JP2004000827A - Removing agent of fluorine and phosphorus and processing method for removing fluorine and phosphorus - Google Patents

Removing agent of fluorine and phosphorus and processing method for removing fluorine and phosphorus Download PDF

Info

Publication number
JP2004000827A
JP2004000827A JP2002159021A JP2002159021A JP2004000827A JP 2004000827 A JP2004000827 A JP 2004000827A JP 2002159021 A JP2002159021 A JP 2002159021A JP 2002159021 A JP2002159021 A JP 2002159021A JP 2004000827 A JP2004000827 A JP 2004000827A
Authority
JP
Japan
Prior art keywords
fluorine
phosphorus
zirconyl
aqueous solution
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002159021A
Other languages
Japanese (ja)
Other versions
JP2004000827A5 (en
Inventor
Kazuhiko Shimizu
清水 和彦
Rie Yano
矢野 理江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2002159021A priority Critical patent/JP2004000827A/en
Publication of JP2004000827A publication Critical patent/JP2004000827A/en
Publication of JP2004000827A5 publication Critical patent/JP2004000827A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Removal Of Specific Substances (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a removing agent for efficiently removing fluorine and/or phosphorus from fluorine and/or phosphorus-containing wastewater or the like to easily treat fluorine and/or phosphorus so as to bring it to a target low concentration, and a processing method for removing fluorine and/or phosphorus. <P>SOLUTION: The fluorine and/or phosphorus removing agent comprises a zirconium salt aqueous solution. In the processing method for treating fluorine and/or phosphorus-containing water, the zirconium salt aqueous solution is added to fluorine and/or phosphorus-comtaining water to insolubilize fluoride ions and/or phosphate ions as a fluorine compound and/or a phosphate compound and this compound is subjected to solid-liquid separation treatment. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、フッ素およびリンの除去剤および除去処理方法に関し、とくに、フッ素および/またはリンを含有する廃水等から、フッ素および/またはリンを効率よく除去して目標とする低濃度まで容易に処理可能な除去剤および除去処理方法に関する。
【0002】
【従来の技術】
各種産業分野における廃水や工程水中に含まれるフッ素および/またはリンの除去方法として、以下のような方法が知られている。たとえば、エレクトロニクス産業廃水等から排出されるフッ素の除去方法としては、原水に消石灰を添加してフッ化カルシウムの微粒子を生成させ、生成された微細粒子をAl、Fe系の凝集剤もしくは高分子凝集剤で凝集させた後、沈殿分離する方法が採用されている。この方法によると、処理水中のフッ素を10〜20mg/l程度に低減できる。したがって、従前の排出基準値である15mg/lをクリアーすることが可能であった。
【0003】
ところが、2001年7月に、フッ素の排出基準値が15mg/lから8mg/lに強化され、フッ素をさらに高度に処理する必要が出てきた。
【0004】
フッ素を高度に処理する方法としては、上記のような凝集沈殿法に加え、その後段でさらに凝集沈殿を行う方法を採ることができる。ここでの凝集剤使用量は2000〜5000mg/lであり、AlやFeの水酸化物にフッ素を吸着させて除去している。この方法では、処理水のフッ素濃度を2〜8mg/l程度に低減することが可能になる。
【0005】
他の処理方法として、ZrやCeの含水酸化物を樹脂に担持させたものや高分子物質で造粒したフッ素吸着剤を使用する方法も知られている(たとえば、特公昭61−47134号公報)。この方法では、処理水のフッ素濃度を0〜1mg/lにまで低減することが可能になる。ここで使用される吸着剤は、希土類元素やTi、Zrの塩類にアルカリを添加するか加熱し加水分解して生成した含水酸化物MOn・XHO(≒M(OH))で表されるような物質が、PO、F、SO等の陰イオンと酸性側で陰イオン交換し、アルカリ側で陽イオン交換する性質を利用して考案されたものである(たとえば、特公平2−17220号、特開昭60−172353号公報)。この吸着剤は、再生剤により再生可能なものである。
【0006】
一方、リンの除去方法としては、上述の凝集沈殿によりリン酸カルシウムとして除去する方法や、凝集剤と反応させてリン酸アルミニウム、リン酸鉄として沈殿分離させる方法が知られている。また、上記のような吸着剤を用いて除去することも可能である。
【0007】
【発明が解決しようとする課題】
しかしながら、上述したような凝集沈殿法では、フッ素を低減させるためにAl、Fe系の凝集剤を数千mg/l添加するため、汚泥の脱水性が低下したり、汚泥発生量が非常に多くなったりして、汚泥処分費が嵩む問題がある。また、社会的にも廃棄物削減に逆行する技術である。
【0008】
一方、フッ素吸着剤を用いる方法では、汚泥の増加はないものの、吸着速度が遅く吸着剤量が多くなるため、処理コストが非常に高価になるという問題がある。また、エレクトロニクス産業廃水に含まれる過酸化水素のような酸化剤や原水のフッ酸により劣化し、母体が崩壊するおそれがあるという問題もある。
【0009】
また、リンの除去に吸着剤を用いると、吸着剤との結合力が強いため、再生の際に再生剤が多量に消費するという問題がある。また、AlやFe系の凝集剤を使用した場合、含水率の高い汚泥が発生し、脱水しづらいという問題もある。
【0010】
そこで本発明の課題は、上記のような従来技術における問題点に着目し、フッ素および/またはリンを含有する廃水等から、フッ素および/またはリンをより効率よく除去して目標とする低濃度まで容易に処理することが可能な除去剤および除去処理方法を提供することにある。
【0011】
【課題を解決するための手段】
上記課題を解決するために、本発明に係るフッ素および/またはリンの除去剤は、ジルコニル塩を水に溶解させたジルコニル塩水溶液からなることを特徴とするものからなる。
【0012】
この除去剤は、とくに、pH3.5〜7の範囲内で、望ましくはpH4〜5.5の範囲内で、フッ素および/またはリンの除去処理に使用されることが好ましい。
【0013】
ジルコニル塩としては、たとえば、塩化ジルコニル、硫酸ジルコニル、硝酸ジルコニルのいずれかを使用することができる。
【0014】
本発明に係るフッ素および/またはリン含有水の処理方法は、フッ素および/またはリン含有水に、ジルコニル塩水溶液を添加してフッ素系イオンおよび/またはリン酸系イオンをフッ素化合物および/またはリン酸化合物として不溶化させた後、固液分離することを特徴とする方法からなる。処理対象となるフッ素および/またはリン含有水としては、各種産業分野における廃水や工程水が挙げられ、たとえばエレクトロニクス産業廃水等に対して処理することがとくに有効である。
【0015】
固液分離方法としては、不溶化物を含む廃水に無機凝集剤や高分子凝集剤を添加して沈殿分離してもよいし、膜分離装置で分離することもできる。
【0016】
この処理方法においては、フッ素および/またはリン含有水を、pH3.5〜7の範囲内に、望ましくはpH4〜5.5の範囲内に調整して、ジルコニル塩水溶液と反応させることが好ましい。
【0017】
また、添加量としては、被処理水の含有フッ素またはリンの除去目標量に対し、不溶化反応における当量比で1以上のジルコニル塩が溶解された水溶液を添加することが好ましい。被処理水の除去対象物濃度は経済的観点からある程度低いことが好ましく、一次的に公知の安価な方法である程度濃度を低下させた被処理水に対して、本発明方法を適用することが、処理費用、除去効果の点で有利である。たとえば、原水のフッ素濃度として、経済的観点から20mg/l以下の原水に適用するのが好ましく、Zr濃度としては200mg/l以下が好ましい。
【0018】
このような本発明に係るフッ素およびリンの除去剤および除去処理方法においては、除去剤はジルコニル塩が溶解された水溶液の形態であり、固形粉末や粒体の形態ではない。そして、除去処理においては、Zrの含水酸化物によるフッ素やリンの物理的あるいは化学的な吸着ではなく、化学反応により、被処理水中に含有されているフッ素系イオンおよび/またはリン酸系イオンがフッ素化合物(とくに、フッ化ジルコニルが生成されると考えられる。)および/またはリン酸化合物(とくに、リン酸ジルコニルが生成されると考えられる。)として不溶化され、これら不溶化物が固液分離に供される。つまり、吸着ではなく化学反応により、固液分離に適した不溶化物が生成され、固液分離により、含有フッ素および/またはリンが効率よく除去される。
【0019】
この化学反応は、たとえば塩化ジルコニルの場合、以下のような反応と考えられ、フッ化ジルコニルやリン酸ジルコニルが生成されているものと考えられる。
ZrOCl+2F→ZrOF+2Cl
ZrOCl+2HPO →ZrO(HPO+2Cl
ZrOCl+HPO 2−→ZrOHPO+2Cl
【0020】
このように、吸着等ではなく化学反応により不溶化物を生成するものであるから、多量に除去剤を添加する必要はなく、除去対象物の含有濃度と目標除去量に応じて、化学反応に必要な量だけ添加すればよく、添加量を低く抑えて、従来の多量の凝集剤を添加する場合などに比べ、処理費用の低減をはかることが可能になる。
【0021】
また、化学反応に基づく除去であるから、適正な量の除去剤を添加し、化学反応を十分に起こさせることにより、極めて低い濃度にまで、除去処理が可能となり、新しい排出基準値にも十分に対応できるようになる。
【0022】
さらに、除去剤はジルコニル塩水溶液の形態であり、かつ、処理が上記のような予め予想される化学反応に基づいて行われるものであるから、除去剤の母体の崩壊の問題はなく、また、被処理水に含まれる酸化剤の影響も実質的に受けない。したがって、除去処理が安定して行われる。
【0023】
【発明の実施の形態】
以下に、本発明の実施の形態について、本発明に係る除去剤生成のメカニズムを確認するために行った試験、および、本発明における好ましい条件を確認するために行った実験を主体に、図面を参照しながら説明する。
【0024】
まず、本発明に係る除去剤生成のメカニズムを確認するために、以下のような試験を行った。すなわち、本発明に係るフッ素および/またはリンの除去剤は、ジルコニル塩が溶解された水溶液からなるものであり、固形物ではない。図1に示すように、200mg−Zr/lを含むZrOCl溶液に酸またはアルカリを添加してpHを可変させ、固形物の生成する割合を見た。生成した固形物は水酸化ジルコニウムと考えられるが、図1に示すようにpH7以上で固形物の生成量が多かった。つまり、本発明に係る除去剤は、このような固形物ではないので、pH7以下の領域でジルコニル塩水溶液の形態になっていると考えられる。なお、図1における固形物生成率とは、生成した固形物中のZr量/添加Zr量である。
【0025】
次に、フッ素、リンのそれぞれについて、除去処理のための最適な処理時pHの範囲、および、必要な除去剤の添加量を確認するために、以下のような実験(実験1、実験2を行った。ただし、これら実験は、エレクトロニクス産業廃水などでは、除去対象フッ素やリンが比較的多量に含まれていることが多く(たとえば、フッ素濃度で100〜2000mg/l程度含まれていることが多く)、いきなり本発明に係る除去処理を行ったのでは多量の除去剤を必要とし、効率が悪い上に費用がかかるおそれがあるので、公知の安価な処理で一次処理を行って濃度をあるレベル以下に低下させた後に、二次処理として本発明に係る除去処理を行った方が効率がよく、安価に目標とする低濃度にまで処理できるという観点から、実験における処理対象原水として、フッ素、リンともに比較的低濃度に調製したものを使用した。
【0026】
実験1
フッ素処理剤(除去剤)として、塩化ジルコニルを溶解して、20%塩化ジルコニル溶液を作成した。フッ化ナトリウムを希釈調整して20mg−F/lのフッ素模擬水1リットルに塩化ジルコニル溶液をZrとして50mg−Zr/l添加し、pHを3〜10に調整した。生成した固形物を0.45μフィルターでろ過し、ろ液のフッ素濃度を測定した。つまり、添加量一定にてpHによる処理水中の残存フッ素量(フッ素濃度)を測定した。結果を図2に示す。一方、フッ化ナトリウムを希釈調整して20mg−F/lのフッ素模擬水1リットルに塩化ジルコニル溶液をZrとして10〜200mg/l添加しpHを5に調整した。つまり、pH一定にて除去剤添加量による処理水中の残存フッ素量(フッ素濃度)を測定した。結果を図3に示す。
【0027】
図2から、含有フッ素の除去処理に対しては、pH3.5〜7の範囲が適しており、pH4〜5.5あるいはpH4〜6の範囲がより適していることが分かる。また、図3から、20mg−F/lのフッ素含有原水に対して、目標フッ素除去量を設定したとすれば、その目標値をクリアーするにはどの程度以上の除去剤を添加すればよいのかが分かる。とくに、図3において特性が直線状となる領域では、必要最小限の添加量を効率よく設定できることが分かる。
【0028】
実験2
リン処理剤(除去剤)として、塩化ジルコニルを溶解して、20%塩化ジルコニル溶液を作成した。リン酸水素カリウムを希釈調整して10mg−P/lのリン酸模擬水1リットルに塩化ジルコニル溶液をZrとして25mg−Zr/l添加し、pHを3〜10に調整した。生成した固形物を0.45μフィルターでろ過し、ろ液のフッ素濃度を測定した。つまり、添加量一定にてpHによる処理水中の残存リン量(リン濃度)を測定した。結果を図4に示す。一方、リン酸水素カリウムを希釈調整して10mg−P/lのフッ素模擬水1リットルに塩化ジルコニル溶液をZrとして5〜100mg/l添加しpHを5に調整した。つまり、pH一定にて除去剤添加量による処理水中の残存リン量(リン濃度)を測定した。結果を図5に示す。
【0029】
図3から、含有リンの除去処理に対しては、pH3.5〜7の範囲が適しており、pH4〜6の範囲がより適していることが分かる。また、図4から、10mg−P/lのリン含有原水に対して、目標リン除去量を設定したとすれば、その目標値をクリアーするにはどの程度以上の除去剤を添加すればよいのかが分かる。とくに、図4において特性が直線状となる領域では、必要最小限の添加量を効率よく設定できることが分かる。
【0030】
【発明の効果】
以上説明したように、本発明に係るフッ素およびリンの除去剤および除去処理方法によれば、ジルコニル塩水溶液と被処理水中の含有フッ素系イオンおよび/またはリン酸系イオンを化学反応させ、フッ素化合物および/またはリン酸化合物を生成して不溶化させ、吸着等によることなく、生成した不溶化物を効率よく固液分離して除去することができるようになる。必要最小限の除去剤の添加量で低濃度にまで処理可能となるので、除去処理費用を低く抑えることができる。また、化学反応を前提とした処理であるので、除去剤を適正量添加するかぎり、含有フッ素および/またはリンを極めて効率よく除去することができ、処理水中の残存濃度として極めて低い濃度にまで処理可能となる。
【0031】
また、除去剤としてジルコニル塩水溶液を添加するだけでよいので、処理のための設備費は極めて安価である。さらに、予め予想される化学反応を起こさせるだけであるから、原水中の酸化剤の影響は実質的に受けず、また、除去剤が水溶液の形態であることからも、母体の崩壊といった問題も生じない。したがって、除去処理を、安定して容易に行うことができる。
【図面の簡単な説明】
【図1】ZrOCl溶液に酸またはアルカリを添加してpHを可変させた試験における固形物生成特性図である。
【図2】実験1におけるpHによるフッ素除去効果特性図である。
【図3】実験1における除去剤添加量によるフッ素除去効果特性図である。
【図4】実験2におけるpHによるリン除去効果特性図である。
【図5】実験2における除去剤添加量によるリン除去効果特性図である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fluorine and phosphorus removing agent and a removing method, and in particular, to efficiently remove fluorine and / or phosphorus from waste water or the like containing fluorine and / or phosphorus to easily remove the fluorine and / or phosphorus to a target low concentration. It relates to possible removal agents and removal treatment methods.
[0002]
[Prior art]
The following methods are known as a method for removing fluorine and / or phosphorus contained in wastewater or process water in various industrial fields. For example, as a method for removing fluorine discharged from the electronics industry wastewater, slaked lime is added to raw water to generate fine particles of calcium fluoride, and the generated fine particles are subjected to Al, Fe-based coagulant or polymer coagulation. After coagulation with an agent, a method of separating by precipitation is employed. According to this method, fluorine in the treated water can be reduced to about 10 to 20 mg / l. Therefore, it was possible to clear the conventional discharge standard value of 15 mg / l.
[0003]
However, in July 2001, the emission standard value of fluorine was increased from 15 mg / l to 8 mg / l, and it became necessary to further treat fluorine.
[0004]
As a method for treating fluorine to a high degree, a method in which coagulation and precipitation are further performed in a subsequent stage in addition to the coagulation and precipitation method described above can be employed. The amount of the flocculant used here is 2000 to 5000 mg / l, and fluorine is adsorbed and removed on hydroxides of Al and Fe. According to this method, the fluorine concentration of the treated water can be reduced to about 2 to 8 mg / l.
[0005]
As another treatment method, a method in which a hydrated oxide of Zr or Ce is supported on a resin or a method of using a fluorine adsorbent granulated with a polymer substance is known (for example, Japanese Patent Publication No. 61-47134). ). According to this method, the fluorine concentration of the treated water can be reduced to 0 to 1 mg / l. The adsorbent used here is represented by a hydrated oxide MOn.XH 2 O (≒ M (OH) m ) formed by adding an alkali to a rare earth element or a salt of Ti or Zr or by heating and hydrolyzing. Such substances have been devised by utilizing the property of anion exchange with anions such as PO 4 , F, and SO 4 on the acidic side and cation exchange on the alkali side (for example, Japanese Patent Publication No. 172220, JP-A-60-172353). This adsorbent can be regenerated with a regenerant.
[0006]
On the other hand, as a method of removing phosphorus, a method of removing calcium phosphate by the above-described coagulation precipitation, and a method of reacting with a coagulant to precipitate and separate as aluminum phosphate and iron phosphate are known. Moreover, it is also possible to remove using the above adsorbent.
[0007]
[Problems to be solved by the invention]
However, in the coagulation sedimentation method as described above, since several thousand mg / l of an Al or Fe-based coagulant is added in order to reduce fluorine, the dewatering property of the sludge is reduced or the amount of generated sludge is extremely large. There is a problem that the sludge disposal cost increases. It is also a technology that goes against the waste reduction in society.
[0008]
On the other hand, in the method using the fluorine adsorbent, although the sludge does not increase, there is a problem that the adsorption cost is slow and the amount of the adsorbent is large, so that the treatment cost is extremely high. In addition, there is also a problem that the matrix may be deteriorated by an oxidizing agent such as hydrogen peroxide contained in the wastewater of the electronics industry or hydrofluoric acid of the raw water, and the base may be collapsed.
[0009]
In addition, when an adsorbent is used to remove phosphorus, there is a problem that a large amount of the regenerant is consumed during regeneration because of strong binding force with the adsorbent. Further, when an Al or Fe-based coagulant is used, there is a problem that sludge having a high moisture content is generated and dewatering is difficult.
[0010]
Therefore, an object of the present invention is to focus on the problems in the prior art as described above, and to efficiently remove fluorine and / or phosphorus from a wastewater containing fluorine and / or phosphorus to a target low concentration. An object of the present invention is to provide a removing agent and a removing method which can be easily treated.
[0011]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, a fluorine and / or phosphorus removing agent according to the present invention is characterized by comprising a zirconyl salt aqueous solution in which a zirconyl salt is dissolved in water.
[0012]
This removing agent is preferably used for removing fluorine and / or phosphorus in a pH range of 3.5 to 7, preferably in a pH range of 4 to 5.5.
[0013]
As the zirconyl salt, for example, any of zirconyl chloride, zirconyl sulfate and zirconyl nitrate can be used.
[0014]
In the method for treating fluorine- and / or phosphorus-containing water according to the present invention, a zirconyl salt aqueous solution is added to fluorine- and / or phosphorus-containing water to convert fluorine-type ions and / or phosphate-type ions into a fluorine compound and / or phosphate. After insolubilizing as a compound, solid-liquid separation is performed. Examples of the fluorine- and / or phosphorus-containing water to be treated include wastewater and process water in various industrial fields, and for example, treatment of electronics industry wastewater is particularly effective.
[0015]
As a solid-liquid separation method, an inorganic coagulant or a polymer coagulant may be added to wastewater containing an insolubilized substance to perform precipitation separation, or separation may be performed by a membrane separation device.
[0016]
In this treatment method, it is preferable that the water containing fluorine and / or phosphorus is adjusted to pH 3.5 to 7, preferably pH 4 to 5.5, and reacted with the aqueous zirconyl salt solution.
[0017]
As the addition amount, it is preferable to add an aqueous solution in which one or more zirconyl salts are dissolved at an equivalent ratio in the insolubilization reaction with respect to the target amount of fluorine or phosphorus contained in the water to be treated. It is preferable that the concentration of the target substance to be removed from the water to be treated is low to some extent from an economic viewpoint, and it is possible to apply the method of the present invention to the water to be treated whose concentration has been reduced to some extent by a known inexpensive method. It is advantageous in terms of processing cost and removal effect. For example, it is preferable to apply the raw water to a raw water having a fluorine concentration of 20 mg / l or less from an economic viewpoint, and the Zr concentration is preferably 200 mg / l or less from an economic viewpoint.
[0018]
In the fluorine and phosphorus removing agent and the removing method according to the present invention, the removing agent is in the form of an aqueous solution in which a zirconyl salt is dissolved, and is not in the form of solid powder or granules. Then, in the removal treatment, fluorine-based ions and / or phosphate-based ions contained in the water to be treated are not chemically or physically adsorbed by the hydrated oxide of Zr, but by the chemical reaction. It is insolubilized as a fluorine compound (especially, zirconyl fluoride is generated) and / or a phosphate compound (especially, zirconyl phosphate is thought to be generated). Provided. That is, an insolubilized substance suitable for solid-liquid separation is generated by a chemical reaction instead of adsorption, and the contained fluorine and / or phosphorus are efficiently removed by the solid-liquid separation.
[0019]
In the case of zirconyl chloride, for example, this chemical reaction is considered as the following reaction, and it is considered that zirconyl fluoride and zirconyl phosphate are generated.
ZrOCl 2 + 2F → ZrOF 2 + 2Cl
ZrOCl 2 + 2H 2 PO 4 → ZrO (H 2 PO 4 ) 2 + 2Cl
ZrOCl 2 + HPO 4 2− → ZrOHPO 4 + 2Cl
[0020]
In this way, since the insolubilized matter is generated by a chemical reaction instead of adsorption, etc., it is not necessary to add a large amount of the removing agent, and it is necessary for the chemical reaction according to the content concentration of the object to be removed and the target removal amount. It is sufficient to add only a small amount, and it is possible to reduce the amount to be added and to reduce the processing cost as compared with the conventional case where a large amount of coagulant is added.
[0021]
In addition, since the removal is based on a chemical reaction, by adding an appropriate amount of a removing agent and causing a sufficient chemical reaction, the removal treatment can be performed down to an extremely low concentration, and the new emission standard value can be sufficiently satisfied. Will be able to respond to
[0022]
Further, since the removing agent is in the form of an aqueous solution of a zirconyl salt, and the treatment is performed based on the above-mentioned expected chemical reaction, there is no problem of disintegration of the matrix of the removing agent, and It is not substantially affected by the oxidizing agent contained in the water to be treated. Therefore, the removal process is performed stably.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, with respect to the embodiment of the present invention, a test conducted to confirm the mechanism of removal agent generation according to the present invention, and an experiment conducted to confirm preferable conditions in the present invention will be mainly described with reference to the drawings. It will be described with reference to FIG.
[0024]
First, the following test was conducted to confirm the mechanism of the removal agent generation according to the present invention. That is, the fluorine and / or phosphorus removing agent according to the present invention is an aqueous solution in which a zirconyl salt is dissolved, and is not a solid. As shown in FIG. 1, the pH was varied by adding an acid or an alkali to a ZrOCl 2 solution containing 200 mg-Zr / l, and the rate of formation of solids was observed. The generated solid was considered to be zirconium hydroxide, but as shown in FIG. 1, the amount of the generated solid was large at pH 7 or more. That is, since the removing agent according to the present invention is not such a solid substance, it is considered that the removing agent is in the form of an aqueous solution of a zirconyl salt in a pH range of 7 or less. In addition, the solid matter production rate in FIG. 1 is the ratio of the amount of Zr / the amount of added Zr in the produced solid matter.
[0025]
Next, for each of fluorine and phosphorus, the following experiments (Experiment 1 and Experiment 2 were carried out) in order to confirm the optimal treatment pH range for the removal treatment and the amount of the necessary remover to be added. However, in these experiments, in the wastewater of the electronics industry, etc., fluorine and phosphorus to be removed are often contained in a relatively large amount (for example, the concentration of fluorine or phosphorus is about 100 to 2000 mg / l. Many), if the removal treatment according to the present invention is performed suddenly, a large amount of the removal agent is required, and the efficiency may be low and the cost may be high. From the viewpoint that the removal treatment according to the present invention is performed more efficiently as a secondary treatment after the concentration is reduced to the level or less, and the treatment can be carried out to a target low concentration at a low cost, the treatment in the experiment is performed. As elephant raw water, fluorine, were used those prepared in a relatively low concentration of phosphorus both.
[0026]
Experiment 1
Zirconyl chloride was dissolved as a fluorinating agent (removing agent) to prepare a 20% zirconyl chloride solution. Sodium fluoride was diluted and adjusted, and 50 mg-Zr / l of zirconyl chloride solution as Zr was added to 1 liter of 20 mg-F / l simulated fluorine water to adjust the pH to 3-10. The generated solid was filtered with a 0.45 μ filter, and the fluorine concentration of the filtrate was measured. That is, the amount of residual fluorine (fluorine concentration) in the treated water was measured depending on the pH at a constant addition amount. FIG. 2 shows the results. On the other hand, sodium fluoride was diluted and adjusted, and the pH was adjusted to 5 by adding 10 to 200 mg / l of zirconyl chloride solution as Zr to 1 liter of 20 mg-F / l simulated fluorine water. That is, the amount of residual fluorine (fluorine concentration) in the treated water was measured depending on the amount of the remover added at a constant pH. The results are shown in FIG.
[0027]
From FIG. 2, it can be seen that the range of pH 3.5 to 7 is suitable for the removal treatment of the contained fluorine, and the range of pH 4 to 5.5 or pH 4 to 6 is more suitable. Also, from FIG. 3, if a target fluorine removal amount is set for the fluorine-containing raw water of 20 mg-F / l, how much removal agent should be added to clear the target value? I understand. In particular, it can be seen that in the region where the characteristics are linear in FIG. 3, the necessary minimum addition amount can be set efficiently.
[0028]
Experiment 2
As a phosphorus treating agent (removing agent), zirconyl chloride was dissolved to prepare a 20% zirconyl chloride solution. The potassium hydrogen phosphate was diluted and adjusted, and 25 mg-Zr / l of zirconyl chloride solution as Zr was added to 1 liter of 10 mg-P / l simulated phosphoric acid water to adjust the pH to 3-10. The generated solid was filtered with a 0.45 μ filter, and the fluorine concentration of the filtrate was measured. That is, the amount of residual phosphorus (phosphorus concentration) in the treated water was measured depending on the pH at a constant addition amount. FIG. 4 shows the results. On the other hand, potassium hydrogen phosphate was diluted and adjusted, and the pH was adjusted to 5 by adding 5 to 100 mg / l of zirconyl chloride solution as Zr to 1 liter of 10 mg-P / l simulated fluorine water. That is, the amount of residual phosphorus (phosphorus concentration) in the treated water was measured depending on the amount of the remover added at a constant pH. FIG. 5 shows the results.
[0029]
From FIG. 3, it is understood that the range of pH 3.5 to 7 is suitable for the removal treatment of the contained phosphorus, and the range of pH 4 to 6 is more suitable. Also, from FIG. 4, if a target phosphorus removal amount is set for the 10 mg-P / l phosphorus-containing raw water, how much removal agent should be added to clear the target value? I understand. In particular, it can be seen that in the region where the characteristics are linear in FIG. 4, the necessary minimum addition amount can be set efficiently.
[0030]
【The invention's effect】
As described above, according to the fluorine and phosphorus removing agent and the removing method according to the present invention, the zirconyl salt aqueous solution and the fluorine ion and / or the phosphate ion contained in the water to be treated are chemically reacted to form a fluorine compound. And / or a phosphate compound is generated and insolubilized, and the generated insolubilized substance can be efficiently separated by solid-liquid separation and removed without being caused by adsorption or the like. Since the treatment can be performed to a low concentration with the minimum necessary amount of the removing agent added, the cost of the removal treatment can be reduced. In addition, since the treatment is based on the premise of a chemical reaction, the fluorine and / or phosphorus contained can be removed very efficiently as long as an appropriate amount of the removing agent is added, and the concentration of the residual fluorine in the treated water is reduced to an extremely low concentration. It becomes possible.
[0031]
Moreover, since it is only necessary to add an aqueous solution of a zirconyl salt as a removing agent, the equipment cost for the treatment is extremely low. Furthermore, since it only causes a chemical reaction expected in advance, it is substantially unaffected by the oxidizing agent in the raw water. Further, since the removing agent is in the form of an aqueous solution, there are also problems such as collapse of the mother body. Does not occur. Therefore, the removal process can be performed stably and easily.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a graph showing a solid substance generation characteristic in a test in which an acid or an alkali is added to a ZrOCl 2 solution to change the pH.
FIG. 2 is a graph showing the effect of removing fluorine by pH in Experiment 1.
FIG. 3 is a characteristic diagram of fluorine removal effect depending on the amount of a remover added in Experiment 1.
FIG. 4 is a characteristic diagram of phosphorus removal effect by pH in Experiment 2.
FIG. 5 is a graph showing phosphorus removal effect characteristics depending on the amount of a remover added in Experiment 2.

Claims (6)

ジルコニル塩水溶液からなるフッ素および/またはリンの除去剤。A fluorine and / or phosphorus remover comprising an aqueous zirconyl salt solution. pH3.5〜7の範囲内でフッ素および/またはリンの除去処理に使用される、請求項1の除去剤。The removing agent according to claim 1, which is used for removing fluorine and / or phosphorus within a pH range of 3.5 to 7. ジルコニル塩が、塩化ジルコニル、硫酸ジルコニル、硝酸ジルコニルのいずれかからなる、請求項1または2の除去剤。The removal agent according to claim 1 or 2, wherein the zirconyl salt comprises any of zirconyl chloride, zirconyl sulfate, and zirconyl nitrate. フッ素および/またはリン含有水に、ジルコニル塩水溶液を添加してフッ素系イオンおよび/またはリン酸系イオンをフッ素化合物および/またはリン酸化合物として不溶化させた後、固液分離することを特徴とする、フッ素および/またはリン含有水の処理方法。It is characterized in that a zirconyl salt aqueous solution is added to water containing fluorine and / or phosphorus to insolubilize fluorine-based ions and / or phosphate-based ions as a fluorine compound and / or a phosphate compound, followed by solid-liquid separation. Of water containing fluorine, fluorine and / or phosphorus. フッ素および/またはリン含有水をpH3.5〜7の範囲内に調整してジルコニル塩水溶液と反応させる、請求項4の処理方法。The treatment method according to claim 4, wherein the water containing fluorine and / or phosphorus is adjusted to have a pH of 3.5 to 7 and reacted with an aqueous solution of a zirconyl salt. 含有フッ素またはリンの除去目標量に対し、不溶化反応における当量比で1以上のジルコニル塩が溶解された水溶液を添加する、請求項4または5の処理方法。The treatment method according to claim 4 or 5, wherein an aqueous solution in which one or more zirconyl salts are dissolved in an equivalent ratio in the insolubilization reaction with respect to the target amount of the contained fluorine or phosphorus is added.
JP2002159021A 2002-05-31 2002-05-31 Removing agent of fluorine and phosphorus and processing method for removing fluorine and phosphorus Pending JP2004000827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002159021A JP2004000827A (en) 2002-05-31 2002-05-31 Removing agent of fluorine and phosphorus and processing method for removing fluorine and phosphorus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002159021A JP2004000827A (en) 2002-05-31 2002-05-31 Removing agent of fluorine and phosphorus and processing method for removing fluorine and phosphorus

Publications (2)

Publication Number Publication Date
JP2004000827A true JP2004000827A (en) 2004-01-08
JP2004000827A5 JP2004000827A5 (en) 2005-08-18

Family

ID=30428969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002159021A Pending JP2004000827A (en) 2002-05-31 2002-05-31 Removing agent of fluorine and phosphorus and processing method for removing fluorine and phosphorus

Country Status (1)

Country Link
JP (1) JP2004000827A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101961645A (en) * 2010-10-14 2011-02-02 华南理工大学 Adsorbing agent for eliminating S4O2<-> in acid mine wastewater and preparation method thereof
CN103241794A (en) * 2013-05-17 2013-08-14 南京理工大学 Method for removing phosphorus pollutants in sewage with modified alkali slag
CN110759540A (en) * 2019-11-25 2020-02-07 湖南中湘春天环保科技有限公司 Treatment method of chemical nickel plating waste liquid

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101961645A (en) * 2010-10-14 2011-02-02 华南理工大学 Adsorbing agent for eliminating S4O2<-> in acid mine wastewater and preparation method thereof
CN103241794A (en) * 2013-05-17 2013-08-14 南京理工大学 Method for removing phosphorus pollutants in sewage with modified alkali slag
CN110759540A (en) * 2019-11-25 2020-02-07 湖南中湘春天环保科技有限公司 Treatment method of chemical nickel plating waste liquid

Similar Documents

Publication Publication Date Title
KR101340161B1 (en) High Concentration Hydrofluoric Acid Waste Liquor treatment Method
WO2000003952A1 (en) Method for treating a fluorine-containing waste water and treating apparatus
JP2006341139A (en) Harmful inorganic anion fixing and removing method, and fixing agent used therefor
JP2005193167A (en) Drainage purification method and purification method
JP3112613B2 (en) Treatment of wastewater containing fluorine and phosphorus
JP2004148289A (en) Fluorine or phosphorus-containing water treatment equipment
JP4543481B2 (en) Method for treating water containing boron and fluorine
JP2004000827A (en) Removing agent of fluorine and phosphorus and processing method for removing fluorine and phosphorus
JP2008168273A (en) Method for treating selenium-containing waste water
JP3949042B2 (en) Method for removing fluorine or phosphorus
JP4543478B2 (en) Method for treating boron-containing water
JP2006167631A (en) Treatment method and treatment equipment for fluorine-containing waste water including phosphoric acid
JPH11235595A (en) Treatment of boron-containing waste water
TW200812916A (en) Process for treatment of water to reduce fluoride levels
JP3672262B2 (en) Method for treating boron-containing water
JP3709156B2 (en) Treatment method for fluorine-containing wastewater
JP4350078B2 (en) Treatment method for fluorine-containing wastewater
JP2001276814A (en) Treatment method of drain containing fluorine and/or boron
JP2005324137A (en) Method for removing fluoride ion in wastewater
JP6413772B2 (en) Chromium-containing water treatment method
JP3468907B2 (en) Continuous treatment method for wastewater containing phosphate
JP2003047972A (en) Method for treating fluorine-containing wastewater
JP2751875B2 (en) Treatment method for wastewater containing fluorine
JP2751874B2 (en) Treatment method for wastewater containing fluorine
JP2907158B2 (en) Treatment method for wastewater containing fluorine

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20050203

Free format text: JAPANESE INTERMEDIATE CODE: A523

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080523

A131 Notification of reasons for refusal

Effective date: 20080530

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080930