図6に表示して以下3つのパターンで説明する。
(イ)は波形を表示する。
(ロ)は半円形を表示する。
(ハ)は波形・半円・波形の(イ)と(ロ)を組み合わせたものを表示する。
波形の深さとピッチと数量は、圧縮エアの噴出速度とプッシュ口10とバキューム口11までの距離から実験的に決定されるものと考えられる。これらの数値を決定することで、ブロワ2の能力計算ができる。
【0009】
一方、図5において、プレッシャ室7内に2ヶ所の改良加工をすることで、圧縮エアの質を変化させることで、対象製品16表面上の付着微細ダクト14の剥離効率が向上して、捕集効率の向上に寄与する。
1ヶ所は、プレッシャ室7内中央部に薄板17(0.03〜0.3mm)を圧縮エアに直交する方向に任意に取付位置を5〜15mmの範囲内でズラして、片側を固定して、その一方が自由に振動できる様にした構造を有する。薄板17の板厚、長さ等は、圧縮エアの風速から適切な振動効果が得られる様に決定する。
もう一ヶ所は、プレッシャ室7内中央部に薄板17より上側に外部から2次エアをエゼクターの要領で吸い込む2次エアパイプ18を左右の任意の位置から任意の角度(10〜30°)範囲で固定する。2次エアを外部から取り入れることで、プッシュ口10での噴出速度を速くすることができる。
【0010】
〔実施例〕
パーティクルカウンターにおいて、本発明品と従来品とで、クリーニング前後のサンプリング基材上の微細ダクトの数の比較を行ない、捕集能力を評価する。表1に実験結果を示す。
テスト条件
(イ)基 材:PETフィルム
(ロ)微細ダクト :環境粉塵
(ハ)吐出エア圧力 :15kpa
(ニ)基材とギャップ:約2〜3mm
(ホ)ライン速度 :100 m/min
【0011】
実験結果から本発明品は従来品に比べて、捕集された微細ダクト数は4倍強となり、捕集効率も80%から95%に向上していることが判明した。
【0012】
〔発明の効果〕
本発明のエアクリーナヘッドのダクト捕集面に波形の断面加工を施して、薄板と2次エアパイプを有したプッシュプル式エアクリーナ装置によれば、コンベア上を移動中の対象製品に付着微細ダクトの捕集効率を80%から95%以上に向上させることができる。プッシュ口からの噴出速度が速くなりエアの流れの中にエア振動を含有し、ダクト捕集面の波形断面加工部分から誘発する乱流拡散流から、付着微細ダクトの剥離効率をより高める効果があることがわかる。対象製品の品質向上と歩留り向上によるコストダウンに貢献する。
【図面の簡単な説明】
【図1】プッシュ・プル式エアクリーナ装置の構成説明図
【図2】クリーナ・ヘッドの断面図
【図3】従来のクリーナ・ヘッドのダクト捕集面のエアの流れ説明図
【図4】本発明のクリーナ・ヘッドのダクト捕集面のエアの流れ説明図
【図5】本発明のクリーナヘッドの断面図
【図6】クリーナヘッドのダクト捕集面の断面加工実例図
【符号の説明】
1 クリーナ・ヘッド
2 ブロワ
3 HEPAフィルタ
4 PREフィルタ
5 風量調整バルブ
6 配管
7 プレッシャ室
8 バキューム室
9 ダクト捕集面
10 プッシュ口
11 バキューム口
12 エアの流れ
13 渦流
14 付着微細ダクト
15 飛散微細ダクト
16 対象製品
17 薄板
18 2次エアパイプ
19 波形加工断面
20 半円形加工断面[0001]
[Industrial applications]
According to the present invention, with the recent miniaturization, miniaturization, and sophistication of electronic devices and semiconductor components, the presence and adhesion of fine ducts have a great effect on product quality and suspension, and the life of equipment and manufacturing lines. give. To this end, the present invention relates to a cross-sectional shape and a cross-sectional structure of an air cleaner head as a means for improving a collection efficiency of a fine duct adhered to a surface of a wafer, an electronic component, or the like.
[0002]
[Conventional technology]
2. Description of the Related Art A push-pull air cleaner in a semiconductor manufacturing apparatus which has been conventionally used has a configuration as shown in FIG. This system is a closed loop (closed circuit) system, which is an air circulation type piping having a high-speed air supply to one blower 2 and a vacuum function for sucking a fine duct. In addition, even in the installation of a clean room or the like, there is an advantage that the air balance in the room is not broken and the equipment cost is low.
When the pressure of the blower 2 is increased, the air temperature rises due to the compression heat of the air. Therefore, it is necessary to pay attention to products and materials that are easily affected by heat radiation conditions and temperature.
The configuration includes a cleaner head 1, a blower 2 serving as a pressure and vacuum air source, a HEPA filter 3 for purifying high-speed air supplied from the cleaner head, a PRA filter 4 for collecting fine ducts sucked from the cleaner head, and an air volume (pressure). ), And pipes such as hoses and pipes 6 for connecting these dampers.
Next, the cross-sectional shape of the air cleaner head 1 is shown in FIG. The structure has a pressure chamber 7 in the center, a push port 10 at the outlet thereof, a vacuum chamber 8 on both sides, a suction port 11 for suction, and a smooth flat duct collecting surface 9.
[0003]
The air flow blows clean compression from the pressure chamber 7 through the push port 10 onto the target product moving on the conveyer to scatter the attached fine duct 14 and suction and capture the air from the vacuum ports 11 at both ends. It consists of a gathering system.
[0004]
[Problems to be solved by the invention]
In a conventional air cleaner device, how to efficiently collect fine ducts adhering to a target product moving on a conveyor has been an issue. For this purpose, the air volume of the compressed air in the pressure chamber 7 of the cleaner head is increased, the blowing speed from the push port 10 is increased, the quality of the air volume is changed, and the cross-sectional shape of the duct collecting surface 9 is made smooth. It is thought that the clue to the solution can be found by changing the flow of air by changing to a wavy cross section.
[0005]
[Means for solving the problem]
The present invention processes the cross-sectional shape of the duct collecting surface of the air cleaner head into a continuous waveform or a semicircle from a smooth surface, so that the compressed air is ejected from the push port 10 as shown in FIG. Through a repetitive flow that collides with a product (wafer or the like) 16 and reverses, a vortex is generated in the flow in the process of arriving at the vacuum port 11 and becomes turbulent diffusion. It has been found that a more complicated flow induces the scattering of the attached fine duct 14 to improve the collection efficiency.
[0006]
As shown in FIG. 5, the thin plate 17 (0.03 to 0.3 mm) is displaced in the direction perpendicular to the compressed air in the pressure chamber 7 so that one side can be freely vibrated. Structure. By vibrating the thin plate 17 with respect to the compressed air, a change is applied to the air density, and air vibration is generated which is not provided to the thin plate 17, thereby changing the quality of the compressed air. By improving the separation efficiency of the fine duct 14, it contributes to the improvement of the collection efficiency.
[0007]
Further, by installing secondary air pipes 18 for sucking secondary air from the outside into the pressure chamber 7 on each of the right and left sides, the amount of compressed air is increased, the ejection speed from the push port 10 is increased, and the adhesion on the surface of the target product 16 is increased. By improving the separation efficiency of the fine duct 14, it contributes to the improvement of the collection efficiency.
[0008]
[Embodiment of the invention]
FIG. 6 is a cross-sectional view of the duct collecting surface 9 of the air cleaner head 1 of the present invention, and the following three patterns will be described.
(A) displays the waveform.
(B) displays a semicircle.
(C) displays a combination of waveforms (a) and (b) of a waveform / semicircle / waveform.
It is considered that the depth, pitch and quantity of the waveform are experimentally determined from the ejection speed of the compressed air and the distance between the push port 10 and the vacuum port 11. By determining these numerical values, the capacity of the blower 2 can be calculated.
[0009]
On the other hand, in FIG. 5, the quality of the compressed air is changed by improving the pressure chamber 7 at two places to improve the separation efficiency of the attached fine duct 14 on the surface of the target product 16, and the trapping efficiency is improved. It contributes to improving collection efficiency.
In one place, the thin plate 17 (0.03 to 0.3 mm) is arbitrarily shifted in the direction perpendicular to the compressed air within the range of 5 to 15 mm in the center of the pressure chamber 7 to fix one side. And one of them can freely vibrate. The thickness, length, etc. of the thin plate 17 are determined so that an appropriate vibration effect can be obtained from the wind speed of the compressed air.
Another point is that a secondary air pipe 18 that suctions secondary air from the outside in the center of the pressure chamber 7 above the thin plate 17 in the manner of an ejector from an arbitrary position on the left and right at an arbitrary angle (10 to 30 °). Fix it. By taking in the secondary air from the outside, the ejection speed at the push port 10 can be increased.
[0010]
〔Example〕
In the particle counter, the number of fine ducts on the sampling base material before and after cleaning is compared between the product of the present invention and the conventional product, and the collection ability is evaluated. Table 1 shows the experimental results.
Test conditions (A) Base material: PET film (B) Fine duct: Environmental dust (C) Discharge air pressure: 15 kpa
(D) Base material and gap: about 2-3 mm
(E) Line speed: 100 m / min
[0011]
From the experimental results, it was found that the number of the collected fine ducts of the product of the present invention was slightly more than four times that of the conventional product, and the collection efficiency was improved from 80% to 95%.
[0012]
〔The invention's effect〕
According to the push-pull air cleaner device having a thin plate and a secondary air pipe by subjecting the duct collecting surface of the air cleaner head of the present invention to a corrugated cross-section processing, a fine duct attached to a target product moving on the conveyor is captured. The collection efficiency can be improved from 80% to 95% or more. The jet velocity from the push port becomes faster and contains air vibrations in the air flow, and the turbulent diffusion flow induced from the corrugated cross-section processing part of the duct collecting surface has the effect of further increasing the separation efficiency of the attached fine duct. You can see that there is. Contribute to cost reduction by improving the quality of target products and improving yield.
[Brief description of the drawings]
FIG. 1 is an explanatory view of a configuration of a push-pull type air cleaner device. FIG. 2 is a sectional view of a cleaner head. FIG. 3 is an explanatory view of air flow on a duct collecting surface of a conventional cleaner head. FIG. FIG. 5 is a cross-sectional view of the cleaner head of the present invention. FIG. 6 is a cross-sectional working example diagram of the cleaner head duct collecting surface of the cleaner head.
DESCRIPTION OF SYMBOLS 1 Cleaner head 2 Blower 3 HEPA filter 4 PRE filter 5 Air volume adjustment valve 6 Piping 7 Pressure chamber 8 Vacuum chamber 9 Duct collecting surface 10 Push port 11 Vacuum port 12 Air flow 13 Eddy flow 14 Adhered fine duct 15 Spatter fine duct 16 Target product 17 Thin plate 18 Secondary air pipe 19 Corrugated section 20 Semi-circular section