JP2004005932A - Powder for lower layer of coating type magnetic recording medium - Google Patents

Powder for lower layer of coating type magnetic recording medium Download PDF

Info

Publication number
JP2004005932A
JP2004005932A JP2003095268A JP2003095268A JP2004005932A JP 2004005932 A JP2004005932 A JP 2004005932A JP 2003095268 A JP2003095268 A JP 2003095268A JP 2003095268 A JP2003095268 A JP 2003095268A JP 2004005932 A JP2004005932 A JP 2004005932A
Authority
JP
Japan
Prior art keywords
powder
lower layer
recording medium
iron oxide
tape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003095268A
Other languages
Japanese (ja)
Inventor
Kazuyuki Matsumoto
松本 和幸
Kenichi Inoue
井上 健一
Masaru Inoue
井上 賢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP2003095268A priority Critical patent/JP2004005932A/en
Publication of JP2004005932A publication Critical patent/JP2004005932A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain iron oxide powder capable of improving a variety of properties required by powder for a lower layer of a magnetic recording medium with a multilayered structure having durability adaptive to high record density, particularly, tape surface smoothness and tape strength. <P>SOLUTION: This powder for a lower layer of a coating type magnetic recording medium is composed of flat needle-like iron oxide particles, the average long axial length of which is 20-200 nm, wherein a long axis and a short axis cross section cut in the direction of a right angle have a longer width and a shorter width and the short axis aspect ratio of the long axis to the short axis is almost uniformly >1.3 in the direction of the long axis, and a specific surface area by a BET is 30-100 m<SP>2</SP>/g. The powder for a lower layer desirably contains P by 0.1-5.0 wt% and further contains R (R is one or two rare earth elements or more including Y) by 0.1-10 at.% in an atomic ratio percentage (at.%) of R/Fe. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は重層構造の塗布型磁気記録媒体に用いられる下層用粉末およびこれを用いた磁気記録媒体に関する。
【0002】
【従来の技術】
磁性粉末を樹脂中に分散させた磁性層とベースフイルムとの間に,非磁性粉末を樹脂中に分散させた非磁性層(下層)を設ける重層構造の塗布型磁気記録媒体(ビデオテープ等の磁気テープ)が知られている。このような重層構造をとることで,磁気記録媒体の電磁変換特性の改善が進み高記録密度化を達成できる。また,テープ耐久性が改善され信頼性も向上する。本願明細書において「下層用粉末」とは,このような重層構造の塗布型記録媒体の非磁性層(下層)を形成するための粉末を意味する。
【0003】
昨今の情報量の増大は止まるところがなく,それに対応して記録媒体にも一層の記録容量の増大と信頼性の向上が求められるようになっている。その結果,重層構造の塗布型磁気記録媒体の下層用粉末においても各種特性の改善が求められている。下層用粉末に求められる基本的な特性には,ベースフィルムに塗布された際により平滑な表面をもつ下層が形成できることと,下層の塗膜の強度が高いことが挙げられる。
【0004】
下層の表面が平滑であると,その上に塗布される磁性層がより平滑になり,それによって電磁変換特性の優れた磁気記録媒体になり得るし,高密度化につながる。またテープの高容量化に伴ってテープ厚が薄層化し,高密度化のために寸法安定性が重要になるが,このためには下層の高強度化が望まれ,そうすることでテープ自体の強度が上がり信頼性の向上につながっていく。
【0005】
一般にこれらの要求特性を満たすためには,下層用の非磁性粉末としては,塗料化段階で分散性に優れ,かつ粒子自体の強度が高く,しかも樹脂との接着性が高いといった性質を具備することが必要であり,そのような非磁性粉末を用いて塗膜にしたときに,平滑でかつ強度の高い下層を形成できる。
【0006】
従来,この下層を形成するための非磁性粉末としては,球状酸化チタン粉末または針状酸化鉄粉末が主に使用されている。また,このような下層をもつ重層構造の磁気記録媒体については,例えば特開昭63−187418号公報や特開平4−167225号公報に記載されたようなものがある。
【0007】
さらに,特開平6−60362号公報,特開平6−139553号公報,特開平6−215360号公報,特開平7−192248号公報,特開平9−170003号公報等には,かような重層構造の磁気記録媒体において,下層を形成する非磁性粉として針状の酸化鉄等を用いた場合の特性値が示されている。
【0008】
【発明が解決しようとする課題】
下層用粉末として使用されたことのある球状酸化チタンでは,テープ化した場合に強度が針状のものに比べて不十分であった。また針状の酸化鉄については,針状であることで,それを分散含有してなる塗膜を形成した際に,塗膜面の垂直成分の減少により平滑性が向上し,また,針状粒子間には相互作用(絡み合う)が働くことにより塗膜の強度向上につながっているが,針状の酸化鉄は,それを得る過程において高温での焼成プロセスを必要とするため,粒子間焼結が生じかつ針状性も崩れやすい。したがって,更なるテープ特性(表面平滑,塗膜強度)の要求に対応できる下層用粉末としては,現状の針状の酸化鉄粉末では十分とは言えないのが実状である。
【0009】
本発明は,このような問題の解決を図り,重層構造の塗布型磁気記録媒体における下層用粉末に要求される諸特性を満足すること,とくにテープの表面平滑性と塗膜強度が向上する下層用酸化鉄粉末を得ることを課題としたものであり,ひいては,高容量で信頼性の高い重層構造の記録媒体を得ることを課題としたものである。
【0010】
【課題を解決するための手段】
本発明によれば,平均長軸長が20〜200nmで,長軸と直角方向に切断した短軸断面が長い方の幅と短い方の幅をもち,この長幅と短幅の短軸断面比が長軸方向にほぼ一様に1.3より大きくなっている平針状の酸化鉄粒子からなり,BET法による比表面積が30〜100m/gである塗布型磁気記録媒体の下層用粉末を提供する。本発明に従う下層用粉末は好ましくは粉体pHが7以下である。また,本発明に従う下層用粉末はPを0.1〜5.0wt%含有し,またR(RはYを含む希土類元素の1種または2種以上)を,R/Feの原子比百分率( at.%)で0.1〜10 at.%含有する。この下層用粉末を用いることによって高記録密度化に適した表面平滑性に優れ且つ耐久性のある磁気記録媒体を得ることができる。
【0011】
【発明の実施の形態】
本発明は,重層構造の塗布型磁気記録媒体の非磁性層を形成するための下層用粉末として,平均長軸長が20〜200nmで,BET法による比表面積が30〜100m/g,粉体pHが好ましくは7以下の「平針状の酸化鉄粒子」からなる粉末を用いる点に特徴がある。この平針状の下層用粉末は,その前駆体原料として平針状のオキシ水酸化鉄を使用し,これを,望ましくはリン化合物またはリン化合物と希土類金属化合物で表面処理してから,焼成することによって得られる。従来の針状の酸化鉄では分散性が不十分であったり,塗布時における粒子配列,粒子の相互作用(絡み合い)が不十分であるため,テープの表面平滑性が十分ではなく塗膜強度も不十分であったところ,本発明によれば,その形状を平針状の酸化鉄に変えることによって,しかも粒子間の焼結を抑制することによってテープの表面平滑性が一層改善し且つ塗膜強度もさらに向上させることがわかった。
【0012】
ここで,“平針状”とは,長手方向の長さ(長軸長)とそれと直交する短手方向の最大長さ(短軸長)との比(長軸/短軸の比,すなわち軸比)が好ましくは2以上の針状であって,長軸と直角方向に切断した短軸断面が長い方の幅と短い方の幅をもち,この長幅と短幅の短軸断面比が長軸方向にほぼ一様に1.3より大きく,好ましくは1.4以上,さらに好ましくは1.5以上となっている偏平な針状を意味する。
【0013】
図1はこの平針状の形状を図解的に示したものである。図示のように,長手方向の最大長さL(長軸長)とこれと直交する短手方向の最大長さS(短軸長)をもつ針状体1において,長軸と直角方向に切断した短軸断面2が長幅Wと短幅Wをもつ偏平な形をしている。たとえて言えば,幅がWで,厚みがWの平板(短冊状)に似た形状を有している。ただし,短軸断面2の偏平形状は長方形に限らず,図2のようにカプセル状,図3のように楕円状,図4のように多角形状,図5のように変形円状等の様々な形をしていてもよく,要するところW/Wの比(これを,本明細書では「短軸断面比」と言う)が長軸方向に一様に(一様にとは,捻じれるようなことはないの意味),1.3より大きく,好ましくは1.4以上,さらに好ましくは1.5以上であればよい。また,本発明の平針状酸化鉄粒子は殆ど枝分かれは有しない。
【0014】
平針状粒子の短軸断面比の測定は,電子顕微鏡写真を撮るときに,試料台を傾けながら同一試料部分を複数撮影し,その傾斜角度ごとに最大短幅と最大長幅を測定し,その傾斜角度と測定値を用いて短軸断面比を求めることができる。これを100個の粒子について計測し,その平均値として算出する。
【0015】
本発明に従う平針状の酸化鉄粉末は,平針状のオキシ水酸化鉄粉末を製造してから,これを適切に焼成することによって得ることができる。まず,平針状のオキシ水酸化鉄粉末の製造法について説明する。
【0016】
〔平針状のオキシ水酸化鉄の製造法〕
下層用の酸化鉄粉末を得るには,針状のオキシ水酸化鉄を焼成するという方法が採られるが,そのためのオキシ水酸化鉄を得る方法としては,代表的には,
(1)第一鉄塩水溶液に当量以上の水酸化アルカリ水溶液を加えて得られる水酸化第一鉄コロイドを含む懸濁液をpH11以上にて80℃以下の温度で酸素含有ガスを通気して酸化反応を行い,オキシ水酸化鉄を生成させる方法,
(2)第一鉄塩水溶液と炭酸アルカリ水溶液とを反応させて得られる懸濁液に酸素含有ガスを通気して酸化反応を行い,オキシ水酸化鉄を生成させる方法,
がある。
【0017】
しかし,これらの方法で得られるオキシ水酸化鉄は,一般に短軸断面比が小さく,本発明が目標としているような短軸断面比を安定して有する粒子とはなりにくい。ただし,条件の調整によっては(1)の方法でも,短軸断面比が1.3を越えたオキシ水酸化鉄粒子を得ることは可能である。
【0018】
さらに短軸断面比の大きなオキシ水酸化鉄を得るには,次の(3)の方法によるのがよい。
(3)第二鉄塩水溶液に,鉄に対し1.0〜3.5当量の水酸化アルカリ水溶液を加えて得られる水酸化第二鉄コロイドを含む懸濁液を10〜90℃で生成させ,その後2〜20時間熟成してから加水分解し,オキシ水酸化鉄粉体を生成させる。
【0019】
前記(3)の方法によれば,前掲の同一出願人に係る特開平10−340447号公報に記載したように,短軸断面比が1.3より大きくなり,好ましくは1.4以上,場合によっては1.5以上のオキシ水酸化鉄を安定して得ることができる。この平針状のオキシ水酸化鉄を適切に焼成することにより,本発明に従う平針状の酸化鉄粒子粉末(ヘマタイト)を得ることができる。適切に焼成するとは,焼成時に焼結が生じないようにすることであり,このためには,リン化合物を平針状オキシ水酸化鉄に被覆しておくのがよく,さらには,リン化合物と希土類元素(Yを含む)の化合物を平針状オキシ水酸化鉄に被覆しておくのがよい。
【0020】
〔平針状オキシ水酸化鉄を焼成するさいの焼結防止処理〕
オキシ水酸化鉄を焼成して酸化鉄にする場合,粒子間に焼結が生じたり粒子自体の形状がぐずれるのが通常である。この点を改善する方法として,Al,Siに代表される焼結防止剤をオキシ水酸化鉄内部に含有させたり表面に被覆することが従来より知られているが,この方法では,平針状のオキシ水酸化鉄から平針状の酸化鉄を得ようとする場合には,十分な効果をあげることができないことがわかった。
【0021】
本発明においては,リン化合物またはリン化合物と希土類元素(Yを含む)化合物を平針状オキシ水酸化鉄に被覆する方法を採用する。これらの化合物を平針状オキシ水酸化鉄に被覆するには,前記(3)の方法を実施した場合には,加水分解反応後のオキシ水酸化鉄が分散懸濁している液,また前記(1)の方法を実施した場合には,酸化反応終了後のオキシ水酸化鉄が分散懸濁している液をいずれも激しく攪拌した状態とし,そこに規定濃度のリン含有水溶液の添加を行い,さらに攪拌を所定時間続行する方法によるのがよい。その後に希土類元素(Yを含む)の硫酸水溶液を規定量添加することができる。後者の場合も,激しく攪拌を行うこと,添加後の攪拌時間も長めにとっておくのがよく,これによって被着の均一化を促進させることができる。
【0022】
別法としては,純水中に,予め用意してあるオキシ水酸化鉄を加えて,攪拌し懸濁液を作製してから前記と同様に被着処理を行っても良い。この場合は,液が中性付近を示すため,希土類元素化合物の被着時に水酸化物が生成せず,被着ができない場合がある。その場合は,液に適当なアルカリを入れて,懸濁液をアルカリ性側として,処理を行うのがよい。
【0023】
得られたリン化合物更には希土類元素化合物を被着したオキシ水酸化鉄は,これを液から濾過し,水洗し乾燥するが,水洗において,ろ液が中性付近になるまで,十分に洗い流すのがよい。リン分は被着される量に限度があるため,未被着のリン分が共存しやすく,この未被着のリン分の除去が水洗でも不十分であると,テープにしたときに表面平滑性の低下につながるからである。
【0024】
使用できるリン化合物としては,リン酸,メタリン酸,二リン酸,リン酸塩例えばリン酸アンモニウム,リン酸二水素アンモニウム等を挙げることができる。リン被覆量としては,どのようなリン化合物を使用しようとも,リン元素の酸化鉄中での含有量として0.1〜5.0wt%の範囲であるのがよい。0.1wt%未満では,リン被覆による焼結防止効果が不十分となり,表面平滑性の優れた下層とならず,また,十分な塗膜強度も得られない。他方,5.0wt%を越えるリン量では,焼結防止効果としては十分であるが,比表面積の高い酸化鉄粉末となり,塗料化し分散する際に分散不良を生じやすくなって下層用粉末として不適当なものとなることのほか,塗膜にしたときに遊離したリン化合物が存在するようになり,この遊離のリン化合物が塗膜組成物の一部となって塗膜に悪影響を与えるので,あまり好ましくない。
【0025】
使用できる希土類元素としては,特に制限はなくどの元素を使用しても本発明の効果は確認できるが,YとLaを用いたときが,Pとの焼結防止効果の相乗作用が大きくなるので,YとLaが適している。希土類元素の酸化鉄中での含有量としてはR/Feの原子比百分率( at.%)で0.1〜10 at.%の範囲であるのがよい。0.1 at.%未満では,R被覆による焼結防止効果が不十分となり,表面平滑性の優れた下層とならず,また,十分な塗膜強度も得られない。他方,10 at.%を越える場合は,被覆後のオキシ水酸化鉄粒子が凝集し易くなり,その後工程の焼成時に,焼結を生じやすくなるため,好ましくない。
【0026】
このようにして,表面にリン化合物更には希土類元素化合物を被覆した平針状オキシ水酸化鉄を得たあとは,これを焼成することによって平針状の酸化鉄粉末を得ることができる。焼成処理は,大気中で300〜900℃,好ましくは400〜700℃で行えばよい。処理時間は10〜60分程度でよく,あまり長すぎると焼結が進行する。この焼成処理にあたっては,内部に滞留する水蒸気についても注意が必要で,平針状オキシ水酸化鉄から平針状酸化鉄に変化する際に発生する水分が悪影響を及ぼさないように,できる限り水蒸気濃度を下げるように雰囲気の調整を行うのがよい。そして,所定の処理が終了したら,大気の常温中に取り出し,冷却することで平針状の酸化鉄粉末を得ることができる。このようにして得られる酸化鉄粉末は,オキシ水酸化鉄の平針状の形状を継承し,平針状の形状を有している。
【0027】
焼成温度については,P更にはRの化合物で被着したオキシ水酸化鉄は,従来のAlなどの焼結防止剤を内部に固溶したものに比べて低温で焼成することが可能である。このため,オキシ水酸化鉄の平針状形状を酸化鉄まで維持しやすい。従来,酸化鉄の前駆体であるオキシ水酸化鉄中にAlなどを粒子内部に固溶することで焼結防止効果の向上をはかろうとしたものがあったが,内部に他元素を固溶すると,オキシ水酸化鉄から酸化鉄になる脱水温度が高温側にシフトしやすくなり,より高い温度で焼成する必要があった。本発明に従ってP更にはR化合物を表面に被覆したオキシ水酸化鉄では低温域から脱水反応が進行するために焼成温度を低く設定することが可能となり,この結果,粒子間の焼結を抑え且つ平針状を維持することができる。
【0028】
なお,オキシ水酸化鉄の生成時の液中に他元素(例えばAlやSi)が共存すると,この他元素がオキシ水酸化鉄の成長阻害物質として働き,形状の崩れたオキシ水酸化鉄が生成することがあるが,本発明によれば,平針状オキシ水酸化鉄を生成させるさいに,そのような他元素を共存させる必要はない。したがって,オキシ水酸化鉄は長軸方向と幅方向の2次元的に(長軸方向をX,短軸方向をY,Zとすると,XとY方向が優位に成長が進む。)成長しやすくなり,短軸断面比の高い粒子を得るうえで有利となり,ひいては本発明に従う平針状酸化鉄粒子を得るうえで有利となる。ただし,平針状のオキシ水酸化鉄が生成したあとで,Alなどの焼結防止剤を平針状オキシ水酸化鉄の表面に被着させることは,本発明の効果を損なうことはない。したがって,平針状オキシ水酸化鉄の粒子表面にAl化合物を被着させたものを焼成することによって,本発明に従う平針状酸化鉄粉末を得ることもできる。
【0029】
このようにして得られた酸化鉄粉末は,焼結が防止されていることから下層を形成するための樹脂成分に対して分散が良好となる。しかも,各粒子は平針状であることにより,テープ化の塗布時に粒子同士が重なって幅広の面ができ易くなり,このために表面が平滑になり,さらにベースフィルム面と垂直方向の成分が少なく且つテープ面内方向に密に配向されるので表面平滑性の向上に加えてテープ強度も向上するという作用効果を奏する。さらに,平針状酸化鉄粒子の表面に存在するP更にはRが酸化鉄粒子の表面特性を改質して樹脂への分散性と樹脂との接着性を良好にするので,この点でも塗膜強度を改善するのに貢献する。
【0030】
その結果,本発明による平針状の酸化鉄粒子からなる下層用粉末は,テープの表面平滑性とテープ耐久性の両者を同時に向上させるので,この上に極薄の磁性層を塗布した場合にも,磁性層の表面平滑性が良好となって電磁変換特性の向上に寄与し,薄層化したテープでも十分な強度をもつ磁気テープとすることができるので,重層構造の塗布型磁気記録媒体にとって非常に好ましい下層用粉末となる。
【0031】
加えて,この下層用粉末は粉体pHが7以下を示すことができる点でも,有利である。下層用粉末の必要特性として粉体pHがある。下層用粉末のpH変化が樹脂中の脂肪酸との吸着挙動に影響を与えるので,下層用粉末は粉末pHが低いことが望ましく,粉体pHが7以下であるのがよい。より具体的に説明すると,塗布型磁気記録媒体を製造するための,下層用粉末や磁性粉末を含有分散した塗料中には,通常,潤滑剤と呼ばれる脂肪酸類が添加されている。この潤滑剤は塗膜になった状態でテープ表面とヘッドとの干渉を少なくする役割を果たし,テープの耐久性を向上させる。このような潤滑剤として,酸性物質である脂肪酸類が一般的に使用されているので,下層用粉末の粉体pHがアルカリ側である場合には該塗料中において酸性の潤滑剤との反応が進行しやすく,この反応が起きると潤滑剤本来の潤滑作用が発揮できなくなる。このため,下層用粉末としては,脂肪酸類と吸着が起きないような表面性質を有することが望ましく,実際には,下層用粉末の粉体pHは7以下,好ましくは酸性側であるのがよい。
【0032】
本発明に従う下層用粉末は,リン化合物を被覆したオキシ水酸化鉄を焼成した場合に,その粉体pHは7以下を示す。したがって前記のように潤滑剤の作用を劣化させることがなく,また塗料との相溶性(なじみ性)の改善にも効果があり,前記の焼結防止の作用に加えて,この点からも,テープにした際の表面平滑性の向上と走行耐久性の向上が確認された。しかしあまり低pHであると,周囲の物質(例えば磁性層の金属磁性粉末)に対する好ましくない影響が考えられるため,pH3以上,好ましくは4以上であるのがよく,したがって本発明の下層用粉末の好ましい粉体pHの範囲は4〜7程度である。pH3〜7の範囲においては,磁性層中の金属磁性粉末への腐食の影響は現れない。
【0033】
本発明の平針状酸化鉄粉末からなる下層用粉末は,平均長軸長(TEM写真の視野内において不作為に選んだ100個の粒子について測定した長軸長の平均値)が20〜200nm,好ましくは50〜160nm,より好ましくは50〜120nmである。一般に塗料に分散可能であれば,平針状酸化鉄粒子の平均長軸長は小さいほど,テープ化したときにテープ表面を平滑化できる。本発明の下層用粉末は,前記範囲の平均長軸長を有し且つ短軸断面比が1.3以上の平針状の微粒子であるためテープの表面平滑化に寄与する。軸比については2〜10のものがよく,好ましくは3〜8,さらに好ましくは4〜8である。このように軸比が高く且つ平針状であることで,塗布時にベースフィルムに並行に配列し易くなり,このことがテープの表面平滑化とテープ強度に寄与する。また,本発明に従う下層用粉末の比表面積は,BET法で30〜100m/g,好ましくは35〜80m/g,より好ましくは35〜70m/gである。比表面積がこの値より高くなると塗料中での分散不良が生じ,また30m/gより低いものは凝集や焼結を伴った粉末となるため,好ましいことではない。
【0034】
本発明に従う下層用粉末は,前記に加えて,更に下記の粉体特性を有することができ,またテープ化したときのテープ特性を有することができる。
【0035】
〔ステアリン酸吸着量〕:0.1〜3.0mg/m,好ましくは0.1〜2.0mg/m,より好ましくは0.1〜1.5mg/mである。ステアリン酸吸着量が少ないほど,下層粉末が塗料中に分散された際に,潤滑剤(脂肪酸)を吸着する量が少ないことを意味しており,ステアリン酸吸着量が少ないほど潤滑剤に悪影響を与えないので,潤滑剤によるテーブ耐久性の効果を維持することができる。
【0036】
〔樹脂吸着量(MR)〕:0.1〜3mg/m,好ましくは0.5〜3mg/m,更に好ましくは1〜3mg/mである。樹脂吸着量(MR)が高いことは,樹脂との接着性が良いことを示し,塗膜強度も向上する。よって,樹脂吸着量は高い方がよい。
【0037】
〔樹脂吸着量(UR)〕:0.1〜4mg/m,好ましくは1.0〜4mg/m,更に好ましくは2〜4mg/mである。上記の樹脂吸着量(MR)と同じ理由により,樹脂吸着量(UR)も高い方がよい。
【0038】
〔テープの表面粗度〕:カレンダー後の粗度として,200オングストローム以下,好ましくは150オングストローム以下である。またカレンダー前後の変化率は50%以上である。なお,カレンダー前後での変化率は大きなものほど重層化したときに下層の成形性がよく,磁性層の表面平滑性の向上につながるので,下層のカレンダー変化率は大きいもの程良い。
【0039】
〔テープの鋼球摺動:傷幅〕:190μm以下,好ましくは170μm以下,さらに好ましくは,150μm以下である。傷幅が小さいほど,塗膜が強いことを示している。
【0040】
〔テープの鋼球摺動:走行耐久性〕:600pass以上,好ましくは900pass以上,さらに好ましくは1500pass以上である。走行耐久性は,塗膜の強度に加え,塗膜中の潤滑剤の作用も影響する。できるだけ多くの回数の摺動運動に対して安定でいられる塗膜であるのがよい。
【0041】
重層構造の磁気記録媒体において,本発明に従う平針状の酸化鉄粉末を用いて下層を形成する場合,上層の磁性層を構成する磁性粉末,塗料組成物,ベースフィルムについては,次のものが例示できる。
【0042】磁性層を構成する磁性粉末としては,
Co:5超え〜50 at.%,
Al:0.1〜50 at.%,
希土類元素(Yを含む):0.1〜30 at.%,
周期律表第1a族元素(Li,Na,K等):0.05重量%以下,
周期律表第2a族元素(Mg,Ca,Sr,Ba等):0.1重量%以下,
を含有した鉄を主体とする強磁性粉末であって,
平均長軸長:10〜200nm,
比表面積がBET法で30〜150m/g,
X線結晶粒径(Dx):50〜200オングストローム,
の形状を有する針状の強磁性粉末であり,且つ
保磁力(Hc):1000〜3000Oe,
飽和磁化(σs):10〜200emu/g
の磁気特性を有する磁性粉末を挙げることができる。
【0043】
重層構造の磁気記録媒体を形成するためにのベースフイルムとしては,ポリエチレンテレフタラート,ポリエチレンナフタレート等のポリエステル類,ポリオレフィン類,セルローストリアセテート,ポリカーボネイト,ポリアミド,ポリイミド,ポリアミドイミド,ポリスルフォン・アラミド,芳香族ポリアミド,等の樹脂フィルムを挙げることができる。
【0044】
磁性層(上層)を形成するための磁性塗料としては,
金属磁性粉末         100重量部
カーボンブラック         5重量部
アルミナ             3重量部
塩化ビニル樹脂(MR110)  15重量部
ポリウレタン樹脂(UR8200)15重量部
ステアリン酸           1重量部
アセチルアセトン         1重量部
メチルエチルケトン      190重量部
シクロヘキサノン        80重量部
トルエン           110重量部
からなる組成の磁性塗料を挙げることができる。
【0045】
非磁性層(下層)を形成するための非磁性塗料としては,
平針状の非磁性粉末α−Fe85重量部
カーボンブラック        20重量部
アルミナ             3重量部
塩化ビニル樹脂(MR110)  15重量部
ポリウレタン樹脂(UR8200)15重量部
メチルエチルケトン      190重量部
シクロヘキサノン        80重量部
トルエン           110重量部
からなる組成の非磁性塗料を挙げることができる。
【0046】
いずれの塗料においても,各材料を該組成となるような割合で配合し,ニーダーおよびサンドグラインダーを用いて混練分散を行うことによって塗布液に調整でき,得られた塗料をベースフイルム上にそれぞれ目標厚みとなるように塗布したあと,磁性層が湿潤状態にあるうちに,磁場をかけて磁性層を配向させ,ついで乾燥,カレンダーを行うことによって磁気テープが作製できる。上に例示した強磁性粉末,ベースフィルム,塗料組成物を使用し,且つ本発明に従う平針状の下層用粉末を使用した非磁性層を形成することによって,従来のものにはない,高密度記録に適した高性能の磁気記録媒体を製造できる。
【0047】
【実施例】
以下に本発明の代表的な実施例を挙げるが,その前に,各実施例における特性値の測定について説明する。
【0048】
・平均長軸長,平均短軸長及び軸比:いずれも174000倍の電子顕微鏡写真から不作為に抽出した100個の粒子について測定した値の平均を採った。
・短軸断面比:電子顕微鏡写真を撮るときに,試料台を傾けながら同一試料部分を複数撮影し,その傾斜角度を参考にしながら,最大短幅と最大長幅を20個の粒子について計測し,その平均最大長幅を平均最大短幅で割って求めた。参考までに,後記実施例5で得られた下層用粉末の電子顕微鏡写真(TEM像)を図6に示した。図6において,上段のTEM像は試料台の傾斜角度を−60度,下段のTEM像は試料台の傾斜角度を+30度として,同一の粒子(引き出し線で示す写真中央の粒子)を見たところであり,同じ粒子を異なる角度(90度)で見たときの短軸幅は,前者が18.5nm,後者が35.2nmと計測されるので,この粒子の短軸断面比は35.2/18.5=1.9と算出される。
・比表面積:BET法で測定した。
・粉体pH:JIS K5101に従って測定した。
・ステアリン酸吸着量:試料粉末をステアリン酸2%溶液(溶媒はMEK)に分散させた後,遠心分離機により試料粉末を沈ませ,上澄み液の濃度を求めることにより比表面積当たりの吸着量として算出した。
・樹脂吸着量(MR):塩ビ系樹脂(MR−110)の1%の溶液(溶媒はMEKとトルエン)を使用し,ステアリン酸吸着量と同様の方法で算出した。
・樹脂吸着量(UR):ポリウレタン樹脂(UR−8200)の2%溶液(溶媒はMEK,トルエンおよびMIBK)を使用し,ステアリン酸吸着量と同様の方法で算出した。
【0049】
塗膜粘度およびテープの評価については,得られた酸化鉄粉末を下記の塗料化条件で塗料化し,下記の条件で下層テープを作製したものについて評価した。
【0050】
・塗料化条件
酸化鉄粉末     100重量部
塩ビ系樹脂      20重量部
メチルエチルケトン 165重量部
シクロヘキサノン   65重量部
トルエン      165重量部
ステアリン酸      1重量部
アセチルアセトン    1重量部
の成分組成となるように各材料を配合し,これを遠心ボ−ルミルで1時間分散させて得た塗料を,ポリエチレンテレフタラ−トからなるベ−スフィルム上にアプリケ−タ−を用いて,目標厚みが約3μmとなるように塗布して非磁性の下層(下層テープ)を形成した。
【0051】
・塗料粘度:株式会社東機産業製の粘度計(R110型)を用いて分散塗料の粘度を測定した。
・表面平滑性(表面粗度):株式会社小坂研究所製の3次元微細形状測定機(ET−30HK)を用いて,下層テープのカレンダー前の表面粗度(Ra)とカレンダー後の表面粗度(Ra)を測定した。
・カレンダー変化率:100×(カレンダー前の表面粗度−カレンダー後の表面粗度)/(カレンダー前の表面粗度)により算出した。カレンダー変化率が大きいものほど,下層の上に磁性層を形成してカレンダーをかけた際にカレンダーがかかりやすいことを意味する。すなわちカレンダー変化率が大きいほど平滑なテープ表面を形成することができる。
・表面平滑性(光沢度):下層テープをグロスメータで角度60度で光沢度を測定した。
・塗膜強度(鋼球摺動):下層テ−プの塗布面が上になるようにガラス板に貼りつけ,水平な場所にガラス板を置き,テープの塗布面に直径5mmのステンレス鋼球をのせ,鉛直方向に5gの荷重がかかるようにする。この状態からガラス板を水平に定速2320mm/minで,片道20mmで300回の往復運動をさせる。この操作の後に,SUS鋼球によりテープ表面に残された傷を光学顕微鏡で観察し,傷幅を測定した。また,テープが剥離するまでのパス回数を測定し,これを摺動回数とした。
・走行耐久性(鋼球摺動):上記の鋼球摺動において,塗膜が剥がれ落ちるまでの摺動回数を測定する。
【0052】
〔実施例1〕
濃度0.5モルのFe3+水溶液に,Fe3+に対し1.2当量の水酸化ナトリウム水溶液を,液温10℃に保って攪拌しながら添加し,水酸化第二鉄の沈殿を生成させた。その後,この沈澱を含む懸濁液を45℃に保持して10時間熟成し,平針状のα−FeOOHを生成させた。次いで,この平針状α−FeOOHを含む懸濁液に,α−FeOOHに対しAlが1.0wt%となる量のアルミン酸ナトリウム水溶液を攪拌下で添加し,pH9以下にして平針状α−FeOOH粒子にAl被着処理を施した。その後,懸濁液を通常の方法で濾過,水洗,乾燥後,650℃で焼成を行い平針状酸化鉄を得た。
【0053】
得られた平針状酸化鉄粉末を化学分析して得た含有成分の組成と,前記のようにして測定したこの粉末の諸特性,並びにこの粉末を用いた下層テープについてのテープ特性の測定結果を表1に示した。
【0054】
〔実施例2〕
濃度0.5モルのFe3+水溶液に,Fe3+に対し1.2当量の水酸化ナトリウム水溶液を,液温10℃に保って攪拌しながら添加し,水酸化第二鉄の沈殿を生成させた。その後,この沈澱を含む懸濁液を45℃に保持して10時間熟成し,平針状のα−FeOOHを生成させた。次いで,この平針状α−FeOOHを含む懸濁液に,α−FeOOHに対しPが2.0wt%となる量のリン酸水溶液を攪拌下で添加し,平針状α−FeOOHにP被着処理を施した。その後,懸濁液を通常の方法で濾過,水洗,乾燥後,650℃で焼成を行い平針状酸化鉄を得た。得られた平針状酸化鉄粉末の諸特性を実施例1と同様にして評価し,その結果を表1に示した。
【0055】
〔実施例3〕
水酸化第二鉄の沈澱を含む懸濁液を50℃に保持した以外は,実施例2を繰り返した。得られた平針状酸化鉄粉末の諸特性を実施例1と同様にして評価し,その結果を表1に示した。
【0056】
〔実施例4〕
水酸化ナトリウムの添加量をFe3+に対し1.3当量とし且つ水酸化第二鉄の沈澱を含む懸濁液を50℃に保持した以外は,実施例2を繰り返した。得られた平針状酸化鉄粉末の諸特性を実施例1と同様にして評価し,その結果を表1に示した。
【0057】
〔実施例5〕
濃度0.5モルのFe3+水溶液に,Fe3+に対し1.3当量の水酸化ナトリウム水溶液を,液温10℃に保って攪拌しながら添加し,水酸化第二鉄の沈殿を生成させた。その後,この沈澱を含む懸濁液を55℃に保持して10時間熟成し,平針状のα−FeOOHを生成させた。次いで,この平針状α−FeOOHを含む懸濁液に,α−FeOOHに対しPが2.0wt%となる量のリン酸水溶液を攪拌下で添加し,平針状α−FeOOHにP被着処理を施した。その後,さらにα−FeOOHのFeに対するYの原子比百分率(Y/Fe)が1.0 at.%となる量のイットリウム水溶液を添加し,pH9以下にして,該平針状α−FeOOHにY被着処理を施した。その後,懸濁液を通常の方法で濾過,水洗,乾燥後,650℃で焼成を行い平針状酸化鉄を得た。得られた平針状酸化鉄粉末の諸特性を実施例1と同様にして評価し,その結果を表1に示した。
【0058】
〔比較例1〕
NaCOを0.625モル含む水溶液とNaOHを0.45モル含む水溶液を混合し,この混合溶液に,Fe2+を0.5モル含む水溶液を加えて45℃に90分保持する熟成を行った後,45℃で液中に空気を通気してα−FeOOH (短軸断面比≒1)を得た。このα−FeOOHを含む懸濁液に,α−FeOOHに対しAlが1.0wt%となる量のアルミン酸ナトリウム水溶液を添加し,pH9以下にして,このα−FeOOH粒子にAl被着処理を施した。その後,懸濁液を通常の方法で濾過,水洗,乾燥後,650℃で焼成を行い針状(ただし短軸断面比≒1)の酸化鉄を得た。得られた酸化鉄粉末の諸特性を実施例1と同様にして評価し,その結果を表1に示した。
【0059】
【表1】

Figure 2004005932
【0060】
表1の結果から,次のことがわかる。
【0061】
(1)短軸断面比が異なる実施例1(短軸断面比=1.45)と比較例1(短軸断面比=1)を対比すると明らかなように,短軸断面比の大きい実施例1の方が,表面粗度が小さく平滑な塗膜を作製でき,さらにテープ耐久性でも傷幅が小さく摺動パス回数も多くなり,テープの耐久性も向上する。すなわち,短軸断面比が大きい平針状の酸化鉄粉末では,これを塗料化して塗布するさいに粒子が重なって幅広の面ができ易くなるので,表面が平滑になると考えられる。また平針状であると,支持体面と垂直方向の成分が少なく且つテープ面内方向に密に配向されるので表面平滑性に加えてテープ強度も向上するものと考えられる。
【0062】
(2)実施例1の平針状酸化鉄粉末で作製された塗膜は,比較例1のものに比べてカレンダー前後の表面粗度の変化が大きい。このため,この下層の上に上層である磁性層を形成した際に,カレンダー処理をおこなうと,カレンダーのかかりやすい下層となる。すなわち,より平滑な塗膜の形成が可能となり,重層磁気記録媒体用下層として好適である。
【0063】
(3)Pを含有した平針状酸化鉄である実施例2のものは,Pを含有しない実施例1のものよりも表面平滑性がさらに向上している。また,Pを含有することで粉体pHが4.6となり,脂肪酸吸着量(StA.)が低い。その結果,塗膜成分である潤滑剤(脂肪酸)の本来の役割を阻害しなくなったためと考えられるが,実施例1のものよりテープ耐久性が向上している。
【0064】
(4)実施例2〜4は,オキシ水酸化鉄の製造条件を変化させることによって,短軸断面比を変化させたものであるが,平針状酸化鉄の短軸断面比が増加すればするほど,表面平滑性が向上し,かつテープ耐久性も向上することがわかる。
【0065】
(5)Pに加えてさらにYを含有する実施例5のものは,例えば実施例4のものと対比しても,平針状酸化鉄(ヘマタイト)の短軸断面比がさらに増加している。その結果,表面平滑性はさらに向上し,テープ耐久性もさらに向上している。したがって,テープ表面平滑性およびテープ耐久性の向上に寄与する平針状酸化鉄(ヘマタイト)を得るには,Pを含有していることが好ましく,さらにPに加えてR(Yを含む)も含有していることが一層好ましい。
【0066】
〔実施例6〕
本例は,実施例5で得られた下層用粉末を非磁性層とし,下記の金属磁性粉末を磁性層とした重層構造の磁気テープを作成して,電磁変換特性とテープ耐久性などの評価を行ったものである。
【0067】
非磁性層の塗料は,実施例5の下層用粉末85重量部に対し,下記の成分を下記の割合で配合し,ニーダーおよびサンドグラインダーを用いて,混練,分散を行った。
〔非磁性塗料の組成〕
実施例1の下層用粉末(α−Fe)85重量部
カーボンブラック         20重量部
アルミナ              3重量部
塩化ビニル樹脂(MR110)   15重量部
ポリウレタン樹脂(UR8200) 15重量部
メチルエチルケトン       190重量部
シクロヘキサノン         80重量部
トルエン            110重量部
【0068】
磁性層の塗料は,下記の金属磁性粉末100重量部に対し,下記の成分を下記の割合で配合し,ニーダーおよびサンドグラインダーを用いて,混練,分散を行った。
〔金属磁性粉末〕
長軸長:80nm
BET:61m/g
Dx :150オングストローム
Hc :2400(Oe)
σs :127emu/g
〔磁性塗料の組成〕
前掲の金属磁性粉末      100重量部
カーボンブラック         5重量部
アルミナ             3重量部
塩化ビニル樹脂(MR110)  15重量部
ポリウレタン樹脂(UR8200)15重量部
ステアリン酸           1重量部
アセチルアセトン         1重量部
メチルエチルケトン      190重量部
シクロヘキサノン        80重量部
トルエン           110重量部
【0069】
これらの塗料をアラミド支持体からなるベースフイルム上にそれぞれ,非磁性層厚(下層厚)2.0μm,磁性層厚が0.20μmの目標厚みとなるように塗布し,磁性層が湿潤状態にあるうちに,磁場をかけて配向させ,乾燥,カレンダーを行って磁気テープを作製した。
【0070】
得られた磁気テープについて既述の方法で表面平滑性(粗度)およびテープ耐久性(鋼球摺動のパス回数)の試験を行うと共に電磁変換特性(C/Nおよび出力)を測定した。C/N比の測定は,記録ヘッドをドラムテスターに取り付けて,デジタル信号を記録波長0.35μmで記録した。そのさい,MRヘッドを使用し,再生信号を測定し,ノイズは変調ノイズを測定し,後記比較例2の出力,C/Nを0dBとしてその相対値で表示した。それらの結果を表2に示した。
【0071】
〔実施例7〕
下層用粉末として前記の実施例1で得られたものを使用した以外は,実施例6を繰り返した。得られた磁気テープの表面平滑性(粗度),テープ耐久性(鋼球摺動のパス回数)および電磁変換特性を表2に示した。
【0072】
〔比較例2〕
下層用粉末として前記の比較例1で得られたものを使用した以外は,実施例6を繰り返した。得られた磁気テープの表面平滑性(粗度),テープ耐久性(鋼球摺動のパス回数)および電磁変換特性を表2に示した。
【0073】
【表2】
Figure 2004005932
【0074】
表2の結果から次のことがわかる。
まず,実施例6〜7と比較例2を対比すると明らかなように,本発明に従う下層用粉末は,重層構造にしたときのテープ表面平滑性が極めて良好であり,その結果,高い出力と高いC/Nを示し,高密度記録媒体として好適なものである。また磁気テープの耐久性にも優れており,ヘッドとの摺動に対しても優れた耐久性を示す。
【0075】
また,実施例6と実施例7を対比すると明らかなように,PとYを含有する断面比の高い平針状の下層用粉末(実施例5のもの)は,重層構造にしたときのテープ表面平滑性が一層良好となり,その結果,一層高い出力と高いC/Nを示し且つ一層優れた耐久性を示す。
【0076】
〔実施例8〕
水酸化第二鉄の沈殿を含む懸濁液を35℃に保持した以外は,実施例2を繰り返した。得られた平針状酸化鉄粉末の諸特性を実施例1と同様にして評価し,その結果を表3に示した。
【0077】
〔実施例9〕
水酸化第二鉄の沈殿を含む懸濁液を70℃に保持した以外は,実施例2を繰り返した。得られた平針状酸化鉄粉末の諸特性を実施例1と同様にして評価し,その結果を表3に示した。
【0078】
〔比較例3〕
水酸化第二鉄の沈殿を含む懸濁液を25℃に保持した以外は,実施例2を繰り返した。得られた平針状酸化鉄粉末の諸特性を実施例1と同様にして評価し,その結果を表3に示した。
【0079】
〔比較例4〕
水酸化第二鉄の沈殿を含む懸濁液を80℃に保持した以外は,実施例2を繰り返した。得られた平針状酸化鉄粉末の諸特性を実施例1と同様にして評価し,その結果を表3に示した。
【0080】
〔実施例10〕
平針状α−FeOOHにPの被着処理を施した後,イットリウム水溶液を添加しなかった以外は,実施例2を繰り返した。得られた平針状酸化鉄粉末の諸特性を実施例1と同様にして評価し,その結果を表3に示した。
【0081】
〔実施例11〕
平針状α−FeOOHにPの被着処理を施した後,Feに対するYの原子比百分率(Y/Fe)が0.18at.%となる量のイットリウム水溶液を添加した以外は,実施例2を繰り返した。得られた平針状酸化鉄粉末の諸特性を実施例1と同様にして評価し,その結果を表3に示した。
【0082】
〔実施例12〕
平針状α−FeOOHにPの被着処理を施した後,Feに対するYの原子比百分率(Y/Fe)が8.18at.%となる量のイットリウム水溶液を添加した以外は,実施例2を繰り返した。得られた平針状酸化鉄粉末の諸特性を実施例1と同様にして評価し,その結果を表3に示した。
【0083】
〔比較例5〕
平針状α−FeOOHにPの被着処理を施した後,Feに対するYの原子比百分率(Y/Fe)が4.54at.%となる量のイットリウム水溶液を添加した以外は,実施例2を繰り返した。得られた平針状酸化鉄粉末の諸特性を実施例1と同様にして評価し,その結果を表3に示した。
【0084】
〔実施例13〕
平針状α−FeOOHを生成させた後,これを含む懸濁液に,α−FeOOHに対しPが0.28wt%となる量のリン酸水溶液を攪拌下で添加した以外は,実施例2を繰り返した。得られた平針状酸化鉄粉末の諸特性を実施例1と同様にして評価し,その結果を表3に示した。
【0085】
〔実施例14〕
平針状α−FeOOHを生成させた後,これを含む懸濁液に,α−FeOOHに対しPが6.43wt%となる量のリン酸水溶液を攪拌下で添加した以外は,実施例2を繰り返した。得られた平針状酸化鉄粉末の諸特性を実施例1と同様にして評価し,その結果を表3に示した。
【0086】
〔比較例6〕
平針状α−FeOOHを生成させた後,これを含む懸濁液に,α−FeOOHに対しPが7.86wt%となる量のリン酸水溶液を攪拌下で添加した以外は,実施例2を繰り返した。得られた平針状酸化鉄粉末の諸特性を実施例1と同様にして評価し,その結果を表3に示した。
【0087】
【表3】
Figure 2004005932
【0088】
表3の結果から(表1も参照),次のことが明らかである。
(1)酸化鉄(ヘマタイト)の粒子径(平均長軸長)の影響を見ると,例えば比較例3,実施例8,実施例5,実施例9,比較例4の順に粒子径が大きくなり,それに伴って軸比も変化していが,粒子径が非常に小さい比較例3(長軸長=15nm)では樹脂への分散が困難となってテープ化が不可能である。他方,粒子径が大きい比較例4(長軸長=250nm)では,軸比および短軸断面比も大きくなっているが,表面平滑性が損なわれる結果となっている。したがって,粒子径(平均長軸長)は,20nm〜200nmの範囲が好適であることがわかる。
【0089】
(2)酸化鉄(ヘマタイト)中のイットリウムの含有量の影響を見ると,例えば実施例10,実施例11,実施例5,比較例5の順にイットリウム含有量が高くなっているが,イットリウムが必要以上に多い比較例5では,比表面積が高くなって樹脂への分散性が劣るようになり,このために表面平滑性が損なわれる結果となっている。したがって,イットリウム含有量としても良好な表面平滑性を維持するには適切な範囲(Y/Feの原子比百分率で0.1〜10 at.%)が存在することがわかる。
【0090】
(3)酸化鉄(ヘマタイト)中のリン含有量に影響について見ると,例えば実施例13,実施例5,実施例14,比較例6の順にリン含有量が高くなっているが,リン含有量が多すぎる比較例6では,塗料粘度が高くなって分散性が悪くなり,表面平滑性が損なわれる結果となっている。他方,リン含有量が減るにつれてステアリン酸吸着量が増え,潤滑材の作用が低下してテープ耐久性の傷幅が増加するようになる。すなわち,テープ耐久性の向上にはリンが有効に作用するが,あまり多すぎても表面平滑性が損なわれるので,リン含有量には好適な含有量の範囲(0.1〜5.0wt%)が存在することがわかる。
【0091】
【発明の効果】
以上説明したように,本発明によると,重層構造の塗布型磁気記録媒体における下層用粉末に粉末に要求される諸特性,とくにテープの表面平滑性とテープ強度を向上させることができる平針状酸化鉄粉末が得られる。したがって,本発明の平針状酸化鉄粉末を重層構造の塗布型磁気記録媒体の下層用粉末として用いることにより,高記録密度に適した耐久性のある記録媒体を得ることができる。
【図面の簡単な説明】
【図1】本発明の平針状粒子の形状を説明するための概念図である。
【図2】本発明の平針状粒子の短軸断面の他の形状例を示す図である。
【図3】本発明の平針状粒子の短軸断面の他の形状例を示す図である。
【図4】本発明の平針状粒子の短軸断面の他の形状例を示す図である。
【図5】本発明の平針状粒子の短軸断面の他の形状例を示す図である。
【図6】実施例5で得られた下層用粉末の一つの粒子を,試料台の傾斜角度を変えて写した電子顕微鏡写真(TEM像)を対比したものである。
【符号の説明】
1 平針状粒子
2 短軸断面[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a lower layer powder used for a coating type magnetic recording medium having a multilayer structure, and a magnetic recording medium using the same.
[0002]
[Prior art]
A non-magnetic layer (lower layer) in which a non-magnetic powder is dispersed in a resin is provided between a base layer and a magnetic layer in which a magnetic powder is dispersed in a resin. Magnetic tapes) are known. With such a multilayer structure, the electromagnetic conversion characteristics of the magnetic recording medium are improved, and a higher recording density can be achieved. In addition, the durability of the tape is improved, and the reliability is also improved. In the specification of the present application, “lower layer powder” means a powder for forming a nonmagnetic layer (lower layer) of such a coating type recording medium having a multilayer structure.
[0003]
The recent increase in the amount of information has never stopped, and accordingly, the recording medium has been required to further increase the recording capacity and improve the reliability. As a result, there is a demand for improvement of various characteristics in the lower layer powder of the coating type magnetic recording medium having a multilayer structure. The basic characteristics required for the lower layer powder include that a lower layer having a smoother surface can be formed when applied to the base film, and that the strength of the lower layer coating film is high.
[0004]
If the surface of the lower layer is smooth, the magnetic layer applied thereon becomes smoother, which can result in a magnetic recording medium having excellent electromagnetic conversion characteristics and leads to higher density. In addition, as the tape capacity increases, the tape thickness becomes thinner, and dimensional stability is important for higher density. For this purpose, it is desired to increase the strength of the lower layer. Increases the strength of the device, leading to improved reliability.
[0005]
In general, in order to satisfy these required properties, the non-magnetic powder for the lower layer has properties such as excellent dispersibility at the stage of coating, high strength of the particles themselves, and high adhesiveness to the resin. When a coating film is formed using such a nonmagnetic powder, a smooth and high-strength lower layer can be formed.
[0006]
Conventionally, as a nonmagnetic powder for forming the lower layer, spherical titanium oxide powder or acicular iron oxide powder has been mainly used. Examples of such a multilayered magnetic recording medium having a lower layer include those described in JP-A-63-187418 and JP-A-4-167225.
[0007]
Further, Japanese Patent Application Laid-Open Nos. 6-60362, 6-139553, 6-215360, 7-192248, and 9-170003 disclose such a multilayer structure. In the magnetic recording medium described above, characteristic values are shown when needle-like iron oxide or the like is used as the nonmagnetic powder forming the lower layer.
[0008]
[Problems to be solved by the invention]
Spherical titanium oxide, which has been used as the lower layer powder, had insufficient strength when taped compared to needle-like ones. As for the needle-shaped iron oxide, since it is in the form of a needle, when a coating film containing the dispersed iron is formed, the smoothness is improved due to a decrease in the vertical component of the coating film surface. Interaction (entanglement) between the particles leads to an increase in the strength of the coating film. However, needle-like iron oxide requires a firing process at a high temperature in the process of obtaining it, so interparticle firing is required. Knots are formed and the needle-like property is liable to collapse. Therefore, as a lower layer powder that can meet the demands for further tape properties (surface smoothness, coating film strength), the current needle-like iron oxide powder cannot be said to be sufficient.
[0009]
The present invention is intended to solve such a problem and to satisfy various properties required for a lower layer powder in a coating type magnetic recording medium having a multilayer structure, and in particular, to improve the surface smoothness and coating strength of a tape. It is an object of the present invention to obtain iron oxide powder for use, and further to obtain a recording medium having a multilayer structure with high capacity and high reliability.
[0010]
[Means for Solving the Problems]
According to the present invention, an average major axis length is 20 to 200 nm, and a minor axis section cut in a direction perpendicular to the major axis has a longer width and a shorter width. Consisting of flat needle-like iron oxide particles having a ratio substantially greater than 1.3 in the major axis direction, and having a specific surface area of 30 to 100 m by the BET method. 2 / G of a coating-type magnetic recording medium having a thickness of 0.1 g / g. The lower layer powder according to the present invention preferably has a powder pH of 7 or less. The lower layer powder according to the present invention contains 0.1 to 5.0 wt% of P, and contains R (R is one or more of rare earth elements including Y) in the atomic ratio of R / Fe (%). %) at 0.1 to 10 at. %contains. By using this lower layer powder, it is possible to obtain a magnetic recording medium having excellent surface smoothness and durability suitable for increasing the recording density.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention provides a lower layer powder for forming a nonmagnetic layer of a coating type magnetic recording medium having a multilayer structure, which has an average major axis length of 20 to 200 nm and a specific surface area of 30 to 100 m by the BET method. 2 / G, powder having a powder needle pH of preferably 7 or less is used. The flat needle-like powder for the lower layer is obtained by using a flat needle-like iron oxyhydroxide as a precursor material, desirably surface-treating it with a phosphorus compound or a phosphorus compound and a rare earth metal compound, and then firing. can get. The conventional needle-like iron oxide has insufficient dispersibility, and insufficient particle arrangement and interaction (entanglement) during coating, resulting in insufficient tape surface smoothness and film strength. Although insufficient, according to the present invention, the surface smoothness of the tape is further improved by changing its shape to flat needle-like iron oxide and by suppressing sintering between particles, and the coating film strength is improved. Was also found to improve further.
[0012]
Here, the term “flat needle shape” refers to the ratio of the length in the longitudinal direction (long axis length) to the maximum length in the short direction orthogonal to it (short axis length) (ratio of long axis / short axis, ie, axis). Ratio) is preferably 2 or more, and the short-axis cross section cut in the direction perpendicular to the long axis has a long width and a short width, and the short-axis cross-section ratio of the long width and the short width is It means a flat needle-like shape which is substantially uniformly larger than 1.3, preferably 1.4 or more, and more preferably 1.5 or more in the major axis direction.
[0013]
FIG. 1 schematically shows the flat needle shape. As shown in the figure, in the needle-shaped body 1 having a maximum length L (long axis length) in the longitudinal direction and a maximum length S (short axis length) in the short direction orthogonal thereto, cut in a direction perpendicular to the long axis. The short axis section 2 is the long width W L And short width W S It has a flat shape with. For example, the width is W L And the thickness is W S Has a shape similar to a flat plate (strip shape). However, the flat shape of the short-axis cross section 2 is not limited to a rectangle, but various shapes such as a capsule shape as shown in FIG. 2, an elliptical shape as shown in FIG. 3, a polygonal shape as shown in FIG. 4, and a deformed circular shape as shown in FIG. May be any shape, where necessary L / W S (This is referred to as “short-axis cross-sectional ratio” in the present specification) is greater than 1.3 uniformly (meaning that it is not twisted) in the long-axis direction. , Preferably 1.4 or more, more preferably 1.5 or more. Further, the flat needle-like iron oxide particles of the present invention have almost no branches.
[0014]
To measure the short-axis cross-sectional ratio of flat needle-shaped particles, when taking an electron micrograph, multiple samples of the same sample are taken while tilting the sample stage, and the maximum short width and maximum width are measured for each tilt angle. The minor axis cross-sectional ratio can be obtained using the inclination angle and the measured value. This is measured for 100 particles and calculated as an average value.
[0015]
The flat-needle-shaped iron oxide powder according to the present invention can be obtained by producing a flat-needle-shaped iron oxyhydroxide powder and then appropriately firing the powder. First, a method for producing a flat needle-like iron oxyhydroxide powder will be described.
[0016]
(Method for producing flat needle iron oxyhydroxide)
In order to obtain iron oxide powder for the lower layer, a method of calcining needle-like iron oxyhydroxide is adopted, and as a method of obtaining iron oxyhydroxide for this purpose, typically,
(1) A suspension containing ferrous hydroxide colloid obtained by adding an equivalent amount or more of an aqueous alkali hydroxide solution to an aqueous ferrous salt solution is passed through an oxygen-containing gas at a pH of 11 or more and a temperature of 80 ° C. or less. A method of performing an oxidation reaction to produce iron oxyhydroxide,
(2) a method in which an oxygen-containing gas is passed through a suspension obtained by reacting an aqueous solution of ferrous salt with an aqueous solution of alkali carbonate to cause an oxidation reaction to generate iron oxyhydroxide;
There is.
[0017]
However, iron oxyhydroxides obtained by these methods generally have a small short-axis cross-sectional ratio, and are unlikely to be particles having a stable short-axis cross-sectional ratio as intended by the present invention. However, it is possible to obtain iron oxyhydroxide particles having a short-axis cross-sectional ratio exceeding 1.3 by the method (1) depending on the adjustment of the conditions.
[0018]
In order to obtain iron oxyhydroxide having a larger short-axis cross-sectional ratio, the following method (3) is preferable.
(3) A suspension containing a ferric hydroxide colloid obtained by adding 1.0 to 3.5 equivalents of an alkali hydroxide aqueous solution to iron to an aqueous ferric salt solution is formed at 10 to 90 ° C. After aging for 2 to 20 hours, it is hydrolyzed to produce iron oxyhydroxide powder.
[0019]
According to the method (3), as described in Japanese Patent Application Laid-Open No. H10-34047 of the same applicant, the short-axis cross-sectional ratio becomes larger than 1.3, preferably 1.4 or more. In some cases, iron oxyhydroxide of 1.5 or more can be stably obtained. By appropriately baking this flat needle-like iron oxyhydroxide, the flat needle-like iron oxide particle powder (hematite) according to the present invention can be obtained. Proper firing means preventing sintering during firing. For this purpose, it is preferable to coat the phosphorus compound with flat needle-shaped iron oxyhydroxide. The compound of the element (including Y) is preferably coated on the flat needle-like iron oxyhydroxide.
[0020]
(Sintering prevention treatment when firing flat needle-like iron oxyhydroxide)
When sintering iron oxyhydroxide into iron oxide, sintering usually occurs between the particles or the shape of the particles themselves is distorted. As a method for improving this point, it has been conventionally known to include a sintering inhibitor represented by Al or Si in iron oxyhydroxide or to coat the surface of the iron oxyhydroxide. It was found that a sufficient effect could not be obtained when trying to obtain flat needle-like iron oxide from iron oxyhydroxide.
[0021]
In the present invention, a method of coating a flat needle-like iron oxyhydroxide with a phosphorus compound or a phosphorus compound and a rare earth element (including Y) compound is employed. In order to coat these compounds on the flat needle-shaped iron oxyhydroxide, when the method (3) is carried out, a solution in which the iron oxyhydroxide after the hydrolysis reaction is dispersed and suspended, or the liquid (1) In the case of carrying out the above method, all the liquids in which the iron oxyhydroxide is dispersed and suspended after the completion of the oxidation reaction are vigorously stirred, and a phosphorus-containing aqueous solution having a specified concentration is added thereto. For a predetermined time. Thereafter, a prescribed amount of a sulfuric acid aqueous solution of a rare earth element (including Y) can be added. In the latter case as well, it is preferable to carry out vigorous stirring and to lengthen the stirring time after the addition, which can promote uniform deposition.
[0022]
As an alternative method, iron oxide oxyhydroxide prepared in advance may be added to pure water, and the mixture may be stirred to prepare a suspension. In this case, since the liquid shows near neutrality, hydroxide may not be formed when the rare earth element compound is applied, and the application may not be possible. In such a case, it is preferable to add a suitable alkali to the solution and treat the suspension on the alkaline side.
[0023]
The obtained phosphorus compound and the iron oxyhydroxide coated with the rare earth element compound are filtered from the liquid, washed with water and dried. In the washing with water, the filtrate is sufficiently washed off until the filtrate becomes almost neutral. Is good. Since the amount of phosphorus to be deposited is limited, undeposited phosphorus is likely to coexist. If the removal of undeposited phosphorus is insufficient even by washing with water, the surface can be smoothed when taped. This is because it leads to a decrease in sex.
[0024]
Examples of the phosphorus compound that can be used include phosphoric acid, metaphosphoric acid, diphosphoric acid, phosphates such as ammonium phosphate and ammonium dihydrogen phosphate. Regardless of the phosphorus compound used, the content of phosphorus is preferably in the range of 0.1 to 5.0 wt% as the content of elemental phosphorus in iron oxide. If the content is less than 0.1 wt%, the effect of preventing sintering by the phosphorus coating becomes insufficient, so that the lower layer does not have excellent surface smoothness, and sufficient coating film strength cannot be obtained. On the other hand, if the phosphorus content exceeds 5.0 wt%, the effect of preventing sintering is sufficient, but the iron oxide powder has a high specific surface area and tends to cause poor dispersion when it is made into a coating and dispersed, so that it cannot be used as a lower layer powder. In addition to being appropriate, there is a phosphorus compound released when the film is formed, and this free phosphorus compound becomes a part of the coating film composition and adversely affects the coating film. Not very good.
[0025]
The rare earth element that can be used is not particularly limited, and any element can be used to confirm the effect of the present invention. However, when Y and La are used, the synergistic effect of the effect of preventing sintering with P increases. , Y and La are suitable. The content of the rare earth element in the iron oxide is 0.1 to 10 at.% In terms of atomic ratio of R / Fe (at.%). %. 0.1 at. %, The effect of R coating to prevent sintering becomes insufficient, so that the lower layer does not have excellent surface smoothness, and sufficient coating film strength cannot be obtained. On the other hand, 10 at. %, The coated iron oxyhydroxide particles are apt to agglomerate, and sintering is likely to occur during the subsequent firing, which is not preferable.
[0026]
After obtaining the flat needle-like iron oxyhydroxide whose surface is coated with the phosphorus compound and the rare earth element compound in this way, by firing this, a flat needle-like iron oxide powder can be obtained. The firing treatment may be performed at 300 to 900 ° C, preferably 400 to 700 ° C, in the atmosphere. The treatment time may be about 10 to 60 minutes, and if too long, sintering proceeds. In this baking treatment, it is necessary to pay attention to the water vapor that stays in the inside. It is advisable to adjust the atmosphere to lower it. Then, when the predetermined process is completed, it is taken out at normal temperature of the atmosphere and cooled, so that flat needle-like iron oxide powder can be obtained. The iron oxide powder thus obtained inherits the flat needle shape of iron oxyhydroxide and has a flat needle shape.
[0027]
Regarding the sintering temperature, iron oxyhydroxide coated with a compound of P or R can be sintered at a lower temperature than a conventional solid solution containing a sintering inhibitor such as Al. For this reason, it is easy to maintain the flat needle shape of iron oxyhydroxide to iron oxide. Conventionally, there has been an attempt to improve the sintering prevention effect by dissolving Al and the like in the interior of the iron oxyhydroxide, which is a precursor of iron oxide, but other elements are dissolved in the interior. Then, the dehydration temperature at which iron oxyhydroxide turns into iron oxide tends to shift to a higher temperature side, and firing at a higher temperature is required. In the iron oxyhydroxide coated on the surface with a P or R compound according to the present invention, the dehydration reaction proceeds from a low temperature range, so that the firing temperature can be set low. As a result, sintering between particles can be suppressed and A flat needle shape can be maintained.
[0028]
If other elements (for example, Al and Si) coexist in the liquid at the time of the production of iron oxyhydroxide, these other elements act as a growth inhibitor of the iron oxyhydroxide, and the iron oxyhydroxide having a deformed shape is formed. However, according to the present invention, it is not necessary to coexist such other elements when producing flat needle-like iron oxyhydroxide. Therefore, the iron oxyhydroxide easily grows two-dimensionally in the major axis direction and the width direction (when the major axis direction is X and the minor axis direction is Y, Z, the X and Y directions dominantly grow). This is advantageous in obtaining particles having a high short-axis cross-sectional ratio, and is therefore advantageous in obtaining flat needle-like iron oxide particles according to the present invention. However, applying the sintering inhibitor such as Al to the surface of the flat needle-like iron oxyhydroxide after the formation of the flat needle-like iron oxyhydroxide does not impair the effect of the present invention. Therefore, the flat needle-like iron oxide powder according to the present invention can be obtained by calcining the surface of the flat needle-like iron oxyhydroxide particles having the Al compound adhered thereto.
[0029]
The iron oxide powder thus obtained has good dispersion with respect to the resin component for forming the lower layer since sintering is prevented. In addition, since each particle has a flat needle shape, the particles are likely to overlap with each other during the application of the tape to form a wide surface, so that the surface is smooth and the component in the direction perpendicular to the base film surface is small. In addition, since the tapes are densely oriented in the in-plane direction of the tape, there is an effect of improving the tape strength in addition to improving the surface smoothness. Further, since P and R present on the surface of the flat needle-like iron oxide particles modify the surface characteristics of the iron oxide particles to improve the dispersibility in the resin and the adhesion to the resin, the coating film is also used in this respect. Contributes to improving strength.
[0030]
As a result, the lower layer powder comprising the flat needle-like iron oxide particles according to the present invention simultaneously improves both the surface smoothness of the tape and the durability of the tape. Therefore, even when an extremely thin magnetic layer is applied thereon, This improves the surface smoothness of the magnetic layer and contributes to the improvement of the electromagnetic conversion characteristics, and it is possible to use a magnetic tape with sufficient strength even with a thinner tape. It is a very preferred underlayer powder.
[0031]
In addition, the lower layer powder is advantageous in that the powder pH can show a pH of 7 or less. A necessary property of the lower layer powder is powder pH. Since the pH change of the lower layer powder affects the adsorption behavior of the lower layer powder with the fatty acid in the resin, the lower layer powder preferably has a low powder pH, and the powder pH is preferably 7 or less. More specifically, fatty acids called lubricants are usually added to a coating material containing and dispersing a lower layer powder and a magnetic powder for producing a coating type magnetic recording medium. This lubricant serves to reduce the interference between the tape surface and the head in the form of a coating film, and improves the durability of the tape. Since fatty acids, which are acidic substances, are generally used as such lubricants, when the powder pH of the lower layer powder is on the alkaline side, the reaction with the acidic lubricant in the coating material will not occur. The reaction easily proceeds, and if this reaction occurs, the original lubricating action of the lubricant cannot be exhibited. For this reason, it is desirable that the lower layer powder has a surface property that does not cause adsorption to fatty acids. In practice, the lower layer powder should have a powder pH of 7 or less, preferably on the acidic side. .
[0032]
The powder for the lower layer according to the present invention has a powder pH of 7 or less when calcined iron oxyhydroxide coated with a phosphorus compound. Therefore, the effect of the lubricant is not degraded as described above, and it is also effective in improving the compatibility (compatibility) with the paint. In addition to the above-mentioned effect of preventing sintering, from this point, It was confirmed that the surface smoothness and running durability of the tape were improved. However, if the pH is too low, an undesirable effect on surrounding substances (for example, metal magnetic powder of the magnetic layer) is considered. Therefore, the pH is preferably 3 or more, preferably 4 or more. The preferred range of the powder pH is about 4 to 7. In the pH range of 3 to 7, the effect of corrosion on the metal magnetic powder in the magnetic layer does not appear.
[0033]
The lower layer powder composed of the flat needle-like iron oxide powder of the present invention has an average major axis length (average major axis length measured for 100 randomly selected particles in the field of view of a TEM photograph) of preferably 20 to 200 nm. Is 50 to 160 nm, more preferably 50 to 120 nm. Generally, as long as the average major axis length of the flat needle-like iron oxide particles is small, the tape surface can be smoothed when the tape is formed, as long as it can be dispersed in the coating material. Since the lower layer powder of the present invention is flat needle-shaped fine particles having an average major axis length in the above range and a minor axis cross-sectional ratio of 1.3 or more, it contributes to the surface smoothing of the tape. The axial ratio is preferably 2 to 10, preferably 3 to 8, and more preferably 4 to 8. By having a high axial ratio and a flat needle shape, it is easy to arrange the base film in parallel with the base film at the time of coating, which contributes to the smoothing of the surface of the tape and the strength of the tape. The specific surface area of the lower layer powder according to the present invention is 30 to 100 m by the BET method. 2 / G, preferably 35-80 m 2 / G, more preferably 35 to 70 m 2 / G. If the specific surface area is higher than this value, poor dispersion in the paint occurs, and 30 m 2 The ratio of less than / g is not preferable because it becomes a powder accompanied by aggregation and sintering.
[0034]
The lower layer powder according to the present invention can further have the following powder characteristics in addition to the above, and can also have tape characteristics when taped.
[0035]
[Stearic acid adsorption amount]: 0.1 to 3.0 mg / m 2 , Preferably 0.1 to 2.0 mg / m 2 , More preferably 0.1 to 1.5 mg / m 2 It is. The smaller the stearic acid adsorption, the smaller the amount of lubricant (fatty acid) adsorbed when the lower layer powder is dispersed in the paint. The smaller the stearic acid adsorption, the more adversely the lubricant is affected. Since it is not provided, the effect of the durability of the tape by the lubricant can be maintained.
[0036]
[Resin adsorption amount (MR)]: 0.1 to 3 mg / m 2 , Preferably 0.5 to 3 mg / m 2 , More preferably 1-3 mg / m 2 It is. A high resin adsorption (MR) indicates good adhesion to the resin, and also improves the strength of the coating film. Therefore, the higher the resin adsorption amount, the better.
[0037]
[Resin adsorption amount (UR)]: 0.1 to 4 mg / m 2 , Preferably 1.0 to 4 mg / m 2 , More preferably 2 to 4 mg / m 2 It is. For the same reason as the above-mentioned resin adsorption amount (MR), the resin adsorption amount (UR) is preferably higher.
[0038]
[Surface roughness of tape]: The roughness after calendering is 200 Å or less, preferably 150 Å or less. The change rate before and after the calendar is 50% or more. The larger the change rate before and after the calender, the better the moldability of the lower layer when the layers are stacked, which leads to an improvement in the surface smoothness of the magnetic layer. Therefore, the larger the change rate of the calender in the lower layer, the better.
[0039]
[Steel ball sliding of tape: scratch width]: 190 μm or less, preferably 170 μm or less, more preferably 150 μm or less. The smaller the scratch width, the stronger the coating.
[0040]
[Steel ball sliding of tape: running durability]: 600 pass or more, preferably 900 pass or more, more preferably 1500 pass or more. The running durability is affected not only by the strength of the coating but also by the action of the lubricant in the coating. The coating film should be stable against as many sliding movements as possible.
[0041]
When the lower layer is formed using the flat needle-like iron oxide powder according to the present invention in the magnetic recording medium having the multilayer structure, the following are exemplified as the magnetic powder, the coating composition, and the base film constituting the upper magnetic layer. it can.
As the magnetic powder constituting the magnetic layer,
Co: over 5 to 50 at. %,
Al: 0.1 to 50 at. %,
Rare earth element (including Y): 0.1 to 30 at. %,
Group 1a element of the periodic table (Li, Na, K, etc.): 0.05% by weight or less,
Group 2a element of the periodic table (Mg, Ca, Sr, Ba, etc.): 0.1% by weight or less,
Iron-containing ferromagnetic powder containing
Average long axis length: 10 to 200 nm,
Specific surface area is 30-150m by BET method 2 / G,
X-ray crystal grain size (Dx): 50 to 200 angstroms,
Needle-shaped ferromagnetic powder having the shape of
Coercive force (Hc): 1000-3000 Oe,
Saturation magnetization (σs): 10 to 200 emu / g
Magnetic powder having the following magnetic properties.
[0043]
Base films for forming a multilayered magnetic recording medium include polyesters such as polyethylene terephthalate and polyethylene naphthalate, polyolefins, cellulose triacetate, polycarbonate, polyamide, polyimide, polyamide imide, polysulfone aramid, and fragrance. Resin films such as aromatic polyamides.
[0044]
As a magnetic paint for forming the magnetic layer (upper layer),
100 parts by weight of metal magnetic powder
5 parts by weight carbon black
Alumina 3 parts by weight
15 parts by weight of vinyl chloride resin (MR110)
15 parts by weight of polyurethane resin (UR8200)
1 part by weight of stearic acid
1 part by weight of acetylacetone
190 parts by weight of methyl ethyl ketone
80 parts by weight of cyclohexanone
110 parts by weight of toluene
And a magnetic paint having a composition consisting of
[0045]
As a non-magnetic paint for forming a non-magnetic layer (lower layer),
Flat needle-shaped non-magnetic powder α-Fe 2 O 3 85 parts by weight
20 parts by weight of carbon black
Alumina 3 parts by weight
15 parts by weight of vinyl chloride resin (MR110)
15 parts by weight of polyurethane resin (UR8200)
190 parts by weight of methyl ethyl ketone
80 parts by weight of cyclohexanone
110 parts by weight of toluene
A non-magnetic paint having a composition consisting of
[0046]
In any of the paints, each material is blended in such a ratio as to achieve the above composition, and can be adjusted to a coating solution by kneading and dispersing using a kneader and a sand grinder. After application to a thickness, while the magnetic layer is in a wet state, a magnetic field is applied to orient the magnetic layer, followed by drying and calendering to produce a magnetic tape. By forming a non-magnetic layer using the ferromagnetic powder, base film, and coating composition exemplified above and using the flat needle-like lower layer powder according to the present invention, high-density recording, which is not available in the prior art, is achieved. And a high-performance magnetic recording medium suitable for a computer.
[0047]
【Example】
Hereinafter, typical examples of the present invention will be described. Before that, measurement of characteristic values in each example will be described.
[0048]
-Average major axis length, average minor axis length, and axis ratio: The average of the values measured for 100 particles randomly extracted from an electron micrograph of 174,000 times was taken.
・ Short axis cross-section ratio: When taking an electron micrograph, multiple samples of the same sample are taken while tilting the sample stage, and the maximum short width and maximum width are measured for 20 particles while referring to the tilt angle. , The average maximum width was divided by the average maximum short width. For reference, FIG. 6 shows an electron micrograph (TEM image) of the lower layer powder obtained in Example 5 described later. In FIG. 6, the same particle (particle in the center of the photograph indicated by a leader line) was observed when the inclination angle of the sample stage was -60 degrees in the upper TEM image and the inclination angle of the sample stage was +30 degrees in the lower TEM image. By the way, when the same particle is viewed at a different angle (90 degrees), the short-axis width is 18.5 nm for the former and 35.2 nm for the latter, so that the short-axis cross-sectional ratio of this particle is 35.2. /18.5=1.9 is calculated.
-Specific surface area: measured by the BET method.
-Powder pH: Measured according to JIS K5101.
-Stearic acid adsorption amount: After dispersing the sample powder in a 2% solution of stearic acid (solvent is MEK), the sample powder is settled by a centrifugal separator, and the concentration of the supernatant is determined to obtain the adsorption amount per specific surface area. Calculated.
-Resin adsorption amount (MR): Calculated in the same manner as the stearic acid adsorption amount using a 1% solution of vinyl chloride resin (MR-110) (solvents are MEK and toluene).
-Resin adsorption amount (UR): A 2% solution of polyurethane resin (UR-8200) (solvents: MEK, toluene and MIBK) was used and calculated in the same manner as the stearic acid adsorption amount.
[0049]
Regarding the evaluation of the coating film viscosity and the tape, the obtained iron oxide powder was formed into a coating under the following coating conditions, and the lower layer tape was prepared under the following conditions.
[0050]
・ Coating conditions
Iron oxide powder 100 parts by weight
20 parts by weight of PVC resin
165 parts by weight of methyl ethyl ketone
Cyclohexanone 65 parts by weight
165 parts by weight of toluene
1 part by weight of stearic acid
1 part by weight of acetylacetone
Each of the materials was blended so as to have the following component composition, and the mixture was dispersed in a centrifugal ball mill for 1 hour. A coating was obtained by using an applicator on a polyethylene terephthalate base film. A non-magnetic lower layer (lower layer tape) was formed by coating so that the target thickness was about 3 μm.
[0051]
Paint viscosity: The viscosity of the dispersion paint was measured using a viscometer (R110 type) manufactured by Toki Sangyo Co., Ltd.
・ Surface smoothness (surface roughness): The surface roughness (Ra) of the lower tape before calendering and the surface roughness after calendering using a three-dimensional fine shape measuring device (ET-30HK) manufactured by Kosaka Laboratory Co., Ltd. The degree (Ra) was measured.
Calender change rate: Calculated as 100 × (surface roughness before calender-surface roughness after calender) / (surface roughness before calender). The larger the calender change rate, the more easily the calendering occurs when the magnetic layer is formed on the lower layer and calendered. That is, the smoother the tape surface can be formed as the calendar change rate increases.
Surface smoothness (gloss): The gloss of the lower tape was measured at an angle of 60 degrees using a gloss meter.
・ Film strength (Steel ball sliding): Affix to glass plate with lower tape applied side up, place glass plate on a horizontal surface, and place stainless steel ball of 5mm diameter on tape applied surface And apply a load of 5 g in the vertical direction. From this state, the glass plate is reciprocated 300 times horizontally at a constant speed of 2320 mm / min and one way at 20 mm. After this operation, the scratches left on the tape surface by the SUS steel ball were observed with an optical microscope, and the scratch width was measured. Also, the number of passes until the tape was peeled was measured, and this was defined as the number of slides.
-Running durability (steel ball sliding): In the above-mentioned steel ball sliding, the number of times of sliding until the coating film peels off is measured.
[0052]
[Example 1]
0.5 mol of Fe 3+ Fe solution 3+ Was added while stirring at a liquid temperature of 10 ° C. to produce a precipitate of ferric hydroxide. Thereafter, the suspension containing the precipitate was kept at 45 ° C. and aged for 10 hours to produce α-FeOOH in the form of flat needles. Then, to the suspension containing the flat needle-like α-FeOOH, an aqueous solution of sodium aluminate in an amount such that Al becomes 1.0 wt% with respect to α-FeOOH is added with stirring, and the pH is adjusted to 9 or less to obtain the flat needle-like α-FeOOH. The particles were subjected to an Al deposition treatment. Thereafter, the suspension was filtered, washed with water and dried in a usual manner, and calcined at 650 ° C. to obtain flat needle-like iron oxide.
[0053]
The composition of the components obtained by chemical analysis of the obtained flat needle-like iron oxide powder, the properties of this powder measured as described above, and the measurement results of the tape properties of the lower layer tape using this powder are shown. The results are shown in Table 1.
[0054]
[Example 2]
0.5 mol of Fe 3+ Fe solution 3+ Was added while stirring at a liquid temperature of 10 ° C. to produce a precipitate of ferric hydroxide. Thereafter, the suspension containing the precipitate was kept at 45 ° C. and aged for 10 hours to produce α-FeOOH in the form of flat needles. Next, to the suspension containing the flat needle-like α-FeOOH, an aqueous phosphoric acid solution is added with stirring so that the amount of P becomes 2.0 wt% with respect to α-FeOOH, and the flat needle-like α-FeOOH is subjected to P deposition treatment. Was given. Thereafter, the suspension was filtered, washed with water and dried in a usual manner, and calcined at 650 ° C. to obtain flat needle-like iron oxide. Various characteristics of the obtained flat needle-like iron oxide powder were evaluated in the same manner as in Example 1, and the results are shown in Table 1.
[0055]
[Example 3]
Example 2 was repeated except that the suspension containing the ferric hydroxide precipitate was kept at 50 ° C. Various properties of the obtained flat needle-like iron oxide powder were evaluated in the same manner as in Example 1, and the results are shown in Table 1.
[0056]
[Example 4]
Add sodium hydroxide to Fe 3+ Example 2 was repeated except that the suspension containing 1.3 eq. Various properties of the obtained flat needle-like iron oxide powder were evaluated in the same manner as in Example 1, and the results are shown in Table 1.
[0057]
[Example 5]
0.5 mol of Fe 3+ Fe solution 3+ 1.3 equivalents of an aqueous sodium hydroxide solution was added thereto while stirring at a liquid temperature of 10 ° C. to produce a precipitate of ferric hydroxide. Thereafter, the suspension containing the precipitate was kept at 55 ° C. and aged for 10 hours to produce flat needle-like α-FeOOH. Next, to the suspension containing the flat needle-like α-FeOOH, an aqueous phosphoric acid solution in an amount such that P becomes 2.0 wt% with respect to α-FeOOH is added with stirring, and P is applied to the flat needle-like α-FeOOH. Was given. Thereafter, the atomic ratio of Y to Fe of α-FeOOH (Y / Fe) was further increased to 1.0 at. % Yttrium aqueous solution was added to adjust the pH to 9 or less, and the flat needle-like α-FeOOH was subjected to Y deposition treatment. Thereafter, the suspension was filtered, washed with water and dried in a usual manner, and calcined at 650 ° C. to obtain flat needle-like iron oxide. Various characteristics of the obtained flat needle-like iron oxide powder were evaluated in the same manner as in Example 1, and the results are shown in Table 1.
[0058]
[Comparative Example 1]
Na 2 CO 3 And an aqueous solution containing 0.45 mol of NaOH were mixed. 2+ Was added and an aging treatment was carried out at 45 ° C. for 90 minutes, and then air was passed through the solution at 45 ° C. to obtain α-FeOOH (short-axis cross-sectional ratio ≒ 1). To the suspension containing α-FeOOH, an aqueous solution of sodium aluminate in which Al becomes 1.0 wt% with respect to α-FeOOH is added to adjust the pH to 9 or less, and the α-FeOOH particles are subjected to Al deposition treatment. gave. Thereafter, the suspension was filtered, washed with water and dried in a usual manner, and then calcined at 650 ° C. to obtain needle-like (but short-axis cross-sectional ratio ≒ 1) iron oxide. Various properties of the obtained iron oxide powder were evaluated in the same manner as in Example 1. The results are shown in Table 1.
[0059]
[Table 1]
Figure 2004005932
[0060]
The following can be seen from the results in Table 1.
[0061]
(1) Examples in which the short-axis cross-sectional ratios are different from each other in Example 1 (short-axis cross-sectional ratio = 1.45) and Comparative Example 1 (short-axis cross-sectional ratio = 1) In the case of No. 1, a smooth coating film having a small surface roughness can be produced, and the tape durability is also small, the scratch width is small, the number of sliding passes is large, and the tape durability is also improved. That is, in the case of flat needle-shaped iron oxide powder having a large short-axis cross-sectional ratio, the particles are likely to be overlapped to form a wide surface when the powder is applied as a paint, and the surface is considered to be smooth. Further, it is considered that the flat needle shape reduces the component in the direction perpendicular to the support surface and is densely oriented in the tape surface direction, so that the tape strength is improved in addition to the surface smoothness.
[0062]
(2) The coating film made of the flat needle-like iron oxide powder of Example 1 has a larger change in surface roughness before and after the calender than that of Comparative Example 1. For this reason, when the upper magnetic layer is formed on the lower layer, if a calendering process is performed, the lower layer is likely to be calendered. That is, a smoother coating film can be formed, which is suitable as a lower layer for a multilayer magnetic recording medium.
[0063]
(3) The flat needle-shaped iron oxide of Example 2 which contains P has further improved surface smoothness than that of Example 1 which does not contain P. Further, by containing P, the powder pH becomes 4.6, and the fatty acid adsorption amount (StA.) Is low. As a result, it is considered that the original role of the lubricant (fatty acid) as a coating film component was not hindered, but the tape durability was improved as compared with that of Example 1.
[0064]
(4) In Examples 2 to 4, the short-axis cross-sectional ratio was changed by changing the production conditions of iron oxyhydroxide. It can be seen that the surface smoothness is improved and the tape durability is improved.
[0065]
(5) In Example 5, which further contains Y in addition to P, the minor axis cross-sectional ratio of flat needle-like iron oxide (hematite) is further increased even in comparison with, for example, Example 4. As a result, the surface smoothness is further improved, and the tape durability is further improved. Therefore, in order to obtain flat needle-like iron oxide (hematite) which contributes to the improvement of tape surface smoothness and tape durability, it is preferable that P is contained, and furthermore, R (including Y) is contained in addition to P. It is more preferable that
[0066]
[Example 6]
In this example, a magnetic tape having a multilayer structure in which the lower layer powder obtained in Example 5 was used as a nonmagnetic layer and the following metal magnetic powder was used as a magnetic layer was prepared, and the electromagnetic conversion characteristics and tape durability were evaluated. It was done.
[0067]
The coating material for the non-magnetic layer was prepared by mixing the following components with 85 parts by weight of the lower layer powder of Example 5 in the following ratio, and kneading and dispersing the mixture using a kneader and a sand grinder.
(Composition of non-magnetic paint)
Example 1 Powder for lower layer (α-Fe 2 O 3 ) 85 parts by weight
20 parts by weight of carbon black
Alumina 3 parts by weight
15 parts by weight of vinyl chloride resin (MR110)
15 parts by weight of polyurethane resin (UR8200)
190 parts by weight of methyl ethyl ketone
80 parts by weight of cyclohexanone
110 parts by weight of toluene
[0068]
The coating material for the magnetic layer was prepared by mixing the following components in the following ratio with respect to 100 parts by weight of the following metal magnetic powder, and kneading and dispersing using a kneader and a sand grinder.
(Metal magnetic powder)
Long axis length: 80 nm
BET: 61m 2 / G
Dx: 150 angstroms
Hc: 2400 (Oe)
σs: 127 emu / g
(Composition of magnetic paint)
100 parts by weight of the above-mentioned metal magnetic powder
5 parts by weight carbon black
Alumina 3 parts by weight
15 parts by weight of vinyl chloride resin (MR110)
15 parts by weight of polyurethane resin (UR8200)
1 part by weight of stearic acid
1 part by weight of acetylacetone
190 parts by weight of methyl ethyl ketone
80 parts by weight of cyclohexanone
110 parts by weight of toluene
[0069]
These paints are applied on a base film composed of an aramid support so that the nonmagnetic layer thickness (lower layer thickness) is 2.0 μm and the magnetic layer thickness is 0.20 μm, respectively, so that the magnetic layer is wet. Meanwhile, a magnetic field was oriented by applying a magnetic field, dried and calendered to produce a magnetic tape.
[0070]
The obtained magnetic tape was tested for surface smoothness (roughness) and tape durability (the number of passes of steel ball sliding) and the electromagnetic conversion characteristics (C / N and output) were measured by the methods described above. The C / N ratio was measured by attaching a recording head to a drum tester and recording a digital signal at a recording wavelength of 0.35 μm. At that time, the reproduction signal was measured using an MR head, the modulation noise was measured for noise, and the output of Comparative Example 2 described later and C / N were set to 0 dB and displayed as relative values. Table 2 shows the results.
[0071]
[Example 7]
Example 6 was repeated except that the powder obtained in Example 1 was used as the lower layer powder. Table 2 shows the surface smoothness (roughness), tape durability (number of passes of steel ball sliding), and electromagnetic conversion characteristics of the obtained magnetic tape.
[0072]
[Comparative Example 2]
Example 6 was repeated except that the powder obtained in Comparative Example 1 was used as the lower layer powder. Table 2 shows the surface smoothness (roughness), tape durability (number of passes of steel ball sliding), and electromagnetic conversion characteristics of the obtained magnetic tape.
[0073]
[Table 2]
Figure 2004005932
[0074]
The following can be seen from the results in Table 2.
First, as is clear from comparison between Examples 6 and 7 and Comparative Example 2, the lower layer powder according to the present invention has a very good tape surface smoothness when a multilayer structure is formed, and as a result, a high output and a high output are obtained. C / N, which is suitable as a high-density recording medium. It also has excellent durability of magnetic tape and shows excellent durability against sliding with the head.
[0075]
As is clear from the comparison between Example 6 and Example 7, the flat needle-like lower layer powder containing P and Y having a high cross-sectional ratio (of Example 5) had a tape surface in a multilayer structure. Smoothness is better, resulting in higher output, higher C / N and better durability.
[0076]
Example 8
Example 2 was repeated except that the suspension containing the ferric hydroxide precipitate was kept at 35 ° C. Various properties of the obtained flat needle-like iron oxide powder were evaluated in the same manner as in Example 1, and the results are shown in Table 3.
[0077]
[Example 9]
Example 2 was repeated except that the suspension containing the ferric hydroxide precipitate was kept at 70 ° C. Various properties of the obtained flat needle-like iron oxide powder were evaluated in the same manner as in Example 1, and the results are shown in Table 3.
[0078]
[Comparative Example 3]
Example 2 was repeated except that the suspension containing the ferric hydroxide precipitate was kept at 25 ° C. Various properties of the obtained flat needle-like iron oxide powder were evaluated in the same manner as in Example 1, and the results are shown in Table 3.
[0079]
[Comparative Example 4]
Example 2 was repeated except that the suspension containing the ferric hydroxide precipitate was kept at 80 ° C. Various properties of the obtained flat needle-like iron oxide powder were evaluated in the same manner as in Example 1, and the results are shown in Table 3.
[0080]
[Example 10]
Example 2 was repeated except that the flat needle-like α-FeOOH was subjected to the P deposition treatment, and then no yttrium aqueous solution was added. Various properties of the obtained flat needle-like iron oxide powder were evaluated in the same manner as in Example 1, and the results are shown in Table 3.
[0081]
[Example 11]
After the flat needle-like α-FeOOH is subjected to the P deposition treatment, the atomic ratio of Y to Fe (Y / Fe) is 0.18 at. Example 2 was repeated, except that an amount of yttrium aqueous solution was added in an amount of 0.2%. Various properties of the obtained flat needle-like iron oxide powder were evaluated in the same manner as in Example 1, and the results are shown in Table 3.
[0082]
[Example 12]
After the flat needle-like α-FeOOH is subjected to the P deposition treatment, the atomic ratio of Y to Fe (Y / Fe) is 8.18 at. Example 2 was repeated, except that an amount of yttrium aqueous solution was added in an amount of 0.2%. Various properties of the obtained flat needle-like iron oxide powder were evaluated in the same manner as in Example 1, and the results are shown in Table 3.
[0083]
[Comparative Example 5]
After the flat needle-like α-FeOOH is subjected to the P deposition treatment, the atomic ratio of Y to Fe (Y / Fe) is 4.54 at. Example 2 was repeated, except that an amount of yttrium aqueous solution was added in an amount of 0.2%. Various properties of the obtained flat needle-like iron oxide powder were evaluated in the same manner as in Example 1, and the results are shown in Table 3.
[0084]
[Example 13]
Example 2 was repeated except that, after the flat needle-like α-FeOOH was formed, an aqueous phosphoric acid solution was added to the suspension containing the aqueous solution under stirring with an amount of 0.28 wt% of P based on α-FeOOH. Repeated. Various properties of the obtained flat needle-like iron oxide powder were evaluated in the same manner as in Example 1, and the results are shown in Table 3.
[0085]
[Example 14]
Example 2 was repeated except that, after the flat needle-like α-FeOOH was formed, an aqueous phosphoric acid solution was added to the suspension containing the aqueous solution under stirring so that the amount of P became 6.43 wt% based on α-FeOOH. Repeated. Various properties of the obtained flat needle-like iron oxide powder were evaluated in the same manner as in Example 1, and the results are shown in Table 3.
[0086]
[Comparative Example 6]
Example 2 was repeated except that, after the flat needle-like α-FeOOH was formed, an aqueous phosphoric acid solution was added to the suspension containing the same under stirring with an amount of a phosphoric acid aqueous solution in which P became 7.86 wt% based on α-FeOOH. Repeated. Various properties of the obtained flat needle-like iron oxide powder were evaluated in the same manner as in Example 1, and the results are shown in Table 3.
[0087]
[Table 3]
Figure 2004005932
[0088]
From the results in Table 3 (see also Table 1), the following is clear.
(1) Looking at the influence of the particle diameter (average major axis length) of iron oxide (hematite), for example, the particle diameter increases in the order of Comparative Example 3, Example 8, Example 5, Example 9, and Comparative Example 4. However, in Comparative Example 3 (major axis length = 15 nm) in which the particle diameter is very small, it is difficult to disperse the resin into a resin, and it is impossible to make a tape. On the other hand, in Comparative Example 4 having a large particle diameter (major axis length = 250 nm), the axial ratio and the minor axis cross-sectional ratio are also large, but the surface smoothness is impaired. Therefore, it is understood that the particle diameter (average major axis length) is preferably in the range of 20 nm to 200 nm.
[0089]
(2) Looking at the influence of the yttrium content in iron oxide (hematite), for example, the yttrium content increases in the order of Example 10, Example 11, Example 5, and Comparative Example 5, but the yttrium content increases. In Comparative Example 5 which is more than necessary, the specific surface area is increased and the dispersibility in the resin is deteriorated, and as a result, the surface smoothness is impaired. Therefore, it can be seen that there is an appropriate range (0.1 to 10 at.% In terms of atomic ratio of Y / Fe) for maintaining good surface smoothness even with the yttrium content.
[0090]
(3) Looking at the influence on the phosphorus content in iron oxide (hematite), for example, the phosphorus content increases in the order of Example 13, Example 5, Example 14, and Comparative Example 6, but the phosphorus content increases. In Comparative Example 6 in which the content was too high, the viscosity of the paint was increased, the dispersibility was deteriorated, and the surface smoothness was impaired. On the other hand, as the phosphorus content decreases, the amount of stearic acid adsorbed increases, the effect of the lubricant decreases, and the scratch width of the tape durability increases. That is, although phosphorus effectively acts to improve the tape durability, if it is too much, the surface smoothness is impaired. Therefore, the phosphorus content should be within a suitable range (0.1 to 5.0 wt%). ) Exists.
[0091]
【The invention's effect】
As described above, according to the present invention, the flat needle-like oxide which can improve the properties required for the powder for the lower layer in the coating type magnetic recording medium having a multilayer structure, particularly the surface smoothness and the tape strength of the tape can be improved. An iron powder is obtained. Therefore, by using the flat needle-like iron oxide powder of the present invention as a lower layer powder of a coating type magnetic recording medium having a multilayer structure, a durable recording medium suitable for high recording density can be obtained.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram for explaining the shape of flat needle-like particles of the present invention.
FIG. 2 is a view showing another example of the shape of the short needle cross section of the flat acicular particles of the present invention.
FIG. 3 is a view showing another example of the shape of the flat needle-shaped particle of the present invention in a short-axis cross section.
FIG. 4 is a view showing another example of the shape of the short axis cross section of the flat needle-like particles of the present invention.
FIG. 5 is a view showing another example of the shape of the flat needle-shaped particle of the present invention in a short-axis cross section.
FIG. 6 is a comparison of electron micrographs (TEM images) of one particle of the lower layer powder obtained in Example 5 taken while changing the inclination angle of the sample stage.
[Explanation of symbols]
1 flat needle-like particles
2 Short axis section

Claims (5)

平均長軸長が20〜200nmで,長軸と直角方向に切断した短軸断面が長い方の幅と短い方の幅をもち,この長幅と短幅の短軸断面比が長軸方向にほぼ一様に1.3より大きくなっている平針状の酸化鉄粒子からなり,BET法による比表面積が30〜100m/gである塗布型磁気記録媒体の下層用粉末。The average major axis length is 20 to 200 nm, and the minor axis section cut in the direction perpendicular to the major axis has a longer width and a shorter width. Powder for a lower layer of a coating type magnetic recording medium comprising flat needle-like iron oxide particles almost uniformly larger than 1.3 and having a specific surface area of 30 to 100 m 2 / g by a BET method. 粉体pHが7以下である請求項1に記載の塗布型磁気記録媒体の下層用粉末。The powder for a lower layer of a coating type magnetic recording medium according to claim 1, wherein the powder pH is 7 or less. Pを0.1〜5.0wt%含有する請求項1または2に記載の塗布型磁気記録媒体の下層用粉末。The powder for a lower layer of a coating type magnetic recording medium according to claim 1, which contains 0.1 to 5.0 wt% of P. 4. R(RはYを含む希土類元素の1種または2種以上)を,R/Feの原子比百分率( at.%)で0.1〜10 at.%含有する請求項1,2または3に記載の塗布型磁気記録媒体の下層用粉末。R (R is one or more kinds of rare earth elements including Y) is 0.1 to 10% at. The powder for a lower layer of the coating type magnetic recording medium according to claim 1, wherein 磁性粉末を樹脂中に分散させた磁性層とベースフイルムとの間に,非磁性粉末を樹脂中に分散させた非磁性層(下層)を設ける重層構造の塗布型磁気記録媒体において,前記の非磁性粉末として請求項1ないし4のいずれかに記載の下層用粉末を用いたことを特徴とする塗布型磁気記録媒体。In a coating type magnetic recording medium having a multilayer structure, a non-magnetic layer (lower layer) in which non-magnetic powder is dispersed in a resin is provided between a magnetic layer in which the magnetic powder is dispersed in a resin and a base film. 5. A coating type magnetic recording medium using the lower layer powder according to claim 1 as a magnetic powder.
JP2003095268A 2002-04-03 2003-03-31 Powder for lower layer of coating type magnetic recording medium Pending JP2004005932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003095268A JP2004005932A (en) 2002-04-03 2003-03-31 Powder for lower layer of coating type magnetic recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002101444 2002-04-03
JP2003095268A JP2004005932A (en) 2002-04-03 2003-03-31 Powder for lower layer of coating type magnetic recording medium

Publications (1)

Publication Number Publication Date
JP2004005932A true JP2004005932A (en) 2004-01-08

Family

ID=30446602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003095268A Pending JP2004005932A (en) 2002-04-03 2003-03-31 Powder for lower layer of coating type magnetic recording medium

Country Status (1)

Country Link
JP (1) JP2004005932A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007039317A (en) * 2005-06-27 2007-02-15 Dowa Holdings Co Ltd Iron compound particle powder and magnetic recording medium using same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007039317A (en) * 2005-06-27 2007-02-15 Dowa Holdings Co Ltd Iron compound particle powder and magnetic recording medium using same

Similar Documents

Publication Publication Date Title
KR100565886B1 (en) Ferromagnetic powder
US5645652A (en) Spindle-shaped magnetic iron-based alloy particles containing cobalt and iron as the main ingredients and process for producing the same
US5902676A (en) Coating type magnetic recording medium having a multilayer structure
US7238438B2 (en) Powder for underlayer of coating-type magnetic recording medium
JP2010147079A (en) Method of producing iron nitride-based magnetic powder, and iron nitride-based magnetic powder
JP4296350B2 (en) Nonmagnetic powder for magnetic recording medium, method for producing the same, and magnetic recording medium using the same
JP3903139B2 (en) Powder for coating type magnetic recording media
JP4182232B2 (en) Ferromagnetic powder
JP2001181754A (en) Magnetic recording medium, rare earth-iron-boron series magnetic powder used therfor and method for producing the magnetic powder
JP2001351221A (en) Magnetic recording medium
JP2004005932A (en) Powder for lower layer of coating type magnetic recording medium
JP4669913B2 (en) Ferromagnetic powder
US7357997B2 (en) Powder for underlayer of coating-type magnetic recording medium and magnetic recording medium comprising the same
JP4577467B2 (en) Composite metal magnetic particle powder and magnetic recording medium
JP4787958B2 (en) Powder for lower layer of coating type multi-layer magnetic recording medium and magnetic recording medium using the same
JP2004005931A (en) Powder for lower layer of coating type magnetic recording medium and magnetic recording medium using the same
US6063490A (en) Magnetic recording medium comprising non-magnetic acicular particles containing mainly iron and having titanium dispersed therein
JPH1053421A (en) Powder for lower layer of coating type magnetic recording medium
JP3512053B2 (en) Lepidocrocite particle powder for non-magnetic underlayer of magnetic recording medium, substrate of magnetic recording medium, and magnetic recording medium
US6153296A (en) Acicular hematite particles and magnetic recording medium
JP3763353B2 (en) Hematite powder for nonmagnetic underlayer of magnetic recording medium, nonmagnetic underlayer and magnetic recording medium of magnetic recording medium using hematite powder for nonmagnetic underlayer
JP2965606B2 (en) Method for producing metal magnetic powder
KR100606586B1 (en) Underlayer powder for coating-type magnetic recording media and process for producing the same
JP5017731B2 (en) Nonmagnetic powder and multilayer coating type magnetic recording medium using the same
JP4009701B2 (en) Iron oxyhydroxide and multilayer magnetic recording medium using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080714

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080909