JP2004008980A - Method and apparatus for purifying contaminated water - Google Patents

Method and apparatus for purifying contaminated water Download PDF

Info

Publication number
JP2004008980A
JP2004008980A JP2002168065A JP2002168065A JP2004008980A JP 2004008980 A JP2004008980 A JP 2004008980A JP 2002168065 A JP2002168065 A JP 2002168065A JP 2002168065 A JP2002168065 A JP 2002168065A JP 2004008980 A JP2004008980 A JP 2004008980A
Authority
JP
Japan
Prior art keywords
contaminated water
gas
ozone
ultraviolet
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002168065A
Other languages
Japanese (ja)
Inventor
Miki Masuda
増田 幹
Masao Wakabayashi
若林 正男
Ryozo Ushio
牛尾 亮三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2002168065A priority Critical patent/JP2004008980A/en
Publication of JP2004008980A publication Critical patent/JP2004008980A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Degasification And Air Bubble Elimination (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a contaminated water purifying method for decomposing a contaminant efficiently by even a small amount of ozone gas by preventing ozone from being gasified and separated from the contaminated water and producing active radicals such as hydroxyl radicals efficiently in an ultraviolet irradiation unit. <P>SOLUTION: This contaminated water purifying method comprises a gas-liquid mixing step to mix ozone in the contaminated water, an ultraviolet irradiating step to irradiate the ozone-mixed contaminated water with ultraviolet rays and decompose the contaminant and a gas-liquid separating step to separate the gas and volatile contaminant remaining in the ultraviolet-irradiated contaminated water. Ozone is dissolved in the contaminated water under pressure in a gas-liquid mixing pump 5 by arranging a pressure regulating valve 7 on the downstream side of the ultraviolet irradiation unit 8. The contaminated water of the pressurized state is irradiated with ultraviolet rays in the unit 8. The pressure of the ultraviolet-irradiated contaminated water is released in the succeeding gas-liquid separating unit 10. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、有害な汚染物質で汚染された地下水などの汚染水から汚染物質を除去して浄化する方法及びその浄化装置に関する。
【0002】
【従来の技術】
近年、地下水の汚染が問題になっているが、その原因となる主な汚染物質としては、トリクロロエチレン、テトラクロロエチレン、1,2−ジクロロエタン、1,1−ジクロロエチレン、1,2−ジクロロエチレン、1,1,1−トリクロロエタン、1,1,2−トリクロロエタン、ジクロロメタン、パラジクロロベンゼン、1,2−ジクロロプロパン、クロロホルム、ベンゼン、トルエン、四塩化炭素、キシレン、ホルムアルデヒド等の揮発性有機化合物が挙げられる。
【0003】
上記した有機塩素化合物などの揮発性汚染物質を含む土壌を修復する方法として、いわゆる揚水曝気法が一般に広く行われている。この揚水曝気法は、揮発性汚染物質を含んだ地下水をポンプで揚水し、これに空気を効率よく接触させて揮発性汚染物質を気相に移行させることにより、汚染された地下水を浄化して土壌に戻す方法である。
【0004】
しかし、このような揚水曝気法は汚染物質を分解して無害化する技術ではないため、揮発性汚染物質を含む気相の後処理が必要である。この気相の後処理としては、一般的には気相中の汚染物質を活性炭に吸着させて除去する方法がとられているが、活性炭は破過する前に新品と交換する必要があるため、交換する活性炭の費用に加えて、その作業のための労務コストがかかり、交換頻度が高くなるほど費用が増大するという問題がある。
【0005】
また、曝気装置を出た気体中に含まれる揮発性汚染物質を化学的に分解処理する場合もあるが、有毒な副生物や酸性ガスが発生するため、その処理装置などが更に必要になるという問題がある。しかも、このような化学的分解処理では全体として装置が大型化し、設備費を含めた浄化コストが高くなることが多いため、上記した活性炭で吸着除去する方式を採用する場合が多い。
【0006】
【発明が解決しようとする課題】
汚染水中の揮発性汚染物質を水相中にて除去する方法として、促進酸化処理法がある。この促進酸化処理方法は、オゾン、過酸化水素、紫外線などを併用し、酸化力が強いヒドロキシルラジカルを生成させて、汚染水中の有害な汚染物質を分解除去する方法である。
【0007】
従来の促進酸化処理法では、特にオゾンと紫外線を組み合わせた方法が良く知られている。その場合、汚染水へのオゾンの混合は、混合効率を高めるためエジョエクター等の気液混合ポンプを利用して加圧下で混合している。
【0008】
しかし、従来の方法では、一旦汚染水に混合溶解されたオゾンは紫外線照射装置内で気化しガスとなって分離しやすいため、汚染水中の溶存オゾン濃度が低下してしまい、そのため汚染物質の分解効率が低下するという問題があった。これを防ぐためには、必要以上にオゾン注入率を高くする必要があり、オゾンガス発生装置の負荷が極めて大きくなるという不都合があった。
【0009】
本発明は、このような従来の事情に鑑み、紫外線照射装置内で汚染水からオゾンが気化して分離することを防ぎ、紫外線照射によりヒドロキシルラジカル等の活性ラジカルを効率よく生成させて、少ないオゾンガスでも汚染物質を効率良く分解できる汚染水の浄化方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記目的を達成するため、本発明が提供する汚染水の浄化方法は、汚染水にオゾンを混合する気液混合工程と、オゾンを混合した汚染水に紫外線を照射して汚染物質を分解する紫外線照射工程と、紫外線照射後の汚染水中に残存する気体や揮発性汚染物質を分離する気液分離工程とを備える汚染水の浄化方法であって、前記気液混合工程においてオゾンを加圧下で汚染水に溶解させ、その加圧状態の汚染水に紫外線照射工程で紫外線を照射した後、気液分離工程で圧力を開放することを特徴とする。
【0011】
また、本発明が提供する汚染水の処理装置は、汚染水にオゾンを混合する気液混合ポンプと、オゾンを混合した汚染水に紫外線を照射して汚染物質を分解する紫外線照射装置と、紫外線照射後の汚染水中に残存する気体や揮発性汚染物質を分離する気液分離装置とを備える汚染水の浄化装置であって、前記紫外線照射装置と気液分離装置の間に圧力調整バルブが配置され、気液混合ポンプにおいてオゾンを加圧下で汚染水に溶解させた加圧状態が紫外線照射時に維持され、気液分離装置で圧力が開放されることを特徴とする。
【0012】
【発明の実施の形態】
一般に、加圧下でオゾンを水に溶解させた後、その圧力を一部又は全て開放すると、水からオゾンが微細な気泡となって放出される。その際のオゾンガスの放出量は、オゾン溶解時の圧力とその後の開放時の圧力におけるオゾンの水への溶解度の差によって異なり、その差が大きいほど放出量も多くなる。
【0013】
従来の方法では、汚染水へのオゾンの混合時にはエジョエクター等の気液混合ポンプを利用して加圧下で混合しているが、そのオゾンを混合溶解した汚染水が紫外線照射装置内で大気圧にさらされるため、オゾンが汚染水からガスとして分離しやすかった。
【0014】
そこで、本発明方法においては、通常のごとく気液混合工程においてオゾンを加圧下で汚染水に溶解させた後、その加圧状態を維持したまま紫外線照射装置に汚染水を送り、汚染水に紫外線を照射する。その紫外線照射後、気液分離工程において汚染水の圧力を大気圧に開放する。そのため、紫外線照射装置内で溶存オゾンがガス化して放出されることがなくなり、汚染水中の溶存オゾン濃度を高い水準に維持することができるため、紫外線照射によって酸化力が強いヒドロキシルラジカル等を多量に生成させ、汚染水中の有害な汚染物質を効率良く分解除去することができる。
【0015】
次に、本発明を図面に基づいて説明する。図1は、本発明の汚染水の浄化方法に用いる浄化装置の一具体例を示す工程図である。この浄化装置は、土壌中の汚染された地下水、即ち汚染水を揚水するために、地盤中に固定された多孔管1の底部近くまで設けられた揚水管2と、この揚水管2に接続され、汚染水を地表面上に汲み上げる揚水ポンプ3と、揚水ポンプ3で汲み上げられた汚染水を一旦貯留する原水槽4を備えている。
【0016】
原水槽4の汚染水は送水管を通してエジョエクター等の気液混合ポンプ5に導入され、オゾンガス発生装置6により生成させたオゾンガスが加圧混合される。その際の加圧調整は圧力調整バルブ7を用いて行うが、本発明においては圧力調整バルブ7を紫外線照射装置8よりも下流に設置することにより、気液混合ポンプ5で加えられた圧力が紫外線照射装置8でも維持される。
【0017】
気液混合ポンプ5によりオゾンを汚染水に加圧混合する圧力は、オゾンの溶解度などから、一般的なオゾンガス発生装置でのオゾン濃度100g/Nm程度の場合で、圧力計9のゲージ圧として0.18MPa以上であれば良い。しかし、汚染水にオゾンを加圧混合する際の圧力をあまり高くすると、紫外線照射装置8の耐圧性を向上させる必要が生じたり、気液混合ポンプ5の動力を増加させたりする必要があるため、好ましくは0.2〜0.4MPaとする。
【0018】
紫外線照射装置8では、オゾンが混合され且つ加圧状態が維持されたままの汚染水に、紫外線ランプ8aから紫外線を照射する。汚染水中には加圧混合されたオゾンが気化せずに残っていて、高い溶存オゾン濃度が維持されているため、紫外線照射によりヒドロキシルラジカル等の活性なラジカルが多量に生成され、汚染水中の汚染物質を効率良く分解除去することができる。
【0019】
紫外線照射後の汚染水は、送水管を介して気液分離装置10に導入される。気液分離装置10は圧力調整バルブ7よりも更に下流にあるので、汚染水の圧力は気液分離装置10で大気下に開放される。これにより、気液分離装置10において、未溶解の気体や残存しているオゾン等が気相に移行する。
【0020】
このように処理された処理水は、そのまま排水するか、吸着剤等で2次処理されて系外に排水される。また、気液分離装置10からの排ガスは、そのまま又は吸着剤などで処理したうえで、大気に放出される。
【0021】
尚、多孔管1は土壌中に掘削された井戸穴に挿入固定されるものであって、例えば直径100〜150mm程度のポリ塩化ビニル管からなり、地下水面の上方から下端にかけて多数の開孔が設けられている。そして、揚水管2は多孔管1の上端付近から貫入され、多孔管1の下端付近に至るまで挿入されており、この揚水管2の下流側には揚水ポンプ3が取り付けられ、地下水を地表面上に汲み上げることが可能になっている。
【0022】
オゾンガス発生装置6は、原料ガスを生成する原料ガス発生装置6aを備えると共に、送気管を介して気液混合ポンプ5に接続されている。オゾンガス発生装置6に要求されるオゾン発生能力は、汚染水中の汚染物質濃度等によって異なるが、汚染濃度が数mg/l以下であれば30〜40g/Nm以下で良いが、汚染濃度が数十mg/l以上の場合は80g/Nm以上のオゾンガスを生成する装置を用いることが好ましい。
【0023】
また、オゾンガス発生装置6の原料ガスとしては酸素ガスを用いるのが好ましいが、酸素ボンベを使用すると交換などの保守に関わる手間が加わるため、圧力スイッチング吸着法(PSA)などにより酸素を生成させ原料ガス発生装置6aの使用が望ましい。
【0024】
紫外線照射装置8は、紫外線ランプ8aを備えると共に、気液混合ポンプ5でオゾンを処理水に混合するときの圧力に耐える構造であれば良い。紫外線ランプ8aとしては、ピーク波長が185±10nm、254±10nmの紫外線を照射するものが利用できるが、オゾンのラジカル化に有効に作用すると共に、設置コストが低くて消費電力の少ない、254±10nmのピーク波長を持つ低圧水銀ランプを用いるのが望ましい。
【0025】
紫外線照射方法としては、内部照射型と外部照射型の2種類の方法を用いることができる。内部照射型は2重構造をとり、最内部に紫外線ランプ、その周りに透過性保護管、更にその外側に外壁を有し、保護管と外壁の間に汚染水が流れる構成となっている。一方、外部照射型は紫外線ランプの内側に被処理水が流れる透過性保護管があり、その周りに紫外線ランプが配置され、保護管の内側を汚染水が流れるようになっている。尚、透過性保護管は、紫外線透過性の高い材料からなり、例えば、石英、透明テフロン(登録商標)等が用いられる。
【0026】
【実施例】
本発明例による試料1として、図1に示す浄化装置を使用し、トリクロロエチレン(TCE)濃度10mg/lの汚染水の浄化試験を行った。図1の浄化装置では、圧力調整バルブ7が紫外線照射装置8と気液分離装置10の間に設置されているため、汚染水の圧力は圧力調整バルブ7より下流の気液分離装置10で開放される。尚、試験条件は下記の通りである。
【0027】
試験条件
処理水量:1.2m/h
オゾンガス発生濃度:100g/Nm
オゾン注入率:10mg/l
圧力計のゲージ圧:0.2MPa
紫外線出力:13W
【0028】
また、比較例である試料2として、図2に示す浄化装置を使用し、上記と同じトリクロロエチレン濃度の汚染水の浄化試験を行った。ただし、図2の浄化装置では、従来と同様に圧力調整バルブ7が気液混合ポンプ5と紫外線照射装置8の間に設置されているため、汚染水の圧力は紫外線照射装置8で開放される。従って、圧力計9のゲージ圧力が0MPaである点で上記試料1と異なる。
【0029】
上記した条件で汚染水を処理した試料1と試料2について、それぞれ気液分離装置10から回収した処理水中のトリクロロエチレン(TCE)の除去率を測定し、その結果を下記表1に示した。
【0030】
【表1】

Figure 2004008980
【0031】
この結果から分るように、気液混合ポンプでオゾンを汚染水に溶解するために印加した圧力を紫外線照射工程まで維持し、紫外線照射工程終了後の気液分離工程で大気に開放することにより、紫外線照射工程での溶存オゾン濃度の低下を抑制して多量のヒドロキシルラジカルを生成させることができ、汚染物質の除去効率を大幅に向上させることができた。
【0032】
【発明の効果】
本発明によれば、紫外線照射時までオゾンの気化による分離を防ぎ、オゾンと紫外線が効率よく反応することができるので、オゾンガス発生装置に過大な負荷をかけることなく、汚染水に混合したオゾンからヒドロキシルラジカル等の活性ラジカルを効率よく生成させ、高濃度の汚染物質であっても効率良く分解除去することが可能となる。
【図面の簡単な説明】
【図1】本発明の汚染水の浄化方法に用いる浄化装置の一具体例を示す工程図である。
【図2】従来の汚染水の浄化方法に用いる浄化装置を示す工程図である。
【符号の説明】
1   多孔管
2   揚水管
3   揚水ポンプ
4   原水槽
5   気液混合ポンプ
6   オゾンガス発生装置
7   圧力調整バルブ
8   紫外線照射装置
9   圧力計
10   気液分離装置[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for removing contaminants from contaminated water such as groundwater contaminated with harmful contaminants and purifying the same, and a purification device therefor.
[0002]
[Prior art]
In recent years, the contamination of groundwater has become a problem. The main pollutants causing the pollution are trichloroethylene, tetrachloroethylene, 1,2-dichloroethane, 1,1-dichloroethylene, 1,2-dichloroethylene, 1,1,1,2-dichloroethylene. Examples thereof include volatile organic compounds such as 1-trichloroethane, 1,1,2-trichloroethane, dichloromethane, paradichlorobenzene, 1,2-dichloropropane, chloroform, benzene, toluene, carbon tetrachloride, xylene, and formaldehyde.
[0003]
As a method for repairing soil containing volatile pollutants such as the above-mentioned organic chlorine compounds, a so-called pumping aeration method is generally widely used. This pumping and aeration method purifies contaminated groundwater by pumping groundwater containing volatile pollutants and bringing the air into efficient contact with this to transfer the volatile pollutants to the gas phase. It is a method of returning to the soil.
[0004]
However, since such a pumping and aeration method is not a technique for decomposing pollutants to make them harmless, post-treatment of a gas phase containing volatile pollutants is necessary. As the post-treatment of the gas phase, a method is generally adopted in which contaminants in the gas phase are adsorbed on activated carbon and removed, but activated carbon must be replaced with a new one before breakthrough. However, in addition to the cost of the activated carbon to be replaced, labor costs for the work are required, and the higher the replacement frequency, the higher the cost.
[0005]
In some cases, volatile contaminants contained in the gas discharged from the aeration device may be chemically decomposed. However, since toxic by-products and acid gases are generated, an additional processing device is required. There's a problem. Moreover, in such a chemical decomposition treatment, the size of the apparatus becomes large as a whole, and the purification cost including the equipment cost is often high. Therefore, the above-mentioned method of adsorption and removal with activated carbon is often used.
[0006]
[Problems to be solved by the invention]
As a method for removing volatile contaminants in contaminated water in an aqueous phase, there is an accelerated oxidation treatment method. This accelerated oxidation treatment method is a method in which ozone, hydrogen peroxide, ultraviolet rays and the like are used in combination to generate hydroxyl radicals having a strong oxidizing power to decompose and remove harmful pollutants in contaminated water.
[0007]
Among the conventional accelerated oxidation treatment methods, particularly, a method in which ozone and ultraviolet light are combined is well known. In this case, the mixing of ozone into the contaminated water is performed under pressure by using a gas-liquid mixing pump such as an ejector to increase the mixing efficiency.
[0008]
However, according to the conventional method, the ozone once mixed and dissolved in the contaminated water is easily vaporized and separated as a gas in the ultraviolet irradiation device, so that the concentration of the dissolved ozone in the contaminated water is reduced. There is a problem that the efficiency is reduced. In order to prevent this, it is necessary to increase the ozone injection rate more than necessary, and the load on the ozone gas generator becomes extremely large.
[0009]
In view of such a conventional situation, the present invention prevents ozone from being vaporized and separated from contaminated water in an ultraviolet irradiation device, efficiently generates active radicals such as hydroxyl radicals by ultraviolet irradiation, and reduces the amount of ozone gas. However, an object of the present invention is to provide a method for purifying contaminated water that can efficiently decompose pollutants.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, a method for purifying contaminated water provided by the present invention includes a gas-liquid mixing step of mixing ozone with the contaminated water, and an ultraviolet ray for irradiating the contaminated water mixed with ozone with ultraviolet rays to decompose the contaminants. An irradiation step and a gas-liquid separation step of separating gas and volatile contaminants remaining in the contaminated water after the irradiation of the ultraviolet light. The method is characterized in that after dissolving in water, the pressurized contaminated water is irradiated with ultraviolet rays in an ultraviolet irradiation step, and then the pressure is released in a gas-liquid separation step.
[0011]
Further, a treatment apparatus for contaminated water provided by the present invention includes a gas-liquid mixing pump that mixes ozone into the contaminated water, an ultraviolet irradiation apparatus that irradiates the contaminated water mixed with ozone with ultraviolet light to decompose pollutants, A contaminated water purification device comprising a gas-liquid separation device for separating gas and volatile contaminants remaining in the contaminated water after irradiation, wherein a pressure regulating valve is disposed between the ultraviolet irradiation device and the gas-liquid separation device. The gas-liquid mixing pump is characterized in that the pressurized state in which ozone is dissolved in contaminated water under pressure is maintained during irradiation with ultraviolet light, and the pressure is released by the gas-liquid separation device.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
In general, after dissolving ozone in water under pressure and then partially or entirely releasing the pressure, ozone is released from the water as fine bubbles. The amount of ozone gas released at that time depends on the difference between the solubility of ozone in water at the pressure at the time of dissolving ozone and the pressure at the time of subsequent release, and the greater the difference, the greater the amount of ozone released.
[0013]
In the conventional method, when mixing ozone into contaminated water, mixing is performed under pressure using a gas-liquid mixing pump such as an ejector, etc., and the contaminated water obtained by mixing and dissolving the ozone is brought to atmospheric pressure in an ultraviolet irradiation device. Because of the exposure, ozone was easily separated as gas from the contaminated water.
[0014]
Therefore, in the method of the present invention, as usual, after dissolving ozone in contaminated water under pressure in the gas-liquid mixing step, the contaminated water is sent to the ultraviolet irradiation device while maintaining the pressurized state, and the contaminated water is irradiated with ultraviolet light. Is irradiated. After the ultraviolet irradiation, the pressure of the contaminated water is released to the atmospheric pressure in the gas-liquid separation step. Therefore, dissolved ozone is not gasified and released in the ultraviolet irradiation device, and the concentration of dissolved ozone in the contaminated water can be maintained at a high level. The harmful pollutants in the contaminated water can be efficiently decomposed and removed.
[0015]
Next, the present invention will be described with reference to the drawings. FIG. 1 is a process diagram showing a specific example of a purification device used in the method for purifying contaminated water of the present invention. This purifying device is provided with a pumping pipe 2 provided near the bottom of a perforated pipe 1 fixed in the ground to pump contaminated groundwater in soil, that is, contaminated water, and is connected to the pumping pipe 2. A pump 3 for pumping contaminated water onto the ground surface; and a raw water tank 4 for temporarily storing the contaminated water pumped by the pump 3.
[0016]
The contaminated water in the raw water tank 4 is introduced into a gas-liquid mixing pump 5 such as an ejector through a water pipe, and the ozone gas generated by the ozone gas generator 6 is mixed under pressure. In this case, the pressure adjustment is performed using the pressure adjustment valve 7. In the present invention, the pressure applied by the gas-liquid mixing pump 5 is reduced by installing the pressure adjustment valve 7 downstream of the ultraviolet irradiation device 8. It is also maintained by the ultraviolet irradiation device 8.
[0017]
The pressure at which ozone is pressurized and mixed with the contaminated water by the gas-liquid mixing pump 5 is set to the gauge pressure of the pressure gauge 9 when the ozone concentration is about 100 g / Nm 3 in a general ozone gas generator due to the solubility of ozone. What is necessary is just 0.18 MPa or more. However, if the pressure at the time of pressurizing and mixing ozone with the contaminated water is too high, it is necessary to improve the pressure resistance of the ultraviolet irradiation device 8 or to increase the power of the gas-liquid mixing pump 5. , Preferably 0.2 to 0.4 MPa.
[0018]
In the ultraviolet irradiation device 8, ultraviolet light is irradiated from the ultraviolet lamp 8a to the contaminated water in which ozone is mixed and the pressurized state is maintained. Ozone mixed under pressure remains in the contaminated water without vaporization, and since a high dissolved ozone concentration is maintained, a large amount of active radicals, such as hydroxyl radicals, are generated by irradiation with ultraviolet light. Substances can be efficiently decomposed and removed.
[0019]
The contaminated water after the ultraviolet irradiation is introduced into the gas-liquid separation device 10 through a water pipe. Since the gas-liquid separator 10 is further downstream than the pressure regulating valve 7, the pressure of the contaminated water is released to the atmosphere by the gas-liquid separator 10. Thereby, in the gas-liquid separation device 10, undissolved gas, remaining ozone, and the like are transferred to the gas phase.
[0020]
The treated water thus treated is drained as it is, or is subjected to a secondary treatment with an adsorbent or the like and then drained out of the system. Further, the exhaust gas from the gas-liquid separation device 10 is released to the atmosphere as it is or after being treated with an adsorbent or the like.
[0021]
The perforated pipe 1 is inserted and fixed in a well hole excavated in the soil, and is formed of, for example, a polyvinyl chloride pipe having a diameter of about 100 to 150 mm. Is provided. The pumping pipe 2 penetrates from the vicinity of the upper end of the perforated pipe 1 and is inserted to the vicinity of the lower end of the perforated pipe 1. A pump 3 is attached to the downstream side of the pumping pipe 2, and groundwater is supplied to the ground surface. It is possible to pump it up.
[0022]
The ozone gas generator 6 includes a source gas generator 6a that generates a source gas, and is connected to the gas-liquid mixing pump 5 via an air supply pipe. The ozone generation capability required of the ozone gas generator 6 varies depending on the concentration of contaminants in contaminated water and the like. If the concentration of contamination is several mg / l or less, it may be 30 to 40 g / Nm 3 or less. In the case of 10 mg / l or more, it is preferable to use an apparatus that generates 80 g / Nm 3 or more of ozone gas.
[0023]
It is preferable to use oxygen gas as the source gas for the ozone gas generator 6, but if an oxygen cylinder is used, the time and labor involved in maintenance such as replacement are added. Therefore, oxygen is generated by pressure switching adsorption (PSA) or the like. It is desirable to use a gas generator 6a.
[0024]
The ultraviolet irradiation device 8 may have an ultraviolet lamp 8a and a structure that can withstand the pressure when ozone is mixed with the treated water by the gas-liquid mixing pump 5. As the ultraviolet lamp 8a, a lamp which irradiates ultraviolet rays having peak wavelengths of 185 ± 10 nm and 254 ± 10 nm can be used. It effectively acts on radicalization of ozone and has a low installation cost and low power consumption. It is desirable to use a low pressure mercury lamp having a peak wavelength of 10 nm.
[0025]
As an ultraviolet irradiation method, two types of methods, an internal irradiation type and an external irradiation type, can be used. The internal irradiation type has a double structure, and has an ultraviolet lamp at the innermost part, a transparent protective tube around it, and an outer wall outside the ultraviolet lamp, and contaminated water flows between the protective tube and the outer wall. On the other hand, in the external irradiation type, there is a transparent protective tube through which water to be treated flows inside an ultraviolet lamp, and an ultraviolet lamp is arranged around the transparent protective tube so that contaminated water flows inside the protective tube. The transparent protective tube is made of a material having a high ultraviolet transmittance, and for example, quartz, transparent Teflon (registered trademark) or the like is used.
[0026]
【Example】
As a sample 1 according to an example of the present invention, a purification test of contaminated water having a trichlorethylene (TCE) concentration of 10 mg / l was performed using the purification apparatus shown in FIG. In the purification device of FIG. 1, since the pressure control valve 7 is installed between the ultraviolet irradiation device 8 and the gas-liquid separation device 10, the pressure of the contaminated water is released by the gas-liquid separation device 10 downstream from the pressure control valve 7. Is done. The test conditions are as follows.
[0027]
Test conditions Treated water volume: 1.2 m 3 / h
Ozone gas generation concentration: 100 g / Nm 3
Ozone injection rate: 10 mg / l
Gauge pressure of pressure gauge: 0.2MPa
UV output: 13W
[0028]
Further, as a sample 2 which is a comparative example, a purification test of contaminated water having the same trichlorethylene concentration as above was conducted using the purification apparatus shown in FIG. However, in the purification device of FIG. 2, the pressure regulating valve 7 is installed between the gas-liquid mixing pump 5 and the ultraviolet irradiation device 8 as in the conventional case, so that the pressure of the contaminated water is released by the ultraviolet irradiation device 8. . Therefore, it differs from the sample 1 in that the gauge pressure of the pressure gauge 9 is 0 MPa.
[0029]
The removal rates of trichlorethylene (TCE) in the treated water collected from the gas-liquid separator 10 were measured for the samples 1 and 2 in which the contaminated water was treated under the above conditions, and the results are shown in Table 1 below.
[0030]
[Table 1]
Figure 2004008980
[0031]
As can be seen from this result, the pressure applied to dissolve ozone into the contaminated water by the gas-liquid mixing pump is maintained until the ultraviolet irradiation step, and is released to the atmosphere in the gas-liquid separation step after the end of the ultraviolet irradiation step. Further, it was possible to generate a large amount of hydroxyl radicals while suppressing a decrease in the concentration of dissolved ozone in the ultraviolet irradiation step, and it was possible to greatly improve the efficiency of removing contaminants.
[0032]
【The invention's effect】
According to the present invention, ozone can be prevented from being separated by vaporization until irradiation with ultraviolet light, and ozone and ultraviolet light can react efficiently. Active radicals such as hydroxyl radicals are efficiently generated, and even high-concentration pollutants can be efficiently decomposed and removed.
[Brief description of the drawings]
FIG. 1 is a process diagram showing a specific example of a purification device used in the method for purifying contaminated water of the present invention.
FIG. 2 is a process diagram showing a purification device used in a conventional method for purifying contaminated water.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Perforated pipe 2 Pumping pipe 3 Pumping pump 4 Raw water tank 5 Gas-liquid mixing pump 6 Ozone gas generator 7 Pressure control valve 8 Ultraviolet irradiation device 9 Pressure gauge 10 Gas-liquid separation device

Claims (2)

汚染水にオゾンを混合する気液混合工程と、オゾンを混合した汚染水に紫外線を照射して汚染物質を分解する紫外線照射工程と、紫外線照射後の汚染水中に残存する気体や揮発性汚染物質を分離する気液分離工程とを備える汚染水の浄化方法であって、前記気液混合工程においてオゾンを加圧下で汚染水に溶解させ、その加圧状態の汚染水に紫外線照射工程で紫外線を照射した後、気液分離工程で圧力を開放することを特徴とする汚染水の処理方法。A gas-liquid mixing process of mixing ozone with contaminated water, an ultraviolet irradiation process of irradiating contaminated water mixed with ozone with ultraviolet light to decompose pollutants, and gas and volatile contaminants remaining in the contaminated water after irradiation with ultraviolet light And a gas-liquid separation step of separating the contaminated water, wherein ozone is dissolved in the contaminated water under pressure in the gas-liquid mixing step, and the contaminated water in the pressurized state is irradiated with ultraviolet rays in an ultraviolet irradiation step. A method for treating contaminated water, comprising releasing pressure in a gas-liquid separation step after irradiation. 汚染水にオゾンを混合する気液混合ポンプと、オゾンを混合した汚染水に紫外線を照射して汚染物質を分解する紫外線照射装置と、紫外線照射後の汚染水中に残存する気体や揮発性汚染物質を分離する気液分離装置とを備える汚染水の浄化装置であって、前記紫外線照射装置と気液分離装置の間に圧力調整バルブが配置され、気液混合ポンプにおいてオゾンを加圧下で汚染水に溶解させた加圧状態が紫外線照射時に維持され、気液分離装置で圧力が開放されることを特徴とする汚染水の処理装置。A gas-liquid mixing pump that mixes ozone with contaminated water, an ultraviolet irradiation device that irradiates contaminated water mixed with ozone with ultraviolet light to decompose pollutants, and gas and volatile contaminants remaining in contaminated water after irradiation with ultraviolet light And a gas-liquid separator for separating contaminated water, wherein a pressure regulating valve is arranged between the ultraviolet irradiation device and the gas-liquid separator, and the contaminated water is pressurized with ozone in a gas-liquid mixing pump. A contaminated water treatment apparatus characterized in that a pressurized state dissolved in water is maintained at the time of ultraviolet irradiation, and the pressure is released by a gas-liquid separator.
JP2002168065A 2002-06-10 2002-06-10 Method and apparatus for purifying contaminated water Pending JP2004008980A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002168065A JP2004008980A (en) 2002-06-10 2002-06-10 Method and apparatus for purifying contaminated water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002168065A JP2004008980A (en) 2002-06-10 2002-06-10 Method and apparatus for purifying contaminated water

Publications (1)

Publication Number Publication Date
JP2004008980A true JP2004008980A (en) 2004-01-15

Family

ID=30435071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002168065A Pending JP2004008980A (en) 2002-06-10 2002-06-10 Method and apparatus for purifying contaminated water

Country Status (1)

Country Link
JP (1) JP2004008980A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109179569A (en) * 2018-11-14 2019-01-11 四川中盛净源环保设备有限公司 A kind of processing organic wastewater with difficult degradation thereby oxidant cooperative photocatalysis oxidation reaction apparatus and application
CN116282485A (en) * 2022-12-30 2023-06-23 广东联盛水环境工程有限公司 AOP water treatment disinfection process and system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109179569A (en) * 2018-11-14 2019-01-11 四川中盛净源环保设备有限公司 A kind of processing organic wastewater with difficult degradation thereby oxidant cooperative photocatalysis oxidation reaction apparatus and application
CN116282485A (en) * 2022-12-30 2023-06-23 广东联盛水环境工程有限公司 AOP water treatment disinfection process and system
CN116282485B (en) * 2022-12-30 2023-09-26 广东联盛水环境工程有限公司 AOP water treatment disinfection process and system

Similar Documents

Publication Publication Date Title
JP3461328B2 (en) Gas processing apparatus and method
US6538170B2 (en) Polluted soil remediation apparatus, polluted soil remediation method, pollutant degrading apparatus and pollutant degrading method
JPH07241557A (en) Method and apparatus for treating contaminated water
JP2004028550A (en) Separation method for separating each substance from mixed gas containing plural substance, and device therefor
JP2004008980A (en) Method and apparatus for purifying contaminated water
JP2000325971A (en) Polluted water treatment method and apparatus
JP4522302B2 (en) Detoxification method of organic arsenic
JP3997949B2 (en) Purification method of contaminated water
JP2613586B2 (en) Wastewater treatment equipment and wastewater treatment method
JP2001240559A (en) Decomposition method of organic chlorine compounds and decomposition apparatus therefor
JP2001259664A (en) Method and device for cleaning contaminated water and polluted gas
JP2004114005A (en) Method of purifying polluted water
JP2002336842A (en) Apparatus for purifying volatile contaminant
JP2003145180A (en) Polluted water cleaning method and cleaning apparatus
JP2813354B2 (en) Decomposition of volatile organic halogenated compounds contained in gas and aqueous solution
JP3501764B2 (en) Repair device and method for soil containing contaminants
JP4641131B2 (en) Water treatment apparatus and method
JP2002361270A (en) Cleaning method for contaminated water and cleaning equipment therefor
JP2002096058A (en) Cleaning treatment device for volatile contaminant
JPH11276859A (en) Method and apparatus for decomposing organic chlorine-type solvent
JP2004024964A (en) Waste ozone gas treatment method in water treatment
JP2002011484A (en) Apparatus for cleaning contaminated water
JP2003080044A (en) Simple ozone dissolving apparatus
JP2004305958A (en) Treatment method and apparatus for aqueous solution
JP4172415B2 (en) Multistage treatment equipment for contaminated water