JP2004006091A - Manufacturing method for organic electroluminescent element - Google Patents

Manufacturing method for organic electroluminescent element Download PDF

Info

Publication number
JP2004006091A
JP2004006091A JP2002159388A JP2002159388A JP2004006091A JP 2004006091 A JP2004006091 A JP 2004006091A JP 2002159388 A JP2002159388 A JP 2002159388A JP 2002159388 A JP2002159388 A JP 2002159388A JP 2004006091 A JP2004006091 A JP 2004006091A
Authority
JP
Japan
Prior art keywords
substrate
emitting layer
fluorescent dye
transparent substrate
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002159388A
Other languages
Japanese (ja)
Inventor
Shingo Yagyu
柳生 慎悟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP2002159388A priority Critical patent/JP2004006091A/en
Publication of JP2004006091A publication Critical patent/JP2004006091A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method for a high accuracy organic electroluminescent element without color mixture. <P>SOLUTION: A transparent substrate 4 has the first electrodes 5, a hole transporting layer 6, and a light-emitting layer 7 which are formed sequentially on its surface. A stamp substrate 1 has recesses 2 on its surface. The recesses 2 of the stamp substrate 1 are filled up with phosphor coloring matter 3. The transparent substrate 4 and the stamp substrate 1 are disposed with close contact in such a way that the light-emitting layer 7 and the recesses 2 face each other, and the assembly is heated in order to diffuse the phosphor coloring matter 3 in the recesses 2 into the light-emitting layer 7. The stamp substrate 1 is estranged from the transparent substrate 4, and the second electrodes 11 are formed on the light-emitting layer 7 of the transparent substrate 4. The recesses 2 of the stamp substrate 1 is filled with the phosphor coloring matter 3 by the ink jet method using solution which is made by melting the phosphor coloring matter 3 in organic solvent. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、有機エレクトロルミネッセンス素子(有機EL素子)の製造方法に関する。
【0002】
【従来の技術】
有機EL素子は、高速応答性を有し、視野角依存性のない光を低消費電力で発光することにより、表示素子として、携帯端末機器やパーソナルコンピュータのディスクプレイ等に応用することが検討されており、車載オーディオ用表示パネルには、モノカラーを部分的に組み合わせたエリアカラー表示素子として実用化されている。
【0003】
そして、赤(R)、緑(G)、青(B)に対応した表示素子を組み合わせれば、フルカラー表示が可能であることから低電圧駆動で高輝度発光する高性能の有機EL素子についての検討が種々行われている。
【0004】
この有機EL素子の製造方法については、例えば、特開平7−235378号公報やApplied Physics Letters 74巻13号、1913−1915、1999に開示されている。
即ち、特開平7−235378号公報には、予め陽極となるストライプ状の透明電極が形成された透明基板を用意し、この透明電極上にスピンコート等の湿式法や蒸着法によりホール輸送層を形成する工程と、このホール輸送層上にスクリーン印刷法やインクジェット法により、赤色蛍光色素、緑色蛍光色素、青色蛍光色素を相互に分離するように塗布する工程と、次に前記各色蛍光色素の上方から赤外線を照射して、各色蛍光色素を前記ホール輸送層に拡散して、前記ホール輸送層中に赤色発光部、緑色発光部、青色発光部からなる発光層を形成する工程と、前記発光層上に電子輸送層を積層する工程と、前記電子輸送層上に前記透明電極と直交し、陰極となる金属電極を形成する工程と、からなるので、ホール輸送層及び蛍光色素の材料に制約されることなく任意のものが選択でき、前記発光層の形成にリソグラフィや、スクリーン印刷等のパターン加工が不要である有機EL素子の製造方法が開示されている。
【0005】
Applied Physics Letters 74巻13号、1913−1915、1999には、透明電極を有する透明基板上にホール輸送層を形成する一方、この透明基板と色素層が形成された他の基板とをシャドーマスクを介在させて対向させた後、前記色素層からホール輸送層側へ昇華・拡散させて発光層を形成する有機EL素子の製造方法が開示されている。
【0006】
しかしながら、前者の場合には、スクリーン印刷法やインクジェット法により各色蛍光色素をホール輸送層上に塗布する際、インク吐出位置決めを正確に行うために、インク吐出口以外の部分にバンクを形成する必要があり高精細化が困難であった。
また、後者の場合も、シャドーマスクの微細化が難しいので、高精細化が困難であった。
【0007】
そこで、図2に示すような高精細化が可能な有機EL素子の製造方法が提案された。図2は、従来の有機EL素子の製造方法を示す断面図であり、(A)は、(第1工程)を示し、(B)は、(第2工程)を示し、(C)は、(第3工程)を示し、(D)は、(第4工程)を示し、(E)は、(第5工程)を示し、(F)は、(第6工程)を示し、(G)は、(第7工程)を示している。
【0008】
(第1工程)
図2(A)に示すように、Siからなるスタンプ基板1上にフォトレジストを塗布した後、図示しないフォトマスクを用いて、フォトレジストパターン9を形成する。
【0009】
(第2工程)
この後、図2(B)に示すように、リアクティブイオンエッチング(RIE)によりエッチングを行ってスタンプ基板1に凹部2を形成した後、フォトレジストパターン9を除去する。このRIEで用いられるエッチングガスは、CHF等である。
【0010】
(第3工程)
次に、図2(C)に示すように、真空蒸着法により、スタンプ基板1上に赤色蛍光色素3を堆積させる。ここでは蛍光色素3は、赤色蛍光色素である。
【0011】
(第4工程)
次に、図2(D)に示すように、蛍光色素3が形成されたスタンプ基板1表面に粘着テープ10を貼り付けた後、剥離することによって、スタンプ基板1表面に堆積した蛍光色素3を除去し、凹部2だけに蛍光色素3を残す。
【0012】
(第5工程)
次に、図2(E)に示すように、スタンプ基板1とは異なるストライプ状の透明電極5が形成された透明基板4を用意し、ホール輸送層6と、発光層7とを形成する。ここでは、透明基板4は、ガラスである。
【0013】
(第6工程)
次に、図2(F)に示すように、スタンプ基板1の凹部2側と透明基板4の発光層7側を密着させて対向配置した状態で加熱を行い、凹部2に堆積した赤色蛍光色素3を発光層7に拡散させる。こうして、発光層7中に赤色発光層8を形成する。この後、スタンプ基板1を透明基板4から離間させる。
更に、緑色蛍光色素及び青色蛍光色素についても前記と同様の操作を行って、これらの色素の蛍光発光層8を形成する。
この際、赤色蛍光色素、緑色蛍光色素及び青色蛍光色素のそれぞれは、所定のパターン、例えば、千鳥状パターン、縦縞状パターンで形成され、互いに重複することなく形成される。
【0014】
(第7工程)
この後、図2(G)に示すように、発光層7上に透明電極5に直交する金属電極11を形成して有機EL素子を作製する。この有機EL素子は、例えば透明電極5を陽極、金属電極11を陰極として、これらの電極間に電圧を印加することによって発光層7からのカラー発光を得ることができる。
なお、スタンプ基板は、透明基板と同じ材料を用いることで加熱時の熱膨張係数の違いによる画素ピッチを防止することができる。また、蛍光色素3は、リン発光材料からなる。
【0015】
【発明が解決しようとする課題】
しかし、(第4工程)において、蛍光色素3が形成されたスタンプ基板1表面に粘着テープ10を貼り付けた後、この粘着テープ10を剥離して、スタンプ基板1表面の蛍光色素3を除去する際、粘着テープ10の粘着材の一部がスタンプ基板1に貼り付いて、蛍光色素3が除去されないことがある。
【0016】
このことは、(第6工程)において、透明基板4の発光層7に各色蛍光色素を拡散する際に、蛍光色素3が拡散する以外の発光層7部分にも拡散してしまうので、赤色、緑色及び青色の各色蛍光色素を拡散した場合には、混色を生じてしまう。これを防止するために、スタンプ基板1表面に貼り付いた粘着テープ10を除去する他の工程が必要となり、製造工程が複雑化するといった問題を生じていた。
【0017】
そこで、本発明は、上記のような問題点を解消するためになされたもので、混色を生じることなく、高精細化できる有機EL素子の製造方法を提供することを目的とする。
【0018】
【課題を解決するための手段】
本発明は、予め表面に第1電極、正孔輸送層、発光層が順次形成された透明基板と、表面に凹部が形成されたスタンプ基板とを用意し、次に、前記スタンプ基板の凹部に蛍光色素を充填し、次に、前記発光層と前記凹部とを対向配置させて前記透明基板と前記スタンプ基板とを密着配置させた後、加熱して前記凹部の前記蛍光色素を前記発光層に拡散させ、次に、前記スタンプ基板を前記透明基板から離間させた後、前記透明基板の発光層上に第2電極を形成して作製する有機エレクトロルミネッセンス素子の製造方法において、前記スタンプ基板の凹部への前記蛍光色素の充填は、前記蛍光色素を有機溶剤に溶かした溶液を用いてインクジェット法により行うことを特徴とする有機エレクトロルミネッセンス素子の製造方法を提供する。
【0019】
【発明の実施の形態】
本発明の実施形態の有機エレクトロルミネッセンス素子の製造方法について図1を参照しながら以下に説明する。
図1は、本発明の有機EL素子の製造方法を示す断面図であり、(A)は、(スタンプ基板の凹部への発光色素充填工程)を示し、(B)は、(透明基板準備工程)を示し、(C)は、(各色蛍光色素拡散工程)を示している。
従来例と同一構成には同一符号を付し、その説明を省略する。
【0020】
(スタンプ基板の凹部への発光色素充填工程)
図1(A)に示すように、従来の有機EL素子の製造方法における(第1工程)〜(第2工程)と同様の工程に行った後、色素材料3を有機溶媒中に溶かした溶液を用いて、インクジェット印刷法により、スタンプ基板1の凹部2に充填する。
この際用いられるインクジェット印刷法では、イリジウム錯体であるIr(ppy)3:Tris(2−Phenylpyridine)Iridiumをクロロホルム中で1wt%溶解させることにより、スタンプ基板1の凹部2に容易に充填することができる。
【0021】
(透明基板準備工程)
図1(B)に示すように、ストライプ状に透明電極5が形成された透明基板4上に正孔輸送層6、発光層7を順次形成する。
この正孔輸送層6は、透明基板4の透明電極5上にバイエル社PEDOT・PSSをスピンコートにて塗布し、真空中で180℃の加熱を行った後、更にポリブニルカルバソールをクロロホルムに0.2wt%溶解させた溶液をスピンコートにて、塗布し、真空中で120℃の加熱を行って形成される。
【0022】
(各色蛍光色素拡散工程)
次に、図1(C)に示すように、スタンプ基板1の凹部2側と透明基板4の発光層7側とを密着させて対向配置した状態で加熱を行い、凹部2に堆積した各色蛍光色素3を発光層7に拡散させる。こうして、発光層7中に蛍光発光層8を形成する。ここで、蛍光色素3は、赤色蛍光色素である。
【0023】
更に、緑色蛍光色素及び青色蛍光色素についても前記と同様の操作を行って、これらの色素の蛍光発光層8を形成する。
この際、赤色蛍光色素、緑色蛍光色素及び青色蛍光色素のそれぞれは、所定のパターン、例えば、千鳥状パターン、縦縞状パターンで形成され、互いに重複することなく形成される。
【0024】
この後、従来の有機EL素子の製造方法における(第7工程)と同様の工程を行って、有機EL素子を作製する。
なお、(各色蛍光色素拡散工程)で窒素雰囲気中、120℃、30分の加熱により、色素クマリン6は、ポリビニルカルバゾール中に適量に拡散できる。この際、透明基板4とスタンプ基板1のどちらか一方を加熱しても良いし、両方を加熱しても良い。また、必要に応じて加圧しても良い。
【0025】
以上のように、本発明の実施形態の有機EL素子の製造方法によれば、スタンプ基板1の凹部2に蛍光色素3が有機溶剤中に溶かされた溶液をインクジェット印刷法により充填した後、表面に透明電極5、正孔輸送層6、発光層7が順次形成された透明基板4を用意し、凹部2が発光層7に対向するようにして、スタンプ基板1の上に透明基板4を載置して加熱して蛍光色素3を発光層7に拡散させて蛍光発光層8を形成するようにしているので、従来のようにスタンプ基板1上に粘着材が残るといったこともないため、混色を生じることなく高精細化できる有機EL素子が得られる。
【0026】
【発明の効果】
本発明によれば、予め表面に第1電極、正孔輸送層、発光層が順次積層された透明基板と、表面に凹部が形成されたスタンプ基板とを用意し、次に、前記スタンプ基板の凹部に発光色素を充填し、次に、前記発光層と前記凹部とを対向配置させて前記透明基板と前記スタンプ基板とを密着配置させた後、加熱して前記凹部の発光色素を前記発光層に拡散させ、次に、前記スタンプ基板を前記透明基板から離間させた後、前記透明基板の発光層上に第2電極を形成して作製する有機エレクトロルミネッセンス素子の製造方法において、前記スタンプ基板の凹部への発光色素の充填は、発光色素を有機溶剤に溶かした溶液を用いてインクジェット法により行うので、混色を生じることなく高精細化できる有機EL素子が得られる。
【図面の簡単な説明】
【図1】本発明の実施形態の有機エレクトロルミネッセンス素子の製造方法を示す断面図であり、(A)は、(スタンプ基板の凹部への発光色素充填工程)を示し、(B)は、(透明基板準備工程)を示し、(C)は、(各色蛍光色素拡散工程)を示している。
【図2】図2は、従来の有機EL素子の製造方法を示す断面図であり、(A)は、(第1工程)を示し、(B)は、(第2工程)を示し、(C)は、(第3工程)を示し、(D)は、(第4工程)を示し、(E)は、(第5工程)を示し、(F)は、(第6工程)を示し、(G)は、(第7工程)を示している。
【符号の説明】
1…スタンプ基板、2…凹部、3…蛍光色素、4…透明基板、5…透明電極、6…正孔輸送層、7…発光層、8…蛍光発光層、11…金属電極
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing an organic electroluminescence device (organic EL device).
[0002]
[Prior art]
Organic EL devices have high response speed and emit light with no viewing angle dependence with low power consumption, and are being considered for application to display devices such as portable terminals and personal computers as display devices. Therefore, it has been put to practical use as an area color display element in which a mono color is partially combined in an in-vehicle audio display panel.
[0003]
When a display element corresponding to red (R), green (G), and blue (B) is combined, a full-color display can be performed. Various studies have been made.
[0004]
The method of manufacturing the organic EL device is disclosed in, for example, Japanese Patent Application Laid-Open No. Hei 7-235378 and Applied Physics Letters Vol. 74, No. 13, 1913-1915, 1999.
That is, in Japanese Patent Application Laid-Open No. Hei 7-235378, a transparent substrate on which a stripe-shaped transparent electrode serving as an anode is formed in advance is prepared, and a hole transport layer is formed on the transparent electrode by a wet method such as spin coating or an evaporation method. Forming, applying a red fluorescent dye, a green fluorescent dye, and a blue fluorescent dye on the hole transport layer by a screen printing method or an ink-jet method so as to be separated from each other. Irradiating infrared light from the substrate to diffuse the fluorescent dye of each color into the hole transport layer to form a red light emitting portion, a green light emitting portion, and a light emitting layer including a blue light emitting portion in the hole transport layer; and A hole transport layer and a material of a fluorescent dye, comprising a step of laminating an electron transport layer thereon, and a step of forming a metal electrode which is orthogonal to the transparent electrode and serves as a cathode on the electron transport layer. Constrained by any ones can be selected without, and lithography in the formation of the light-emitting layer, a method of manufacturing an organic EL element is disclosed patterned screen printing or the like is not required.
[0005]
In Applied Physics Letters Vol. 74, No. 13, 1913-1915, 1999, a hole transport layer is formed on a transparent substrate having a transparent electrode, and the transparent substrate and another substrate on which the dye layer is formed are covered with a shadow mask. A method of manufacturing an organic EL device in which a light emitting layer is formed by sublimating and diffusing from the dye layer to the hole transport layer side after interposing and opposing each other is disclosed.
[0006]
However, in the former case, when applying each color fluorescent dye on the hole transport layer by a screen printing method or an ink jet method, it is necessary to form a bank in a portion other than the ink discharge port in order to accurately perform ink discharge positioning. And it was difficult to achieve high definition.
Also, in the latter case, it is difficult to reduce the size of the shadow mask.
[0007]
Therefore, a method of manufacturing an organic EL device capable of achieving high definition as shown in FIG. 2 has been proposed. 2A and 2B are cross-sectional views illustrating a conventional method for manufacturing an organic EL element. FIG. 2A illustrates a (first step), FIG. 2B illustrates a (second step), and FIG. (D) shows (Fourth step), (E) shows (Fifth step), (F) shows (Sixth step), (G) Indicates (seventh step).
[0008]
(First step)
As shown in FIG. 2A, after a photoresist is applied on a stamp substrate 1 made of Si, a photoresist pattern 9 is formed using a photomask (not shown).
[0009]
(2nd process)
Thereafter, as shown in FIG. 2B, the recess 2 is formed in the stamp substrate 1 by etching by reactive ion etching (RIE), and then the photoresist pattern 9 is removed. The etching gas used in this RIE is CHF 3 or the like.
[0010]
(3rd step)
Next, as shown in FIG. 2C, a red fluorescent dye 3 is deposited on the stamp substrate 1 by a vacuum deposition method. Here, the fluorescent dye 3 is a red fluorescent dye.
[0011]
(4th process)
Next, as shown in FIG. 2 (D), after sticking an adhesive tape 10 on the surface of the stamp substrate 1 on which the fluorescent dye 3 is formed, the fluorescent dye 3 deposited on the surface of the stamp substrate 1 is peeled off. Then, the fluorescent dye 3 is left only in the concave portion 2.
[0012]
(Fifth step)
Next, as shown in FIG. 2E, a transparent substrate 4 having a stripe-shaped transparent electrode 5 different from the stamp substrate 1 is prepared, and a hole transport layer 6 and a light emitting layer 7 are formed. Here, the transparent substrate 4 is glass.
[0013]
(Sixth step)
Next, as shown in FIG. 2 (F), heating is performed in a state where the concave portion 2 side of the stamp substrate 1 and the light emitting layer 7 side of the transparent substrate 4 are closely arranged to face each other, and the red fluorescent dye deposited on the concave portion 2 is formed. 3 is diffused into the light emitting layer 7. Thus, the red light emitting layer 8 is formed in the light emitting layer 7. Thereafter, the stamp substrate 1 is separated from the transparent substrate 4.
Further, the same operation as described above is performed for the green fluorescent dye and the blue fluorescent dye to form the fluorescent emission layer 8 of these dyes.
At this time, each of the red fluorescent dye, the green fluorescent dye, and the blue fluorescent dye is formed in a predetermined pattern, for example, a staggered pattern or a vertical stripe pattern, and is formed without overlapping each other.
[0014]
(Seventh step)
Thereafter, as shown in FIG. 2G, a metal electrode 11 orthogonal to the transparent electrode 5 is formed on the light emitting layer 7 to manufacture an organic EL device. This organic EL element can obtain color light emission from the light emitting layer 7 by applying a voltage between the transparent electrode 5 as an anode and the metal electrode 11 as a cathode, for example.
In addition, by using the same material as the transparent substrate for the stamp substrate, it is possible to prevent a pixel pitch due to a difference in thermal expansion coefficient during heating. The fluorescent dye 3 is made of a phosphorescent material.
[0015]
[Problems to be solved by the invention]
However, in the (fourth step), after the adhesive tape 10 is attached to the surface of the stamp substrate 1 on which the fluorescent dye 3 is formed, the adhesive tape 10 is peeled off, and the fluorescent dye 3 on the surface of the stamp substrate 1 is removed. In this case, a part of the adhesive material of the adhesive tape 10 may adhere to the stamp substrate 1 and the fluorescent dye 3 may not be removed.
[0016]
This means that, in (sixth step), when each color fluorescent dye is diffused into the light emitting layer 7 of the transparent substrate 4, the fluorescent dye 3 is also diffused into the light emitting layer 7 other than the diffused region. When the green and blue fluorescent dyes are diffused, color mixing occurs. In order to prevent this, another process of removing the adhesive tape 10 stuck to the surface of the stamp substrate 1 is required, which has caused a problem that the manufacturing process is complicated.
[0017]
Therefore, the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a method of manufacturing an organic EL device capable of achieving high definition without causing color mixing.
[0018]
[Means for Solving the Problems]
According to the present invention, a transparent substrate having a first electrode, a hole transport layer, and a light emitting layer formed on a surface thereof in advance and a stamp substrate having a concave portion formed on the surface are prepared. After filling the fluorescent dye, then the light emitting layer and the concave portion are arranged to face each other, and the transparent substrate and the stamp substrate are placed in close contact with each other, and then heated to apply the fluorescent dye in the concave portion to the light emitting layer. Diffusion, then, after separating the stamp substrate from the transparent substrate, a method of manufacturing an organic electroluminescent element, which is manufactured by forming a second electrode on a light emitting layer of the transparent substrate, The method of manufacturing an organic electroluminescent device, characterized in that the filling of the fluorescent dye into the organic dye is performed by an inkjet method using a solution in which the fluorescent dye is dissolved in an organic solvent.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
A method for manufacturing an organic electroluminescence device according to an embodiment of the present invention will be described below with reference to FIG.
1A and 1B are cross-sectional views illustrating a method for manufacturing an organic EL device according to the present invention, wherein FIG. 1A shows a (step of filling a luminescent dye into a concave portion of a stamp substrate), and FIG. ), And (C) shows a (fluorescent dye diffusion step for each color).
The same components as those of the conventional example are denoted by the same reference numerals, and the description thereof will be omitted.
[0020]
(Process of filling luminescent dye into recesses on stamp substrate)
As shown in FIG. 1A, after performing the same steps as (first step) and (second step) in the conventional method for manufacturing an organic EL element, a solution in which the dye material 3 is dissolved in an organic solvent is used. Is filled in the concave portion 2 of the stamp substrate 1 by an ink jet printing method.
In the ink jet printing method used at this time, the iridium complex Ir (ppy) 3: Tris (2-phenylpyridine) iridium is dissolved in chloroform at 1 wt%, so that the recess 2 of the stamp substrate 1 can be easily filled. it can.
[0021]
(Transparent substrate preparation process)
As shown in FIG. 1B, a hole transport layer 6 and a light emitting layer 7 are sequentially formed on a transparent substrate 4 on which transparent electrodes 5 are formed in a stripe shape.
The hole transport layer 6 is formed by applying PEDOT.PSS of Bayer Co., Ltd. on the transparent electrode 5 of the transparent substrate 4 by spin coating, heating at 180 ° C. in a vacuum, and further adding chloroform to chloroform. Is formed by applying a solution obtained by dissolving 0.2% by weight in a solution by spin coating, and heating at 120 ° C. in vacuum.
[0022]
(Diffusion process of each color fluorescent dye)
Next, as shown in FIG. 1 (C), heating is performed in a state where the concave portion 2 side of the stamp substrate 1 and the light emitting layer 7 side of the transparent substrate 4 are placed in close contact and opposed to each other, and each color fluorescent light deposited in the concave portion 2 is heated. The dye 3 is diffused into the light emitting layer 7. Thus, the fluorescent light emitting layer 8 is formed in the light emitting layer 7. Here, the fluorescent dye 3 is a red fluorescent dye.
[0023]
Further, the same operation as described above is performed for the green fluorescent dye and the blue fluorescent dye to form the fluorescent emission layer 8 of these dyes.
At this time, each of the red fluorescent dye, the green fluorescent dye, and the blue fluorescent dye is formed in a predetermined pattern, for example, a staggered pattern or a vertical stripe pattern, and is formed without overlapping each other.
[0024]
Thereafter, the same steps as in the conventional method for manufacturing an organic EL element (seventh step) are performed to manufacture an organic EL element.
In addition, the dye coumarin 6 can be diffused into polyvinyl carbazole in an appropriate amount by heating in a nitrogen atmosphere at 120 ° C. for 30 minutes in the (fluorescent dye diffusion step for each color). At this time, either the transparent substrate 4 or the stamp substrate 1 may be heated, or both may be heated. Further, pressure may be applied as needed.
[0025]
As described above, according to the method for manufacturing an organic EL device of the embodiment of the present invention, after the solution in which the fluorescent dye 3 is dissolved in the organic solvent is filled into the concave portion 2 of the stamp substrate 1 by the inkjet printing method, the surface is filled. A transparent substrate 4 on which a transparent electrode 5, a hole transport layer 6, and a light emitting layer 7 are sequentially formed is prepared, and the transparent substrate 4 is placed on the stamp substrate 1 so that the concave portion 2 faces the light emitting layer 7. Since the fluorescent dye 3 is diffused into the light-emitting layer 7 by heating when placed, the fluorescent material 8 is formed, so that the adhesive material does not remain on the stamp substrate 1 as in the related art, so that color mixing is performed. Thus, an organic EL device capable of achieving high definition without causing the problem can be obtained.
[0026]
【The invention's effect】
According to the present invention, a transparent substrate in which a first electrode, a hole transport layer, and a light emitting layer are sequentially laminated on a surface in advance, and a stamp substrate having a concave portion formed on the surface are prepared. The concave portion is filled with a luminescent dye, and then the light emitting layer and the concave portion are arranged to face each other, and the transparent substrate and the stamp substrate are placed in close contact with each other. And then, after separating the stamp substrate from the transparent substrate, forming a second electrode on the light emitting layer of the transparent substrate, the method for manufacturing an organic electroluminescent element, wherein the stamp substrate Since the filling of the recesses with the luminescent dye is performed by an inkjet method using a solution in which the luminescent dye is dissolved in an organic solvent, an organic EL element that can achieve high definition without causing color mixture is obtained.
[Brief description of the drawings]
1A and 1B are cross-sectional views illustrating a method for manufacturing an organic electroluminescence device according to an embodiment of the present invention, wherein FIG. 1A illustrates a (step of filling a concave portion of a stamp substrate with a luminescent dye), and FIG. (C) shows a (transparent substrate preparation step), and (C) shows a (fluorescent dye diffusion step for each color).
FIGS. 2A and 2B are cross-sectional views illustrating a conventional method for manufacturing an organic EL device, in which FIG. 2A illustrates a (first step), FIG. 2B illustrates a (second step), and FIG. (C) shows (third step), (D) shows (fourth step), (E) shows (fifth step), and (F) shows (sixth step). , (G) show (seventh step).
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Stamp substrate, 2 ... concave part, 3 ... fluorescent dye, 4 ... transparent substrate, 5 ... transparent electrode, 6 ... hole transport layer, 7 ... light emitting layer, 8 ... fluorescent light emitting layer, 11 ... metal electrode

Claims (1)

予め表面に第1電極、正孔輸送層、発光層が順次形成された透明基板と、表面に凹部が形成されたスタンプ基板とを用意し、次に、前記スタンプ基板の凹部に蛍光色素を充填し、次に、前記発光層と前記凹部とを対向配置させて前記透明基板と前記スタンプ基板とを密着配置させた後、加熱して前記凹部の前記蛍光色素を前記発光層に拡散させ、次に、前記スタンプ基板を前記透明基板から離間させた後、前記透明基板の発光層上に第2電極を形成して作製する有機エレクトロルミネッセンス素子の製造方法において、
前記スタンプ基板の凹部への前記蛍光色素の充填は、前記蛍光色素を有機溶剤に溶かした溶液を用いてインクジェット法により行うことを特徴とする有機エレクトロルミネッセンス素子の製造方法。
A transparent substrate in which a first electrode, a hole transport layer, and a light emitting layer are sequentially formed on the surface in advance and a stamp substrate having a concave portion formed on the surface are prepared, and then the concave portion of the stamp substrate is filled with a fluorescent dye. Then, after the light emitting layer and the concave portion are disposed to face each other and the transparent substrate and the stamp substrate are disposed in close contact with each other, and then heated, the fluorescent dye in the concave portion is diffused into the light emitting layer. In a method for manufacturing an organic electroluminescent element, the stamp substrate is separated from the transparent substrate, and then a second electrode is formed on a light emitting layer of the transparent substrate.
The method of manufacturing an organic electroluminescent device, wherein the filling of the fluorescent dye into the concave portion of the stamp substrate is performed by an inkjet method using a solution in which the fluorescent dye is dissolved in an organic solvent.
JP2002159388A 2002-05-31 2002-05-31 Manufacturing method for organic electroluminescent element Pending JP2004006091A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002159388A JP2004006091A (en) 2002-05-31 2002-05-31 Manufacturing method for organic electroluminescent element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002159388A JP2004006091A (en) 2002-05-31 2002-05-31 Manufacturing method for organic electroluminescent element

Publications (1)

Publication Number Publication Date
JP2004006091A true JP2004006091A (en) 2004-01-08

Family

ID=30429181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002159388A Pending JP2004006091A (en) 2002-05-31 2002-05-31 Manufacturing method for organic electroluminescent element

Country Status (1)

Country Link
JP (1) JP2004006091A (en)

Similar Documents

Publication Publication Date Title
TWI355862B (en) Methods for producing full-color organic electrolu
JP4830254B2 (en) Method for manufacturing organic EL device and electronic device
EP0774787B1 (en) Full color organic light emitting diode array
JPH08264828A (en) Full-color organic light emitting diode-array
EP1003354A1 (en) Method of manufacturing organic el display
JP2002324672A (en) Method of forming matrix array of organic conductive matter and matrix array manufactured by same
WO2019214125A1 (en) Color filter substrate and manufacturing method therefor, and woled display
JP2000100572A (en) Electroluminescent device
JP2001313172A (en) Organic electroluminescent white light source and manufacturing method of the same
JPH07235378A (en) Electroluminescent and its manufacture
JP2003229256A (en) Manufacturing method of organic el device, and ink component for organic el device
JP2009533810A5 (en)
JP2003133071A (en) Organic electroluminescent element and its manufacturing method
WO2003003794A1 (en) Electroluminescent element
JPH10208883A (en) Light emitting device and manufacture therefor
JP5239189B2 (en) Method for manufacturing organic electroluminescence display device
JP4183427B2 (en) Electroluminescence element
JP4595232B2 (en) Thin film pattern forming method and organic electroluminescent display device manufacturing method
JP2009230956A (en) Manufacturing method of organic electroluminescent display device
JP2000323280A (en) Electroluminescent element and its manufacture
TW201351636A (en) Method for making a display device
JP2007242910A (en) Organic electroluminescence element, manufacturing method therefor, organic el apparatus, and electronic equipment
JP2007026684A (en) Organic electroluminescent display element
JP2009170336A (en) Manufacturing method of display device
Nakamura et al. Three-color polymer light-emitting diodes by stamped dye diffusion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080401