JP2004006196A - Sodium negative electrode for sodium sulfur battery and its manufacturing method - Google Patents

Sodium negative electrode for sodium sulfur battery and its manufacturing method Download PDF

Info

Publication number
JP2004006196A
JP2004006196A JP2002208931A JP2002208931A JP2004006196A JP 2004006196 A JP2004006196 A JP 2004006196A JP 2002208931 A JP2002208931 A JP 2002208931A JP 2002208931 A JP2002208931 A JP 2002208931A JP 2004006196 A JP2004006196 A JP 2004006196A
Authority
JP
Japan
Prior art keywords
sodium
negative electrode
gas
space
inert gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002208931A
Other languages
Japanese (ja)
Other versions
JP3936255B2 (en
Inventor
Hiromochi Tsuji
辻 博以
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2001215985A external-priority patent/JP2003007289A/en
Application filed by Individual filed Critical Individual
Priority to JP2002208931A priority Critical patent/JP3936255B2/en
Publication of JP2004006196A publication Critical patent/JP2004006196A/en
Application granted granted Critical
Publication of JP3936255B2 publication Critical patent/JP3936255B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance long reliability of a sodium negative electrode for a sodium sulfur battery and simplify a manufacturing process of the battery. <P>SOLUTION: In order to stabilize the operation of the sodium negative electrode, argon is used as gas for extrusion of sodium and to eliminate the formation of a gas space on the inner surface of a solid electrolyte tube, hydrogen gas is sealed in a space (A) in the assembling of the negative electrode and welding is performed for sealing. The pressure of the hydrogen gas is made higher than that of the argon gas. Argon gas is sealed like this and the negative electrode with no gas in the space (A) and stabilizing electrode reaction can be manufactured. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【産業上の利用分野】
本発明はナトリウム硫黄電池において負極のナトリウムを固体電解質管の表面に均一にかつ長期に繰り返し安定して供給できるようにするために、固体電解質管の内側にナトリウムを貯える容器を備えた構造を有するナトリウム負極の製造方法およびその構造の改良に関するものである。特に本発明では、ナトリウムを押し出すためにアルゴン、ネオンなどの不活性ガスを用いたナトリウム負極の製造方法およびその構造に関する。
【0002】
【従来技術】
従来のナトリウム負極においては、負極を組み立てた際に形成される新たな空間は真空として封口していた。また、ナトリウム貯蔵容器の内部にはナトリウムを押し出すための、不活性ガスが充填されていた。以下、不活性ガスが充填されている空間を空間(B)とし負極を組み立てた際に新たに形成される空間を空間(A)とする。
【0003】
【従来技術の問題点】
従来の負極組み立て品を図1に示す。ナトリウム貯蔵容器の内部には不活性ガスとナトリウムが充填されており、不活性ガスはナトリウムの固化によって封じ込められていた。また、負極を組み立てた際に新たに形成される空間は真空で封じられていた。使用時に昇温すると貯蔵容器内のナトリウムが内部の不活性ガスによって真空の空間に押し出され、固体電解質の表面にナトリウムが供給され負極として動作できるようになる。しかし、昇温によって、全てのナトリウムが同時に溶融するのではなく、外周部のナトリウムから溶融が始まる。そして、ナトリウムの溶融部によって、空間(A)と空間(B)が繋がると圧力差で溶融ナトリウムが押し出されるとともに、封じた不活性ガスも外側の真空に維持された空間(A)へ移動する。このようにして、不活性ガスの一部がナトリウムとともに固体電解質管の表面まで移動することがあった。このようにアルゴン等の不活性ガスが負極の電極表面となる固体電解質管の表面に存在すると、電極としての作用面積の減少による電圧低下が生じ、さらには、放電とともに固体電解質表面でのガスの占める割合が大きくなり十分な容量が取り出せなくなる問題が生じた。また電流が一部に集中し、これにともないジュール熱による熱応力が固体電解質管に生じ、マイクロクラックが生じる可能性があった。
【0004】
【発明が解決しようとする課題】
上記の問題の原因は、空間(B)に封じ込めた不活性ガスが、昇温中に空間(A)に漏れ出すことである。これを防ぐには負極を組み立てたのち、昇温してナトリウムが全て溶融し、空間(A)と空間(B)の圧力差が無くなるまでの間は空間(B)の不活性ガスが空間(A)に漏れ出ないように空間(A)から空間(B)に圧力を加えることが有効である。一方、その後電池が動作できる温度にまで昇温した後は空間(A)は全てナトリウムで満たす事が要求される。
【0005】
【課題を解決するための手段】
前記課題を解決するために、本発明においては負極を組み立てた際に新たに形成される空間(A)に特定のガスを封入する。このガスはナトリウムが溶融した後、電池の動作温度である300℃程度までにナトリウムと反応し、気体として存在しなくなるものを用いる。例としては水素ガスを用いることができる。封入する特定ガスの圧力はナトリウム貯蔵容器に封入した不活性ガスの圧力より高くしておく。図2に本発明ナトリウム負極の組み立てから動作温度までの内部変化を示す。
【0006】
【作用】
上記のように構成されたナトリウム負極は昇温中にナトリウムが部分的に溶融した際に、空間(A)と空間(B)を結ぶガス移動通路が形成されても、圧力のかかる方向が従来法とは逆向きとなっているので、空間(B)に封じられた不活性ガスが圧力の高い空間(A)に漏れ出すことは無い。空間(A)に封じられたガスが空間(B)に混入されることがあっても電池の動作には全く影響しない。その後、昇温してゆくと空間(A)と空間(B)の圧力がバランスされ、ナトリウム貯蔵容器の下部に溶融したナトリウムが滞留して空間(A)と空間(B)が遮断される。さらに電池の動作温度まで昇温してゆくと、空間(A)に封じたガスとナトリウムが反応することで、空間(A)は貯蔵容器から押し出されてきたナトリウムで満たされる。このようにして、不活性ガスを封入しするとともに、空間(A)にガスが存在することなく電極反応が安定して行える負極を作製することができる。
【0007】
特定ガスとして水素ガスを空間(A)に充填した場合について以下に示す。ナトウムの溶融が終了した直後には、空間(A)に水素ガスが存在するが、300℃を超える動作温度では水素ガスの空間は存在しない。これは高温になると水素とナトリウムが反応して水素化ナトリウムを形成するとともに、水素化ナトリウムがナトリウム中に溶解するためである。なお、水素ガスが占めていた空間をナトリウムで置き換えた場合に生成される水素化ナトリウムがナトリウム中へ溶解した濃度で平衡する水素分圧が内部の不活性ガスの圧力より小さくすることで、水素はガスとして空間を占めることはできない。これを満たすためには水素ガスの圧力は不活性ガスの圧力の2から3倍程度であれば水素分圧は無視できる。本発明では内部に封じ込めた不活性ガスが漏れ出させないという目的を達成するために、水素ガスの圧力は不活性ガスの圧力より高ければ充分であり、通常に設定した圧力バランスでは、実際に動作する際にはすべての水素がナトリウムに吸収されて、空間(A)には負極の動作を妨害するガス空間は存在しない。なお、ナトリウムと水素ガスの反応を確実にするため、動作温度よりも高い400℃程度にまで昇温後、電池の動作温度にまで降温させることで、反応をより短時間に終了させることができる。また、不活性ガスであるアルゴン等を空間(B)に使用するので、長期にわたって水素ガスが妨害することを阻止できる。
【0008】
【実施例】
図3に本発明のナトリウム負極組み立て時の構造を示す。
負極はナトリウムが充填されたナトリウム貯蔵容器と固体電解質管及び封口部材から構成されている。ナトリウム貯蔵容器の内部には隔壁によって仕切られた空間(B)にアルゴンガスが充填されており、固化したナトリウムがアルゴンガスを封じ込めている。隔壁は溶接等での固定をすることなく単に圧入されている。なお、後に述べるように隔壁には穴は必ずしも必要としない。空間(A)には水素ガスが充填されている。水素の封入は蓋の圧入により組み立て時の気密をたもちながら、最終の負極封口は溶接による。溶接時に前記の気密保持部が溶融しないように離れた位置としている。
【0009】
本発明負極の組み立て方法を以下に示す。組み立てはナトリウム貯蔵容器にナトリウムを充填する工程▲1▼と水素ガスを封入して負極を組み立て、さらに溶接封口する工程▲2▼に分かれる。工程▲1▼は窒素ガス雰囲気で0.5〜1気圧程度の圧力下で行う。組み立て工程▲2▼は水素ガス雰囲気大気圧下で行う。また最終の溶接封口は大気中で実施できる。尚工程▲1▼をアルゴン雰囲気で実施することが可能である。
【0010】
組み立て工程▲1▼を図4に示す。予め溶融ナトリウムと同等もしくはそれ以上の温度に加温された一端底付き円筒状のナトリウム貯蔵容器円筒(4a)の開口端を上にして上部から直径1mm程度の孔(中央部)の開いた隔壁(7)を圧入して所定の場所に設置する。隔壁(7)の中央の孔に細管を挿入し隔壁で仕切られた空間にアルゴンガスを空間体積の2倍程度注入する。孔の径はできるだけ小さくしておくことが望ましいが1mm程度であればナトリウムとガスの入れ替わりは防止できる。アルゴンは窒素ガスより重いので直ちに散逸することはない。その後、溶融したナトリウムを注入し、開口部に蓋(4b)を圧入し、冷却固化する。予め容器を加熱するのは、ナトリウムが充填された際に内部に封じられたアルゴンガスが膨張して隔壁の外に出ることがないようにするためである。はじめにナトリウム貯蔵容器にアルゴンガスを充填し、隔壁を挿入したのちナトリウムを充填することもできる。この場合には隔壁に必ずしも孔は必要ではない。隔壁と円筒容器の内面との接触部でガスが移動できれば充分である。また、雰囲気ガスにアルゴンを用い、アルゴン注入工程を省く場合にも同様に隔壁に孔を必要としない。
【0011】
組み立て工程▲2▼を図5に示す。組み立て工程▲1▼で作製したナトリウム貯蔵容器組み立て品の蓋の中央部に孔を設ける。これを固体電解質管の内部に蓋を下部にして挿入する。次に負極蓋を圧入する。その後、水素雰囲気から取り出して、負極蓋をTIG溶接等で封口する。
【0012】
負極蓋を図3に示すようにして、溶接までの気密を保つ場所と溶接部を離した理由は、溶接の熱により溶融した場合に内外の圧力差で溶接が完全にできなくなる事を避けるとともに、溶接封口までの内部の気密を保持させるためである。また、溶接封口の作業を大気中でできる利点がある。
【0013】
【発明の効果】
本発明品は負極の動作を安定させるとともに、放電末での固体電解質管表面の電流集中とそれに伴う熱応力の発生を抑え、固体電解質管の破損を予防する。これによって、今まで活用できなかったアルゴン等の不活性ガスをナトリウムの押し出しガスとして活用できるようになり、長期に安定した動作ができる。なお、本発明は実施例に示した負極の構造だけでなく、他の構造のナトリウム負極でも、不活性ガスをナトリウムの押し出しのためのガスとして用いる場合には適用できる。
また、負極の動作を安定させることにより、単電池での容量確認のための、充放電による検査が不要となり、検査設備を簡略化できる。さらに、負極封口に真空中での溶接を行わないため、電子ビーム等を用いることなく設備を簡略にできるとともに、生産速度を向上できる。
【図面の簡単な説明】
【図1】従来のナトリウム負極構造断面図および放電時の課題説明図
【図2】本発明のナトリウム負極組み立て品の作用を示す縦断面図
【図3】本発明ナトリウム負極組み立て品縦断面図
【図4】本発明ナトリウム貯蔵容器の組み立て方法およびその縦断面図
【図5】本発明ナトリウム負極の組み立て方法およびその縦断面図
【符号の説明】
1  固体電解質管
2  封口部材(絶縁リング及び正負極金具)
3  ナトリウム
4  ナトリウム貯蔵容器
4a ナトリウム貯蔵容器円筒
4b ナトリウム貯蔵容器蓋
5  従来品負極蓋
6  本発明負極蓋
7  隔壁
8  ナトリウム貯蔵容器中央孔
9  隔壁中央孔
10 空間(A)
11 空間(B)
[0001]
[Industrial applications]
The present invention has a structure having a container for storing sodium inside the solid electrolyte tube so that sodium of the negative electrode can be repeatedly and stably supplied to the surface of the solid electrolyte tube uniformly and for a long time in a sodium sulfur battery. The present invention relates to a method for manufacturing a sodium negative electrode and an improvement in its structure. In particular, the present invention relates to a method of manufacturing a sodium negative electrode using an inert gas such as argon or neon to extrude sodium and a structure thereof.
[0002]
[Prior art]
In the conventional sodium negative electrode, a new space formed when the negative electrode is assembled has been sealed as a vacuum. In addition, the inside of the sodium storage container was filled with an inert gas for pushing out sodium. Hereinafter, the space filled with the inert gas is referred to as space (B), and the space newly formed when the negative electrode is assembled is referred to as space (A).
[0003]
[Problems of the prior art]
FIG. 1 shows a conventional negative electrode assembly. The inside of the sodium storage container was filled with an inert gas and sodium, and the inert gas was contained by solidification of the sodium. Further, a space newly formed when the negative electrode was assembled was sealed with a vacuum. When the temperature rises during use, sodium in the storage container is pushed out into a vacuum space by the inert gas inside, so that sodium is supplied to the surface of the solid electrolyte so that it can operate as a negative electrode. However, not all sodium melts at the same time due to the temperature rise, but melting starts from the sodium at the outer peripheral portion. Then, when the space (A) and the space (B) are connected by the molten portion of sodium, the molten sodium is pushed out by a pressure difference, and the sealed inert gas also moves to the outer space (A) maintained in vacuum. . In this way, a part of the inert gas may move to the surface of the solid electrolyte tube together with sodium. When an inert gas such as argon is present on the surface of the solid electrolyte tube serving as the electrode surface of the negative electrode, a voltage drop occurs due to a decrease in the working area of the electrode. There is a problem that the occupying ratio becomes large and a sufficient capacity cannot be taken out. In addition, the current was concentrated in a part, and a thermal stress due to Joule heat was generated in the solid electrolyte tube, thereby possibly causing a micro crack.
[0004]
[Problems to be solved by the invention]
The cause of the above problem is that the inert gas sealed in the space (B) leaks into the space (A) during the temperature rise. In order to prevent this, after assembling the negative electrode, the temperature is raised and all the sodium is melted, and until the pressure difference between the space (A) and the space (B) disappears, the inert gas in the space (B) is removed from the space (B). It is effective to apply pressure from space (A) to space (B) so as not to leak into A). On the other hand, after the temperature is raised to a temperature at which the battery can operate, the space (A) is required to be entirely filled with sodium.
[0005]
[Means for Solving the Problems]
In order to solve the above problem, in the present invention, a specific gas is sealed in a space (A) newly formed when the negative electrode is assembled. After the sodium is melted, the gas reacts with the sodium up to about 300 ° C., which is the operating temperature of the battery, and no longer exists as a gas. As an example, hydrogen gas can be used. The pressure of the specific gas to be sealed is set higher than the pressure of the inert gas sealed in the sodium storage container. FIG. 2 shows the internal change from the assembly of the sodium anode of the present invention to the operating temperature.
[0006]
[Action]
In the sodium negative electrode configured as described above, when sodium is partially melted during the temperature rise, even if a gas transfer passage connecting the space (A) and the space (B) is formed, the direction in which the pressure is applied is the same. Since the direction is opposite to that of the method, the inert gas sealed in the space (B) does not leak into the space (A) having a high pressure. Even if the gas sealed in the space (A) is mixed into the space (B), it does not affect the operation of the battery at all. Thereafter, as the temperature is raised, the pressures in the space (A) and the space (B) are balanced, and the molten sodium stays in the lower part of the sodium storage container, so that the space (A) and the space (B) are shut off. When the temperature further rises to the operating temperature of the battery, the gas sealed in the space (A) reacts with sodium, so that the space (A) is filled with sodium that has been pushed out of the storage container. In this way, an inert gas can be sealed, and a negative electrode capable of stably performing an electrode reaction without a gas existing in the space (A) can be manufactured.
[0007]
The case where the space (A) is filled with hydrogen gas as the specific gas will be described below. Immediately after the melting of sodium, hydrogen gas is present in the space (A), but at an operating temperature exceeding 300 ° C., no hydrogen gas space exists. This is because at high temperatures, hydrogen and sodium react to form sodium hydride, and sodium hydride dissolves in sodium. In addition, by replacing the space occupied by hydrogen gas with sodium by reducing the hydrogen partial pressure that balances with the concentration of sodium hydride generated in sodium dissolved below the inert gas inside, Cannot occupy space as gas. To satisfy this, if the pressure of the hydrogen gas is about two to three times the pressure of the inert gas, the hydrogen partial pressure can be ignored. In the present invention, in order to achieve the purpose of preventing the inert gas contained therein from leaking out, it is sufficient that the pressure of the hydrogen gas is higher than the pressure of the inert gas. In this case, all hydrogen is absorbed by sodium, and there is no gas space in the space (A) that hinders the operation of the negative electrode. In order to ensure the reaction between sodium and hydrogen gas, the temperature can be raised to about 400 ° C., which is higher than the operating temperature, and then lowered to the operating temperature of the battery, whereby the reaction can be completed in a shorter time. . Further, since the inert gas such as argon is used for the space (B), it is possible to prevent the hydrogen gas from being hindered for a long time.
[0008]
【Example】
FIG. 3 shows a structure when the sodium negative electrode of the present invention is assembled.
The negative electrode includes a sodium storage container filled with sodium, a solid electrolyte tube, and a sealing member. The space (B) partitioned by the partition is filled with argon gas inside the sodium storage container, and the solidified sodium confines the argon gas. The partition walls are simply press-fitted without being fixed by welding or the like. As will be described later, the partition does not necessarily require a hole. The space (A) is filled with hydrogen gas. The sealing of the final negative electrode is performed by welding, while sealing the hydrogen with airtightness during assembly by press-fitting the lid. At the time of welding, the airtight holding portion is set at a distance so as not to melt.
[0009]
The method for assembling the negative electrode of the present invention will be described below. The assembling is divided into a step (1) for filling the sodium storage container with sodium, and a step (2) for assembling the negative electrode by filling hydrogen gas and then sealing it by welding. Step (1) is performed under a pressure of about 0.5 to 1 atm in a nitrogen gas atmosphere. The assembling step (2) is performed under a hydrogen gas atmosphere at atmospheric pressure. The final welding seal can be performed in the atmosphere. Step (1) can be performed in an argon atmosphere.
[0010]
FIG. 4 shows the assembling step (1). A bulkhead having a hole (central portion) of about 1 mm in diameter from the top with the open end of a cylindrical sodium storage container cylinder (4a) having one end heated in advance to a temperature equal to or higher than that of molten sodium. (7) is press-fitted and set in a predetermined place. A thin tube is inserted into the center hole of the partition (7), and argon gas is injected into the space partitioned by the partition about twice the space volume. It is desirable to make the diameter of the hole as small as possible, but if it is about 1 mm, the exchange of sodium and gas can be prevented. Since argon is heavier than nitrogen gas, it does not dissipate immediately. Thereafter, molten sodium is injected, a lid (4b) is pressed into the opening, and the mixture is cooled and solidified. The reason why the container is heated in advance is to prevent the argon gas sealed inside when sodium is filled from expanding and coming out of the partition wall. First, the sodium storage container may be filled with argon gas, and after inserting the partition, sodium may be filled. In this case, the partition does not necessarily require a hole. It is sufficient if the gas can move at the contact portion between the partition and the inner surface of the cylindrical container. Similarly, when argon is used as the atmospheric gas and the argon injection step is omitted, holes are not required in the partition walls.
[0011]
FIG. 5 shows the assembling step (2). A hole is provided in the center of the lid of the sodium storage container assembly produced in the assembly step (1). This is inserted into the solid electrolyte tube with the lid at the bottom. Next, the negative electrode lid is press-fitted. Thereafter, the negative electrode cover is taken out from the hydrogen atmosphere, and the negative electrode lid is sealed by TIG welding or the like.
[0012]
The reason for separating the welded part from the place where the airtight lid until welding is kept as shown in Fig. 3 is to prevent the welding from becoming completely impossible due to the pressure difference between the inside and outside when it is melted by the heat of welding. This is to maintain the airtightness of the interior up to the welding seal. In addition, there is an advantage that the work of welding and sealing can be performed in the atmosphere.
[0013]
【The invention's effect】
The product of the present invention stabilizes the operation of the negative electrode, suppresses current concentration on the surface of the solid electrolyte tube at the end of discharge and the occurrence of thermal stress accompanying the current, and prevents breakage of the solid electrolyte tube. As a result, an inert gas such as argon, which could not be used until now, can be used as a push-out gas for sodium, and stable operation can be performed for a long time. The present invention can be applied not only to the negative electrode structure shown in the embodiment but also to a sodium negative electrode having another structure when an inert gas is used as a gas for extruding sodium.
In addition, by stabilizing the operation of the negative electrode, an inspection by charge / discharge for checking the capacity of the unit cell is not required, and the inspection equipment can be simplified. Furthermore, since welding is not performed on the negative electrode sealing in a vacuum, the equipment can be simplified without using an electron beam or the like, and the production speed can be improved.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a conventional sodium negative electrode structure and an explanatory view of a problem at the time of discharge. FIG. 2 is a vertical cross-sectional view showing the operation of the sodium negative electrode assembly of the present invention. FIG. FIG. 4 is a method for assembling the sodium storage container of the present invention and its longitudinal sectional view. FIG. 5 is a method for assembling the sodium negative electrode of the present invention and its longitudinal sectional view.
1 solid electrolyte tube 2 sealing member (insulation ring and positive and negative metal fittings)
3 Sodium 4 Sodium storage container 4a Sodium storage container cylinder 4b Sodium storage container lid 5 Conventional negative electrode lid 6 Present negative electrode lid 7 Partition wall 8 Sodium storage container central hole 9 Partition central hole 10 Space (A)
11 Space (B)

Claims (6)

ナトリウムを貯蔵する容器とその内部にナトリウムを押し出すための不活性ガスを備えた、ナトリウム−硫黄電池用ナトリウム負極において、ナトリウムを押し出すための不活性ガスをナトリウムが固化することによって、ナトリウム貯蔵容器内に封じ込める方法を用いるとともに、負極を組み立てて密封する際に、固体電解質管、封口部材、負極蓋および固化したナトリウムで囲まれた新たに形成される空間にナトリウムが溶融する温度より高い温度でナトリウムと反応してガスとして存在しなくなるような気体を充填したことを特徴とするナトリウム−硫黄電池用ナトリウム負極の製造方法。In a sodium negative electrode for a sodium-sulfur battery provided with a container for storing sodium and an inert gas for pushing sodium inside the sodium storage container, the inert gas for pushing sodium is solidified by sodium, so that the inside of the sodium storage container is reduced. When assembling and sealing the negative electrode, the sodium is melted at a temperature higher than the temperature at which sodium melts in the newly formed space surrounded by the solid electrolyte tube, sealing member, negative electrode lid and solidified sodium. A method for producing a sodium negative electrode for a sodium-sulfur battery, wherein the gas is filled with a gas that no longer exists as a gas by reacting with the gas. ナトリウムを貯蔵する容器の内部に封じ込めた不活性ガスの圧力がナトリウム負極の組み立て時に新たに形成された空間へ充填した気体の圧力より小さい事を特徴とする請求項1のナトリウム負極製造方法2. The method for manufacturing a sodium negative electrode according to claim 1, wherein the pressure of the inert gas sealed in the container for storing sodium is lower than the pressure of the gas charged into a space newly formed during assembly of the sodium negative electrode. ナトリウムを貯蔵する容器に封じ込めた不活性ガスをアルゴンとし、ナトリウム負極の組み立て時に新たに形成される空間に充填したガスを水素とする前記請求項1のナトリウム負極の製造方法2. The method for producing a sodium negative electrode according to claim 1, wherein the inert gas sealed in the container for storing sodium is argon, and the gas filled in a space newly formed during assembly of the sodium negative electrode is hydrogen. ナトリウムを貯蔵する容器の内部に不活性ガスを封じる空間を形成するために隔壁を設け、ナトリウムが固化することで不活性ガスを密封したことを特徴とする請求項1のナトリウム負極の製造方法。2. The method for producing a sodium negative electrode according to claim 1, wherein a partition is provided inside the container for storing sodium to form a space for sealing the inert gas, and the inert gas is sealed by solidifying the sodium. ナトリウム負極を組み立てて新たに形成される空間にガスを封じて封口する際に、蓋の圧入のみで気密を維持し、更に封口のための溶接部が圧入により気密を維持した部分から離れ、溶接時に気密を維持している部分が溶融しないようにした事を特徴とする構造を有するナトリウム負極。When assembling the sodium negative electrode and sealing the gas in the newly formed space and sealing it, the airtightness is maintained only by press-fitting the lid, and the welding part for sealing is separated from the part where the airtightness was maintained by press-fitting and welding A sodium negative electrode having a structure characterized in that a portion that sometimes maintains airtightness is prevented from melting. ナトリウムを充填する際、充填するために溶融したナトリウムの温度と同じかもしくは高い温度でナトリウム貯蔵容器を予熱した事を特徴とするナトリウム負極の製造方法A method for producing a sodium negative electrode, comprising, when filling sodium, preheating a sodium storage container at a temperature equal to or higher than the temperature of molten sodium for filling.
JP2002208931A 2001-06-12 2002-06-12 Sodium negative electrode for sodium sulfur battery and method for producing the same Expired - Lifetime JP3936255B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002208931A JP3936255B2 (en) 2001-06-12 2002-06-12 Sodium negative electrode for sodium sulfur battery and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001215985A JP2003007289A (en) 2001-06-12 2001-06-12 Sodium negative electrode for sodium sulfur battery and manufacturing method therefor
JP2002208931A JP3936255B2 (en) 2001-06-12 2002-06-12 Sodium negative electrode for sodium sulfur battery and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004006196A true JP2004006196A (en) 2004-01-08
JP3936255B2 JP3936255B2 (en) 2007-06-27

Family

ID=30445683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002208931A Expired - Lifetime JP3936255B2 (en) 2001-06-12 2002-06-12 Sodium negative electrode for sodium sulfur battery and method for producing the same

Country Status (1)

Country Link
JP (1) JP3936255B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010092856A (en) * 2008-10-07 2010-04-22 General Electric Co <Ge> Energy storage device and associated method
CN103531855A (en) * 2013-10-17 2014-01-22 上海电气钠硫储能技术有限公司 Anode sealing structure of sodium-sulfur cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010092856A (en) * 2008-10-07 2010-04-22 General Electric Co <Ge> Energy storage device and associated method
CN103531855A (en) * 2013-10-17 2014-01-22 上海电气钠硫储能技术有限公司 Anode sealing structure of sodium-sulfur cell

Also Published As

Publication number Publication date
JP3936255B2 (en) 2007-06-27

Similar Documents

Publication Publication Date Title
US4035909A (en) Method of making a miniature concentric battery
US3939007A (en) Sodium sulphur cells
CN103515571A (en) Sealed battery
JP2004006196A (en) Sodium negative electrode for sodium sulfur battery and its manufacturing method
EP1492175B1 (en) Battery having an external terminal and a plate strap as one contiguous mass
EP0389557B1 (en) Improved alkali metal cell
JP2005285384A (en) Sodium-sulfur battery and manufacturing method of the same
JP2003007289A (en) Sodium negative electrode for sodium sulfur battery and manufacturing method therefor
JPH0254861A (en) Hermetical forming method for storage battery terminal section
JPH10270073A (en) Sodium-sulfur storage battery and its manufacture
US4189530A (en) Sodium insert container for a sodium-sulfur cell and method
CN202423414U (en) Insulating ring for sodium-sulfur cell
JPS6012680A (en) Sodium-sulfur battery
JP2000040522A (en) Sodium-sulfur battery
JP3329700B2 (en) Cathode structure of sodium-sulfur battery and sodium-sulfur battery using the same
US5197995A (en) Method of making an alkali metal cell
CN202534703U (en) Sodium-sulfur cell
JP3704241B2 (en) Joining structure of insulating ring and anode cylindrical fitting in sodium-sulfur battery
JP3253827B2 (en) Cathode structure of sodium-sulfur battery and sodium-sulfur battery using the same
JPS5973863A (en) Sodium-sulfur battery
JP2815312B2 (en) Gas filling method in sodium-sulfur battery
JP2002343422A (en) Sodium secondary battery and manufacturing method therefor
JPH0917445A (en) Sodium-sulfur battery and manufacture thereof
JP2000040521A (en) Sodium-sulfur battery
JPH0766831B2 (en) Sodium-sulfur battery

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20020813

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20030708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20020826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031002

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20041025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050711

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050907

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050922

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20051022

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20051102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051209

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20060207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060309

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060419

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20060512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060623

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20060826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061226

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070611

A59 Written plea

Free format text: JAPANESE INTERMEDIATE CODE: A59

Effective date: 20070908

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20071218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

S631 Written request for registration of reclamation of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313632

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20080715

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

S801 Written request for registration of abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311801

ABAN Cancellation of abandonment
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350