JP2004002978A - Low alloy steel - Google Patents

Low alloy steel Download PDF

Info

Publication number
JP2004002978A
JP2004002978A JP2003082486A JP2003082486A JP2004002978A JP 2004002978 A JP2004002978 A JP 2004002978A JP 2003082486 A JP2003082486 A JP 2003082486A JP 2003082486 A JP2003082486 A JP 2003082486A JP 2004002978 A JP2004002978 A JP 2004002978A
Authority
JP
Japan
Prior art keywords
less
steel
inclusions
content
oxysulfide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003082486A
Other languages
Japanese (ja)
Other versions
JP3864921B2 (en
Inventor
Tomohiko Omura
大村 朋彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2003082486A priority Critical patent/JP3864921B2/en
Publication of JP2004002978A publication Critical patent/JP2004002978A/en
Application granted granted Critical
Publication of JP3864921B2 publication Critical patent/JP3864921B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low alloy steel showing excellent pitting resistance which induces no pitting beginning at an inclusion nor sulfide stress cracking (SSC) beginning at the pitting. <P>SOLUTION: The alloy has a chemical composition comprising, by mass, 0.2-0.5% C, 0.05-0.5% Si, 0.1-1% Mn, 0.0005-0.01% S, 0.0010-0.01% O, 0.005-0.05% Al, 0.0003-0.007% Ca, 0.005-0.05% Ti, 0.1-1.5% Cr, 0.1-1% Mo, 0.005-0.1% Nb and the balance being Fe and impurities comprising ≤0.03% P and ≤0.015% N and contains 10 or more composite inclusions, each with a major axis of ≤7 μm and having an outer shell comprising a carbonitride of Ti, Nb and/or Zr around a core comprising an Al-Ca acid sulfide, per 0.1 mm<SP>2</SP>. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、低合金鋼に関し、特に、酸性環境中で優れた耐孔食性を有し、そのために孔食を起点とする応力腐食割れの発生を抑えることができる低合金鋼とその製造方法に関する。より詳しくは、孔食や応力腐食割れに対して大きな抵抗性を有するために過酷な酸性環境での使用に耐え、油井やガス井用のケーシングやチュービング、掘削用のドリルパイプ、ドリルカラーやサッカーロッド、更には、石油プラント用配管等の素材として好適な低合金鋼とその製造方法に関する。
【0002】
【従来の技術】
近年のエネルギー事情の逼迫に伴い、これまで敬遠されてきた硫化水素や炭酸ガス等の腐食性のガスを多く含む過酷な酸性環境下にある原油や天然ガスを活用せざるを得ない情勢となってきている。上記酸性環境における原油や天然ガスの掘削、輸送及び貯蔵には、耐孔食性や耐応力腐食割れ性(以下、応力腐食割れをSCCという)を有する鋼が要求される。なお、硫化水素を含む環境中でのSCCは、特に硫化物応力割れ(以下、SSCという)と称される。
【0003】
また、油井やガス井の深井戸化、輸送効率の向上や低コスト化のために、鋼に対して高い強度が要求されている。しかし、一般に高強度鋼ほどSSCは発生し易くなる。このため、高強度鋼には更なる耐SSC性向上が求められている。
【0004】
鋼管をはじめとする各種低合金鋼材に生じる孔食やSCC、SSCを防止するために、従来以下のような検討がなされてきた。
【0005】
孔食や孔食を起点とするSCCの発生防止のために、鋼を高清浄化することが行われてきた。しかし、不純物元素の極低減化やタンディッシュヒーター等の設備を用いた介在物除去の手法には限界があり、更に、製鋼コストのアップをもたらし望ましくない。
【0006】
また、SSCの発生防止のために、▲1▼鋼を高清浄度化する、▲2▼マルテンサイト相を多く含有する組織とする、▲3▼細粒組織とする、▲4▼高温焼戻し熱処理する、等の鋼材の組織を改善することが行われてきた。しかし、鋼中に粗大な非金属介在物が存在する場合にはその介在物を起点として孔食が発生し、この結果、前記孔食を起点とするSSCが誘発されることが少なくない。このため、粗大な非金属介在物を含む鋼の場合には、上記した鋼材の組織改善も必ずしも十分とはいえなかった。
【0007】
特開2001−131698号公報には、Ti系炭窒化物が孔食発生の起点となり、SSCを誘発することが指摘されている。Tiは多くの場合、細粒化や高強度化の目的で低合金鋼に添加されている。上記のTi系炭窒化物はそれ自体は酸環境において不溶性であるが、高い耐食性と高い導電性を有することからマトリックス(素地)と接触して水溶液中に浸漬されるとカソードサイトとして働き、周囲のマトリックスの腐食を促進する。上記公報では、孔食の発生し易さはTi系炭窒化物の大きさに依存することが指摘されており、孔食の発生を抑制する方法として窒素の低減及びタンディッシュヒーターによる介在物浮上除去が提案されている。しかし、この公報で提案された技術をもってしても孔食の発生を十分に防止できるとは言い難く、且つ溶製時のコストアップを免れない。
【0008】
【発明が解決しようとする課題】
本発明は、上記現状に鑑みてなされたもので、その目的は、介在物を起点とする孔食の発生を防止し、それによって孔食を起点とするSSCを誘発することがない、耐孔食性に優れた低合金鋼及びその製造方法を提供することである。
【0009】
【課題を解決するための手段】
本発明の要旨は、下記の低合金鋼(1)及び(2)と、これらの製造方法(3)及び(4)にある。
【0010】
低合金鋼(1)
質量%で、C:0.2〜0.55%、Si:0.05〜0.5%、Mn:0.1〜1%、S:0.0005〜0.01%、O(酸素):0.0010〜0.01%、Al:0.005〜0.05%、Ca:0.0003〜0.007%、Ti:0.005〜0.05%、Cr:0.1〜1.5%、Mo:0.1〜1%、Nb:0.005〜0.1%を含み、残部はFe及び不純物から成り、不純物中のPが0.03%以下、Nが0.015%以下の化学組成であって、Al−Ca系酸硫化物の核の周囲にTi及び/又はNbの炭窒化物の外殻を有する長径が7μm以下の複合介在物を0.1mmあたり10個以上含む低合金鋼。
【0011】
なお、Sの好ましい含有量は、0.0010〜0.01%である。
【0012】
低合金鋼(2)
質量%で、C:0.2〜0.55%、Si:0.05〜0.5%、Mn:0.1〜1%、S:0.0005〜0.01%、O(酸素):0.0010〜0.01%、Al:0.005〜0.05%、Ca:0.0003〜0.007%、Ti:0.005〜0.05%、Cr:0.1〜1.5%、Mo:0.1〜1%、Nb:0.005〜0.1%を含み、更にV:0.03〜0.5%、B:0.0001〜0.005%、Zr:0.005〜0.10%から選択される1種以上を含有し、残部はFe及び不純物から成り、不純物中のPが0.03%以下、Nが0.015%以下の化学組成であって、Al−Ca系酸硫化物の核の周囲に、Ti、Nb及びZrから選択した1種以上の元素の炭窒化物の外殻を有する長径が7μm以下の複合介在物を0.1mmあたり10個以上含む低合金鋼。
【0013】
なお、Sの好ましい含有量は、0.0010〜0.01%である。
【0014】
製造方法(3)
上記の低合金鋼(1)にかかる組成を有する鋼を鋳造する際に、1500℃から1000℃までの冷却速度を500℃/分以下とすることを特徴とする、Al−Ca系酸硫化物の核の周囲にTi及び/又はNbの炭窒化物の外殻を有する長径7μm以下の複合介在物を断面積0.1mmあたり10個以上含む低合金鋼の製造方法。
【0015】
製造方法(4)
上記の低合金鋼(2)にかかる組成を有する鋼を鋳造する際に、1500℃から1000℃までの冷却速度を500℃/分以下とすることを特徴とする、Al−Ca系酸硫化物の核の周囲に、Ti、Nb及びZrから選択した1種以上の元素の炭窒化物の外殻を有する長径7μm以下の複合介在物を断面積0.1mmあたり10個以上含む低合金鋼の製造方法。
【0016】
本明細書において、上記の低合金鋼(1)及び(2)に係る発明をそれぞれ発明(1)及び発明(2)といい、そして、上記の製造方法(3)及び(4)に係る発明をそれぞれ発明(3)及び発明(4)という。なお、発明(1)から発明(4)までを総称して、本発明ということがある。
【0017】
ここで、介在物は、一つの被検試験片の断面から任意に複数の視野を選択し、各視野において観察された介在物の個数と観察された介在物毎の長径(介在物と母材の界面上の異なる2点間を直線で結んだときに得られる線分のうち最大寸法のもの)が測定される。そして、各視野毎に、測定された介在物のうち最大の長径を有する介在物1個を特定し、その特定された介在物の長径を視野数で平均することによって、一つの被検試験片の断面における介在物の「最大長径」を得る。
【0018】
本発明者らは、前記した課題を達成するために、微細な複合介在物の析出による微細分散化の技術について種々検討した。その一つとして、Al−Ca系酸硫化物の核を予め生成させてから、その周囲にTi、Nb及び/又はZrの炭窒化物を析出させることを着想し、数多くの実験を行った。その結果、下記(a)〜(c)の知見を得た。
【0019】
(a)Al−Ca系の酸硫化物はTi、Nb及びZrの吸収核として作用する。したがって、Al−Ca系の酸硫化物を予め生成させると、その周囲にTi、Nb及び/又はZrの炭窒化物が析出して、Al−Ca系酸硫化物の核の周囲にTi及び/又はNbの炭窒化物の外殻を有する微細な複合介在物(以下、「Al−Ca系酸硫化物核の炭窒化複合介在物」という。)が数多く析出する。そして、このAl−Ca系酸硫化物核の炭窒化複合介在物が析出するときには、Al酸化物等を核とする粗大なTi、Nb及び/又はZrの炭窒化物の析出を抑制することができるし、たとえAl酸化物等を核とするTi、Nb及び/又はZrの炭窒化物が析出しても、それは7μm以下の微細な炭窒化物となる。
【0020】
(b)このAl−Ca系酸硫化物核の炭窒化複合介在物が微細に分散しても、それ自体は耐食性に影響することはない。
【0021】
(c)このAl−Ca系酸硫化物核の炭窒化複合介在物は、上記の低合金鋼(1)又は(2)にかかる組成を有する鋼を鋳造する際に、1500℃から1000℃までの冷却速度を500℃/分以下とすることによって得られる。このAl−Ca系酸硫化物核の炭窒化複合介在物の大きさは、長径が最大7μm以下とする必要がある。
【0022】
発明(1)〜(4)は、上記(a)〜(c)の知見に基づいて完成されたものである。
【0023】
【発明の実施の形態】
以下、本発明の各要件について詳しく説明する。なお、各元素の含有量の「%」表示は「質量%」を意味する。
【0024】
(A)鋼材の化学組成
C:0.2〜0.55%
Cは、焼入れ性を高め、強度を向上させるのに有効な元素であり、0.2%以上含有させる必要がある。しかし、Cの含有量が0.55%を超えると焼割れ感受性が高くなり、更に、靭性も低下する。したがってCの含有量を0.2〜0.55%とした。
【0025】
Si:0.05〜0.5%
Siは、脱酸に必要な元素であり、十分な脱酸効果を得るためには0.05%以上含有させる必要がある。しかし、その含有量が0.5%を超えると靭性や耐SSC性の低下を招く。このため、Siの含有量を0.05〜0.5%とした。好ましい含有量の範囲は0.05〜0.35%である。
【0026】
Mn:0.1〜1%
Mnは、鋼の焼入れ性を高める作用を有する元素であり、この効果を得るためには0.1%以上の含有量が必要である。しかし、Mnの含有量が1%を超えると粒界に偏析して靭性や耐SSC性の低下を招く。したがって、Mnの含有量を0.1〜1%とした。好ましい含有量の範囲は0.1〜0.5%である。
【0027】
S:0.0005〜0.01%
Sは、Ca、Al、O(酸素)とともに微細なAl−Ca系酸硫化物を形成し、これを核としてその周囲にTi、Nb及び/又はZrの炭窒化物を析出させることで、微細なAl−Ca系酸硫化物核の炭窒化複合介在物を析出する。そして、このAl−Ca系酸硫化物核の炭窒化複合介在物が結果として、粗大なTi、Nb及び/又はZrの炭窒化物の生成を抑制する作用を有する。この効果を得るためには0.0005%以上の含有量が必要である。しかし、Sの含有量が0.01%を超えると耐孔食性や耐SSC性の低下が著しくなる。したがって、Sの含有量を0.0005〜0.01%とした。Sの好ましい含有量は、0.0010〜0.01%である。
【0028】
O(酸素):0.0010〜0.01%
Oは、Ca、Al、Sとともに微細なAl−Ca系酸硫化物を形成し、これを核としてその周囲にTi、Nb及び/又はZrの炭窒化物を析出させることで、微細なAl−Ca系酸硫化物核の炭窒化複合介在物を析出する。そして、このAl−Ca系酸硫化物核の炭窒化複合介在物が結果として、粗大なTi、Nb及び/又はZrの炭窒化物の生成を抑制する作用を有する。この効果を得るためには0.0010%以上の含有量が必要である。しかし、Oの含有量が0.01%を超えると耐孔食性や耐SSC性の低下が著しくなる。したがって、Oの含有量を0.0010〜0.01%とした。
【0029】
Al:0.005〜0.05%
Alは鋼の脱酸に必要な元素であり、含有量が0.005%未満ではその効果が得難い。一方、0.05%を超えて含有させてもその効果は飽和し、かつ粗大なAl系酸化物が多く生成し靭性の低下を招く。また、Alは、Ca、O、Sとともに微細なAl−Ca系酸硫化物を形成し、これを核としてその周囲にTi、Nb及び/又はZrの炭窒化物を析出させることで、微細なAl−Ca系酸硫化物核の炭窒化複合介在物を析出する。そして、このAl−Ca系酸硫化物核の炭窒化複合介在物が結果として、粗大なTi、Nb及び/又はZrの炭窒化物の生成を抑制する作用を有する。このため、Alの含有量を0.005〜0.05%とした。なお、本明細書でいうAlとはいわゆる「sol.Al(酸可溶Al)」のことを指す。
【0030】
Ca:0.0003〜0.007%
Caは本発明において重要な元素である。Caは、Al、O、Sとともに微細なAl−Ca系酸硫化物を形成し、これを核としてその周囲にTi、Nb及び/又はZrの炭窒化物を析出させることで、微細なAl−Ca系酸硫化物核の炭窒化複合介在物を析出する。そして、このAl−Ca系酸硫化物核の炭窒化複合介在物が結果として、粗大なTi、Nb及び/又はZrの炭窒化物の生成を抑制する作用を有する。そして、耐孔食性や耐SCC性、耐SSC性を向上させる。しかし、Caの含有量が0.0003%未満では添加効果に乏しい。一方、Caを0.007%を超えて含有させるとAl−Ca系酸硫化物自身が粗大化して孔食の起点となる。このため、Caの含有量を0.0003〜0.007%とした。
【0031】
Ti:0.005〜0.05%
Tiは、Al−Ca系酸硫化物の核の周囲に、鋼中の炭素と窒素を吸収し、炭窒化物の外殻を形成し、微細なAl−Ca系酸硫化物核の炭窒化複合介在物として析出する。これにより結晶粒微細化や析出強化による高強度化に効果的である。更に、Bを含有させた鋼では、B窒化物の生成を抑制してBによる焼入れ性向上を助長する作用を有する。これらの効果を得るにはTiを0.005%以上含有させる必要がある。一方、Tiの含有量が0.05%を超えると、たとえ上記の範囲のCaを含有させた場合であっても粗大なTi、Nb及び/又はZrの炭窒化物が生成して孔食の起点となる。したがって、Tiの含有量を0.005〜0.05%とした。なお、好ましい含有量の範囲は0.005〜0.03%である。
【0032】
Cr:0.1〜1.5%
Crは焼入れ性を上げるとともに焼戻し軟化抵抗を高めて高温焼戻しを可能にし、耐SSC性を向上させる。この効果はCrの含有量が0.1%以上の場合に得られる。しかし、Crを1.5%を超えて含有させても前記の効果は飽和し、コストが嵩むばかりである。したがって、Crの含有量を0.1〜1.5%とした。
【0033】
Mo:0.1〜1%
Moは焼入れ性を向上させるとともに、焼戻し軟化抵抗を高めて高温焼戻しを可能にし、耐SSC性を向上させる。しかし、その含有量が0.1%未満では十分な効果が得られない。一方、Moの含有量が1%を超えると、焼戻し時に針状のMo炭化物が析出して靭性や耐SSC性の低下を招く。したがって、Moの含有量を0.1〜1%とした。
【0034】
Nb:0.005〜0.1%
NbはAl−Ca系酸硫化物の核の周囲に、鋼中の炭素と窒素を吸収して炭窒化物の外殻を形成し、微細なAl−Ca系酸硫化物核の炭窒化複合介在物として析出する。この複合介在物は、結晶粒の微細化や析出硬化に対して有効に寄与する。しかし、その含有量が0.005%未満では添加効果に乏しい。一方、0.1%を超えて含有させても上記の効果は飽和し、コストが嵩むばかりである。したがって、Nbの含有量を0.005〜0.1%とした。
【0035】
不純物元素としてのP及びNについては、その含有量を下記のとおり規定する。
【0036】
P:0.03%以下
Pは不純物として鋼中に不可避的に存在し、活性溶解して耐孔食性を低めたり、粒界に偏析して靭性や耐SSC性を低下させる。特にその含有量が0.03%を超えると、耐孔食性、靭性や耐SSC性の低下が著しくなる。したがって、Pの含有量を0.03%以下とした。なお、Pの含有量はできるだけ低くすることが望ましい。
【0037】
N:0.015%以下
Nは不純物として鋼中に不可避的に存在する元素である。その含有量が0.015%を超えると、微細なAl−Ca系酸硫化物核の炭窒化複合介在物ではなく、粗大なTi、Nb及び/又はZrの炭窒化物が生成して孔食の起点となる。したがって、Nの含有量を0.015%以下とした。なお、Nの含有量はできるだけ低くすることが望ましい。
【0038】
上記の化学組成を満たすことによって、(1)の発明に係る低合金鋼の化学組成が得られる。一方、上記の成分元素に加え、必要に応じて以下に述べるVからZrまでの元素のうちから選ばれる1種以上を含むことで、(2)の発明に係る低合金鋼の化学組成が得られる。VからZrまでの元素は、いずれも鋼の強度向上に寄与する。
【0039】
V:0.03〜0.5%
Vは添加しなくてもよい。添加すれば、焼戻し時に微細な炭化物として析出して焼戻し軟化抵抗を高めるので高温焼戻しが可能となり、耐SSC性が改善する。この効果を確実に得るには、Vは0.03%以上の含有量とすることが望ましい。一方、0.5%を超えて含有させても上記の効果は飽和するのでコストが嵩むばかりである。したがって、添加する場合のVの含有量は0.03〜0.5%とするのがよい。
【0040】
B:0.0001〜0.005%
Bは添加しなくてもよい。添加すれば、微量で鋼の焼入れ性を向上させる作用を有する。この効果を確実に得るには、Bは0.0001%以上の含有量とすることが好ましい。一方、Bの含有量が0.005%を超えると粒界に粗大な炭硼化物が析出して、靭性及び耐SSC性の低下を招く。したがって、添加する場合のBの含有量は0.0001〜0.005%とするのがよい。なお、この場合の含有量を0.0001〜0.003%とすれば一層好ましい。
【0041】
Zr:0.005〜0.10%
Zrは添加しなくてもよい。しかしながら、添加すれば、Al−Ca系酸硫化物の核の周囲に、鋼中の炭素と窒素を吸収し、炭窒化物の外殻を形成し、微細なAl−Ca系酸硫化物核の炭窒化複合介在物として析出する。そして、結晶粒微細化や析出強化による高強度化、更にはBによる焼入れ性向上効果を助長する作用を有する。これらの効果を確実に得るには、Zrの含有量は0.005%以上とすることが好ましい。一方、Zrの含有量が0.10%を超えると、たとえ上記の範囲のCaを含有させた場合であっても粗大なTi、Nb及び/又はZrの炭窒化物が生成して孔食の起点となる。したがって、添加する場合のZrの含有量は0.005〜0.10%とするのがよい。
【0042】
(B)鋼中のAl−Ca系酸硫化物核の炭窒化複合介在物
本発明に係る低合金鋼中のAl−Ca系酸硫化物核の炭窒化複合介在物は、Al−Ca系酸硫化物を核としてその外殻にTi,Nb及び/又はZrの炭窒化物を析出する。そして、そのAl−Ca系酸硫化物核の炭窒化複合介在物は、長径が7μm以下であって、鋼断面0.1mmあたり10個以上含まれる必要がある。
【0043】
なお、Al−Ca系酸硫化物は、AlとCa以外の元素の酸硫化物を全体の50%未満含んでもよい。また、Ti、Nb及び/又はZrの炭窒化物は、Ti、Nb、Zr以外の元素の炭窒化物を全体の50%未満含んでもよい。
【0044】
Al酸化物は、凝集粗大化し易く微細分散効果がないため、Ti、Nb及び/又はZrの炭窒化物の生成核になり得るものの、Ti、Nb及び/又はZrの炭窒化物を微細分散させる作用はない。しかし、Al−Ca系酸硫化物は凝集粗大化しにくく微細分散するため、それを核とし、その周囲にTi、Nb及び/又はZrの炭窒化物の外殻を形成することで、微細なAl−Ca系酸硫化物核の炭窒化複合介在物を分散析出させることができる。
【0045】
また、CaはAlよりも酸硫化物生成能が強いため、Al−Ca系酸硫化物は、Al酸化物よりも優先的に生成する。すなわち、Al−Ca系酸硫化物を核としてその周囲にTi、Nb及び/又はZrの炭窒化物の外殻からなる微細なAl−Ca系酸硫化物核の炭窒化複合介在物が生成した場合には、Al酸化物を核として形成される粗大なTi、Nb及び/又はZrの炭窒化物の生成を抑制する。したがって、耐孔食性が向上する。
【0046】
しかし、このAl−Ca系酸硫化物核の炭窒化複合介在物そのものが粗大であると、粗大なTi、Nb及び/又はZrの炭窒化物と同様に孔食の発生起点となる。特に、その長径が7μmを超えると耐孔食性の低下が著しい。したがって、このAl−Ca系酸硫化物核の炭窒化複合介在物の最大長径は7μm以下としなければならない。
【0047】
一方、このAl−Ca系酸硫化物核の炭窒化複合介在物の長径が7μm以下であっても、その数が0.1mmあたり10個未満の場合には、Al−Ca系酸硫化物の核が鋼中のTi,Nb及び/又はZrを十分に吸収できない。そして、吸収されなかったTi,Nb及び/又はZrは、Al酸化物等を核として粗大なTi,Nb及び/又はZrの炭窒化物を生成するので、耐孔食性が低下する。したがって、本発明においては、このAl−Ca系酸硫化物核の炭窒化複合介在物を0.1mmあたり10個以上含ませることとした。
【0048】
ここで、介在物は、一つの被検試験片の断面から任意に5つの視野を選択し、各視野において観察された介在物の0.1mm   あたりの個数と、観察された介在物毎の長径(介在物と母材の界面上の異なる2点間を直線で結んだときに得られる線分のうち最大寸法のもの)が測定される。そして、各視野毎に、測定された介在物のうち最大の長径を有する介在物1個を特定し、その特定された介在物の長径を5視野数で平均することによって、一つの被検試験片の断面における介在物の「最大長径」を得る。
【0049】
次に、発明(1)及び(2)に係る低合金鋼におけるAl−Ca系酸硫化物核の炭窒化複合介在物が前記の条件を満たすようにするには、Al−Ca系の複合酸硫化物によるTi、Nb及びZr吸収の時間を十分に確保する必要がある。このためには、鋳造時の1500〜1000℃における冷却速度を500℃/分以下とすればよい。
【0050】
【実施例】
表1に示す化学組成を有する12種の低合金鋼を溶製した。
【0051】
【表1】

Figure 2004002978
【0052】
【表2】
Figure 2004002978
【0053】
各鋼種それぞれ150トンの溶鋼を連続鋳造して直径220mmの丸ビレットとした。その際、鋳造時のモールド内の1500℃の溶鋼の温度が凝固して1000℃になるまでの冷却過程のモールド内の水量や鋳片冷却用の水量を制御して1500〜1000℃間の冷却速度を表2に示すように種々変化させた。
【0054】
次いで、鋼H及び鋼Iの各丸ビレットは、1250℃に加熱した後、通常の方法で熱間鍛造と熱間圧延を施し、厚さ15mmの板材とした。
【0055】
鋼A、鋼C及び鋼J〜Mの各丸ビレットは、1250℃に加熱した後、通常の方法で熱間圧延して、直径40mmの丸棒とした。
【0056】
鋼B、鋼D〜G及び鋼Nの各丸ビレットは、1250℃に加熱した後、通常の方法で熱間圧延して、厚さ10mmの継目無鋼管とした。
【0057】
このようにして得た板材、丸棒及び鋼管から厚さ10mm、幅10mm、長さ10mmの寸法の試験片を切出し、熱間圧延方向に垂直に切断した断面が被検面となるように樹脂埋めして鏡面研磨した後、倍率200倍で走査電子顕微鏡観察して介在物を調査した。すなわち、倍率を200倍として走査電子顕微鏡で5視野観察し、それぞれの視野で0.1mmあたりに認められた長径が7μm以下のAl−Ca系酸硫化物核の炭窒化複合介在物を計数し、その値を5視野で平均した。また、5視野それぞれで観察されたAl−Ca系酸硫化物の炭窒化複合介在物、及びその他の炭窒化物の長径の最大値を5視野で平均し、「最大長径」として測定した。なお、介在物の組成はEDX(エネルギー分散型X線マイクロアナライザー)で分析した。
【0058】
図1に、長径が7μm以下のAl−Ca系酸硫化物核の炭窒化複合介在物の典型例を示す。内核の黒色部がAl−Ca系の酸硫化物であり、外殻(黒色部の周囲の白い部分)がTi、Nb及び/又はZrの炭窒化物である。
【0059】
図2は、上記Al−Ca系酸硫化物核の炭窒化複合介在物のEDXによる分析箇所を説明する図である。同図に示す合計8箇所についてEDXによる分析を行った。
【0060】
介在物の調査結果を1500〜1000℃間の冷却速度と併せて表2に示す。
【0061】
次いで、前記の板材、丸棒及び鋼管から厚さ3mm、幅10mm、長さ40mmの腐食試験片を採取し、600番エメリー紙で研磨後、脱気した25℃の0.5%酢酸+5%食塩水中に100時間浸漬して、孔食の発生有無を調査した。表2に、この調査結果を併せて示した。
【0062】
表2から、本発明で規定する条件を満たす試験番号1〜7及び14の場合、孔食は生じておらず、良好な耐孔食性を有することが明らかである。これに対して、本発明で規定する条件から外れる試験番号8〜13の場合には、粗大なTi、Nb及び/又はZrの炭窒化物が生成しており、これらが孔食の起点となって耐孔食性が劣っていた。
【0063】
【発明の効果】
本発明の低合金鋼は、介在物を起点とする孔食の発生がなく、したがって、孔食を起点とするSSCを誘発することもないので油井やガス井用のケーシングやチュービング、掘削用のドリルパイプ、ドリルカラーやサッカーロッド、更には、石油プラント用配管等の素材として用いることができる。
【図面の簡単な説明】
【図1】長径が7μm以下のAl−Ca系酸硫化物核の炭窒化複合介在物の典型例を示す図である。
【図2】長径が7μm以下のAl−Ca系酸硫化物核の炭窒化複合介在物のEDXによる分析箇所を説明する図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a low-alloy steel, and more particularly to a low-alloy steel having excellent pitting resistance in an acidic environment and capable of suppressing the occurrence of stress corrosion cracking originating from pitting, and a method for producing the same. . More specifically, it has high resistance to pitting and stress corrosion cracking, so it can withstand use in harsh acidic environments, casing and tubing for oil and gas wells, drill pipes for drilling, drill collars and soccer The present invention relates to a low alloy steel suitable as a material for a rod, a pipe for an oil plant and the like, and a method for producing the same.
[0002]
[Prior art]
Due to the tightening energy situation in recent years, the situation has been forced to utilize crude oil and natural gas in harsh acidic environments containing many corrosive gases such as hydrogen sulfide and carbon dioxide, which have been shunned until now. Is coming. Excavation, transportation, and storage of crude oil and natural gas in the acidic environment require steel having pitting corrosion resistance and stress corrosion cracking resistance (hereinafter, stress corrosion cracking is referred to as SCC). SCC in an environment containing hydrogen sulfide is particularly called sulfide stress cracking (hereinafter, referred to as SSC).
[0003]
Further, steel is required to have high strength in order to deepen oil and gas wells, improve transport efficiency, and reduce costs. However, in general, the higher the strength of the steel, the easier it is for SSC to occur. For this reason, high-strength steels are required to further improve SSC resistance.
[0004]
In order to prevent pitting corrosion, SCC, and SSC occurring in various low alloy steel materials such as steel pipes, the following studies have been conventionally made.
[0005]
In order to prevent the occurrence of pitting or SCC originating from pitting, steel has been highly purified. However, there is a limit to the method of extremely reducing impurity elements and the method of removing inclusions using equipment such as a tundish heater, and this is not desirable because it increases the steelmaking cost.
[0006]
Also, in order to prevent the occurrence of SSC, (1) the steel is made highly clean, (2) the structure containing a large amount of martensite phase, (3) the fine grain structure, and (4) high temperature tempering heat treatment. Improvements in the structure of steel materials have been made. However, when coarse non-metallic inclusions are present in steel, pitting occurs starting from the inclusions, and as a result, SSC starting from the pitting is often induced. For this reason, in the case of steel containing coarse non-metallic inclusions, the above-mentioned structural improvement of the steel material was not always sufficient.
[0007]
Japanese Patent Application Laid-Open No. 2001-131698 points out that Ti-based carbonitride serves as a starting point of pitting corrosion and induces SSC. Ti is often added to low alloy steels for the purpose of grain refinement and high strength. The above-mentioned Ti-based carbonitride itself is insoluble in an acid environment, but has high corrosion resistance and high conductivity, so that when it is immersed in an aqueous solution in contact with a matrix (base), it acts as a cathode site, Promotes corrosion of the matrix. In the above publication, it is pointed out that the pitting susceptibility depends on the size of the Ti-based carbonitride, and as a method of suppressing the pitting pitting, the nitrogen is reduced and the inclusion floating by the tundish heater is performed. Removal has been proposed. However, even with the technique proposed in this publication, it is difficult to say that the occurrence of pitting corrosion can be sufficiently prevented, and that an increase in cost during melting is inevitable.
[0008]
[Problems to be solved by the invention]
The present invention has been made in view of the above situation, and has as its object to prevent the occurrence of pitting corrosion originating from inclusions, thereby not inducing SSC originating from pitting corrosion, An object of the present invention is to provide a low alloy steel having excellent corrosion resistance and a method for producing the same.
[0009]
[Means for Solving the Problems]
The gist of the present invention resides in the following low alloy steels (1) and (2) and their production methods (3) and (4).
[0010]
Low alloy steel (1)
In mass%, C: 0.2 to 0.55%, Si: 0.05 to 0.5%, Mn: 0.1 to 1%, S: 0.0005 to 0.01%, O (oxygen) : 0.0010 to 0.01%, Al: 0.005 to 0.05%, Ca: 0.0003 to 0.007%, Ti: 0.005 to 0.05%, Cr: 0.1 to 1 0.5%, Mo: 0.1 to 1%, Nb: 0.005 to 0.1%, the balance being Fe and impurities, P in the impurities is 0.03% or less, and N is 0.015%. % or less of a chemical composition, 0.1 mm 2 per 10 major axis following compound inclusions 7μm having an outer shell of Ti and / or carbonitrides of Nb around the nucleus of Al-Ca-based oxysulfide Low alloy steel containing more than one piece.
[0011]
In addition, the preferable content of S is 0.0010 to 0.01%.
[0012]
Low alloy steel (2)
In mass%, C: 0.2 to 0.55%, Si: 0.05 to 0.5%, Mn: 0.1 to 1%, S: 0.0005 to 0.01%, O (oxygen) : 0.0010 to 0.01%, Al: 0.005 to 0.05%, Ca: 0.0003 to 0.007%, Ti: 0.005 to 0.05%, Cr: 0.1 to 1 0.5%, Mo: 0.1-1%, Nb: 0.005-0.1%, V: 0.03-0.5%, B: 0.0001-0.005%, Zr : Containing at least one selected from 0.005 to 0.10%, the balance being Fe and impurities, with a chemical composition in which P in the impurities is 0.03% or less and N is 0.015% or less. In addition, a composite medium having a major axis of 7 μm or less having an outer shell of a carbonitride of one or more elements selected from Ti, Nb and Zr around a core of an Al—Ca-based oxysulfide. Low alloy steel containing objects to 0.1 mm 2 per 10 or more.
[0013]
In addition, the preferable content of S is 0.0010 to 0.01%.
[0014]
Manufacturing method (3)
When casting a steel having the composition according to the low alloy steel (1), the cooling rate from 1500 ° C. to 1000 ° C. is set to 500 ° C./min or less, wherein the Al-Ca oxysulfide is used. method of manufacturing a low alloy steel containing major axis 7μm following compound inclusions sectional area 0.1 mm 2 per 10 or more with an outer shell of the Ti and / or carbonitrides of Nb around the nucleus.
[0015]
Manufacturing method (4)
When casting a steel having the composition according to the low alloy steel (2), the cooling rate from 1500 ° C. to 1000 ° C. is set to 500 ° C./min or less, wherein the Al-Ca oxysulfide is used. Alloy steel having a major axis of 7 μm or less having a shell of carbon nitride of at least one element selected from the group consisting of Ti, Nb and Zr around a core of 0.1 mm 2 or more per 0.1 mm 2 Manufacturing method.
[0016]
In the present specification, the inventions according to the low alloy steels (1) and (2) are referred to as inventions (1) and (2), respectively, and the inventions according to the production methods (3) and (4). Are referred to as invention (3) and invention (4), respectively. Note that the inventions (1) to (4) may be collectively referred to as the present invention.
[0017]
Here, the inclusions are arbitrarily selected from a plurality of visual fields from the cross section of one test specimen, and the number of the inclusions observed in each visual field and the long diameter of each observed inclusion (the inclusion and the base material) (The largest dimension of the line segments obtained when two different points on the interface are connected by a straight line) are measured. Then, for each visual field, one of the measured inclusions having the largest major axis is identified, and the identified major axis of the major axis is averaged over the number of visual fields to obtain one test specimen. The "maximum major axis" of the inclusion in the cross section is obtained.
[0018]
The present inventors have studied various techniques for fine dispersion by precipitation of fine composite inclusions in order to achieve the above object. As one of them, a number of experiments were carried out with the idea of forming a nucleus of Al-Ca-based oxysulfide in advance and then depositing a carbonitride of Ti, Nb and / or Zr around the nucleus. As a result, the following findings (a) to (c) were obtained.
[0019]
(A) Al-Ca-based oxysulfides act as absorption nuclei for Ti, Nb and Zr. Therefore, if Al-Ca-based oxysulfides are generated in advance, Ti, Nb and / or Zr carbonitrides precipitate around the oxysulfides, and Ti and / or Zr around the nuclei of the Al-Ca-based oxysulfides. Alternatively, a large number of fine composite inclusions having an outer shell of Nb carbonitride (hereinafter referred to as “Al-Ca oxysulfide nuclei carbonitride composite inclusions”) are precipitated. When the carbon-nitride composite inclusions of the Al-Ca-based oxysulfide nuclei are precipitated, the precipitation of coarse Ti, Nb and / or Zr carbonitrides having nuclei of Al oxide or the like is suppressed. If possible, even if Ti, Nb and / or Zr carbonitrides having Al oxides or the like as nuclei are deposited, they become fine carbonitrides of 7 μm or less.
[0020]
(B) Even if the carbon-nitride composite inclusions of the Al-Ca-based oxysulfide nuclei are finely dispersed, they themselves do not affect the corrosion resistance.
[0021]
(C) The carbon-nitride composite inclusion of the Al-Ca-based oxysulfide nucleus is cast from 1500 ° C to 1000 ° C when casting a steel having the composition according to the low alloy steel (1) or (2). At a cooling rate of 500 ° C./min or less. The size of the carbon-nitride composite inclusion of the Al-Ca-based oxysulfide nucleus needs to have a major axis of 7 μm or less at maximum.
[0022]
The inventions (1) to (4) have been completed based on the findings of the above (a) to (c).
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, each requirement of the present invention will be described in detail. In addition, "%" of the content of each element means "% by mass".
[0024]
(A) Chemical composition C of steel material: 0.2 to 0.55%
C is an element effective for improving hardenability and improving strength, and needs to be contained at 0.2% or more. However, when the content of C exceeds 0.55%, the susceptibility to cracking increases, and the toughness also decreases. Therefore, the content of C is set to 0.2 to 0.55%.
[0025]
Si: 0.05-0.5%
Si is an element necessary for deoxidation, and must be contained at 0.05% or more in order to obtain a sufficient deoxidizing effect. However, if the content exceeds 0.5%, the toughness and SSC resistance decrease. For this reason, the content of Si is set to 0.05 to 0.5%. The preferred range of the content is 0.05 to 0.35%.
[0026]
Mn: 0.1-1%
Mn is an element having an effect of improving the hardenability of steel, and in order to obtain this effect, a content of 0.1% or more is required. However, when the Mn content exceeds 1%, segregation occurs at the grain boundaries, leading to a decrease in toughness and SSC resistance. Therefore, the content of Mn is set to 0.1 to 1%. The preferred range of the content is 0.1 to 0.5%.
[0027]
S: 0.0005 to 0.01%
S forms a fine Al-Ca-based oxysulfide with Ca, Al, and O (oxygen), and uses this as a nucleus to precipitate Ti, Nb and / or Zr carbonitride around the fine oxysulfide. Al-Ca-based oxysulfide nuclei are precipitated. As a result, the carbon-nitride composite inclusions of the Al-Ca-based oxysulfide nucleus have an effect of suppressing the formation of coarse Ti, Nb and / or Zr carbonitrides. To obtain this effect, a content of 0.0005% or more is required. However, if the S content exceeds 0.01%, the pitting corrosion resistance and the SSC resistance are significantly reduced. Therefore, the content of S is set to 0.0005 to 0.01%. The preferable content of S is 0.0010 to 0.01%.
[0028]
O (oxygen): 0.0010 to 0.01%
O forms fine Al-Ca-based oxysulfides together with Ca, Al, and S, and uses these as nuclei to precipitate Ti, Nb and / or Zr carbonitrides around the fine Al-Ca-based oxysulfides. Precipitate carbon-nitride composite inclusions of Ca-based oxysulfide nuclei. As a result, the carbon-nitride composite inclusions of the Al-Ca-based oxysulfide nucleus have an effect of suppressing the formation of coarse Ti, Nb and / or Zr carbonitrides. To obtain this effect, a content of 0.0010% or more is required. However, if the O content exceeds 0.01%, the pitting corrosion resistance and SSC resistance are significantly reduced. Therefore, the content of O is set to 0.0010 to 0.01%.
[0029]
Al: 0.005 to 0.05%
Al is an element necessary for deoxidizing steel, and if its content is less than 0.005%, its effect is difficult to obtain. On the other hand, if the content exceeds 0.05%, the effect is saturated, and a large amount of coarse Al-based oxide is generated, which causes a decrease in toughness. In addition, Al forms fine Al-Ca-based oxysulfides together with Ca, O, and S, and uses the nuclei as nuclei to precipitate Ti, Nb and / or Zr carbonitrides to form fine Al-Ca oxysulfides. The carbon-nitride composite inclusions of Al-Ca-based oxysulfide nuclei are deposited. As a result, the carbon-nitride composite inclusions of the Al-Ca-based oxysulfide nucleus have an effect of suppressing the formation of coarse Ti, Nb and / or Zr carbonitrides. For this reason, the content of Al is set to 0.005 to 0.05%. It should be noted that Al in this specification refers to so-called "sol. Al (acid-soluble Al)".
[0030]
Ca: 0.0003-0.007%
Ca is an important element in the present invention. Ca forms a fine Al-Ca-based oxysulfide with Al, O, and S, and uses this as a nucleus to precipitate Ti, Nb and / or Zr carbonitride around the fine Al-Ca-based oxysulfide. Precipitate carbon-nitride composite inclusions of Ca-based oxysulfide nuclei. As a result, the carbon-nitride composite inclusions of the Al-Ca-based oxysulfide nucleus have an effect of suppressing the formation of coarse Ti, Nb and / or Zr carbonitrides. Then, the pitting corrosion resistance, the SCC resistance, and the SSC resistance are improved. However, when the Ca content is less than 0.0003%, the effect of addition is poor. On the other hand, when Ca is contained in excess of 0.007%, the Al-Ca-based oxysulfide itself becomes coarse and becomes a starting point of pitting corrosion. Therefore, the content of Ca is set to 0.0003 to 0.007%.
[0031]
Ti: 0.005 to 0.05%
Ti absorbs carbon and nitrogen in steel around the nucleus of Al-Ca-based oxysulfide, forms an outer shell of carbonitride, and forms a carbonitrided composite of fine Al-Ca-based oxysulfide. Precipitates as inclusions. This is effective for increasing the strength by refinement of crystal grains and precipitation strengthening. Further, the steel containing B has an effect of suppressing the formation of B nitride and promoting the improvement of hardenability by B. To obtain these effects, 0.005% or more of Ti must be contained. On the other hand, when the content of Ti exceeds 0.05%, coarse carbonitrides of Ti, Nb and / or Zr are formed even when Ca is contained in the above range, and pitting corrosion is prevented. The starting point. Therefore, the content of Ti is set to 0.005 to 0.05%. In addition, the preferable range of the content is 0.005 to 0.03%.
[0032]
Cr: 0.1-1.5%
Cr improves quenching properties and tempering softening resistance, enables high-temperature tempering, and improves SSC resistance. This effect is obtained when the content of Cr is 0.1% or more. However, even if Cr is contained in an amount exceeding 1.5%, the above effect is saturated and the cost is increased. Therefore, the content of Cr is set to 0.1 to 1.5%.
[0033]
Mo: 0.1-1%
Mo improves quenching properties, increases tempering softening resistance, enables high-temperature tempering, and improves SSC resistance. However, if the content is less than 0.1%, a sufficient effect cannot be obtained. On the other hand, when the content of Mo exceeds 1%, needle-like Mo carbides precipitate during tempering, which causes a decrease in toughness and SSC resistance. Therefore, the content of Mo is set to 0.1 to 1%.
[0034]
Nb: 0.005 to 0.1%
Nb absorbs carbon and nitrogen in steel around the nucleus of Al-Ca-based oxysulfide to form a carbonitride shell, and the carbon-nitrided composite of fine Al-Ca-based oxysulfide nucleus It precipitates as a substance. The composite inclusion effectively contributes to the refinement of crystal grains and precipitation hardening. However, when the content is less than 0.005%, the effect of addition is poor. On the other hand, if the content exceeds 0.1%, the above effect is saturated and the cost is increased. Therefore, the content of Nb is set to 0.005 to 0.1%.
[0035]
The contents of P and N as impurity elements are defined as follows.
[0036]
P: 0.03% or less P is inevitably present in steel as an impurity and is activated and dissolved to lower pitting corrosion resistance, or segregates at grain boundaries to lower toughness and SSC resistance. In particular, when the content exceeds 0.03%, the pitting corrosion resistance, toughness and SSC resistance are significantly reduced. Therefore, the content of P is set to 0.03% or less. It is desirable that the content of P be as low as possible.
[0037]
N: 0.015% or less N is an element inevitably present in steel as an impurity. When the content exceeds 0.015%, coarse Ti, Nb and / or Zr carbonitrides are formed instead of fine carbon-nitride composite inclusions of fine Al-Ca-based oxysulfide nuclei, and pitting corrosion occurs. Is the starting point of Therefore, the content of N is set to 0.015% or less. It is desirable that the content of N be as low as possible.
[0038]
By satisfying the above chemical composition, the chemical composition of the low alloy steel according to the invention (1) can be obtained. On the other hand, if necessary, the chemical composition of the low alloy steel according to the invention of (2) can be obtained by including one or more elements selected from the elements from V to Zr described below as necessary, in addition to the above component elements. Can be All the elements from V to Zr contribute to improving the strength of steel.
[0039]
V: 0.03 to 0.5%
V need not be added. If added, it precipitates as fine carbides during tempering and increases the tempering softening resistance, so that high-temperature tempering becomes possible and SSC resistance is improved. In order to surely obtain this effect, it is desirable that the content of V be 0.03% or more. On the other hand, if the content exceeds 0.5%, the above effect is saturated, so that the cost only increases. Therefore, the content of V when added is preferably 0.03 to 0.5%.
[0040]
B: 0.0001 to 0.005%
B may not be added. If added, it has the effect of improving the hardenability of steel in a trace amount. In order to surely obtain this effect, the content of B is preferably set to 0.0001% or more. On the other hand, if the content of B exceeds 0.005%, coarse boride precipitates at the grain boundaries, leading to a decrease in toughness and SSC resistance. Therefore, the content of B when added is preferably 0.0001 to 0.005%. In this case, the content is more preferably 0.0001 to 0.003%.
[0041]
Zr: 0.005 to 0.10%
Zr may not be added. However, if added, it absorbs carbon and nitrogen in the steel around the Al-Ca-based oxysulfide nucleus, forms an outer shell of carbonitride, and forms fine Al-Ca-based oxysulfide nucleus. Precipitates as carbonitride composite inclusions. And it has the effect of increasing the strength by refinement of crystal grains and precipitation strengthening, and further promoting the effect of improving the hardenability by B. In order to reliably obtain these effects, the content of Zr is preferably set to 0.005% or more. On the other hand, if the Zr content exceeds 0.10%, coarse Ti, Nb and / or Zr carbonitrides are formed even when Ca is contained in the above range, and pitting corrosion The starting point. Therefore, the content of Zr when added is preferably 0.005 to 0.10%.
[0042]
(B) Carbon-nitrided composite inclusions of Al-Ca oxysulfide nuclei in steel The carbon-nitrided composite inclusions of Al-Ca oxysulfide nuclei in the low alloy steel according to the present invention are Al-Ca-based acid Using sulfide as a nucleus, carbonitride of Ti, Nb and / or Zr is deposited on the outer shell. The carbon-nitride composite inclusions of the Al-Ca-based oxysulfide nucleus have a major axis of 7 μm or less and need to be included in 10 or more pieces per 0.1 mm 2 of steel cross section.
[0043]
The Al-Ca oxysulfide may contain less than 50% of oxysulfides of elements other than Al and Ca. Further, the carbonitride of Ti, Nb and / or Zr may contain less than 50% of the total carbonitride of elements other than Ti, Nb and Zr.
[0044]
Since the Al oxide is apt to be agglomerated and coarse and has no fine dispersion effect, it can be a nucleus for the formation of a carbonitride of Ti, Nb and / or Zr, but finely disperses the carbonitride of Ti, Nb and / or Zr. Has no effect. However, since Al-Ca-based oxysulfides are hard to coagulate and coarsely disperse and are finely dispersed, they are used as a nucleus and a shell of Ti, Nb and / or Zr carbonitride is formed around the nucleus to form fine Al. It is possible to disperse and precipitate carbon-nitride composite inclusions of -Ca-based oxysulfide nuclei.
[0045]
Further, since Ca has a higher ability to generate oxysulfides than Al, Al-Ca-based oxysulfides are generated preferentially over Al oxides. That is, fine carbon-nitride composite inclusions of fine Al-Ca-based oxysulfide nuclei consisting of an outer shell of Ti, Nb and / or Zr carbonitride were formed around the Al-Ca-based oxysulfide as nuclei. In this case, the formation of coarse Ti, Nb and / or Zr carbonitrides formed with Al oxides as nuclei is suppressed. Therefore, pitting corrosion resistance is improved.
[0046]
However, if the carbon-nitride composite inclusion itself of the Al-Ca-based oxysulfide nucleus itself is coarse, it becomes a starting point of pitting corrosion in the same manner as coarse Ti, Nb and / or Zr carbonitride. In particular, when the major axis exceeds 7 μm, the pitting corrosion resistance is significantly reduced. Therefore, the maximum major axis of the carbon-nitride composite inclusion of the Al-Ca-based oxysulfide nucleus must be 7 μm or less.
[0047]
On the other hand, even if the major axis of the carbon-nitride composite inclusions of the Al-Ca oxysulfide nucleus is 7 μm or less, if the number is less than 10 per 0.1 mm 2 , the Al-Ca oxysulfide Cannot sufficiently absorb Ti, Nb and / or Zr in steel. Ti, Nb and / or Zr that has not been absorbed form coarse Ti, Nb and / or Zr carbonitrides using Al oxide or the like as nuclei, so that pitting corrosion resistance is reduced. Accordingly, in the present invention, it was decided to include the carbonitride composite inclusion of the Al-Ca-based oxysulfide nucleus 0.1 mm 2 per 10 or more.
[0048]
Here, five inclusions were arbitrarily selected from the cross section of one test piece, and 0.1 mm 2 of the inclusions observed in each of the inclusions was selected.   And the number of per (the largest dimension of the line segments obtained when connecting a straight line between two different points on the surface of the inclusions and the matrix) observed inclusions each major axis is measured. Then, for each field of view, one of the measured inclusions having the largest major axis is specified, and the specified major axis of the inclusion is averaged over five fields to obtain one test test. Obtain the "maximum major axis" of the inclusion in the section of the piece.
[0049]
Next, in order to make the carbon-nitride composite inclusion of the Al-Ca oxysulfide nucleus in the low alloy steel according to the inventions (1) and (2) satisfy the above-mentioned condition, the Al-Ca-based composite acid is used. It is necessary to ensure a sufficient time for Ti, Nb and Zr absorption by the sulfide. For this purpose, the cooling rate at 1500 to 1000 ° C. during casting may be 500 ° C./min or less.
[0050]
【Example】
Twelve low alloy steels having the chemical compositions shown in Table 1 were produced.
[0051]
[Table 1]
Figure 2004002978
[0052]
[Table 2]
Figure 2004002978
[0053]
150 tons of molten steel was continuously cast for each steel type to form a round billet having a diameter of 220 mm. At this time, the amount of water in the mold and the amount of water for cooling the slab during the cooling process until the temperature of the molten steel of 1500 ° C. in the mold at the time of casting solidifies to 1000 ° C. are controlled to cool between 1500 and 1000 ° C. The speed was varied as shown in Table 2.
[0054]
Next, each of the round billets of the steel H and the steel I was heated to 1250 ° C., and then subjected to hot forging and hot rolling by an ordinary method to obtain a sheet material having a thickness of 15 mm.
[0055]
Each round billet of steel A, steel C and steels J to M was heated to 1250 ° C., and then hot-rolled by an ordinary method to obtain a round bar having a diameter of 40 mm.
[0056]
Each round billet of the steel B, the steels D to G, and the steel N was heated to 1250 ° C., and then hot-rolled by an ordinary method to obtain a seamless steel pipe having a thickness of 10 mm.
[0057]
A test piece having a thickness of 10 mm, a width of 10 mm, and a length of 10 mm was cut out from the plate, the round bar, and the steel pipe thus obtained, and the resin was cut so that a cross section cut perpendicular to the hot rolling direction became a test surface. After embedding and mirror polishing, inclusions were examined by observation with a scanning electron microscope at a magnification of 200 times. That is, five fields were observed with a scanning electron microscope at a magnification of 200 times, and the number of carbon-nitride composite inclusions of Al-Ca-based oxysulfide nuclei having a major axis of 7 μm or less observed per 0.1 mm 2 in each field was counted. Then, the values were averaged in five visual fields. The maximum value of the major axis of the carbon-nitride composite inclusions of Al-Ca oxysulfide and other carbonitrides observed in each of the five visual fields was averaged in the five visual fields, and measured as the “maximum major axis”. The composition of the inclusions was analyzed by EDX (energy dispersive X-ray microanalyzer).
[0058]
FIG. 1 shows a typical example of a carbon-nitride composite inclusion of an Al—Ca-based oxysulfide nucleus having a major axis of 7 μm or less. The black portion of the inner core is an Al-Ca-based oxysulfide, and the outer shell (white portion around the black portion) is a carbonitride of Ti, Nb and / or Zr.
[0059]
FIG. 2 is a view for explaining the analysis location of the carbon-nitride composite inclusion of the Al-Ca-based oxysulfide nucleus by EDX. EDX analysis was performed for a total of eight locations shown in FIG.
[0060]
Table 2 shows the results of the examination of inclusions, together with the cooling rates between 1500 and 1000 ° C.
[0061]
Next, a corrosion test piece having a thickness of 3 mm, a width of 10 mm, and a length of 40 mm was sampled from the plate, the round bar, and the steel pipe, polished with No. 600 emery paper, and degassed at 25 ° C. and 0.5% acetic acid + 5% at 25 ° C. It was immersed in a saline solution for 100 hours and examined for occurrence of pitting corrosion. Table 2 also shows the results of this survey.
[0062]
From Table 2, it is clear that in the case of Test Nos. 1 to 7 and 14 satisfying the conditions specified in the present invention, no pitting occurred, and good pitting resistance was obtained. On the other hand, in the case of Test Nos. 8 to 13, which deviate from the conditions specified in the present invention, coarse Ti, Nb and / or Zr carbonitrides are formed, and these become the starting points of pitting corrosion. Pitting corrosion resistance was poor.
[0063]
【The invention's effect】
The low-alloy steel of the present invention does not generate pitting corrosion originating from inclusions, and thus does not induce SSC originating from pitting corrosion. It can be used as a material for drill pipes, drill collars, soccer rods, and piping for oil plants.
[Brief description of the drawings]
FIG. 1 is a view showing a typical example of carbon-nitride composite inclusions of Al—Ca-based oxysulfide nuclei having a major axis of 7 μm or less.
FIG. 2 is a view for explaining the analysis site of carbon-nitride composite inclusions of Al—Ca-based oxysulfide nuclei having a major axis of 7 μm or less by EDX.

Claims (5)

質量%で、C:0.2〜0.55%、Si:0.05〜0.5%、Mn:0.1〜1%、S:0.0005〜0.01%、O(酸素):0.0010〜0.01%、Al:0.005〜0.05%、Ca:0.0003〜0.007%、Ti:0.005〜0.05%、Cr:0.1〜1.5%、Mo:0.1〜1%、Nb:0.005〜0.1%を含み、残部はFe及び不純物から成り、不純物中のPが0.03%以下、Nが0.015%以下の化学組成であって、Al−Ca系酸硫化物の核の周囲にTi及び/又はNbの炭窒化物の外殻を有する長径が7μm以下の複合介在物を0.1mmあたり10個以上含む低合金鋼。In mass%, C: 0.2 to 0.55%, Si: 0.05 to 0.5%, Mn: 0.1 to 1%, S: 0.0005 to 0.01%, O (oxygen) : 0.0010 to 0.01%, Al: 0.005 to 0.05%, Ca: 0.0003 to 0.007%, Ti: 0.005 to 0.05%, Cr: 0.1 to 1 0.5%, Mo: 0.1 to 1%, Nb: 0.005 to 0.1%, the balance being Fe and impurities, P in the impurities is 0.03% or less, and N is 0.015%. % or less of a chemical composition, 0.1 mm 2 per 10 major axis following compound inclusions 7μm having an outer shell of Ti and / or carbonitrides of Nb around the nucleus of Al-Ca-based oxysulfide Low alloy steel containing more than one piece. 質量%で、C:0.2〜0.55%、Si:0.05〜0.5%、Mn:0.1〜1%、S:0.0005〜0.01%、O(酸素):0.0010〜0.01%、Al:0.005〜0.05%、Ca:0.0003〜0.007%、Ti:0.005〜0.05%、Cr:0.1〜1.5%、Mo:0.1〜1%、Nb:0.005〜0.1%を含み、更にV:0.03〜0.5%、B:0.0001〜0.005%、Zr:0.005〜0.10%から選択される1種以上を含有し、残部はFe及び不純物から成り、不純物中のPが0.03%以下、Nが0.015%以下の化学組成であって、Al−Ca系酸硫化物の核の周囲に、Ti、Nb及びZrから選択した1種以上の元素の炭窒化物の外殻を有する長径が7μm以下の複合介在物を0.1mmあたり10個以上含む低合金鋼。In mass%, C: 0.2 to 0.55%, Si: 0.05 to 0.5%, Mn: 0.1 to 1%, S: 0.0005 to 0.01%, O (oxygen) : 0.0010 to 0.01%, Al: 0.005 to 0.05%, Ca: 0.0003 to 0.007%, Ti: 0.005 to 0.05%, Cr: 0.1 to 1 0.5%, Mo: 0.1-1%, Nb: 0.005-0.1%, V: 0.03-0.5%, B: 0.0001-0.005%, Zr : Containing at least one selected from 0.005 to 0.10%, the balance being Fe and impurities, with a chemical composition in which P in the impurities is 0.03% or less and N is 0.015% or less. In addition, a composite medium having a major axis of 7 μm or less having an outer shell of a carbonitride of one or more elements selected from Ti, Nb and Zr around a core of an Al—Ca-based oxysulfide. Low alloy steel containing objects to 0.1 mm 2 per 10 or more. Sが0.0010〜0.01質量%であることを特徴とする請求項1又は2記載の低合金鋼。3. The low alloy steel according to claim 1, wherein S is 0.0010 to 0.01% by mass. 請求項1又は3に記載の化学組成を有する鋼を鋳造する際に、1500℃から1000℃までの冷却速度を500℃/分以下とすることを特徴とする、Al−Ca系酸硫化物の核の周囲にTi及び/又はNbの炭窒化物の外殻を有する長径7μm以下の複合介在物を断面積0.1mmあたり10個以上含む低合金鋼の製造方法。A method of casting a steel having the chemical composition according to claim 1, wherein the cooling rate from 1500 ° C. to 1000 ° C. is 500 ° C./min or less, method of manufacturing a low alloy steel containing major axis 7μm following compound inclusions sectional area 0.1 mm 2 per 10 or more with an outer shell of Ti and / or carbonitrides of Nb around the nucleus. 請求項2又は3に記載の化学組成を有する鋼を鋳造する際に、1500℃から1000℃までの冷却速度を500℃/分以下とすることを特徴とする、Al−Ca系酸硫化物の核の周囲に、Ti、Nb及びZrから選択した1種以上の元素の炭窒化物の外殻を有する長径7μm以下の複合介在物を断面積0.1mmあたり10個以上含む低合金鋼の製造方法。The casting of steel having the chemical composition according to claim 2 or 3, wherein the cooling rate from 1500 ° C to 1000 ° C is 500 ° C / min or less, wherein the Al-Ca-based oxysulfide is used. A low-alloy steel containing 10 or more composite inclusions having a major axis of 7 μm or less having a shell of carbonitride of one or more elements selected from Ti, Nb, and Zr per 0.1 mm 2 having a core around the core. Production method.
JP2003082486A 2002-03-29 2003-03-25 Low alloy steel Expired - Lifetime JP3864921B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003082486A JP3864921B2 (en) 2002-03-29 2003-03-25 Low alloy steel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002093788 2002-03-29
JP2003082486A JP3864921B2 (en) 2002-03-29 2003-03-25 Low alloy steel

Publications (2)

Publication Number Publication Date
JP2004002978A true JP2004002978A (en) 2004-01-08
JP3864921B2 JP3864921B2 (en) 2007-01-10

Family

ID=30446310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003082486A Expired - Lifetime JP3864921B2 (en) 2002-03-29 2003-03-25 Low alloy steel

Country Status (1)

Country Link
JP (1) JP3864921B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006003775A1 (en) * 2004-06-14 2006-01-12 Sumitomo Metal Industries, Ltd. Low alloy steel for oil well pipe having excellent sulfide stress cracking resistance
WO2006009142A1 (en) * 2004-07-20 2006-01-26 Sumitomo Metal Industries, Ltd. Steel for steel pipe
US8110601B2 (en) 2007-01-22 2012-02-07 Suntory Holdings Limited Compound, α1 adrenergic receptor antagonistic agent, and composition
US8617462B2 (en) 2005-03-24 2013-12-31 Nippon Steel & Sumitomo Metal Corporation Steel for oil well pipe excellent in sulfide stress cracking resistance
US11060160B2 (en) 2014-12-12 2021-07-13 Nippon Steel Corporation Low-alloy steel for oil well pipe and method of manufacturing low-alloy steel oil well pipe

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017095794A (en) 2015-11-17 2017-06-01 株式会社神戸製鋼所 Duplex stainless steel material and duplex stainless steel tube

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006003775A1 (en) * 2004-06-14 2006-01-12 Sumitomo Metal Industries, Ltd. Low alloy steel for oil well pipe having excellent sulfide stress cracking resistance
AU2005258696B2 (en) * 2004-06-14 2008-10-09 Nippon Steel Corporation Low alloy steel for oil well pipe having excellent sulfide stress cracking resistance
EA011681B1 (en) * 2004-06-14 2009-04-28 Сумитомо Метал Индастриз, Лтд. Low alloy steel for oil well pipe having excellent sulfide stress cracking resistance
US8168010B2 (en) 2004-06-14 2012-05-01 Sumitomo Metal Industries, Ltd. Low alloy steel for oil well pipes having excellent sulfide stress cracking resistance
WO2006009142A1 (en) * 2004-07-20 2006-01-26 Sumitomo Metal Industries, Ltd. Steel for steel pipe
US7264684B2 (en) 2004-07-20 2007-09-04 Sumitomo Metal Industries, Ltd. Steel for steel pipes
EA008934B1 (en) * 2004-07-20 2007-10-26 Сумитомо Метал Индастриз, Лтд. Steel for steel pipes
AU2005264481B2 (en) * 2004-07-20 2008-09-25 Nippon Steel Corporation Steel for steel pipe
US8617462B2 (en) 2005-03-24 2013-12-31 Nippon Steel & Sumitomo Metal Corporation Steel for oil well pipe excellent in sulfide stress cracking resistance
US8110601B2 (en) 2007-01-22 2012-02-07 Suntory Holdings Limited Compound, α1 adrenergic receptor antagonistic agent, and composition
US11060160B2 (en) 2014-12-12 2021-07-13 Nippon Steel Corporation Low-alloy steel for oil well pipe and method of manufacturing low-alloy steel oil well pipe

Also Published As

Publication number Publication date
JP3864921B2 (en) 2007-01-10

Similar Documents

Publication Publication Date Title
CA2477420C (en) Low alloy steel
JP6677310B2 (en) Steel materials and steel pipes for oil wells
JP6399259B1 (en) High strength stainless steel seamless steel pipe for oil well and method for producing the same
JP4379550B2 (en) Low alloy steel with excellent resistance to sulfide stress cracking and toughness
JP6451874B2 (en) High strength seamless steel pipe for oil well and method for producing the same
EP3222740A1 (en) High-strength seamless steel pipe for oil wells and method for producing same
WO2006009142A1 (en) Steel for steel pipe
JP2001172739A (en) Steel for oil well use excellent in sulfide stress corrosion cracking resistance and method for producing steel pipe using same
JP2003193204A (en) Martensitic stainless steel
JP6237873B2 (en) High strength stainless steel seamless steel pipe for oil well
JP7156536B2 (en) Seamless stainless steel pipe and method for producing seamless stainless steel pipe
WO2021187331A1 (en) Stainless seamless steel pipe and method for producing stainless seamless steel pipe
JP6828557B2 (en) Seamless steel pipe for low alloy wells
JP2002060893A (en) Oil-well steel having excellent sulfide stress corrosion cracking resistance, and its manufacturing method
JP3864921B2 (en) Low alloy steel
JP2019065343A (en) Steel pipe for oil well and manufacturing method therefor
JP3933089B2 (en) Low alloy steel
JP6819837B1 (en) Stainless steel seamless steel pipe
JP3814836B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe with excellent corrosion resistance
JP3666388B2 (en) Martensitic stainless steel seamless pipe
JPWO2021065263A1 (en) Stainless steel seamless steel pipe and its manufacturing method
JP2003183781A (en) Martensitic stainless steel
JP7135708B2 (en) steel
JP6915761B1 (en) Stainless steel seamless steel pipe and its manufacturing method
WO2022009598A1 (en) Seamless stainless steel pipe and production method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060925

R150 Certificate of patent or registration of utility model

Ref document number: 3864921

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091013

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111013

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131013

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131013

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131013

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term