JP2004002184A - Method for preventing flashback of gaseous mixture flowing into reaction chamber - Google Patents

Method for preventing flashback of gaseous mixture flowing into reaction chamber Download PDF

Info

Publication number
JP2004002184A
JP2004002184A JP2003126143A JP2003126143A JP2004002184A JP 2004002184 A JP2004002184 A JP 2004002184A JP 2003126143 A JP2003126143 A JP 2003126143A JP 2003126143 A JP2003126143 A JP 2003126143A JP 2004002184 A JP2004002184 A JP 2004002184A
Authority
JP
Japan
Prior art keywords
cross
sectional area
mixture
reactor
reaction chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003126143A
Other languages
Japanese (ja)
Inventor
Andreas Docter
アンドレアス・ドクテル
Helmut Gildein
ヘルムット・ギルダイン
Andreas Kaupert
アンドレアス・カウパート
Stefan Schoeffel
シュテファン・シェッフェル
Wolfgang Weger
ウォルフガング・ヴェーゲル
Norbert Wiesheu
ノルベルト・ヴィショイ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mercedes Benz Group AG
Original Assignee
DaimlerChrysler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DaimlerChrysler AG filed Critical DaimlerChrysler AG
Publication of JP2004002184A publication Critical patent/JP2004002184A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/72Safety devices, e.g. operative in case of failure of gas supply
    • F23D14/82Preventing flashback or blowback
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/002Avoiding undesirable reactions or side-effects, e.g. avoiding explosions, or improving the yield by suppressing side-reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0278Feeding reactive fluids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/382Multi-step processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00309Controlling the temperature by indirect heat exchange with two or more reactions in heat exchange with each other, such as an endothermic reaction in heat exchange with an exothermic reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/0053Controlling multiple zones along the direction of flow, e.g. pre-heating and after-cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00245Avoiding undesirable reactions or side-effects
    • B01J2219/00259Preventing runaway of the chemical reaction
    • B01J2219/00263Preventing explosion of the chemical mixture
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0244Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being an autothermal reforming step, e.g. secondary reforming processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0838Methods of heating the process for making hydrogen or synthesis gas by heat exchange with exothermic reactions, other than by combustion of fuel
    • C01B2203/0844Methods of heating the process for making hydrogen or synthesis gas by heat exchange with exothermic reactions, other than by combustion of fuel the non-combustive exothermic reaction being another reforming reaction as defined in groups C01B2203/02 - C01B2203/0294
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/142At least two reforming, decomposition or partial oxidation steps in series
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/80Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
    • C01B2203/82Several process steps of C01B2203/02 - C01B2203/08 integrated into a single apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for preventing flashback of a gaseous mixture flowing into a reaction chamber. <P>SOLUTION: The method for preventing flashback of a gaseous mixture flowing into a reaction chamber features that the cross-sectional area of the through flow is varied in the region between the entrance opening and the reaction space according to the volume of the flowing gaseous mixture in such a manner that the velocity v of the gaseous mixture is controlled to be higher than the burning rate vbr of the gaseous mixture in at least most of the volume generated (load L). The present invention also relates to a reactor equipped with the entrance opening for the gaseous mixture, a distribution zone for the gaseous mixture equipped with a device which varies the cross-sectional area of the through flow, and the reaction chamber so as to carry out the above method. The present invention can be applied for e.g. a self-heating reactor which supplies a hydrogen-containing gas to a fuel cell APU. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、貫流される断面積が入口開口部と反応室の間の領域で変わる反応室に流入する混合気のフラッシュバックを防止する方法に関する。さらに、本発明は、上述の方法を実行するための反応器、およびその反応器と共にその使用方法に関する。
【0002】
【従来の技術】
一般的な従来技術から、反応室内で転化される抽出物の混合気を備えている反応器は、公知である。一般に反応室内に触媒を有する自熱的反応器と称されるものの場合、抽出物の転化は、発熱および吸熱反応がその反応室内で起こるように行われる。スタートした後、および/または抽出物が適切に調節されると、熱エネルギーのさらなる供給が不要となる。空気、蒸気および炭化水素含有化合物から成る抽出物の混合気、例えばガソリン、の自熱的改質は、このような反応の一例である。
【0003】
【特許文献1】
独国特許発明第 195 26 886 C1 号明細書
【0004】
【特許文献2】
独国特許出願公開第 100 02 025 A1 号明細書
【0005】
【発明が解決しようとする課題】
入口開口部を通過して反応器に流入する抽出物は、通常、抽出物を互いに完全に混合させ、適切であれば個々の抽出物が実際の反応室を通過する前にそれらを同時に蒸発させ、相応してそれらをそこで転化させるゾーンを、最初に通過する。このような反応器内には、可燃性混合気がこの混合気分配ゾーン内にすでに存在する。反応室から混合気分配ゾーン内へのフラッシュバックがある場合、すなわち自然発火がこの領域で起こる場合、そこに位置する混合気は、少なくとも部分的に転化される。その結果、熱エネルギーは、その熱エネルギーが必要とされず、一定の条件下では、混合気分配ゾーンそれ自体に、およびその直ぐ近くの周辺部に、熱的過負荷の形の悪影響を有する領域で解放される。但し、一般により決定的な欠点は、混合気分配ゾーン内で解放された熱エネルギーが、反応室の領域内で失われるということである。反応室内の混合気の転化、および/または反応室から流出する混合気の組成や温度は、ゆえに弱められ、最悪の場合には全く起こらない。
【0006】
最小限の一酸化炭素含有物を有する水素含有ホルマートは、メタノールの改質で起こる全ての動作状態および負荷状態である限り得られるはずであるという条件で、特許文献1は、それを実行するのに適した方法および装置を提案しており、それによれば、高メタノール転化速度に温度制御される入力端反応室セクションの全長および/または有効入口断面積を、高メタノール転化速度に温度制御される反応室セクションで改質される気体混合気が実質的に一定の滞留時間で起こるように、形成される混合気の処理量に応じて設定できる。その結果、メタノールの改質も、大きく変動する処理量の気体混合気が常に高いメタノール転化速度で且つ望ましくない一酸化炭素の形成も常に低く抑えて改質されるように実行できる。
【0007】
触媒を有する反応室内の反応の動的応答挙動を改良する目的を考慮して、特許文献2は、媒体にアクセス可能であり、必要な触媒を有する有効断面が、媒体それ自体の圧力の影響を受ける方法をも開示している。反応器内、または反応器へのダクト内に配置されるピストンが、ここでは媒体によって、および媒体内の圧力により、バネに対して押し付けられて、有効断面を多少開口させる。
【0008】
上述の2つの方法または対応する装置によって、上述の特許文献2の記述によれば、一般に改質油(ガソリン)となるメタノールすなわち媒体の転化は、コントロール、調節およびアクチュエータシステムに投入される費用の多少によって影響を受ける。
【0009】
特に自熱プロセスの役割を果たすフラッシュバックに関する冒頭で記述した問題は、2つの上述の文献では認識されていない。
【0010】
本発明の目的は、反応室に流入する混合気のフラッシュバックを回避する方法を提供し、特にその方法を実行するために使用する反応器を提供することである。
【0011】
【課題を解決するための手段】
本発明によれば、この目的は、流入混合気の発生体積の少なくとも大部分で、混合気の流速が混合気の燃焼速度よりも大きくなるように、貫流される断面積を流入混合気の体積に応じて入口開口部と反応室の間の領域で変化させることで達成される。
【0012】
混合気が先に流入してすでに反応すなわち燃焼している要素に流入する流速vよりも混合気の燃焼速度vbrが大きい場合にのみフラッシュバックが起こるので、混合分配ゾーン内の流速を十分高くすることでフラッシュバックを回避できる。
【0013】
要求される負荷状態への適合は、通常では、送り込まれる混合気の体積流を変化させることによって行うこのような反応器で実行される。貫流される断面積が、最大流速vmaxが全負荷で起こるように構成される場合、燃焼速度vbrは通常、最大速度の30%〜50%程度の大きさとなることが分かる、そうでなければ、無駄に高い圧力損失がより高い負荷範囲で発生することとなるからであり、これは、「過剰に」小さな断面積の結果として、動作に重要である。但し、これは、予想される負荷の広がりの50%〜70%のみを、残りの30%〜50%では冒頭で記述した欠点であるフラッシュバックの危険があるので、反応器に対して使用することをも意味する。
【0014】
本発明による方法を利用すると、連続の法則に従って予め定義した流量を有する反応室の上流の領域の、貫流される断面積を変化させることによって、燃焼速度vbrよりも高い流速vをそれぞれの場合で設定することが特に有利に可能となる。このようにして、前よりも負荷の広がりの大部分を使用することが可能となる。このように使用される反応器の負荷の広がりの全範囲で、フラッシュバックを確実に起こさないようにすることも可能となる。熱エネルギーの解放は、それが望まれるところ、特に反応室それ自体の中で正確に起こるようにできる。したがって、反応室を理想的動作条件下で使用でき、所望組成および所望温度レベルを再現可能に反応室の出力で達成できるようにする。
【0015】
フラッシュバックの結果として望ましくない領域における熱エネルギーの解放についての、冒頭で記述したこれらの問題に加えて、不都合な副産物の形成も抽出物の転化中のフラッシュバックが原因で起こる。これらの副産物、つまり炭素を含有する抽出物の場合では煤煙が、堆積することになり、反応器の動作の方法に悪影響を及ぼす。それらは、例えば触媒、センサ、機械的に動かされる可動部品などに蓄積し、それらの機能を損なう。但し、フラッシュバックを防止することによって、副産物のこの形成や関連した不都合な帰結を回避することもできる。
【0016】
本発明による一つの非常に有利な展開例によれば、少なくとも反応室を有する反応器のコールドスタートの場合、貫流される断面積は、流入混合気の体積が増加するとその流れの中心から増加する。
【0017】
断面が流れの中心から開くということで、反応室に流入する中心流が、たとえ小体積流であっても達成される。反応室内の中心に発生する熱は、特に反応室が、例えば、キャリヤ材料上に配置される触媒をもって構成され、キャリヤ材料内の熱が熱伝導で放熱する場合、反応室の周囲領域に分配される。本発明のこの改良例によって、一方では、負荷の急上昇の場合に連続的に動作させ、他方では、コールドスタート挙動を改善、特に「常態」動作相により速やかに移行させることが可能となる。コールドスタートに必要な時間の短縮は、熱伝導によって外部に放熱される熱が反応室の周囲領域を加熱し、その結果、全くまたは少なくともほんの少ししか熱が、全負荷以下の少なくとも全ての負荷範囲内で、失われないということで達成される。
【0018】
反応器が代わりに、高い動的要求のない安定状態動作相、および/または熱損失が、発生される生成物の品質におおきな悪影響を及ぼすことなく許容される動作相にある場合、本発明の1つの非常に好ましい改良例によれば、長期的に見れば、反応器の領域の全てが、少なくともほぼ同じ時間で流入混合気と接触するように、貫流される断面積を変化させることも可能である。
【0019】
反応器のローディングはゆえに、特に反応器が、例えば触媒を有する場合、長時間平均にわたって補償されるので、熟成プロセスは反応器全体にわたって均一に分配される。ゆえに、反応器の有効寿命を延ばすことができる。
【0020】
本発明による方法を実行するための反応器は、流れの方向に順番に、抽出物の入口開口部、混合気分配ゾーン、および反応ゾーンを有し、貫流される断面積を変化させる装置は、混合気分配ゾーン内に配備される。
【0021】
本発明による方法は、このような反応器の実施形態で理想的に実施できる。ここでは、断面積を変化させる装置が混合気分配ゾーン内で優勢な条件、例えば、高温度、アグレッシブ抽出物等の下で必須機能を確実に達成できる限りそれらがどのように実施されるかが実質的に重要となる。これらの装置は、連続的に活動する装置として、例えば光学では公知であるような、例えば、虹彩絞のような方法で、実施される。
【0022】
これに代わるものとして、混合気分配ゾーン内の断面積を変化させる装置は、反応器の1つの非常に好ましい要素によれば、混合気分配ゾーンが複数のセグメントに分割され、少なくともそれらの数セグメントの流入開口部を少なくとも部分的に閉じることができるように実施される。
【0023】
非常にロバストに実施できるこの設計は、例えば、温度や媒体の攻撃性に関して、好ましくない条件下でも高度の耐故障性を有する装置を作動させるのに足る方法を可能にする。さらに、対応する内蔵要素、ディフューザ等によって混合気分配ゾーン内で達成される流れの選択的影響は、区分化により比較的低体積流でも、まず第一に、完全に維持されるか、または達成される。必要ならば、上述の効果は、前記体積流に対するセグメント形状の改良によってそれぞれの予め定義された体積流に適合させることができる。流入量は、ゆえに、流速に関してだけでなく流れの形成に関しても適切に最適化される。特に、流れの中に十分高い流速が存在しないデッドゾーンを回避することがここでは可能となる。その結果、一方では、抽出物の望ましくない転化、および他方では、形成される副産物の堆積を、特に都合良くこれらのデッドゾーン内で回避できる。
【0024】
本発明による方法の、および上述の反応器の1つの特に有利な使用は、燃料電池、特に補助電力ユニットの燃料電池を作動させるための水素含有気体を発生させるために、少なくとも酸素、水、特に蒸気、および炭化水素含有化合物、好ましくはガソリンまたはディーゼルを含む抽出混合気の自熱的改質である。
【0025】
燃料電池用の気体発生システムでこのように使用する場合、上述の利点は、最大可能負荷の広がり、および堅牢且つ確実に動作する設計に関して特に有利なものとなる。燃料電池が移動システム、例えば自動車等で使用される場合、すでに記述の利点は、堅牢性、複雑さ、重量、および動作の動的方法に関する自動車構成要素から生じる基本的要求に関して特に有利となる。
【0026】
少なくとも反応室を有する反応器のコールドスタートの場合、貫流される断面積は、流入混合気の体積が増加すると流れの中心から増加する、本発明による方法の改良例も、移動システムではコールドスタートは非常に頻繁に起こるゆえに、コールドスタート挙動の改良が全システム内の決定的な改良につながるので、このようなシステムで、この特定の場合の用途で非常に都合良く使用できる。
【0027】
本発明の他の有利な改良例は他の従属請求項から、および図を参照して以下で例示される典型的実施形態から明らかとなる。
【0028】
【発明の実施の形態】
図1は、ここで自熱的改質器として作動するようにした反応器1を例示し、本発明をこの例をもって説明を行うだけのものであり、自熱的改質器の特定の用途の場合に限定するものではない。
【0029】
水素含有気体を発生させるための自熱的改質器としてのその実施形態によれば、反応器1は、キャリヤ構造体3上に、以下では触媒キャリヤ3と称される接触反応活性材料を収容する反応室2を有する。反応器1に流入する抽出物A、例えば空気、水素およびガソリンまたはディーゼルは、入口開口部4を通過して、必要な場合、抽出物Aが完全に混合される混合気分配ゾーン5に至り、尚も恐らく液状のまま存在する成分は気化され、適切であれば、過熱される。さらに、抽出物Aは、それらが可能な限り均一且つ均質に反応室に流入するように、混合気分配ゾーン5によって、例えば1つまたはそれ以上のディフューザによって分配される。
【0030】
触媒キャリヤ3を備えている反応室2は、混合気分配ゾーン5から入って来る抽出物が最初にそれを通過して流れる1つの発熱反応ゾーン6と、流動方向に沿ってその発熱反応ゾーン6の後に続く1つの吸熱反応ゾーン7との2つの異なるゾーンに分割できる。さらに、混合気分配ゾーン5は、原則的にここでは点線で示されている装置を有し、その装置については後に詳述する。
【0031】
図1を参照するに、多数の温度分布Tを反応器1の全長xに対して追加的にプロットしている。一定の温度分布Tmin(図中のT最小)は、抽出物Aから得られた改質油が反応室2を出て行くときそれが少なくとも保持していなければならない温度を示す。この温度Tminは、次の構成要素、例えば気体精製装置、シフトステージ等で決まる。温度分布T1は、最良可能レベルの効率、ゆえに最低可能入口温度Tiで反応室2の出口においてこの温度Tminに達するのが理想である。入口温度Tiにする温度分布T1の場合、抽出物Aは、発熱反応ゾーン6内での反応中にそれらに含まれる熱エネルギーQ1を解放する。次に吸熱反応ゾーン7の領域を冷却する体積流は、吸熱反応ゾーン7の、つまり反応室2の出力において、温度Tminよりも高いか、またはそれに等しい温度T1aに達する。
【0032】
但し、抽出物Aの可燃混合気は、もうすでに混合気分配ゾーン5内に存在するので、すでに冒頭で説明したように、高温触媒キャリヤ3で開始されるフラッシュバックを、反応室2から、熱エネルギーの解放と組み合わせて、抽出物Aの少なくとも部分的転化をもたらす混合気分配ゾーン5の領域内で起こさせることが可能である。温度分布T2はゆえに典型的に起こる。
【0033】
温度分布T2は同入口温度Tiで開始する。但し、抽出物Aに含まれ、その絶対値でQ1に相当する熱エネルギー量Q2の解放は、ゆえに混合気分配ゾーン5の領域内でもうすでに起こっている。但し、エネルギーQ2のこの早期解放の結果、前記エネルギーQ2は、反応室2の領域には存在しない。反応室2から出て来る体積流の結果として生じる出口温度T2aは、ゆえに必須温度Tminよりも低い。これに加えて、一般に、使用された抽出物Aの転化についての低下もあるので、次の構成要素内で改質油を生成するためにはさらなる費用の増大が伴う。
【0034】
それにも関わらず、十分に高い出口温度が尚も達成されるためには、温度分布T2は、より高温度に向かって、上向きにシフトされる。但し、その結果生じる温度分布T3は、より高い入口温度Ti’を必要とし、ゆえに反応器1の効率が減少する。
【0035】
図2は、反応室2の流入の領域内の流速vと、反応する材料の必須転化または抽出物Aの体積量を表す負荷Lの間の依存関係を例示する図表である。流速vおよび負荷Lの両方とも、最大流速vmaxの、および全負荷Lmaxのそれぞれ起こる値に標準化され、パーセント表示される。
【0036】
フラッシュバックの結果として、または一定の状況下で、抽出物Aの自然発火の結果として、上述の望ましくないエネルギーの解放は、冒頭で記述したように、抽出物Aの流速vが燃焼速度vbrよりも小さい場合のみ起こる。図2の図表では、燃焼速度vbrは、ゆえに最大流速vmaxの40%に設定される。流速vと負荷Lの間の関係は、点線の曲線9で与えられる。一定値vbrとの交点10から、効率に関して最適化され、信頼できる反応器1の動作モードは、全負荷Lmaxの40%と100%の間の負荷の広がりのみで可能と読み取ることができる。
【0037】
フラッシュバックの問題を低減し、最適化された効率を伴う、つまりT1に類似する温度分布を有する、負荷の広がりのより大部分を使用できるようにするために、装置8が反応器1の混合気分配ゾーン5内に提供される。これらの装置8は、流入抽出物Aの体積流に応じて混合気分配ゾーン5の領域の、貫流される断面積を変化させるために使用されるので、可変流速vを連続の法則に従って設定できる。その結果、反応室2への入口前のその領域、ここでは特に入口開口部4と反応室2の間の領域の流速vは、前記流速vが負荷の広がりの最大可能領域にわたり燃焼速度vbrよりも大きくなるように測定されるか、または抽出物Aを調整するための予め定義された値から理想的に生じる、抽出物Aの体積流に応じて設定される。ここでは、できるだけ転化の特性を示す予め定義された値の全てまたはそれらの幾つかが、計量、例えば燃料の計量のために使用される。流速vの適合は、ここでは、通常、少なくとも全負荷の場合に、反応室2の全断面にわたり、抽出物Aを分配するために流路断面積の拡大が提供されるので、混合気分配ゾーン5のまさにこの領域においては非常に重要となる。フラッシュバックに関わる問題は、ゆえに、本質的に反応室2の上流のこの領域に集中する。
【0038】
図3は、反応器1の回転対称構造の半分の断面図で、反応器1の混合気分配ゾーン5の領域内の装置8の可能な改良例を示す。装置8は、ここでは混合気分配ゾーン5をセグメント11に分割する複数の環状壁から構成される。環状ダクト111をここに形成するこれらのセグメント11は、前記セグメント11の入口断面積12に対応する環状カバー要素13によって閉じられる。混合気分配ゾーン5内の貫流される断面積は、ゆえに多数の段階で解放または閉鎖される。当然、少なくとも2つのこのようなセグメント11は、所望方法の動作を確保するために必要である。最大数は、負荷の広がりによるだけでなく、構造的空間と、混合気分配ゾーン5内にそれを通る流れがある断面積によって決定される。
【0039】
典型的実施形態のこの用途の場合、5本の環状ダクト111とそれらに対応する4本の環状カバー要素13とが選択されている。負荷Lが上昇して個々の環状ダクト111が連続的に開口したとするとその結果生じる流速vの曲線は、図2の一点破線の曲線14で例示される。全負荷Lmaxのほぼ8%まで達した後、流速vの全てが燃焼速度vbrよりも上となる。ほぼ理想的動作条件下で使用される負荷の広がりの領域は、ゆえに8%〜100%の間である。これは、曲線9によって説明された設計への顕著な改良となる。
【0040】
図3の装置8の設計は、ここでは、抽出物Aの流入混合気の分配が混合気分配ゾーン5内で達せられること示す。この目的ために、上述の理由で、貫流される断面積は、流れ分配装置15の使用によってディフューザのように触媒キャリヤ3の方向に拡がる。セグメント11の構造は、入口断面積12のそれぞれが入口断面積12の合計の、ゆえに貫流される有効断面の特定領域を有するように選択される。各セグメント11はまた、その入口断面積12が入口断面積12の合計について有したものと同じ割合の出口断面積16の合計を有する出口断面積16を有する。貫流される断面積の拡大、つまりディフューザによって生成される流体効果は、ゆえに各セグメント11に伝達されるので、触媒キャリヤ3上への匹敵する流れが、抽出物Aの体積流や、閉じているかまたは開いているセグメント11の数に関係なく常に達成される。
【0041】
本明細書に提案される典型的実施形態によれば、環状カバー要素13は、共通キャリヤ17上に互いに固定して配置される。非常に頑丈であり且つ混合気分配ゾーン5内の予想される攻撃的な条件下でも高耐故障性をも有するこの設計では、環状カバー要素13は、それらがそれぞれ共に移動され、配置により予め定義された通りにプロセス中に連続的に個々の環状ダクト111を開くか、または貫流される断面積を個々のダクト111の方向に連続的に拡大するようにキャリヤ17上に配置される。理論的にも考えられる全かぶせ要素13の移動の代わりに、それぞれの場合で個々に且つ互いに独立しているので、共通キャリヤ17が非常に頑丈な設計となる。キャリヤ17それ自体は、抽出物Aの主流の方向に移動される。これは、前記流れに対する横方向の移動と比べて滑り面の汚染に関してより好ましい。さらに、互いに移動されることになる可動部分は、摩擦が増大し、ゆえに作動させるのに必要な力も増大する流体圧によって互いに押し付けられない。キャリヤ17のドライバは、キャリヤ17が対応する長さを有するように構成されている場合、または適当な伝動要素、例えばプッシュ−プルロッドがある場合、非常に僅かに反応器1の外側に向かって移動される。その状況は、ガイドおよびシールに匹敵する。その設計は、ゆえに、入口開口部4の領域、および混合気分配ゾーン5の領域に行きわたる抽出物Aの温度および攻撃性に関する条件から独立して実施されるので、密閉や誘導だけでなくコントロールおよび/または調節も、適切に高度の信頼度で、しかも容易且つ費用効果的に実行される。
【0042】
個々のセグメント11の開閉は、互いに近接しているセグメント11が連続的に開くか、または閉じるようになっている環状カバー要素13の配置によって実行される。これは、触媒キャリヤ3の領域に新たな流入がある領域、あるいは流入がもはや存在しない領域がそれぞれの場合で互いに直ぐ隣り合うこととなる。それらは、ゆえに互いに作用し合い、熱エネルギーを極めて容易に交換できるので、反応器1の動作がより均一となる、ゆえに所望の転化に関する改良となる。
【0043】
特に、反応器1のコールドスタートの場合、これは、内側から外側への個々のセグメント11の連続的開口を通じて中心に位置する領域18内の触媒キャリヤ3上への流入が、最初にあると非常に好都合に使用される。触媒キャリヤ3内の全方向に起こる熱伝導の結果として、熱は最初この第1に使用された中心領域18から周囲領域全体に伝わる。周囲領域への流入が、近接セグメント11を開口することによって抽出物Aの増加体積流を通じて解放される場合、この領域はもうすでに予備加熱されているので、触媒活性材料が、非常に早くその動作温度に達するか、または恐らくもうすでにそれに達している。抽出物Aの転化は非常に早く開始し、反応器1をコールドスタートさせるのに要する時間が低減される。加えて、部分負荷の全条件下で、熱損失を常に構成する反応室2の領域から周囲に出て行く熱の伝達は、回避されるか、または少なくともかなり低減されるので、反応器1の効率もゆえに増大する。
【0044】
図4は、装置8の代替実施形態を例示する。ここでも、混合気分配ゾーン5は、個々のセグメント11に分割される。これらは、中心領域内に配置される中心ダクト112の回りの同心環状ダクト111として実施される。入口開口部4の領域内の、図4で断面が入口開口部4と混合気分配ゾーン5の間の接合部にもう一度例示されているセグメント11も、流れの方向に開く領域としてここでは実施される。上述した要件、および好ましい改良例は、環状カバー要素13のこれらを除き、ここでは同じように適用する。図4および典型的実施形態の以下の図についての参照記号は、構成要素および/または断面の匹敵する動作方法があるときには図3のこれらと同じように使用する。
【0045】
環状カバー要素13の代わりに、図4による改良例による装置8は、シース19およびニードル20を有する。上述断面図で示された図4の線V−Vについての断面図であるこれらは、図5に示されている。装置についての上述の機能的原理はここでは変わらない。但し、シース19およびニードル20を有する構造の結果として、それぞれ個々のセグメント11またはその入口断面積12は、開いているかまたは閉じているか選択的である。ニードル20およびシース19は、この目的のために抽出物Aの流れの方向に移動される。ドライブも、ニードル20および/またはシース19が対応する長さであると考えられる場合、ここでは反応器1の外側に向かって極めて容易に移動される。その状況はガイドおよびシールに匹敵する。その設計もまた、従ってここでは、入口開口部4の領域および混合気分配ゾーン5の領域に行きわたる抽出物Aの温度および攻撃性に関する条件から独立して実施される。
【0046】
入口開口部4の全範囲にわたっての抽出物Aの交換を確実にする、ゆえに、所望の順序でセグメント11を開閉することができる可能性を提供するために、ニードル20と、ニードルから最も遠くに離れて配置されるシースとの間に配置される少なくともシース19は、開口部21を有すべきである。ドリル加工穴、窓などとして実施されても良く、一定の状況下では、シース19の最大可能領域をも構成するこれらの開口部21によって、入口開口部4の断面積全体にわたっての抽出物Aの交換を確実にすることが可能となる。ニードル20が構造体から後方に案内される場合、それが、一定の状況下では、例示されるように、適切であり、すなわちここでは必要であり、シース19の最外部も開口部21を有する場合、例えば、ニードル20に対して直角をなす入口開口部4への体積流で使用することが可能となる。
【0047】
個々のセグメント11の開口および/または閉口中の動作方法は、ゆえに、装置8の設計ゆえに機械的仕様に配慮する必要もなく、反応器1の要求、ここでは特に、反応室2の、すなわち触媒キャリヤ3のこれらに自在に適合される。コールドスタート挙動の最適化、および熟成プロセスの最適化等のために冒頭で記述した動作方法の利用は、ゆえに、極めて容易且つ柔軟に可能となる。
【0048】
さらに、図4および5で説明したような設計によって、混合気分配ゾーン5の領域内の抽出物の流れのデッドゾーンを回避するか、または少なくともそれらを低減することが可能となる。冒頭で記述したような、ガソリンまたは特にディーゼルの自熱的改質中の副産物、例えば、煤煙の形成は、ゆえに理想的に防止される。ゆえに、機構の汚染、特に煤煙で触媒活性材料の表面が被覆されるのが防止される。従って、反応器1の有効寿命や改質油の品質だけでなく反応器1の動作信頼性を高めることが可能となる。
【0049】
図6は、装置8の他の代替実施形態を例示する。ここでもまた、混合気分配ゾーン5は、個々のセグメント11に分割される。これらのセグメント11は、ここでは円形断面形状を有する混合気分配ゾーン5を三分円の形状の3つの線領域113に分割する分割壁によって形成される。入口開口部4の領域内の、図6で断面が入口開口部4と混合気分配ゾーン5の間の接合部にもう一度例示されているセグメント11も、流れの方向に開く領域としてここでは実施される。入口開口部4と混合気分配ゾーン5の間の領域内の、各線領域113は入口開口部22を有する。上述の入口断面積12とそれらの機能がほぼ対応するこれらの入口開口部22は、順に閉じられるので、個々の線領域113は個々に且つ互いに独立して開閉される。
【0050】
理論上、開くまたは閉じるための任意の所望方法が可能であるが、流入開口部22がそれぞれニードル23によって閉口および/または開口される、図7で概略的に例示された解決法を採用するのが特に望ましい。ニードル23の操作だけでなく動作方法や支持装置/ガイドも、ニードル20およびシース19に対して上述したものと同じである。
【0051】
装置の実施形態の全ては、反応器1内の、上述し特に図3の範囲内で全般的に議論した好ましい可能性も網羅する。さらに、他の装置8を形成するために、様々な典型的実施形態からの個々の特徴についての適切な組合せの全てが考えられる。これらも、同様に反応器1を機能および動作させる好ましい方法を実現し、また、本発明の範囲内に含まれる。
【図面の簡単な説明】
【図1】反応器の全長xにわたる予想される温度分布Tだけでなく自熱的改質器として作動される反応器を示す図。
【図2】負荷Lに応じて反応室へ流入する領域の流速vの線図。
【図3】貫流される断面積を変化させる装置を備えた反応器の予想される改良例を示す図。
【図4】貫流される断面積を変化させる装置を備えた反応器の代替改良例の図。
【図5】図4の実施形態の線V−Vについての断面図。
【図6】貫流される断面積を変化させる装置を備えた反応器の他の代替改良例の図。
【図7】図6の実施形態の線VII−VIIについての断面図。
【符号の説明】
1 反応器
2 反応室
3 キャリヤ構造体
4 入口開口部
5 混合気分配ゾーン
6 発熱反応ゾーン
7 吸熱反応ゾーン
8 装置
9 点線曲線
10 交点
11 セグメント
12 流入開口部/入口断面積
13 環状カバー要素
14 破線曲線
15 流れ分配装置
16 出口断面積
17 キャリヤ
18 領域
19 シース
20 ニードル
21 開口部
22 流入開口部/入口断面積
23 ニードル
111 環状ダクト
112 円形中心ダクト
113 線領域
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for preventing flashback of an air-fuel mixture flowing into a reaction chamber where the cross-sectional area that flows through changes in the region between the inlet opening and the reaction chamber. Furthermore, the invention relates to a reactor for carrying out the above-described method and to its use with the reactor.
[0002]
[Prior art]
From the general prior art, reactors comprising an extract mixture which is converted in a reaction chamber are known. In the case of what are generally referred to as autothermal reactors with a catalyst in the reaction chamber, the conversion of the extract is carried out so that exothermic and endothermic reactions occur in the reaction chamber. After starting and / or if the extract is properly adjusted, no further supply of heat energy is required. Autothermal reforming of an extract mixture consisting of air, steam and hydrocarbon-containing compounds, such as gasoline, is an example of such a reaction.
[0003]
[Patent Document 1]
German Patent Invention No. 195 26 886 C1 Specification
[0004]
[Patent Document 2]
German Patent Application Publication No. 100 02 025 A1
[0005]
[Problems to be solved by the invention]
Extracts that flow into the reactor through the inlet opening are usually allowed to mix the extracts thoroughly with each other and, if appropriate, evaporate them simultaneously before passing through the actual reaction chamber. Correspondingly, a zone is first passed through which they are converted there. In such a reactor, a combustible mixture is already present in this mixture distribution zone. If there is a flashback from the reaction chamber into the mixture distribution zone, i.e. if spontaneous ignition occurs in this region, the mixture located there is at least partially converted. As a result, the thermal energy is an area that does not require that thermal energy and, under certain conditions, has an adverse effect in the form of thermal overload on the mixture distribution zone itself and on its immediate periphery. Released. However, a generally more critical drawback is that the heat energy released in the gas mixture distribution zone is lost in the region of the reaction chamber. The conversion of the air-fuel mixture in the reaction chamber and / or the composition and temperature of the air-fuel mixture flowing out of the reaction chamber are thus weakened and do not occur at all in the worst case.
[0006]
Patent Document 1 does so on condition that a hydrogen-containing formate with minimal carbon monoxide content should be obtained as long as it is in all operating and loading conditions that occur in the reforming of methanol. Is proposed, whereby the total length and / or effective inlet cross-section of the input end reaction chamber section temperature controlled to a high methanol conversion rate is temperature controlled to a high methanol conversion rate. It can be set according to the throughput of the mixture to be formed so that the gas mixture reformed in the reaction chamber section occurs with a substantially constant residence time. As a result, the reforming of methanol can also be carried out so that a highly variable throughput gas mixture is always reformed at a high methanol conversion rate and also with an undesirably low carbon monoxide formation.
[0007]
In view of the objective of improving the dynamic response behavior of the reaction in the reaction chamber with the catalyst, US Pat. The method of receiving is also disclosed. A piston located in the reactor or in the duct to the reactor is pressed against the spring, here by the medium and by the pressure in the medium, opening up some of the effective cross section.
[0008]
According to the description of the above-mentioned patent document 2 by the above-mentioned two methods or corresponding devices, the conversion of methanol, i.e. the medium, which is generally reformed oil (gasoline), is a cost of control, regulation and input to the actuator system. Affected by some.
[0009]
In particular, the problems described at the beginning of the flashback that plays the role of an autothermal process are not recognized in the two above-mentioned documents.
[0010]
The object of the present invention is to provide a method for avoiding flashback of the air-fuel mixture flowing into the reaction chamber, and in particular to provide a reactor used to carry out the method.
[0011]
[Means for Solving the Problems]
According to the present invention, the object is to reduce the cross-sectional area through which the flow rate of the air-fuel mixture becomes larger than the combustion speed of the air-fuel mixture in at least the majority of the generated volume of the air-fuel mixture. This is achieved by varying the region in the region between the inlet opening and the reaction chamber.
[0012]
Since the flashback occurs only when the combustion velocity vbr of the air-fuel mixture is larger than the flow velocity v that flows into the element that has already reacted or burned, the flow velocity in the mixture distribution zone is sufficiently high. You can avoid flashback.
[0013]
Adaptation to the required load conditions is usually carried out in such a reactor which is carried out by changing the volume flow of the incoming mixture. It can be seen that if the cross-sectional area to be flowed through is configured such that the maximum flow velocity vmax occurs at full load, the combustion velocity vbr will typically be on the order of 30% to 50% of the maximum velocity, This is because wastefully high pressure losses will occur at higher load ranges, which is important for operation as a result of “excessively” small cross-sectional areas. However, this only uses 50% to 70% of the expected load spread, and the remaining 30% to 50% is used for the reactor because there is a risk of flashback, which is the drawback described at the beginning. It also means that.
[0014]
Using the method according to the invention, a flow velocity v higher than the combustion velocity vbr in each case is obtained by changing the cross-sectional area through which the region upstream of the reaction chamber having a predefined flow rate according to the law of continuity. Setting is particularly advantageous. In this way, it is possible to use most of the load spread than before. It is also possible to ensure that flashback does not occur over the entire range of the load spread of the reactor used in this way. The release of thermal energy can occur exactly where it is desired, particularly within the reaction chamber itself. Thus, the reaction chamber can be used under ideal operating conditions so that the desired composition and desired temperature level can be achieved reproducibly at the output of the reaction chamber.
[0015]
In addition to these problems described at the outset regarding the release of thermal energy in the undesired areas as a result of flashback, the formation of unwanted by-products also occurs due to flashback during the conversion of the extract. In the case of these by-products, ie, extracts containing carbon, soot will accumulate and adversely affect the manner of operation of the reactor. They accumulate in, for example, catalysts, sensors, mechanically moved moving parts, etc. and impair their function. However, by preventing flashback, this formation of by-products and the associated adverse consequences can also be avoided.
[0016]
According to one very advantageous development according to the invention, in the case of a cold start of a reactor having at least a reaction chamber, the cross-sectional area that flows through increases from the center of the flow as the volume of the incoming mixture increases. .
[0017]
Since the cross section opens from the center of the flow, the central flow flowing into the reaction chamber is achieved even if it is a small volume flow. The heat generated in the center of the reaction chamber is distributed to the surrounding region of the reaction chamber, particularly when the reaction chamber is configured with, for example, a catalyst disposed on the carrier material and the heat in the carrier material dissipates heat by heat conduction. The This refinement of the invention makes it possible, on the one hand, to operate continuously in the case of a sudden increase in load, and on the other hand to improve the cold start behavior, in particular to make a quick transition in the “normal” operating phase. The reduction in the time required for cold start is that the heat dissipated to the outside by heat conduction heats the surrounding area of the reaction chamber, so that at least all of the load range is less or less than full load, with no or at least little heat. It is achieved in that it is not lost.
[0018]
If the reactor is instead in a steady state operating phase without high dynamic demands and / or in an operating phase where heat loss is tolerated without significantly adversely affecting the quality of the product produced, According to one highly preferred refinement, it is also possible to vary the cross-sectional area through which, in the long run, all of the reactor region is in contact with the incoming mixture at least approximately the same time. It is.
[0019]
The loading of the reactor is therefore compensated over a long time average, especially if the reactor has a catalyst, for example, so that the aging process is evenly distributed throughout the reactor. Therefore, the useful life of the reactor can be extended.
[0020]
A reactor for carrying out the process according to the invention comprises, in order in the direction of flow, an extract inlet opening, a mixture distribution zone, and a reaction zone, the device for varying the cross-sectional area being flowed through, Deployed within the gas distribution zone.
[0021]
The process according to the invention can be ideally carried out in such a reactor embodiment. Here, how the devices that change the cross-sectional area are implemented as long as they can reliably achieve the essential functions under prevailing conditions in the mixture distribution zone, e.g. high temperatures, aggressive extracts, etc. It becomes practically important. These devices are implemented as continuously active devices, for example, in a manner such as iris diaphragm, as is known in optics.
[0022]
As an alternative, the device for changing the cross-sectional area in the mixture distribution zone, according to one highly preferred element of the reactor, divides the mixture distribution zone into a plurality of segments, at least a few of them. The inflow opening is at least partly closed.
[0023]
This design, which can be implemented very robustly, makes it possible to operate a device with a high degree of fault tolerance even under unfavorable conditions, for example with regard to temperature and medium aggression. In addition, the selective influence of the flow achieved in the gas distribution zone by corresponding built-in elements, diffusers etc. is, in the first place, fully maintained or achieved even at relatively low volume flows. Is done. If necessary, the effects described above can be adapted to each predefined volume flow by improving the segment shape for the volume flow. The inflow is therefore appropriately optimized not only with respect to the flow rate but also with respect to the formation of the flow. In particular, it is possible here to avoid dead zones where there is no sufficiently high flow velocity in the flow. As a result, on the one hand, undesired conversion of the extract and, on the other hand, the deposition of by-products formed can be avoided particularly conveniently in these dead zones.
[0024]
One particularly advantageous use of the process according to the invention and of the reactor described above is to generate at least oxygen, water, in particular to generate a hydrogen-containing gas for operating a fuel cell, in particular an auxiliary power unit fuel cell. Autothermal reforming of steam and extracted mixtures containing hydrocarbon-containing compounds, preferably gasoline or diesel.
[0025]
When used in this manner in a gas generation system for a fuel cell, the above advantages are particularly advantageous with respect to the maximum possible load spread and a robust and reliable operating design. When the fuel cell is used in a mobile system, such as an automobile, the advantages already described are particularly advantageous with respect to the basic requirements arising from the automobile components with respect to robustness, complexity, weight and dynamic way of operation.
[0026]
In the case of a cold start of a reactor having at least a reaction chamber, the cross-sectional area that flows through increases from the center of the flow as the volume of the incoming mixture increases. Because it occurs very often, the improvement in cold start behavior leads to a definitive improvement in the overall system, so such a system can be used very conveniently in this particular case application.
[0027]
Other advantageous refinements of the invention emerge from the other dependent claims and from the exemplary embodiments exemplified below with reference to the drawings.
[0028]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 illustrates a reactor 1 which is now adapted to operate as an autothermal reformer, and is only for illustrating the present invention with this example, and the specific application of the autothermal reformer. The case is not limited.
[0029]
According to its embodiment as an autothermal reformer for generating a hydrogen-containing gas, the reactor 1 contains on the carrier structure 3 a catalytic reaction active material, hereinafter referred to as catalyst carrier 3. The reaction chamber 2 is provided. Extract A entering the reactor 1, such as air, hydrogen and gasoline or diesel, passes through the inlet opening 4 to the mixture distribution zone 5 where the extract A is thoroughly mixed, if necessary, Still, components that are likely to remain liquid are vaporized and, if appropriate, overheated. Furthermore, the extracts A are distributed by the gas mixture distribution zone 5, for example by one or more diffusers, so that they flow into the reaction chamber as uniformly and homogeneously as possible.
[0030]
The reaction chamber 2 with the catalyst carrier 3 comprises an exothermic reaction zone 6 in which the extract coming from the mixture distribution zone 5 first flows through it, and its exothermic reaction zone 6 along the flow direction. Can be divided into two different zones with one endothermic reaction zone 7 following. Furthermore, the gas mixture distribution zone 5 has in principle the device shown here in dotted lines, which will be described in detail later.
[0031]
Referring to FIG. 1, a number of temperature distributions T are additionally plotted against the total length x of the reactor 1. The constant temperature distribution Tmin (T minimum in the figure) indicates the temperature that the reformed oil obtained from the extract A must at least hold when leaving the reaction chamber 2. This temperature Tmin is determined by the following components, such as a gas purification device, a shift stage, and the like. Ideally, the temperature distribution T1 reaches this temperature Tmin at the outlet of the reaction chamber 2 at the best possible level of efficiency and hence at the lowest possible inlet temperature Ti. In the case of a temperature distribution T1 that results in an inlet temperature Ti, the extract A releases the thermal energy Q1 contained therein during the reaction in the exothermic reaction zone 6. Next, the volume flow for cooling the region of the endothermic reaction zone 7 reaches a temperature T1a that is higher than or equal to the temperature Tmin at the output of the endothermic reaction zone 7, that is, the reaction chamber 2.
[0032]
However, since the combustible mixture of the extract A already exists in the mixture distribution zone 5, as already explained at the beginning, the flashback initiated by the high-temperature catalyst carrier 3 is conducted from the reaction chamber 2 to the heat chamber 2. In combination with the release of energy, it can take place in the region of the gas mixture distribution zone 5 resulting in at least partial conversion of the extract A. The temperature distribution T2 therefore typically occurs.
[0033]
The temperature distribution T2 starts at the same inlet temperature Ti. However, the release of the amount of heat energy Q2 contained in the extract A and corresponding in absolute value to Q1 has therefore already occurred in the region of the mixture distribution zone 5. However, as a result of this early release of energy Q2, the energy Q2 is not present in the region of the reaction chamber 2. The outlet temperature T2a resulting from the volume flow coming out of the reaction chamber 2 is therefore lower than the essential temperature Tmin. In addition to this, there is generally also a reduction in the conversion of the extract A used, so that there is a further increase in costs for producing reformate in the next component.
[0034]
Nevertheless, in order for a sufficiently high outlet temperature to still be achieved, the temperature distribution T2 is shifted upwards towards higher temperatures. However, the resulting temperature distribution T3 requires a higher inlet temperature Ti ′, thus reducing the efficiency of the reactor 1.
[0035]
FIG. 2 is a chart illustrating the dependency between the flow velocity v in the inflow region of the reaction chamber 2 and the load L representing the essential conversion of the reacting material or the volume of extract A. Both the flow rate v and the load L are normalized to the values that occur at the maximum flow rate vmax and the full load Lmax, respectively, and are displayed as a percentage.
[0036]
As a result of flashback or, under certain circumstances, as a result of spontaneous ignition of the extract A, the undesired energy release described above is that the flow rate v of the extract A is greater than the combustion rate vbr as described at the outset. Also happens only when it is small. In the chart of FIG. 2, the combustion rate vbr is therefore set to 40% of the maximum flow rate vmax. The relationship between the flow velocity v and the load L is given by the dotted curve 9. From the point of intersection 10 with the constant value vbr, the operating mode of the reactor 1 optimized for efficiency and reliable can be read as possible only with a load spread between 40% and 100% of the full load Lmax.
[0037]
In order to reduce the flashback problem and to allow the use of the greater part of the load spread with optimized efficiency, i.e. having a temperature profile similar to T1, the device 8 is able to mix the reactor 1 Provided in the air distribution zone 5. Since these devices 8 are used to change the cross-sectional area through which the region of the mixture distribution zone 5 flows according to the volume flow of the inflowing extract A, the variable flow velocity v can be set according to a continuous law. . As a result, the flow velocity v in that region before the entrance to the reaction chamber 2, here in particular the region between the inlet opening 4 and the reaction chamber 2, is greater than the combustion velocity vbr over the maximum possible region where the flow velocity v is spread of the load. Or is set according to the volumetric flow of extract A, which ideally results from a predefined value for adjusting extract A. Here, all or some of the predefined values showing the conversion characteristics as much as possible are used for metering, for example fuel metering. The adaptation of the flow rate v here is usually provided with an enlargement of the channel cross-sectional area to distribute the extract A over the entire cross section of the reaction chamber 2 at least at full load, so that the mixture distribution zone 5 in this very area is very important. The problems with flashback are therefore essentially concentrated in this region upstream of the reaction chamber 2.
[0038]
FIG. 3 is a cross-sectional view of half of the rotationally symmetric structure of the reactor 1 and shows a possible improvement of the device 8 in the region of the gas mixture distribution zone 5 of the reactor 1. The device 8 is here constituted by a plurality of annular walls that divide the mixture distribution zone 5 into segments 11. These segments 11 forming the annular duct 111 here are closed by an annular cover element 13 corresponding to the inlet cross-sectional area 12 of said segment 11. The cross-sectional area that flows through in the gas distribution zone 5 is thus released or closed in a number of stages. Of course, at least two such segments 11 are necessary to ensure the desired method of operation. The maximum number is determined not only by the load spread, but also by the structural space and the cross-sectional area where there is a flow through the mixture distribution zone 5.
[0039]
For this application of the exemplary embodiment, five annular ducts 111 and their corresponding four annular cover elements 13 are selected. Assuming that the load L is increased and the individual annular ducts 111 are continuously opened, the resulting curve of the flow velocity v is illustrated by the dashed-dotted curve 14 in FIG. After reaching approximately 8% of the full load Lmax, all of the flow velocity v is above the combustion rate vbr. The area of load spread used under nearly ideal operating conditions is therefore between 8% and 100%. This represents a significant improvement to the design described by curve 9.
[0040]
The design of the device 8 in FIG. 3 shows here that the distribution of the incoming mixture of the extract A can be reached in the mixture distribution zone 5. For this purpose, for the reasons described above, the cross-sectional area that flows through is expanded in the direction of the catalyst carrier 3 by the use of the flow distributor 15 like a diffuser. The structure of the segments 11 is selected such that each of the inlet cross-sectional areas 12 has a specific area of the effective cross-section that is the sum of the inlet cross-sectional areas 12 and thus flows through. Each segment 11 also has an outlet cross-sectional area 16 whose inlet cross-sectional area 12 has the same proportion of outlet cross-sectional areas 16 as the total of inlet cross-sectional areas 12. The cross-sectional area through which the flow through, i.e. the fluid effect produced by the diffuser, is therefore transmitted to each segment 11, so that a comparable flow onto the catalyst carrier 3 is the volume flow of extract A or is it closed? Or it is always achieved regardless of the number of open segments 11.
[0041]
According to the exemplary embodiment proposed herein, the annular cover elements 13 are arranged fixedly on one another on a common carrier 17. In this design, which is very rugged and also has a high fault tolerance even under the expected aggressive conditions in the mixture distribution zone 5, the annular cover elements 13 are moved together and are predefined by the arrangement. In the process, the individual annular ducts 111 are continuously opened during the process or are arranged on the carrier 17 in such a way that the cross-sectional area through which they flow is continuously enlarged in the direction of the individual ducts 111. Instead of the movement of the full covering element 13 which is also theoretically possible, the common carrier 17 has a very robust design, in each case individually and independently of each other. The carrier 17 itself is moved in the direction of the main stream of the extract A. This is more preferred with respect to contamination of the sliding surface compared to lateral movement with respect to the flow. Furthermore, the movable parts that are to be moved relative to each other are not pressed against each other by fluid pressure, which increases the friction and therefore also increases the force required to actuate. The driver of the carrier 17 moves very slightly towards the outside of the reactor 1 if the carrier 17 is configured to have a corresponding length or if there is a suitable transmission element, for example a push-pull rod. Is done. The situation is comparable to guides and seals. The design is therefore carried out independently of the conditions relating to the temperature and aggressiveness of the extract A that reaches the region of the inlet opening 4 and the region of the mixture distribution zone 5, so that not only sealing and induction but also control Adjustments and / or adjustments are also performed with a high degree of reliability and easily and cost-effectively.
[0042]
The opening and closing of the individual segments 11 is performed by the arrangement of an annular cover element 13 in which the segments 11 that are close to each other are continuously opened or closed. This means that in each case a region with a new inflow in the region of the catalyst carrier 3 or a region where the inflow no longer exists is immediately adjacent to each other. They therefore interact with each other and the heat energy can be exchanged very easily, so that the operation of the reactor 1 is more uniform and therefore an improvement with respect to the desired conversion.
[0043]
In particular, in the case of a cold start of the reactor 1, this is very important if there is initially an inflow onto the catalyst carrier 3 in the centrally located region 18 through the continuous opening of the individual segments 11 from the inside to the outside. Conveniently used. As a result of heat conduction occurring in all directions in the catalyst carrier 3, heat is initially transferred from the first used central region 18 to the entire surrounding region. If the inflow to the surrounding area is released through the increased volume flow of extract A by opening the adjacent segment 11, this area is already preheated so that the catalytically active material is moved very quickly. The temperature has been reached, or perhaps it has already been reached. The conversion of extract A starts very quickly and the time required to cold start reactor 1 is reduced. In addition, under all conditions of partial load, heat transfer out of the region of the reaction chamber 2 that always constitutes heat loss to the surroundings is avoided or at least considerably reduced, so that the reactor 1 It also increases because of efficiency.
[0044]
FIG. 4 illustrates an alternative embodiment of the device 8. Again, the mixture distribution zone 5 is divided into individual segments 11. These are implemented as concentric annular ducts 111 around a central duct 112 arranged in the central region. In the region of the inlet opening 4, the segment 11 whose cross-section in FIG. The The requirements described above and the preferred refinements apply here in the same way, except for those of the annular cover element 13. The reference symbols for FIG. 4 and the following figures of the exemplary embodiment are used in the same way as those of FIG. 3 when there are comparable methods of operation of the components and / or cross-sections.
[0045]
Instead of the annular cover element 13, the device 8 according to the modification according to FIG. 4 has a sheath 19 and a needle 20. These, which are cross-sectional views about the line VV of FIG. 4 shown in the cross-sectional view above, are shown in FIG. The functional principle described above for the device remains unchanged here. However, as a result of the construction with the sheath 19 and the needle 20, each individual segment 11 or its inlet cross-sectional area 12 is optional, open or closed. Needle 20 and sheath 19 are moved in the direction of flow of extract A for this purpose. The drive is also very easily moved here towards the outside of the reactor 1 if the needle 20 and / or the sheath 19 are considered to be corresponding lengths. The situation is comparable to guides and seals. The design is therefore also carried out here independently of the conditions relating to the temperature and aggressiveness of the extract A that reaches the region of the inlet opening 4 and the region of the mixture distribution zone 5.
[0046]
In order to ensure the exchange of the extract A over the entire range of the inlet opening 4 and thus provide the possibility to open and close the segments 11 in the desired order, the needle 20 and the furthest from the needle At least the sheath 19 arranged between the sheaths arranged remotely should have an opening 21. It can be implemented as drilled holes, windows, etc., and under certain circumstances these openings 21 which also constitute the maximum possible area of the sheath 19 allow the extract A over the entire cross-sectional area of the inlet opening 4. It is possible to ensure replacement. If the needle 20 is guided backwards from the structure, it is appropriate, as illustrated, under certain circumstances, ie it is necessary here, and the outermost part of the sheath 19 also has an opening 21. In this case, for example, it can be used in a volume flow to the inlet opening 4 that is perpendicular to the needle 20.
[0047]
The manner of operation during the opening and / or closing of the individual segments 11 therefore does not require consideration of the mechanical specifications because of the design of the device 8, and in particular the requirements of the reactor 1, here in particular of the reaction chamber 2, ie the catalyst. It is freely adapted to these of the carrier 3. The use of the operating method described at the beginning for the optimization of cold start behavior, the optimization of the aging process, etc. is therefore possible very easily and flexibly.
[0048]
Furthermore, the design as described in FIGS. 4 and 5 makes it possible to avoid or at least reduce dead zones of the extract flow in the region of the mixture distribution zone 5. The formation of by-products, such as soot, during the autothermal reforming of gasoline or in particular diesel as described at the beginning is therefore ideally prevented. Thus, the surface of the catalytically active material is prevented from being coated with mechanism contamination, in particular soot. Therefore, not only the useful life of the reactor 1 and the quality of the reformed oil but also the operational reliability of the reactor 1 can be improved.
[0049]
FIG. 6 illustrates another alternative embodiment of the device 8. Again, the mixture distribution zone 5 is divided into individual segments 11. These segments 11 are formed by dividing walls which divide the mixture distribution zone 5, which here has a circular cross-sectional shape, into three line regions 113 in the shape of a quadrant. A segment 11 in the region of the inlet opening 4 whose cross section is illustrated once again in FIG. 6 at the junction between the inlet opening 4 and the mixture distribution zone 5 is also implemented here as a region opening in the direction of flow. The Each line region 113 in the region between the inlet opening 4 and the mixture distribution zone 5 has an inlet opening 22. The inlet cross-sectional areas 12 described above and these inlet openings 22 whose functions substantially correspond to each other are closed in order, so that the individual line regions 113 are opened and closed individually and independently of each other.
[0050]
Theoretically, any desired method for opening or closing is possible, but adopting the solution schematically illustrated in FIG. 7 where the inflow openings 22 are each closed and / or opened by needles 23. Is particularly desirable. Not only the operation of the needle 23 but also the operation method and the support device / guide are the same as those described above for the needle 20 and the sheath 19.
[0051]
All of the apparatus embodiments also cover the preferred possibilities in the reactor 1 described above and in particular generally discussed within the scope of FIG. Furthermore, all suitable combinations of individual features from the various exemplary embodiments are conceivable for forming other devices 8. These also implement the preferred method of operating and operating the reactor 1 as well, and are within the scope of the present invention.
[Brief description of the drawings]
1 shows a reactor operated as an autothermal reformer as well as an expected temperature distribution T over the entire length x of the reactor.
FIG. 2 is a diagram of a flow velocity v in a region flowing into a reaction chamber according to a load L.
FIG. 3 is a diagram showing an expected improvement of a reactor equipped with a device for changing a cross-sectional area to be flown through.
FIG. 4 is a diagram of an alternative modification of a reactor equipped with a device for changing the cross-sectional area through which it flows.
FIG. 5 is a cross-sectional view taken along line VV of the embodiment of FIG.
FIG. 6 is a diagram of another alternative modification of a reactor equipped with a device for changing the cross-sectional area through which it flows.
7 is a cross-sectional view taken along line VII-VII in the embodiment of FIG.
[Explanation of symbols]
1 reactor
2 reaction chamber
3 Carrier structure
4 Entrance opening
5 Mixture distribution zone
6 Exothermic reaction zone
7 Endothermic reaction zone
8 Equipment
9 Dotted curve
10 intersection
11 segments
12 Inlet opening / inlet cross-sectional area
13 Ring cover element
14 Dashed curve
15 Flow distributor
16 Exit cross-sectional area
17 Carrier
18 areas
19 sheath
20 needle
21 opening
22 Inlet opening / inlet cross-sectional area
23 Needle
111 annular duct
112 circular center duct
113 line area

Claims (20)

貫流される断面積が入口開口部と反応室の間の領域で変化する反応室に流入する混合気のフラッシュバックを防止する方法であって、
貫流される断面積は、混合気(A)の流速(v)が流入混合気(抽出物A)の発生体積の少なくとも大部分で混合気(抽出物A)の燃焼速度(vbr)よりも高くなるように、流入混合気(抽出物A)の体積に応じて変化されることを特徴とする方法。
A method for preventing flashback of an air-fuel mixture flowing into a reaction chamber in which a cross-sectional area that flows through changes in a region between an inlet opening and the reaction chamber,
The cross-sectional area through which the flow velocity (v) of the air-fuel mixture (A) is higher than the combustion rate (vbr) of the air-fuel mixture (extract A) in at least most of the generated volume of the inflow air-fuel mixture (extract A). The method is characterized in that it is varied according to the volume of the inflowing mixture (extract A).
貫流される断面積は、断面の貫流される閉口または開口領域(セグメント11)によって形成されることを特徴とする、請求項1に記載の方法。Method according to claim 1, characterized in that the cross-sectional area to be flowed through is formed by a closed or open area (segment 11) through which the cross-section flows. 貫流される断面積が増加すると、貫流される領域(セグメント11)に近接してそれぞれに配置される領域(セグメント11)が開くことを特徴とする、請求項2に記載の方法。3. A method according to claim 2, characterized in that when the cross-sectional area to be flown through increases, the regions (segments 11) arranged respectively close to the flow-through region (segments 11) open. 貫流される断面積が減少すると、貫流されない領域(セグメント11)に近接してそれぞれの場合に応じて配置される領域(セグメント11)が閉じることを特徴とする、請求項2あるいは3に記載の方法。4. The region (segment 11) arranged in each case closes to a non-flow-through region (segment 11) when the cross-sectional area through which it flows is reduced, according to claim 2 or 3, Method. 貫流される断面積は、混合気(抽出物A)の構成要素の少なくとも一部を計量するための所定値に応じて制御されることを特徴とする、請求項1〜4のいずれか一項に記載の方法。The cross-sectional area to be flowed through is controlled in accordance with a predetermined value for measuring at least a part of the components of the air-fuel mixture (extract A). The method described in 1. 少なくとも反応室(2)を有する反応器(1)のコールドスタートの場合、流入混合気(抽出物A)の体積が増加すると貫流される断面積は流れの中心(領域18)から増加することを特徴とする、請求項1〜5のいずれか一項に記載の方法。In the case of a cold start of the reactor (1) with at least the reaction chamber (2), the cross-sectional area that flows through increases from the center of the flow (region 18) as the volume of the incoming mixture (extract A) increases. A method according to any one of the preceding claims, characterized in that it is characterized. 貫流される領域(セグメント11)の閉口または開口部は、比較的長期的に見ると、反応器(1)の全領域が少なくともほぼ同じ時間で流入混合気(抽出物A)と接触するように実行されることを特徴とする、請求項2〜6のいずれか一項に記載の方法。The closure or opening of the flow-through region (segment 11) is such that, over the longer term, the entire region of the reactor (1) is in contact with the incoming mixture (extract A) at least approximately the same time. The method according to claim 2, wherein the method is performed. 流れの方向の順に、混合気(抽出物A)の入口開口部(4)、混合気分配ゾーン(5)、および反応室(2)を有する、請求項1〜7のいずれか一項に記載の方法を実行するための反応器であって、貫流される断面積を変化させる装置(8)は混合気分配ゾーン(5)内に配置される、反応器。8. The mixture according to claim 1, comprising an inlet opening (4) for the mixture (extract A), a mixture distribution zone (5), and a reaction chamber (2) in the order of the flow direction. A reactor for carrying out the method of claim 1, wherein the device (8) for changing the cross-sectional area to be flowed through is arranged in the mixture distribution zone (5). 装置(8)は、混合気分配ゾーン(5)を複数のセグメント(11)に分割し、セグメント(11)の少なくとも一部の流入開口部(12,22)は、少なくとも部分的に閉じることができることを特徴とする、請求項8に記載の反応器。The device (8) divides the mixture distribution zone (5) into a plurality of segments (11), and at least some inflow openings (12, 22) of the segments (11) are at least partially closed. Reactor according to claim 8, characterized in that it can. セグメント(11)は環状ダクト(111)として実施されることを特徴とする、請求項9に記載の反応器。Reactor according to claim 9, characterized in that the segment (11) is implemented as an annular duct (111). 環状ダクト(111)の少なくとも一部は、環状カバー要素(13)によって少なくとも部分的に閉じられることを特徴とする、請求項9に記載の反応器。Reactor according to claim 9, characterized in that at least part of the annular duct (111) is at least partially closed by an annular cover element (13). 環状カバー要素(13)は、混合気分配ゾーン(5)の流れの主方向で閉じられることを特徴とする、請求項11に記載の反応器。Reactor according to claim 11, characterized in that the annular cover element (13) is closed in the main direction of flow in the mixture distribution zone (5). 環状カバー要素(13)は、互いに固定配置され、共に閉じられることを特徴とする、請求項11あるいは12に記載の反応器。Reactor according to claim 11 or 12, characterized in that the annular cover elements (13) are arranged fixedly to each other and closed together. 環状ダクト(111)の少なくとも一部は、シース(19)によって少なくとも部分的に閉じられることを特徴とする、請求項9に記載の反応器。Reactor according to claim 9, characterized in that at least part of the annular duct (111) is at least partly closed by a sheath (19). 環状ダクト(111)は、ニードル(20)によって少なくとも部分的に閉じられる円形中心ダクト(112)の回りに配置されることを特徴とする、請求項9〜14のいずれか一項に記載の反応器。15. Reaction according to any one of claims 9 to 14, characterized in that the annular duct (111) is arranged around a circular central duct (112) which is at least partly closed by the needle (20). vessel. セグメント(11)の少なくとも一部の流入開口部(22)は、ニードル(23)によって閉じられることを特徴とする、請求項9に記載の反応器。Reactor according to claim 9, characterized in that at least part of the inlet opening (22) of the segment (11) is closed by a needle (23). セグメント(11)の少なくとも一部は、流れの方向にそれらの断面積が拡がることを特徴とする、請求項9〜16のいずれか一項に記載の反応器。Reactor according to any one of claims 9 to 16, characterized in that at least a part of the segments (11) have their cross-sectional area expanding in the direction of flow. セグメント(11)の各入口断面積(12、22)は全セグメント(11)の入口断面積(12,22)の合計の特定領域を有し、また各セグメント(11)は、全セグメント(11)の出口断面積(16)の合計の割合を有する出口断面積(16)をも有し、同セグメント(11)の割合は少なくともほぼ同じであることを特徴とする、請求項9〜17のいずれか一項に記載の反応器。Each inlet cross-sectional area (12, 22) of the segment (11) has a specific area that is the sum of the inlet cross-sectional areas (12, 22) of all segments (11), and each segment (11) 18.) The outlet cross-sectional area (16) having a total proportion of the outlet cross-sectional area (16) of)), the proportion of the segments (11) being at least approximately the same. The reactor according to any one of the above. 反応室(2)は、キャリヤ構造体上に配置される触媒活性材料を有することを特徴とする、請求項8〜18のいずれか一項に記載の反応器。Reactor according to any one of claims 8 to 18, characterized in that the reaction chamber (2) has a catalytically active material arranged on a carrier structure. 燃料電池、特に補助電力ユニットの燃料電池を作動させるための水素含有気体を発生させるために、少なくとも酸素、水、特に蒸気、および炭化水素含有化合物、好ましくはディーゼルまたはガソリンからなる混合気(抽出物A)の自熱的改質のために請求項19に記載の反応器と共に使用されることを特徴とする、請求項1〜7のいずれか一項に記載の方法の使用。A mixture (extract) comprising at least oxygen, water, in particular steam, and a hydrocarbon-containing compound, preferably diesel or gasoline, to generate a hydrogen-containing gas for operating the fuel cell, in particular the fuel cell of the auxiliary power unit Use of the process according to any one of claims 1 to 7, characterized in that it is used with a reactor according to claim 19 for the autothermal reforming of A).
JP2003126143A 2002-05-02 2003-05-01 Method for preventing flashback of gaseous mixture flowing into reaction chamber Pending JP2004002184A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10219747A DE10219747B4 (en) 2002-05-02 2002-05-02 A method for preventing re-ignition in a mixture flowing to a reaction space and a reactor for carrying out the method

Publications (1)

Publication Number Publication Date
JP2004002184A true JP2004002184A (en) 2004-01-08

Family

ID=7714479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003126143A Pending JP2004002184A (en) 2002-05-02 2003-05-01 Method for preventing flashback of gaseous mixture flowing into reaction chamber

Country Status (5)

Country Link
US (1) US20030211433A1 (en)
JP (1) JP2004002184A (en)
DE (1) DE10219747B4 (en)
FR (1) FR2839268B1 (en)
GB (1) GB2390040B (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5411902A (en) * 1977-06-30 1979-01-29 Toyota Motor Corp Fuel reformer
JPS63240941A (en) * 1985-12-30 1988-10-06 アンスティティ フランセーズ ド ペトロール Oxidation of oxidizable raw material under gaseous phase and reaction apparatus
JPH06257747A (en) * 1993-03-04 1994-09-16 Mitsubishi Heavy Ind Ltd Combustion device for gas turbine
JPH09170716A (en) * 1995-12-19 1997-06-30 Hitachi Ltd Fuel premixing device and gas turbine combustion device
JP2000346360A (en) * 1999-05-31 2000-12-15 Toshiba Corp Gas turbine premixing duct
JP2001106512A (en) * 1999-10-06 2001-04-17 Toyota Motor Corp Reforming device
JP2001506183A (en) * 1997-01-07 2001-05-15 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Fluid mixer and method using the same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1013888A (en) * 1963-03-12 1965-12-22 Power Gas Ltd Improvements in or relating to methods of and apparatus for reacting of fluids
DE3028003C1 (en) * 1980-07-24 1981-10-08 Basf Ag, 6700 Ludwigshafen Device for distributing a gas arriving from a pipe over the cross section of a container
US4865820A (en) * 1987-08-14 1989-09-12 Davy Mckee Corporation Gas mixer and distributor for reactor
GB9312634D0 (en) * 1993-06-18 1993-08-04 Tsl Group Plc Improvements in vitreous silica manufacture
DK108993D0 (en) * 1993-09-27 1993-09-27 Haldor Topsoe As METHOD OF REDUCING TEMPERATURE TEMPERATURE
DE19526886C1 (en) * 1995-07-22 1996-09-12 Daimler Benz Ag Methanol reformation giving high methanol conversion and low amts. of carbon mono:oxide
DE19919268C2 (en) * 1999-04-28 2002-02-28 Forschungszentrum Juelich Gmbh Recombiner for removing hydrogen
DE19958580A1 (en) * 1999-12-04 2001-06-21 Krieger Gmbh & Co Kg Gas-heated infra-red radiator for infra-red drying unit has radiator housing divided by gas-permeable burner plate into distribution chamber for gas-air mixture and combustion chamber
DE10002025C2 (en) * 2000-01-19 2003-11-13 Ballard Power Systems Method and device for treating a medium in a catalyst-containing reaction space
DE10126363B4 (en) * 2000-06-02 2011-08-11 Basf Se, 67063 Process and apparatus for the preparation of aldehydes and / or alcohols having 6 to 30 carbon atoms

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5411902A (en) * 1977-06-30 1979-01-29 Toyota Motor Corp Fuel reformer
JPS63240941A (en) * 1985-12-30 1988-10-06 アンスティティ フランセーズ ド ペトロール Oxidation of oxidizable raw material under gaseous phase and reaction apparatus
JPH06257747A (en) * 1993-03-04 1994-09-16 Mitsubishi Heavy Ind Ltd Combustion device for gas turbine
JPH09170716A (en) * 1995-12-19 1997-06-30 Hitachi Ltd Fuel premixing device and gas turbine combustion device
JP2001506183A (en) * 1997-01-07 2001-05-15 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Fluid mixer and method using the same
JP2000346360A (en) * 1999-05-31 2000-12-15 Toshiba Corp Gas turbine premixing duct
JP2001106512A (en) * 1999-10-06 2001-04-17 Toyota Motor Corp Reforming device

Also Published As

Publication number Publication date
DE10219747B4 (en) 2005-06-23
GB0308448D0 (en) 2003-05-21
US20030211433A1 (en) 2003-11-13
FR2839268A1 (en) 2003-11-07
FR2839268B1 (en) 2008-11-14
GB2390040B (en) 2004-06-30
GB2390040A (en) 2003-12-31
DE10219747A1 (en) 2003-11-27

Similar Documents

Publication Publication Date Title
KR100285165B1 (en) Reformer
US8048577B2 (en) Hydrogen generator with a combustor with a control unit
US20080141675A1 (en) Hybrid Combustor for Fuel Processing Applications
US7465325B2 (en) Fuel reforming system and warmup method thereof
JP2001348206A (en) Fuel reforming device
US20050188618A1 (en) Reformer and process for reacting fuel and oxidizer into reformate
JP2007506244A (en) Fuel cell shutdown and start purge using a stoichiometric stage combustor
US7172638B2 (en) Staged air autothermal reformer for improved startup and operation
GB2303860A (en) Methanol reforming
CN115039261A (en) Reformer protection device for protecting anode portion of fuel cell stack
JP2008303128A (en) Fuel reforming apparatus
JP2008525302A (en) Water and steam management in fuel reformers
JP3921477B2 (en) Single tube cylindrical reformer and its operating method
KR100759693B1 (en) Carbon monoxide remover and reformer for fuel cell
JP2004002184A (en) Method for preventing flashback of gaseous mixture flowing into reaction chamber
JP2007331951A (en) Hydrogen generator and fuel cell system
JPH0963619A (en) Fuel reforming apparatus for fuel cell power generating apparatus and drive method thereof
US7815699B2 (en) Method for starting a primary reactor
JP2004018357A (en) Reforming reactor system
JP2004175582A (en) Auto-oxidative internal-heating steam reforming system and process for starting the same
GB2384726A (en) Heating of autothermal hydrocarbon reformation reactor
JP2000319004A (en) Reforming method and reformer
JP2015140285A (en) Method for operating hydrogen-containing gas generation apparatus, and hydrogen-containing gas generation apparatus
US7717970B2 (en) Fuel reforming device
JP2013234076A (en) Hydrogen generation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051208

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100331

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101020