JP2013234076A - Hydrogen generation device - Google Patents

Hydrogen generation device Download PDF

Info

Publication number
JP2013234076A
JP2013234076A JP2010196395A JP2010196395A JP2013234076A JP 2013234076 A JP2013234076 A JP 2013234076A JP 2010196395 A JP2010196395 A JP 2010196395A JP 2010196395 A JP2010196395 A JP 2010196395A JP 2013234076 A JP2013234076 A JP 2013234076A
Authority
JP
Japan
Prior art keywords
unit
selective oxidation
combustion air
path
reforming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010196395A
Other languages
Japanese (ja)
Inventor
Hideji Sano
秀治 佐野
Kiyoshi Taguchi
清 田口
Hiroshi Tatsui
洋 龍井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2010196395A priority Critical patent/JP2013234076A/en
Priority to PCT/JP2011/004908 priority patent/WO2012029322A1/en
Publication of JP2013234076A publication Critical patent/JP2013234076A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/384Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0446Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical
    • B01J8/0461Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical annular shaped beds
    • B01J8/0469Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical annular shaped beds the beds being superimposed one above the other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0496Heating or cooling the reactor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/48Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents followed by reaction of water vapour with carbon monoxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • H01M8/04022Heating by combustion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04373Temperature; Ambient temperature of auxiliary devices, e.g. reformers, compressors, burners
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0668Removal of carbon monoxide or carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00309Controlling the temperature by indirect heat exchange with two or more reactions in heat exchange with each other, such as an endothermic reaction in heat exchange with an exothermic reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00504Controlling the temperature by means of a burner
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/0053Controlling multiple zones along the direction of flow, e.g. pre-heating and after-cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00548Flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00054Controlling or regulating the heat exchange system
    • B01J2219/00056Controlling or regulating the heat exchange system involving measured parameters
    • B01J2219/00058Temperature measurement
    • B01J2219/00063Temperature measurement of the reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00191Control algorithm
    • B01J2219/00193Sensing a parameter
    • B01J2219/00195Sensing a parameter of the reaction system
    • B01J2219/002Sensing a parameter of the reaction system inside the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00191Control algorithm
    • B01J2219/00222Control algorithm taking actions
    • B01J2219/00227Control algorithm taking actions modifying the operating conditions
    • B01J2219/00229Control algorithm taking actions modifying the operating conditions of the reaction system
    • B01J2219/00231Control algorithm taking actions modifying the operating conditions of the reaction system at the reactor inlet
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0435Catalytic purification
    • C01B2203/044Selective oxidation of carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/047Composition of the impurity the impurity being carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0833Heating by indirect heat exchange with hot fluids, other than combustion gases, product gases or non-combustive exothermic reaction product gases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0872Methods of cooling
    • C01B2203/0883Methods of cooling by indirect heat exchange
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0872Methods of cooling
    • C01B2203/0888Methods of cooling by evaporation of a fluid
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1076Copper or zinc-based catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1247Higher hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1288Evaporation of one or more of the different feed components
    • C01B2203/1294Evaporation by heat exchange with hot process stream
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1614Controlling the temperature
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/80Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
    • C01B2203/82Several process steps of C01B2203/02 - C01B2203/08 integrated into a single apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/10Fuel cells in stationary systems, e.g. emergency power source in plant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To maintain a reformer and a selective oxidation unit at constant temperature to keep the heat balance of a hydrogen generation unit.SOLUTION: A hydrogen generation device includes a cooling passage 24 which branches from a combustion air passage 23 and joins to the combustion air passage 23 through the circumference of a reformer 15 and a selective oxidation unit 16 which compose a carbon monoxide decreasing unit. The hydrogen generation device can be composed and designed to maintain the reformer 15 and the selective oxidation unit 16 at constant temperature and to keep the heat balance of the hydrogen generation device since the carbon monoxide decreasing unit can be cooled by flowing combustion air to the cooling passage 24. Also, the combustion air having cooled the carbon monoxide decreasing unit is used as combustion air in a heating unit 8 and effectively used without being emitted to the outside of the hydrogen generation device, thereby enabling suppression of heat loss.

Description

本発明は、炭化水素系燃料と水蒸気とを反応させて水素を生成する水素生成装置に関するものであり、特に家庭用等比較的小型の燃料電池システムに好適な水素生成装置に関する。   The present invention relates to a hydrogen generator that generates hydrogen by reacting a hydrocarbon fuel with water vapor, and more particularly to a hydrogen generator suitable for a relatively small fuel cell system for home use.

家庭用の燃料電池コージェネシステムに適した方式として高分子形(PEM)燃料電池システムの開発が盛んであるが、燃料の水素はいまだインフラが不備であるため、都市ガス、LPガス、灯油等の燃料を改質して水素含有ガスを生成するための水素生成装置がシステムに必須となっている。改質の方法としては水蒸気改質反応の利用、部分酸化反応の利用、それらを両方利用したオートサーマル法が知られているが、家庭用の高分子形燃料電池システムに対しては、高濃度の水素が得られやすい水蒸気改質反応を利用した水素生成装置が多く検討されている。   Polymer type (PEM) fuel cell systems are being developed as a suitable method for household fuel cell cogeneration systems. However, the hydrogen of fuel is still inadequate, so city gas, LP gas, kerosene, etc. A hydrogen generator for reforming fuel to generate a hydrogen-containing gas is essential for the system. As reforming methods, the use of a steam reforming reaction, the use of a partial oxidation reaction, and the autothermal method using both of them are known, but for high-concentration polymer fuel cell systems, a high concentration is required. Many hydrogen generators using a steam reforming reaction in which hydrogen is easily obtained have been studied.

水素生成装置には、炭化水素系の原料を改質部で改質して燃料ガスを生成した後、この燃料ガス中の一酸化炭素濃度を低減するための一酸化炭素低減部をさらに備えているものが一般的である。   The hydrogen generation apparatus further includes a carbon monoxide reduction unit for reducing the carbon monoxide concentration in the fuel gas after reforming the hydrocarbon-based raw material in the reforming unit to generate the fuel gas. What is common is.

一酸化炭素低減部の一例としては、改質部で生成したガス中の一酸化炭素を水性ガスシフト反応で低減するための変成触媒を有する変成部と、この変成部から送出される燃料ガス中の一酸化炭素を、別途供給した空気中の酸素によって酸化する選択酸化触媒を有する選択酸化部とを順次備えたものがある。   As an example of the carbon monoxide reduction unit, a shift unit having a shift catalyst for reducing carbon monoxide in the gas generated in the reforming unit by a water gas shift reaction, and a fuel gas sent from the shift unit Some have a selective oxidation section having a selective oxidation catalyst that sequentially oxidizes carbon monoxide with oxygen in air supplied separately.

改質部には炭化水素系燃料と水を導入し、加熱部で700℃程度に加熱して吸熱反応である改質反応に必要な熱を供給して改質反応を進行させる。このときCOが10%程度発生するので、下流の一酸化炭素低減部で一酸化炭素濃度を低減させる。一酸化炭素低減部では、まず変成部で、触媒温度を200℃〜300℃程度に制御し発熱反応を伴いながら、変成反応を進行させCO濃度を0.5%以下程度にまで低減する。さらに選択酸化部では100℃〜200℃程度に触媒温度を制御し少量の空気を導入してCOを触媒上で発熱反応を伴いながら、酸化反応させてその濃度を10ppm以下程度にまで低減する。その結果、選択酸化部の出口では、水素濃度70%〜75%程度の水素含有ガスが得られ、これが燃料電池等の水素利用機器に供給されることになる。   A hydrocarbon-based fuel and water are introduced into the reforming section, and the heating section is heated to about 700 ° C. to supply heat necessary for the reforming reaction, which is an endothermic reaction, and the reforming reaction proceeds. Since about 10% of CO is generated at this time, the carbon monoxide concentration is reduced at the downstream carbon monoxide reduction unit. In the carbon monoxide reduction part, first, in the modification part, the catalyst temperature is controlled to about 200 ° C. to 300 ° C. and accompanied by an exothermic reaction, the modification reaction proceeds to reduce the CO concentration to about 0.5% or less. Further, in the selective oxidation unit, the catalyst temperature is controlled to about 100 ° C. to 200 ° C., and a small amount of air is introduced to cause the CO to undergo an oxidation reaction with an exothermic reaction, thereby reducing its concentration to about 10 ppm or less. As a result, a hydrogen-containing gas having a hydrogen concentration of about 70% to 75% is obtained at the outlet of the selective oxidation unit, and this is supplied to a hydrogen-using device such as a fuel cell.

また、燃料電池システム等に用いられる水素生成装置は、大きさがコンパクトであること、低コストであること、改質効率が高いこと、扱いやすいこと、高耐久性であること、等々の要求を最大限満たすことが重要である。これらの観点から、改質部および加熱部、一酸化炭素低減部をコンパクトに一体化した改質システムの開発が行われている。(例えば、特許文献1または特許文献2参照)。   In addition, hydrogen generators used in fuel cell systems and the like have demands such as compact size, low cost, high reforming efficiency, ease of handling, and high durability. It is important to meet as much as possible. From these viewpoints, a reforming system in which a reforming unit, a heating unit, and a carbon monoxide reduction unit are integrated in a compact manner has been developed. (For example, refer to Patent Document 1 or Patent Document 2).

図4は、特許文献1に記載された従来の水素生成装置を示すものである。図4に示すように、改質部14を加熱する加熱部8を中心に同心円上に流路を形成し、両端部で折り返し部を設けて流路を連通させ、流路の内側から順に、改質触媒を充填した改質部14、変成触媒を充填した変成部15、選択酸化触媒を充填した選択酸化部16を設けている。   FIG. 4 shows a conventional hydrogen generator described in Patent Document 1. As shown in FIG. As shown in FIG. 4, a flow path is formed on a concentric circle around the heating section 8 that heats the reforming section 14, a folded section is provided at both ends, and the flow path is communicated, in order from the inside of the flow path, A reforming section 14 filled with a reforming catalyst, a shift conversion section 15 filled with a shift catalyst, and a selective oxidation section 16 filled with a selective oxidation catalyst are provided.

そして、加熱部8に燃料を供給する燃料供給路10と、送風機22によって燃焼空気を加熱部8供給する燃焼空気供給路9と選択酸化部16の上流側に選択酸化触媒で酸化反応を行わせるための空気供給管17、改質部14の上流側に原料導入管18を設け、ここか
ら水蒸気改質反応の原料である炭化水素系燃料と水とが供給される。
Then, the selective oxidation catalyst performs an oxidation reaction on the upstream side of the fuel supply path 10 for supplying fuel to the heating unit 8, the combustion air supply path 9 for supplying combustion air to the heating unit 8 by the blower 22, and the selective oxidation unit 16. For this purpose, a raw material introduction pipe 18 is provided on the upstream side of the air supply pipe 17 and the reforming section 14, and a hydrocarbon fuel and water, which are raw materials for the steam reforming reaction, are supplied from here.

選択酸化部16の下流側に、改質され生成した水素含有ガスが排出される改質ガス出口19を設け、この先にこのガスを利用して発電する燃料電池が接続される。   A reformed gas outlet 19 for discharging the reformed and generated hydrogen-containing gas is provided on the downstream side of the selective oxidation unit 16, and a fuel cell that generates power using this gas is connected to the reformed gas outlet 19.

特開2004−171892号公報JP 2004-171892 A 特開2007−331951号公報JP 2007-331951 A

改質に関わる各反応部を集積した一体型の水素生成装置においては、それぞれの反応部における吸熱・発熱分に相当する熱を反応部あるいは流路の壁面等を利用して効果的に熱交換させることによって、それぞれの部位を適切な温度に保ち水素生成装置としての機能を発揮させるとともに、外部へ放散する熱を極力小さくして改質効率を高くすることを目指した構成設計を行う。   In an integrated hydrogen generator that integrates the reaction units involved in reforming, heat corresponding to the endothermic and exothermic heat of each reaction unit is effectively exchanged using the reaction unit or the wall surface of the flow path. By doing so, the respective parts are maintained at appropriate temperatures to perform the function as a hydrogen generator, and the structural design aiming to increase the reforming efficiency by minimizing the heat dissipated to the outside is performed.

このような水素生成装置においては、吸熱反応を伴う改質部は改質部の改質反応に必要な熱は加熱部から供給される。一方、発熱反応を伴う一酸化炭素低減部の変成部と選択酸化部は、周囲の構造体の伝熱量を調整することにより変成部と選択酸化部の所定の温度になるよう保っている。その結果、水素生成装置全体が熱的にバランスして、各反応部を目的の温度に保つことが可能となる。   In such a hydrogen generator, the heat necessary for the reforming reaction of the reforming unit is supplied from the heating unit to the reforming unit with an endothermic reaction. On the other hand, the transformation part and the selective oxidation part of the carbon monoxide reduction part accompanied by an exothermic reaction are kept at a predetermined temperature of the transformation part and the selective oxidation part by adjusting the heat transfer amount of the surrounding structure. As a result, the entire hydrogen generator is thermally balanced, and each reaction section can be maintained at a target temperature.

しかし、水素生成装置の触媒や筐体など構成要素、原料ガス、水、空気などの入力条件の何れかが変化した場合、全体の熱バランスが崩れて水素生成装置としての機能を保てなくなることがある。水素生成装置のこれら諸条件が変化する度に、変成部と選択酸化部の周囲の構造体の伝熱量を調整するのは構造設計的に非常に手間が掛かるといった課題を有していた。   However, if any of the input conditions such as the components of the hydrogen generator, such as the catalyst and casing, source gas, water, air, etc. change, the overall heat balance will be lost and the function as a hydrogen generator will not be maintained. There is. Whenever these various conditions of the hydrogen generator change, adjusting the amount of heat transfer in the structure around the metamorphic part and the selective oxidation part has a problem in that it takes a lot of work in terms of structural design.

本発明は、前記従来の課題を解決するもので、水素生成装置の効率的な改質反応を損なうことなく、変成部及び選択酸化部のうちの少なくとも一方を所定の温度に維持し、水素生成装置の熱バランスを容易にコントロールできる水素生成装置の提供を目的とする。   The present invention solves the above-described conventional problems, and maintains at least one of the shift unit and the selective oxidation unit at a predetermined temperature without impairing the efficient reforming reaction of the hydrogen generator, thereby generating hydrogen. An object of the present invention is to provide a hydrogen generator capable of easily controlling the heat balance of the apparatus.

前記従来の課題を解決するために、本発明の水素生成装置は、加熱部に燃焼空気経路を介して燃焼空気を供給する燃焼空気供給路と、前記燃焼空気経路から分岐し変成部及び選択酸化部のうちの少なくとも一方の周囲を経由し前記燃焼空気経路に合流する冷却経路を備えたものである。   In order to solve the above-described conventional problems, the hydrogen generator of the present invention includes a combustion air supply path for supplying combustion air to a heating section via a combustion air path, a shift branch from the combustion air path, a shift conversion section, and a selective oxidation. And a cooling path that merges with the combustion air path via at least one of the sections.

このような構成にすることで、冷却経路に燃焼空気を流すことによって、変成部及び選択酸化部のうちの少なくとも一方を冷却することができるため、変成部及び選択酸化部の温度を所定の温度に保つよう構成設計することができる。また、変成部もしくは選択酸化部を冷却した燃焼空気は燃焼空気経路に供給され、加熱部で燃焼空気として利用するため、冷却経路の燃焼空気に放出した熱は、水素生成装置の外部に放出されることなく有効に利用されるため、熱損失を抑制することが可能となる。   With such a configuration, it is possible to cool at least one of the metamorphic part and the selective oxidation part by flowing combustion air through the cooling path. Therefore, the temperature of the metamorphic part and the selective oxidation part is set to a predetermined temperature. It can be designed to keep up with. In addition, the combustion air that has cooled the transformation section or the selective oxidation section is supplied to the combustion air path, and is used as the combustion air in the heating section. Therefore, the heat released to the combustion air in the cooling path is released to the outside of the hydrogen generator. Therefore, heat loss can be suppressed.

本発明の水素生成装置は、変成部及び選択酸化部のうちの少なくとも一方の温度を所定の温度に維持し、水素生成装置の熱バランスを容易にコントロールでき、安定した運転が
持続可能な水素生成装置を容易に構造設計することができる。また、変成部または選択酸化部から放出した熱の熱損失を抑制することができる。
The hydrogen generator of the present invention maintains the temperature of at least one of the shift section and the selective oxidation section at a predetermined temperature, can easily control the heat balance of the hydrogen generator, and can generate stable hydrogen in a stable manner. The device can be easily structurally designed. Moreover, the heat loss of the heat released from the metamorphic part or the selective oxidation part can be suppressed.

本発明の実施の形態1における水素生成装置の要部縦断面図1 is a longitudinal sectional view of main parts of a hydrogen generator according to Embodiment 1 of the present invention. 本発明の実施の形態2における水素生成装置の要部縦断面図Main part longitudinal cross-sectional view of the hydrogen generator in Embodiment 2 of this invention 本発明の実施の形態3における水素生成装置の要部縦断面図Main part longitudinal cross-sectional view of the hydrogen generator in Embodiment 3 of this invention 従来の水素生成装置の要部縦断面図Longitudinal sectional view of the main part of a conventional hydrogen generator

第1の発明は、水と原料との供給を受けて改質反応により水素リッチな燃料ガスを生成する改質部と、前記改質部を加熱する加熱部と、前記加熱部に燃焼空気経路を介して燃焼空気を供給する燃焼空気供給路と、前記改質部で生成された燃料ガス中の一酸化炭素を変成反応により低減する変成部と、前記変成部で一酸化炭素が低減された燃料ガス中の一酸化炭素を選択酸化反応によりさらに低減する選択酸化部と、前記燃焼空気経路から分岐し前記変成部及び選択酸化部のうちの少なくとも一方の周囲を経由し前記燃焼空気経路に合流する冷却経路とを備えることにより、冷却経路に燃焼空気を流すことによって変成部あるいは選択酸化部を冷却することができるため、変成部あるいは選択酸化部の温度を所定の温度に維持し、水素生成装置の熱バランスを保つよう構造設計することができる。   1st invention receives the supply of water and a raw material, the reforming part which produces | generates hydrogen-rich fuel gas by reforming reaction, the heating part which heats the said reforming part, and a combustion air path to the said heating part A combustion air supply passage for supplying combustion air via the gas, a shift portion for reducing carbon monoxide in the fuel gas generated in the reforming portion by a shift reaction, and carbon monoxide in the shift portion being reduced. A selective oxidation unit for further reducing carbon monoxide in the fuel gas by a selective oxidation reaction; and a branch from the combustion air path, and joins the combustion air path via at least one of the metamorphic part and the selective oxidation part A cooling path that cools the metamorphic part or the selective oxidation part by flowing combustion air through the cooling path, so that the temperature of the metamorphic part or the selective oxidation part is maintained at a predetermined temperature to generate hydrogen. apparatus It can be structural design to keep the heat balance.

また、変成部あるいは選択酸化部を冷却した燃焼空気は燃焼空気経路に供給され、加熱部で燃焼空気として利用するため、冷却経路の燃焼空気に放出した熱は、水素生成装置の外部に放出されることなく有効に利用されるため、変成部あるいは選択酸化部から放出した熱の熱損失を抑制することができる。   In addition, the combustion air that has cooled the transformation section or the selective oxidation section is supplied to the combustion air path and is used as the combustion air in the heating section. Therefore, the heat released to the combustion air in the cooling path is released to the outside of the hydrogen generator. Therefore, the heat loss of the heat released from the metamorphic part or the selective oxidation part can be suppressed.

また、第2の発明は、前記変成部及び選択酸化部のうちの少なくとも一方の温度を検出する温度検出部と、前記冷却経路を流通する空気量の調整を行う調整手段と、前記温度検出部により得られた温度により前記調整手段を制御する制御部とをさらに設けており、水素生成装置の動作中に温度検出部を監視しながら変成部及び選択酸化部の温度を制御することが可能になるため、水素生成装置の熱バランスの構成設計が容易になり、更に水素生成装置の起動時などの過渡状態や、水、空気、原料などの温度変化、水素生成装置周囲の環境温度が変化した際も、冷却経路を流通する空気量を調整して、変成部及び選択酸化部の温度を所定の温度に保ち、水素生成装置の熱バランスを維持することが可能である。   Further, the second invention includes a temperature detection unit that detects a temperature of at least one of the transformation unit and the selective oxidation unit, an adjustment unit that adjusts an amount of air flowing through the cooling path, and the temperature detection unit. And a control unit for controlling the adjusting means based on the temperature obtained by the above-described method, and it is possible to control the temperature of the shift unit and the selective oxidation unit while monitoring the temperature detection unit during operation of the hydrogen generator. As a result, the design of the heat balance of the hydrogen generator has become easier, and transient conditions such as when the hydrogen generator is started up, temperature changes in water, air, raw materials, etc., and the ambient temperature around the hydrogen generator have changed. At the same time, it is possible to maintain the heat balance of the hydrogen generator by adjusting the amount of air flowing through the cooling path to keep the temperatures of the shift conversion section and the selective oxidation section at a predetermined temperature.

また、第3の発明は、前記調整手段は、少なくとも冷却経路における空気の流通を開放または阻止する開閉弁とした構成にしており、温度検出部の温度を監視しながら冷却経路を流通する空気の流通を開放または阻止する開閉弁を設けることにより、より簡便に変成部及び選択酸化部の温度を適正な温度範囲に制御することが可能である。   According to a third aspect of the present invention, the adjusting means is configured as an on-off valve that opens or blocks at least the flow of air in the cooling path, and monitors the temperature of the temperature detecting unit while monitoring the temperature of the air flowing through the cooling path. By providing an on-off valve that opens or blocks the flow, it is possible to more easily control the temperatures of the shift conversion section and the selective oxidation section within an appropriate temperature range.

また、第4の発明は、前記変成部と前記選択酸化部とを収納する筐体と、前記筐体の外周に配された断熱材とをさらに備え、前記冷却経路を前記筐体の外周側で、かつ前記断熱材の内周側に配しており、冷却経路から水素生成装置の外部へ放出する熱を抑えることができ、変成部及び選択酸化部から放出した熱の熱損失を抑制することができる。   The fourth aspect of the present invention further includes a housing that houses the transformation portion and the selective oxidation portion, and a heat insulating material disposed on an outer periphery of the housing, and the cooling path is provided on the outer peripheral side of the housing. In addition, it is arranged on the inner peripheral side of the heat insulating material, can suppress the heat released from the cooling path to the outside of the hydrogen generator, and suppress the heat loss of the heat released from the transformation part and the selective oxidation part. be able to.

以下本発明の実施の形態について、図面を参照しながら説明する。なお、この実施形態によって本発明が限定されるものではない。   Embodiments of the present invention will be described below with reference to the drawings. In addition, this invention is not limited by this embodiment.

(実施の形態1)
図1は、本発明の実施の形態1における水素生成装置の要部縦断面図である。図1において、内側から順に第1円筒体1、第2円筒体2、第3円筒体3、筐体4が同心円上に配
置されている。そして第1円筒体1と第2円筒体2との間の空間で燃焼排ガス流路5を構成し、第2円筒体2と第3円筒体3との間の空間で環状の第1のガス流路6を構成し、第3円筒体3と筐体4との空間で環状の第2のガス流路7を構成し、第1円筒体1の内空間に加熱部8と、加熱部8に燃料を供給する燃料供給路10と、燃焼空気を供給する燃焼空気供給路9と燃焼室11とを設けている。
(Embodiment 1)
FIG. 1 is a longitudinal sectional view of a main part of a hydrogen generator according to Embodiment 1 of the present invention. In FIG. 1, a first cylindrical body 1, a second cylindrical body 2, a third cylindrical body 3, and a housing 4 are arranged concentrically in order from the inside. A combustion exhaust gas flow path 5 is formed in a space between the first cylinder 1 and the second cylinder 2, and an annular first gas is formed in a space between the second cylinder 2 and the third cylinder 3. The flow path 6 is configured, the annular second gas flow path 7 is configured in the space between the third cylindrical body 3 and the housing 4, and the heating unit 8 and the heating unit 8 are formed in the inner space of the first cylindrical body 1. A fuel supply passage 10 for supplying fuel, a combustion air supply passage 9 for supplying combustion air, and a combustion chamber 11 are provided.

燃焼室11と燃焼排ガス流路5は端部近傍で排気折り返し部12を介して連通している。また、第1のガス流路6と第2のガス流路7は端部近傍で原料折り返し部13を介して連通している。そして、第1のガス流路6には改質触媒を充填した改質部14を設けている。改質触媒はここではアルミナ担体に金属ルテニウムを担持した球状の触媒を使用しているが、このほかにニッケル触媒、白金系触媒、ロジウム等の白金族系触媒等用いることができる。改質部14は、水と原料との供給を受けて改質反応により水素リッチな燃料ガスを生成する。   The combustion chamber 11 and the combustion exhaust gas flow path 5 communicate with each other via an exhaust turn-back portion 12 in the vicinity of the end portion. Further, the first gas flow path 6 and the second gas flow path 7 communicate with each other through the raw material turn-back portion 13 in the vicinity of the end portion. The first gas flow path 6 is provided with a reforming unit 14 filled with a reforming catalyst. Here, a spherical catalyst in which metal ruthenium is supported on an alumina carrier is used as the reforming catalyst, but in addition to this, a nickel catalyst, a platinum catalyst, a platinum group catalyst such as rhodium, or the like can be used. The reforming unit 14 receives supply of water and raw materials and generates a hydrogen-rich fuel gas by a reforming reaction.

第2のガス流路7には変成触媒を充填した変成部15と選択酸化触媒を充填した選択酸化部16を設け、燃料ガス中の一酸化炭素を低減する一酸化炭素低減部を構成している。変成部15は、改質部14で生成された燃料ガス中の一酸化炭素を変成反応により低減する。選択酸化部16は、変成部15で一酸化炭素が低減された燃料ガス中の一酸化炭素を選択酸化反応によりさらに低減する。   The second gas flow path 7 is provided with a shift portion 15 filled with a shift catalyst and a selective oxidation portion 16 filled with a selective oxidation catalyst to constitute a carbon monoxide reduction portion that reduces carbon monoxide in the fuel gas. Yes. The shift unit 15 reduces the carbon monoxide in the fuel gas generated in the reforming unit 14 by a shift reaction. The selective oxidation unit 16 further reduces the carbon monoxide in the fuel gas from which the carbon monoxide has been reduced in the shift unit 15 by a selective oxidation reaction.

ここでは変成触媒には球状の白金系触媒を用いているが、当然銅を主体とした銅/亜鉛系触媒等を用いることも当然できる。また、選択酸化触媒はルテニウム系の球状触媒を用いているが、白金系触媒等も目的に応じて選択することが可能である。   Here, a spherical platinum-based catalyst is used as the shift catalyst, but it is naturally possible to use a copper / zinc-based catalyst mainly composed of copper. Further, although the ruthenium-based spherical catalyst is used as the selective oxidation catalyst, a platinum-based catalyst or the like can be selected according to the purpose.

選択酸化部16の上流側に選択酸化触媒で酸化反応を行わせるための空気供給管17を設け、第1のガス経路6の上流側に原料導入管18を設け、ここから水蒸気改質反応の原料である炭化水素系燃料と水とが供給される。ここでは燃料として都市ガスを用いているが、当然のことながらLPガス等他の炭化水素系燃料も用いることができる。これら炭化水素系燃料は付臭剤として添加される硫黄化合物を含むが、それらは原料導入管18の上流側に設置された脱硫部(図略)を通過するときに除去され、脱硫後の炭化水素系燃料が原料導入管18に供給される。また、ここではもう一方の原料の水はイオン交換水を用いた。   An air supply pipe 17 for performing an oxidation reaction with a selective oxidation catalyst is provided on the upstream side of the selective oxidation unit 16, and a raw material introduction pipe 18 is provided on the upstream side of the first gas path 6, from which a steam reforming reaction is performed. Hydrocarbon fuel and water as raw materials are supplied. Here, city gas is used as the fuel, but other hydrocarbon fuels such as LP gas can be used as a matter of course. These hydrocarbon-based fuels contain sulfur compounds added as odorants, but they are removed when passing through a desulfurization section (not shown) installed upstream of the raw material introduction pipe 18 and carbonized after desulfurization. Hydrogen-based fuel is supplied to the raw material introduction pipe 18. Here, ion-exchanged water was used as the other raw material water.

選択酸化部16の下流側に、改質され生成した水素含有ガスが排出される改質ガス出口19を設け、この先にこのガスを利用して発電する燃料電池が接続される。   A reformed gas outlet 19 for discharging the reformed and generated hydrogen-containing gas is provided on the downstream side of the selective oxidation unit 16, and a fuel cell that generates power using this gas is connected to the reformed gas outlet 19.

第1のガス流路6の上流側には流路規定部材20をらせん状に設置し、流路規定部材20に沿って第2円筒体2と第3円筒体3の間にらせん状の空間を形成している。水素生成装置が水素を生成する際は、原料導入管18より原料水と原料都市ガスが供給されるが、前記のらせん状空間が原料水の蒸発および原料都市ガスとの混合部として機能することになる(この部分を蒸発部21とする)。   A flow path defining member 20 is spirally installed on the upstream side of the first gas flow path 6, and a helical space is formed between the second cylindrical body 2 and the third cylindrical body 3 along the flow path defining member 20. Is forming. When the hydrogen generator generates hydrogen, raw water and raw city gas are supplied from the raw material introduction pipe 18, and the spiral space functions as a mixing portion for the evaporation of raw water and raw city gas. (This portion is referred to as an evaporation portion 21).

送風機22は燃焼空気経路23を介して加熱部8に空気を供給しており、燃焼空気経路23の途中を分岐して冷却経路24を形成し、前記冷却経路24は前記変成部15と選択酸化部16を冷却するように、筐体4の外周に沿って配設され、その後、燃焼空気経路23と合流し、燃焼空気供給路9に連通する構成としている。   The blower 22 supplies air to the heating unit 8 through the combustion air path 23, and a cooling path 24 is formed by branching in the middle of the combustion air path 23. The cooling path 24 is selectively oxidized with the shift unit 15. It is arranged along the outer periphery of the housing 4 so as to cool the part 16, and then merges with the combustion air path 23 and communicates with the combustion air supply path 9.

水素生成装置全体を覆うように断熱材25を設け、前記冷却経路24を筐体4の外周側で、かつ前記断熱材25の内周側に設けた構成にしている。断熱材25の材料としてここではセラミックファイバーを成形した部材を用いているが、これに限られるものではない
A heat insulating material 25 is provided so as to cover the entire hydrogen generator, and the cooling path 24 is provided on the outer peripheral side of the housing 4 and on the inner peripheral side of the heat insulating material 25. Although the member which shape | molded the ceramic fiber is used here as a material of the heat insulating material 25, it is not restricted to this.

次に、かかる水素生成装置の構成での動作について説明する。この水素生成装置の起動前においては、改質触媒を充填した改質部14、変成触媒を充填した変成部15、選択酸化触媒を充填した選択酸化部16を含めた第1のガス流路6、第2のガス流路7いわゆる水素生成装置内部)には、反応用の各触媒の劣化を極力防止するために燃料ガス(ここでは都市ガス)が充填されている。各触媒は空気の混入による酸化、残留水蒸気の凝縮による水濡れ等の履歴を受けることにより活性の劣化が起こることがあるためである。   Next, the operation of the configuration of the hydrogen generator will be described. Before the hydrogen generator is started, the first gas flow path 6 including the reforming section 14 filled with the reforming catalyst, the shift conversion section 15 filled with the shift catalyst, and the selective oxidation section 16 filled with the selective oxidation catalyst. The second gas flow path 7 so-called inside of the hydrogen generator is filled with fuel gas (in this case, city gas) in order to prevent deterioration of each reaction catalyst as much as possible. This is because the activity of each catalyst may be deteriorated by receiving a history such as oxidation due to air mixing and water wetting due to condensation of residual water vapor.

この状態から水素生成装置の起動が開始される。燃料供給路10から燃焼用燃料が加熱部8に供給される。燃焼用燃料の供給と同時に、送風機22を動作させ、燃焼空気も加熱部8に供給され、着火器(図略)を動作させることにより加熱部8に着火し燃焼室11で燃焼が開始される。   In this state, the hydrogen generator is started. Combustion fuel is supplied to the heating unit 8 from the fuel supply path 10. Simultaneously with the supply of the combustion fuel, the blower 22 is operated, the combustion air is also supplied to the heating unit 8, and the ignition unit (not shown) is operated to ignite the heating unit 8 and start combustion in the combustion chamber 11. .

加熱部8での燃焼開始とともに燃焼熱及び燃焼排ガスの保有熱により燃焼室11、燃焼排ガス流路5の温度が上昇し、隣接する第1のガス流路6およびその中に設けられた改質部14が加熱される。   The combustion chamber 11 and the combustion exhaust gas passage 5 rise in temperature due to the combustion heat and the retained heat of the combustion exhaust gas at the start of combustion in the heating unit 8, and the adjacent first gas passage 6 and the reforming provided therein. Part 14 is heated.

蒸発部21が100℃を越えた時点で、原料導入管18から原料水が供給され、改質部14に都市ガスと水蒸気の混合ガスが供給されて改質反応が開始される。ほぼ同時期に空気供給管17から選択酸化反応用空気が供給されると、改質部14、変成部15、選択酸化部16の反応が開始され、全体が水素生成装置として機能し始める。   When the evaporation section 21 exceeds 100 ° C., raw water is supplied from the raw material introduction pipe 18 and a mixed gas of city gas and water vapor is supplied to the reforming section 14 to start the reforming reaction. When the selective oxidation reaction air is supplied from the air supply pipe 17 at substantially the same time, the reactions of the reforming unit 14, the shift unit 15, and the selective oxidation unit 16 are started, and the whole begins to function as a hydrogen generator.

水素生成装置が安定して運転を継続するためには、改質部14、変成部15、選択酸化部16、蒸発部21の温度を所定の温度に保つ必要がある。吸熱反応する改質部14は加熱部8による加熱で所定の温度に保たれる。一方、変成部15と選択酸化部16は、触媒の発熱反応によって熱が発生するため、その熱を取り去ってやる必要がある。変成部15と選択酸化部16で発生した反応熱の一部は、変成部15と選択酸化部16の内側にある第2円筒体を介して蒸発部21に伝わり原料水の蒸発熱に利用される。さらに、変成部15と選択酸化部16で発生した反応熱の一部は、変成部15と選択酸化部16の外周にある筐体4に伝達し、筐体4の周囲に配設された冷却経路24を流れる燃焼空気に放熱される。以上2つの冷却構成により、変成部15と選択酸化部16の温度を所定の温度に保持することができる。   In order for the hydrogen generator to stably operate, it is necessary to keep the temperatures of the reforming unit 14, the shift unit 15, the selective oxidation unit 16, and the evaporation unit 21 at predetermined temperatures. The reforming section 14 that undergoes endothermic reaction is maintained at a predetermined temperature by heating by the heating section 8. On the other hand, since the heat is generated by the exothermic reaction of the catalyst, the transformation unit 15 and the selective oxidation unit 16 need to remove the heat. Part of the reaction heat generated in the shift unit 15 and the selective oxidation unit 16 is transmitted to the evaporation unit 21 via the second cylindrical body inside the shift unit 15 and the selective oxidation unit 16 and used for the evaporation heat of the raw material water. The Further, a part of the reaction heat generated in the transformation unit 15 and the selective oxidation unit 16 is transmitted to the casing 4 on the outer periphery of the transformation unit 15 and the selective oxidation unit 16, and the cooling disposed around the casing 4. Heat is radiated to the combustion air flowing through the path 24. With the above two cooling configurations, the temperature of the shift unit 15 and the selective oxidation unit 16 can be maintained at a predetermined temperature.

変成部15と選択酸化部16を冷却した燃焼空気は燃焼空気経路23に合流し、加熱部で燃焼空気として利用する。   The combustion air that has cooled the metamorphic unit 15 and the selective oxidation unit 16 joins the combustion air path 23 and is used as combustion air in the heating unit.

この後は各反応部の温度が通常運転状態に至ったと判断できた時点で、燃料電池に接続して水素含有ガスの供給を開始し、燃料電池では発電を開始する。   After that, when it can be determined that the temperature of each reaction part has reached the normal operation state, the fuel cell is connected to start supplying hydrogen-containing gas, and the fuel cell starts power generation.

以上のように、本実施の形態においては、燃焼空気経路23から分岐した冷却経路24を変成部15と選択酸化部16の周囲に配設する構成にしていることにより、送風機22から供給された燃焼空気を冷却経路24に流して変成部15と選択酸化部16を冷却するため、冷却経路24を流れる燃焼空気量を変更することによって、変成部15と選択酸化部16の冷却量を容易に変更設計することが可能であり、変成部15と選択酸化部16の温度を所定の温度に維持し、水素生成装置の熱バランス構成設計を容易にすることができる。   As described above, in the present embodiment, the cooling path 24 branched from the combustion air path 23 is arranged around the shift conversion section 15 and the selective oxidation section 16, so that the cooling path 24 is supplied from the blower 22. Since the combustion air is caused to flow through the cooling path 24 to cool the shift converter 15 and the selective oxidation section 16, the amount of combustion air flowing through the cooling path 24 is changed to easily reduce the cooling amount of the shift conversion section 15 and the selective oxidation section 16. The change design can be performed, and the temperature of the shift unit 15 and the selective oxidation unit 16 can be maintained at a predetermined temperature, thereby facilitating the heat balance configuration design of the hydrogen generator.

また、本実施の形態においては、燃焼空気経路から分岐し変成部15と選択酸化部16の周囲を経由した冷却経路24を燃焼空気経路23に合流させることにより、変成部15
と選択酸化部16を冷却した燃焼空気を加熱部8で利用するため、変成部15と選択酸化部16から冷却経路24に放出した熱を水素生成装置の外部に放出することなく有効に利用するため、熱損失を抑えることができる。
Further, in the present embodiment, the transformation section 15 is formed by joining the cooling path 24 branched from the combustion air path and passing through the circumference of the transformation section 15 and the selective oxidation section 16 to the combustion air path 23.
Since the combustion air that has cooled the selective oxidation unit 16 is used in the heating unit 8, the heat released from the transformation unit 15 and the selective oxidation unit 16 to the cooling path 24 is effectively used without being released to the outside of the hydrogen generator. Therefore, heat loss can be suppressed.

また、本実施の形態においては、冷却経路24を筐体4と断熱材25の間に設けることにより、冷却経路24から外部への放出熱量を抑えることができるため熱損失を抑えることができる。   In the present embodiment, by providing the cooling path 24 between the housing 4 and the heat insulating material 25, the amount of heat released from the cooling path 24 to the outside can be suppressed, so that heat loss can be suppressed.

(実施の形態2)
図2は、本発明の実施の形態2における水素生成装置の要部縦断面図である。実施形態1と同一の構成部品は同じ名称を用い説明を省略する。
(Embodiment 2)
FIG. 2 is a longitudinal sectional view of an essential part of the hydrogen generator in Embodiment 2 of the present invention. The same components as those of the first embodiment are given the same names, and the description thereof is omitted.

変成部15には温度を検出する温度検出部26と、冷却経路24を流通する空気量の調整を行う調整手段27と、前記温度検出部26により得られた温度により前記調整手段27を制御する制御部28とを、さらに設けた構成にしている。   The transformation unit 15 includes a temperature detection unit 26 that detects the temperature, an adjustment unit 27 that adjusts the amount of air flowing through the cooling path 24, and the adjustment unit 27 that is controlled by the temperature obtained by the temperature detection unit 26. The control unit 28 is further provided.

次に、かかる水素生成装置の構成での動作について説明する。この水素生成装置の起動前の状態から全体が水素生成装置として機能し始めるまでの動作は実施形態1と同じなので説明を省略する。   Next, the operation of the configuration of the hydrogen generator will be described. Since the operation from the state before the start of the hydrogen generator until the whole starts to function as the hydrogen generator is the same as that of the first embodiment, the description thereof is omitted.

水素生成装置が安定して運転を継続するためには、改質部14、変成部15、選択酸化部16、蒸発部21の温度を所定の温度に保つ必要がある。吸熱反応する改質部14は加熱部8による加熱で所定の温度に保たれる。一方、変成部15と選択酸化部16は、触媒の発熱反応によって熱が発生するため、その熱を取り去ってやる必要がある。変成部15と選択酸化部16で発生した反応熱の一部は、変成部15と選択酸化部16の内側にある第2円筒体2を介して蒸発部21に伝わり原料水の蒸発熱に利用される。さらに、変成部15と選択酸化部16で発生した反応熱の一部は、変成部15と選択酸化部16の外周にある筐体4に伝達し、筐体4の周囲に配設された冷却経路24を流れる燃焼空気によって冷却される。   In order for the hydrogen generator to stably operate, it is necessary to keep the temperatures of the reforming unit 14, the shift unit 15, the selective oxidation unit 16, and the evaporation unit 21 at predetermined temperatures. The reforming section 14 that undergoes endothermic reaction is maintained at a predetermined temperature by heating by the heating section 8. On the other hand, since the heat is generated by the exothermic reaction of the catalyst, the transformation unit 15 and the selective oxidation unit 16 need to remove the heat. Part of the reaction heat generated in the shift unit 15 and the selective oxidation unit 16 is transmitted to the evaporation unit 21 via the second cylindrical body 2 inside the shift unit 15 and the selective oxidation unit 16 and used for the heat of evaporation of the raw material water. Is done. Further, a part of the reaction heat generated in the transformation unit 15 and the selective oxidation unit 16 is transmitted to the casing 4 on the outer periphery of the transformation unit 15 and the selective oxidation unit 16, and the cooling disposed around the casing 4. Cooled by the combustion air flowing through the path 24.

変成部15と選択酸化部16の温度は、温度検出部26と制御部28と調整手段27で冷却経路24に流れる燃焼空気の量を変化させて調整する。温度検出部26で変成部15の温度を検出し、その信号を制御部28に送る。温度検出部26の温度が所定温度より高いときは冷却経路24を流れる燃焼空気量を増やすように調整手段27に信号を送り、温度検出部26の温度が所定温度より低いときは冷却経路24を流れる燃焼空気量を減らすように調整手段27に信号を送り、調整手段27で冷却経路24を流れる燃焼空気の流量を制御して、変成部15と選択酸化部16が所定温度になるようにコントロールする。   The temperatures of the shift converter 15 and the selective oxidation unit 16 are adjusted by changing the amount of combustion air flowing in the cooling path 24 by the temperature detection unit 26, the control unit 28, and the adjustment unit 27. The temperature detection unit 26 detects the temperature of the transformation unit 15 and sends the signal to the control unit 28. When the temperature of the temperature detector 26 is higher than a predetermined temperature, a signal is sent to the adjusting means 27 so as to increase the amount of combustion air flowing through the cooling path 24, and when the temperature of the temperature detector 26 is lower than the predetermined temperature, the cooling path 24 is set. A signal is sent to the adjusting means 27 so as to reduce the amount of combustion air flowing, and the adjusting means 27 controls the flow rate of the combustion air flowing through the cooling path 24 so as to control the shift section 15 and the selective oxidation section 16 to a predetermined temperature. To do.

変成部15と選択酸化部16を冷却した燃焼空気は燃焼空気経路23に合流し、加熱部8で燃焼空気として利用する。   The combustion air that has cooled the shift converter 15 and the selective oxidation unit 16 merges into the combustion air passage 23 and is used as combustion air by the heating unit 8.

この後は各反応部の温度が通常運転状態に至ったと判断できた時点で、燃料電池に接続して水素含有ガスの供給を開始し、燃料電池では発電を開始する。   After that, when it can be determined that the temperature of each reaction part has reached the normal operation state, the fuel cell is connected to start supplying hydrogen-containing gas, and the fuel cell starts power generation.

以上のように、本実施の形態においては、燃焼空気経路23から分岐した冷却経路24を変成部15と選択酸化部16の周囲に配設し、冷却経路24を流通する空気量の調整を行う調整手段27と、温度検出部26により得られた温度により前記調整手段27を制御する制御部28とを設けた構成にしていることにより、調整手段27で冷却経路24を流れる燃焼空気の量を制御することによって変成部15と選択酸化部16の冷却量を調整することができるため、例えば環境温度が変化して冷却経路24に供給される燃焼空気の温
度が変化しても、調整手段27で冷却経路24を流れる燃焼空気量を変化させて変成部15と選択酸化部16を所定の温度に維持し、水素生成装置の熱バランスを保つことができる。
As described above, in the present embodiment, the cooling path 24 branched from the combustion air path 23 is disposed around the transformation unit 15 and the selective oxidation unit 16, and the amount of air flowing through the cooling path 24 is adjusted. Since the adjusting means 27 and the control unit 28 for controlling the adjusting means 27 based on the temperature obtained by the temperature detecting unit 26 are provided, the amount of combustion air flowing through the cooling path 24 by the adjusting means 27 can be reduced. Since the amount of cooling of the transformation unit 15 and the selective oxidation unit 16 can be adjusted by controlling, for example, even if the temperature of the combustion air supplied to the cooling path 24 changes due to the environmental temperature changing, the adjusting means 27 Thus, the amount of combustion air flowing through the cooling path 24 is changed to maintain the shift section 15 and the selective oxidation section 16 at a predetermined temperature, and the heat balance of the hydrogen generator can be maintained.

(実施の形態3)
図3は、本発明の実施の形態3における水素生成装置の要部縦断面図である。実施形態1、実施形態2と同一の構成部品は同じ名称を用い説明を省略する。
(Embodiment 3)
FIG. 3 is a longitudinal sectional view of an essential part of the hydrogen generator according to Embodiment 3 of the present invention. The same components as those in the first embodiment and the second embodiment have the same names and the description thereof is omitted.

実施の形態3の発明は、実施形態2の調整手段27を、冷却経路24における空気の流通を開放または阻止する開閉弁29を用いた構成とする。   In the invention of the third embodiment, the adjusting means 27 of the second embodiment is configured using an on-off valve 29 that opens or blocks air flow in the cooling path 24.

次に、かかる水素生成装置の構成での動作について説明する。この水素生成装置の起動前の状態から全体が水素生成装置として機能し始めるまでの動作は実施形態1と同じなので説明を省略する。   Next, the operation of the configuration of the hydrogen generator will be described. Since the operation from the state before the start of the hydrogen generator until the whole starts to function as the hydrogen generator is the same as that of the first embodiment, the description thereof is omitted.

水素生成装置が安定して運転を継続するためには、改質部14、変成部15、選択酸化部16、蒸発部21の温度を所定の温度に保つ必要がある。吸熱反応する改質部14は加熱部8による加熱で所定の温度に保たれる。一方、変成部15と選択酸化部16は、触媒の発熱反応によって熱が発生するため、その熱を取り去ってやる必要がある。変成部15と選択酸化部16で発生した反応熱の一部は、変成部15と選択酸化部16の内側にある第2円筒体2を介して蒸発部21に伝わり原料水の蒸発熱に利用される。さらに、変成部15と選択酸化部16で発生した反応熱の一部は、変成部15と選択酸化部16の外周にある筐体4に伝達し、筐体4の周囲に配設された冷却経路24を流れる燃焼空気によって冷却される。   In order for the hydrogen generator to stably operate, it is necessary to keep the temperatures of the reforming unit 14, the shift unit 15, the selective oxidation unit 16, and the evaporation unit 21 at predetermined temperatures. The reforming section 14 that undergoes endothermic reaction is maintained at a predetermined temperature by heating by the heating section 8. On the other hand, since the heat is generated by the exothermic reaction of the catalyst, the transformation unit 15 and the selective oxidation unit 16 need to remove the heat. Part of the reaction heat generated in the shift unit 15 and the selective oxidation unit 16 is transmitted to the evaporation unit 21 via the second cylindrical body 2 inside the shift unit 15 and the selective oxidation unit 16 and used for the heat of evaporation of the raw material water. Is done. Further, a part of the reaction heat generated in the transformation unit 15 and the selective oxidation unit 16 is transmitted to the casing 4 on the outer periphery of the transformation unit 15 and the selective oxidation unit 16, and the cooling disposed around the casing 4. Cooled by the combustion air flowing through the path 24.

変成部15と選択酸化部16の温度は、温度検出部26と制御部28と開閉弁29で制御する。温度検出部26で変成部15の温度を検出し、その信号を制御部28に送る。変成部15の温度が所定温度より高いときは制御部28から信号を送り開閉弁29を開け、冷却経路24に燃焼空気が流れるようにする。また、変成部15の温度が所定温度より低いときは制御部28から信号を送り開閉弁29を閉め、冷却経路24に燃焼空気を流れないようにする。このように温度検出部26を監視しながら開閉弁29を制御し、冷却経路24を流れる燃焼空気を流動、停止させることにより、変成部15と選択酸化部16を所定の温度範囲になるように制御し、水素生成装置の熱バランスを維持することができる。   The temperatures of the shift converter 15 and the selective oxidation unit 16 are controlled by a temperature detection unit 26, a control unit 28, and an on-off valve 29. The temperature detection unit 26 detects the temperature of the transformation unit 15 and sends the signal to the control unit 28. When the temperature of the transformation unit 15 is higher than the predetermined temperature, a signal is sent from the control unit 28 to open the on-off valve 29 so that the combustion air flows through the cooling path 24. Further, when the temperature of the transformation unit 15 is lower than the predetermined temperature, a signal is sent from the control unit 28 to close the on-off valve 29 so that combustion air does not flow into the cooling path 24. In this way, by controlling the on-off valve 29 while monitoring the temperature detection unit 26 and causing the combustion air flowing through the cooling path 24 to flow and stop, the shift unit 15 and the selective oxidation unit 16 are brought to a predetermined temperature range. Control and maintain the thermal balance of the hydrogen generator.

変成部15と選択酸化部16を冷却した燃焼空気は燃焼空気経路23に合流し、加熱部8で燃焼空気として利用する。   The combustion air that has cooled the shift converter 15 and the selective oxidation unit 16 merges into the combustion air passage 23 and is used as combustion air by the heating unit 8.

この後は各反応部の温度が通常運転状態に至ったと判断できた時点で、燃料電池に接続して水素含有ガスの供給を開始し、燃料電池では発電を開始する。   After that, when it can be determined that the temperature of each reaction part has reached the normal operation state, the fuel cell is connected to start supplying hydrogen-containing gas, and the fuel cell starts power generation.

以上のように、本実施の形態においては、燃焼空気経路23から分岐した冷却経路24を変成部15と選択酸化部16の周囲に配設し、冷却経路24に燃焼空気の流通を開放または阻止する開閉弁29を設けたことにより、冷却経路24を流れる燃焼空気を流動、停止させることができるため、例えば環境温度が変化して冷却経路24に供給される燃焼空気の温度が変化しても、変成部15と選択酸化部16を所定の温度範囲で維持し、水素生成装置の熱バランスを保つことができる。   As described above, in the present embodiment, the cooling path 24 branched from the combustion air path 23 is disposed around the transformation section 15 and the selective oxidation section 16 so that the flow of the combustion air is opened or blocked in the cooling path 24. By providing the open / close valve 29, the combustion air flowing through the cooling path 24 can be flowed and stopped. For example, even if the environmental temperature changes and the temperature of the combustion air supplied to the cooling path 24 changes The transformation unit 15 and the selective oxidation unit 16 can be maintained within a predetermined temperature range, and the heat balance of the hydrogen generator can be maintained.

なお、実施の形態1、実施の形態2、実施の形態3では冷却経路24を、一酸化炭素低減部を構成する変成部15と選択酸化部16の周囲に配設しているが、冷却経路24を変成部15及び選択酸化部16のうちの少なくとも一方の周囲に配設して各部を独立して冷
却する構成にして、変成部15と選択酸化部16と改質部14の温度を所定の温度にして水素生成装置の熱バランスを維持することも可能である。
In the first embodiment, the second embodiment, and the third embodiment, the cooling path 24 is disposed around the shift conversion section 15 and the selective oxidation section 16 constituting the carbon monoxide reduction section. 24 is arranged around at least one of the transformation unit 15 and the selective oxidation unit 16 so that each part is cooled independently, and the temperatures of the transformation unit 15, the selective oxidation unit 16, and the reforming unit 14 are set to a predetermined value. It is also possible to maintain the heat balance of the hydrogen generator at a temperature of

本発明にかかる水素生成装置は、水蒸気改質反応を利用して都市ガス、LPガス等の炭化水素系燃料から効果的に水素を生成する機能を有し、コージェネレーションシステム等に活用が期待されている燃料電池システム用燃料水素生成装置として有用である。特に家庭用、小型業務用程度の比較的小型のシステムに適用性が高い。また、この装置単独で水素生成装置として工業用等の用途にも応用できる。   The hydrogen generator according to the present invention has a function of effectively generating hydrogen from hydrocarbon fuels such as city gas and LP gas using a steam reforming reaction, and is expected to be used in cogeneration systems and the like. It is useful as a fuel hydrogen generator for a fuel cell system. In particular, it is highly applicable to relatively small systems for home use and small business use. In addition, this apparatus alone can be applied to industrial uses as a hydrogen generator.

4 筐体
8 加熱部
9 燃焼空気供給路
14 改質部
15 変成部
16 選択酸化部
23 燃焼空気経路
24 冷却経路
25 断熱材
26 温度検出部
27 調整手段
28 制御部
29 開閉弁
DESCRIPTION OF SYMBOLS 4 Case 8 Heating part 9 Combustion air supply path 14 Reforming part 15 Transformation part 16 Selective oxidation part 23 Combustion air path 24 Cooling path 25 Heat insulating material 26 Temperature detection part 27 Adjustment means 28 Control part 29 Opening and closing valve

Claims (4)

水と原料との供給を受けて改質反応により水素リッチな燃料ガスを生成する改質部と、
前記改質部を加熱する加熱部と、
前記加熱部に燃焼空気経路を介して燃焼空気を供給する燃焼空気供給路と、
前記改質部で生成された燃料ガス中の一酸化炭素を変成反応により低減する変成部と、
前記変成部で一酸化炭素が低減された燃料ガス中の一酸化炭素を選択酸化反応によりさらに低減する選択酸化部と、
前記燃焼空気経路から分岐し前記変成部及び選択酸化部のうちの少なくとも一方の周囲を経由し前記燃焼空気経路に合流する冷却経路とを備えたことを特徴とする水素生成装置。
A reforming unit that receives supply of water and raw materials and generates a hydrogen-rich fuel gas by a reforming reaction;
A heating unit for heating the reforming unit;
A combustion air supply path for supplying combustion air to the heating unit via a combustion air path;
A metamorphic section that reduces carbon monoxide in the fuel gas produced in the reforming section by a metamorphic reaction;
A selective oxidation part that further reduces carbon monoxide in the fuel gas in which carbon monoxide is reduced in the metamorphic part by a selective oxidation reaction;
A hydrogen generation apparatus comprising: a cooling path branched from the combustion air path and joined to the combustion air path via at least one of the shift section and the selective oxidation section.
前記変成部及び選択酸化部のうちの少なくとも一方の温度を検出する温度検出部と、
前記冷却経路を流通する空気量の調整を行う調整手段と、
前記温度検出部により得られた温度により前記調整手段を制御する制御部とを、さらに設けたことを特徴とする請求項1に記載の水素生成装置。
A temperature detection unit for detecting the temperature of at least one of the transformation unit and the selective oxidation unit;
Adjusting means for adjusting the amount of air flowing through the cooling path;
The hydrogen generation apparatus according to claim 1, further comprising a control unit that controls the adjusting unit based on a temperature obtained by the temperature detection unit.
前記調整手段は、少なくとも冷却経路における空気の流通を開放または阻止する開閉弁としたことを特徴とする請求項2に記載の水素生成装置。 The hydrogen generator according to claim 2, wherein the adjusting means is an on-off valve that opens or blocks air flow in at least the cooling path. 前記変成部と前記選択酸化部とを収納する筐体と、
前記筐体の外周に配された断熱材とをさらに備え、
前記冷却経路を前記筐体の外周側で、かつ前記断熱材の内周側に配したことを特徴とする請求項1〜3のいずれか1項に記載の水素生成装置。
A housing that houses the transformation portion and the selective oxidation portion;
And further comprising a heat insulating material disposed on the outer periphery of the housing,
The hydrogen generation apparatus according to claim 1, wherein the cooling path is arranged on an outer peripheral side of the casing and on an inner peripheral side of the heat insulating material.
JP2010196395A 2010-09-02 2010-09-02 Hydrogen generation device Pending JP2013234076A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010196395A JP2013234076A (en) 2010-09-02 2010-09-02 Hydrogen generation device
PCT/JP2011/004908 WO2012029322A1 (en) 2010-09-02 2011-09-01 Hydrogen generation device and fuel cell system equipped with same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010196395A JP2013234076A (en) 2010-09-02 2010-09-02 Hydrogen generation device

Publications (1)

Publication Number Publication Date
JP2013234076A true JP2013234076A (en) 2013-11-21

Family

ID=45772444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010196395A Pending JP2013234076A (en) 2010-09-02 2010-09-02 Hydrogen generation device

Country Status (2)

Country Link
JP (1) JP2013234076A (en)
WO (1) WO2012029322A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016129746A1 (en) * 2015-02-09 2016-08-18 주식회사 두산 Fuel processing apparatus for fuel cell, and fuel cell system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007308328A (en) * 2006-05-18 2007-11-29 Honda Motor Co Ltd Reformer for fuel cell
JP5049028B2 (en) * 2007-02-22 2012-10-17 パナソニック株式会社 Hydrogen generator, operating method thereof, and fuel cell system including the same
JP5138324B2 (en) * 2007-05-21 2013-02-06 株式会社荏原製作所 Reformer and fuel cell system
JP2009078954A (en) * 2007-09-27 2009-04-16 Fuji Electric Holdings Co Ltd Reforming apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016129746A1 (en) * 2015-02-09 2016-08-18 주식회사 두산 Fuel processing apparatus for fuel cell, and fuel cell system
KR20160097669A (en) * 2015-02-09 2016-08-18 주식회사 두산 Fuel processing device for fuel cell and fuel cell system
KR101708841B1 (en) * 2015-02-09 2017-02-21 주식회사 두산 Fuel processing device for fuel cell and fuel cell system

Also Published As

Publication number Publication date
WO2012029322A1 (en) 2012-03-08

Similar Documents

Publication Publication Date Title
KR100285165B1 (en) Reformer
US9012098B2 (en) Hydrogen production apparatus and fuel cell system
KR20040058180A (en) Highly Efficient, Compact Reformer Unit for Generating Hydrogen from Gaseous Hydrocarbons in the Low Power Range
JP4979354B2 (en) Hydrogen generator and fuel cell system
US20130065144A1 (en) Hydrogen production apparatus and fuel cell system
JP2007331951A (en) Hydrogen generator and fuel cell system
JP2017048079A (en) Hydrogen generator and fuel cell system using the same
JP2005294207A (en) Fuel cell system
JP4486832B2 (en) Steam reforming system
JP2013234076A (en) Hydrogen generation device
JP2009302010A (en) Fuel cell cogeneration system
JP2009096706A (en) Reforming apparatus for fuel cell
WO2012032744A1 (en) Fuel cell system
EP2835343A1 (en) Hydrogen generator
JP2015140285A (en) Method for operating hydrogen-containing gas generation apparatus, and hydrogen-containing gas generation apparatus
JP2005216615A (en) Fuel processing device and fuel cell power generation system
JP6523841B2 (en) Fuel cell system
JP4835273B2 (en) Hydrogen generator and fuel cell system
JP6270507B2 (en) Start-up operation method for hydrogen-containing gas generator and hydrogen-containing gas generator
JP2009067645A (en) Hydrogen manufacturing device and fuel cell system using the same
JP2004010411A (en) Method for starting and operating reforming device
JP5086743B2 (en) Fuel cell system
JP5423141B2 (en) Hydrogen generator
JP5853137B2 (en) Hydrogen purification apparatus and fuel cell system using the same
JP2014005163A (en) Hydrogen generator