JP2003503032A - Method for producing plant with increased content of flavonoids and phenolic compounds - Google Patents

Method for producing plant with increased content of flavonoids and phenolic compounds

Info

Publication number
JP2003503032A
JP2003503032A JP2001505720A JP2001505720A JP2003503032A JP 2003503032 A JP2003503032 A JP 2003503032A JP 2001505720 A JP2001505720 A JP 2001505720A JP 2001505720 A JP2001505720 A JP 2001505720A JP 2003503032 A JP2003503032 A JP 2003503032A
Authority
JP
Japan
Prior art keywords
plant
plants
flavonoids
hydroxylase
activity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001505720A
Other languages
Japanese (ja)
Inventor
ラーデマッハー,ウィルヘルム
クレーマー,クラウス
シュヴェーデン,ユルゲン
ハーバーズ,カリン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of JP2003503032A publication Critical patent/JP2003503032A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/96Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution
    • A61K8/97Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution from algae, fungi, lichens or plants; from derivatives thereof
    • A61K8/9771Ginkgophyta, e.g. Ginkgoaceae [Ginkgo family]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/96Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution
    • A61K8/97Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution from algae, fungi, lichens or plants; from derivatives thereof
    • A61K8/9783Angiosperms [Magnoliophyta]
    • A61K8/9789Magnoliopsida [dicotyledons]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/96Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution
    • A61K8/97Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution from algae, fungi, lichens or plants; from derivatives thereof
    • A61K8/9783Angiosperms [Magnoliophyta]
    • A61K8/9794Liliopsida [monocotyledons]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/14Prodigestives, e.g. acids, enzymes, appetite stimulants, antidyspeptics, tonics, antiflatulents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P39/00General protective or antinoxious agents
    • A61P39/06Free radical scavengers or antioxidants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/825Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving pigment biosynthesis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/52Stabilizers
    • A61K2800/522Antioxidants; Radical scavengers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/74Biological properties of particular ingredients
    • A61K2800/78Enzyme modulators, e.g. Enzyme agonists
    • A61K2800/782Enzyme inhibitors; Enzyme antagonists
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/80Process related aspects concerning the preparation of the cosmetic composition or the storage or application thereof
    • A61K2800/86Products or compounds obtained by genetic engineering

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Botany (AREA)
  • Biochemistry (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • Birds (AREA)
  • Nutrition Science (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Toxicology (AREA)
  • Rheumatology (AREA)
  • Hematology (AREA)
  • Pain & Pain Management (AREA)
  • Diabetes (AREA)
  • Dermatology (AREA)

Abstract

(57)【要約】 酵素フラバノン3-ヒドロキシラーゼの活性が低下している植物を分子遺伝学の手法により作製することを特徴とする、植物におけるフラボノイド含有量を増大させる方法。   (57) [Summary] A method for increasing a flavonoid content in a plant, comprising preparing a plant having a reduced activity of the enzyme flavanone 3-hydroxylase by a technique of molecular genetics.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】 本発明は、分子遺伝学の手法により酵素フラバノン3-ヒドロキシラーゼの活性
が低下している植物を作製することを特徴とする、植物におけるフラボノイドお
よびフェノール成分の含有量を増大させる方法に関する。
The present invention relates to a method for increasing the content of flavonoid and phenol components in a plant, characterized by producing a plant in which the activity of the enzyme flavanone 3-hydroxylase is reduced by a method of molecular genetics. .

【0002】 さらに、本発明に従う上記方法において、植物の植物体全体または一部におい
て、酵素フラバノン3-ヒドロキシラーゼの活性を、分子生物学の手法(例えば、
アンチセンス構築物、共抑制、特異的抗体の発現、または特異的インヒビターの
発現)により完全または部分的に、恒久的または一時的に低下させる。
Further, in the above-mentioned method according to the present invention, the activity of the enzyme flavanone 3-hydroxylase in the whole or a part of the plant body is measured by a molecular biology method (for example
Antisense constructs, co-suppression, expression of specific antibodies, or expression of specific inhibitors), either fully or partially, permanently or temporarily.

【0003】 本発明はさらに、その酵素フラバノン3-ヒドロキシラーゼの酵素活性が低下し
ている、フラボノイドおよびフェノール成分の含有量が増大している植物に関す
る。
The invention further relates to plants having an increased content of flavonoids and phenolic components, the enzymatic activity of the enzyme flavanone 3-hydroxylase being reduced.

【0004】 さらに、本発明は、ヒトおよび動物のための食品、栄養補助食品としての、ま
たは、治療用組成物、健康増進用組成物、もしくは強壮剤(搾り汁、浸出液、抽
出物、発酵産物)を製造するための、ならびに化粧品の製造のための、本発明に
従う方法により作製される植物またはこれら植物の部分の使用に関する。
Furthermore, the present invention provides a food composition for humans and animals, as a dietary supplement, or as a therapeutic composition, health promoting composition or tonic (squeezed juice, exudate, extract, fermentation product). A), as well as the production of cosmetics, of a plant or parts of these plants produced by the method according to the invention.

【0005】 植物内には種々のフェノール物質が見い出されており、例えばカフェー酸、フ
ェルラ酸、クロロゲン酸、没食子酸、オイゲノール、リグナン、クマリン、リグ
ニン、スチルベン(ポリダチン、リスベラトロール)、フラボノイド(フラボン
、カテキン、フラバノン、アントシアニジン、イソフラボン)、およびポリメト
キシル化フラボンが挙げられる。したがって、フェノールは一般に多くの植物由
来の食品および嗜好品の成分でもある。特定のフェノール性物質が特に重要であ
る。何故ならば、それらは、食品と共に取り込まれた後で、ヒトまたは動物の代
謝において抗酸化作用を示し得るからである[Baum, B.O.; Perun, A.L. Antiox
idant efficiency versus structure. Soc. Plast. Engrs Trans 2:250-257 (19
62);Gardner, P.T.; McPhail, D.B.; Duthie, G.G. Electron spin resonance
spectroscopic assessment of the antioxidant potential of teas in aqueous
and organic media. J. Sci. Food Agric. 76:257-262, (1997);Rice-Evans,
C.A.; Miller, N.J.; Pananga, G. Structure-antioxidant activity relations
hip of flavonoids and phenolic acids. Free Radic. Biol. Med. 20:933-956,
(1996);Salah, N.; Miller, N.J.; Paganga, G.; Tijburg, L.; Bolwell, G.P
.; Rice-Evans, C. Polyphenolic flavonoids as scavenger of aqueous phase
radicals and as chain-breaking antioxidants. Arch Biochem Biophys 322:33
9-346, (1995);Stryer, L. Biochemistry S. Francisco: Freeman, (1975);Vieira, O.; Escargueil-Blanc, I.; Meilhac, O.; Basile,
J. P.; Laranjinha, J.; Almeida, L; Salvayre, R.; Negre-Salvayre, A. Effe
ct of dietary phenolic compounds on apoptosis of human cultured endothel
ial cells induced by oxidized LDL. Br J Pharmacol 123:565-573, (1998)]
。さらに、ポリフェノールはまた、細胞代謝に対しても多くの作用を有する。特
に、それらはプロテインキナーゼC、チロシンプロテインキナーゼおよびホスフ
ァチジルイノシトール3-キナーゼのようなシグナル伝達酵素をモジュレートし[
Agullo, G.; Gamet-payrastre, L.; Manenti, S.; Viala, C.; Remesy, C.; Cha
p, H.; Payrastre, B. Relationship between flavonoid structure and inhibi
tion of phosphatidylinositol 3-kinase: a comparison with tyrosine kinase
and protein kinase C inhibition. Biochem Pharmacol 53:1649-1657, (1997)
;Ferriola, P.C.; Cody, V.; Middleton, E. Protein kinase C inhibition by
plant flavonoids. Kinetic mechanisms and structure activity relationshi
p. Biochem Pharmacol 38:1617-1624, (1989);Cushman, M.; Nagarathman, D.;
Burg, D.L.; Geahlen, R.L. Synthesis and protein-tyrosine kinase inhibit
ory activity of flavonoids analogues. J. Meed Chem 34:798-806, (1991);H
agiwara, M.; Inoue, S.; Tanaka, T.; Nunoki, K.; Ito, M.; Hidaka, H. Diff
erential effects of flavonoids as inhibitors of tyrosine protein kinases
and serine/threonin protein kinases. Biochem Pharmacol 37:2987-2992, (1
988)]、それによって、誘導性のNO合成をダウンレギュレートし[Kobuchi, H.;
Droy-Lefaix, M.T.; Christen, Y.; Packer, L. Ginkgo biloba extract (EGb7
61): inhibitory effect on nitric oxide production in the macrophage cell
line RAW 264.7. Biochem Pharmacol 53:897-903, (1997)]、さらに例えばイ
ンターロイキンおよび接着分子(ICAM-1、VCAM-1)などの遺伝子発現を調節する
[Kobuchi, H.; Droy-Lefaix, M.T.; Christen, Y.; Packer, L. Ginkgo biloba
extract (EGb761): inhibitory effect on nitric oxide production in the m
acrophage cell line RAW 264.7. Biochem Pharmacol 53:897-903, (1997);Wol
le, J.; Hill, R.R.; Ferguson, E.; Devall, L.J.; Trivedi, B.K.; Newton, R
.S.; Saxena, U. Selective inhibition of Tumor necrosis Factor-induced va
scular cell adhesion molecule-1 gene expression by a novel flavonoid. La
ck of effect on transcriptional factor NF-kB. Atherioscler Thromb Vasc B
iol 16:1501-1508, (1996)]。現在では、これらの作用が梗塞形成、心血管疾患
、糖尿病、種々の特定のガン、腫瘍および他の慢性疾患の予防に有益であること
が認められている[Bertuglia, S.; Malandrino, S.; Colantuoni, A. Effects
of the natural flavonoid delphinidin on diabetic microangiopathy. Arznei
-Forsch/Drug Res. 45:481-485, (1995);Griffiths, K.; Adlercreutz, H.; Bo
yle, P.; Denis, L.; Nicholson, R.I.; Morton, M.S. Nutrition and Cancer O
xford: Isis Medical Media, (1996);Hertog, M.G.L.; Fesrens, E.J.M.; Holl
man, P.C.K.; Katan, M.B.; Kromhout, D. Dietary antioxidant flavonoids an
d risk of coronary heart disease: the Zutphen elderly study. The Lancet
342:1007-1011, (1993);Kapiotis, S.; Hermann, M.; Held, I.; Seelos, C.;
Ehringer, H.; Gmeiner, B.M. Genistein, the dietary-derived angiogenesis
inhibitor, prevents LDL oxidation and protects endothelial cells from da
mage by atherogenic LDL. Arterioscler Thromb Vasc Biol 17:2868-74, (1997
);Stampfer, M.J.; Hennekens, C.H.; Manson, J.E.; Colditz, G.A.; Rosner,
B.; Willet, W.C. Vitamin E consumption and the risk of coronary disease
in women. New Engl J Med 328:1444-1449, (1993);Tijburg, L.B.M.; Matter
n, T.; Folts, J.D.; Weisgerber, U.M.; Katan, M.B. Tea flavonoids and car
diovascular diseases:概説. Crit Rev Food Sci Nutr 37:771-785, (1997);Ki
rk, E.A.; Sutherland, P.; Wang, S.A.; Chait, A.; LeBoeuf, R.C. Dietary i
soflavones reduce plasma chloresterol and atherosclerosis in C57BL/6 mic
e but not LDL receptor-deficient mice. J Nutr 128:954-9, (1998)−引用文
献−]。したがって、その効果がそれらのフェノール性物質の含有量に基づいて
いる一連の治療用組成物、健康増進用組成物または強壮剤が、既に適切な植物か
ら得られている[Gerritsen, M.E.; Carley, W.W.; Ranges, G.E.; Shen, C.P.;
Phan, S.A.; Ligon, G.F.; Perry, C.A. Flavonoids inhibit cytokine-induce
d endothelial cell adhesion protein gene expression. Am J Pathol 147:278
-292, (1995);Lin, J.K.; Chen, Y.C.; Huang, Y.T.; Lin-Shiau, S.Y. Suppre
ssion of protein kinase C and nuclear oncogene expression as possible mo
lecular mechanisms of cancer chemoprevention by apigenin and curcumin. J
Cell Biochem Suppl 28-29:39-48, 1997;Zi, X.; Mukhtar, H.; Agarval;, R.
Novel cancer chemopreventive effects of a flavonoid antioxidant silymar
in: inhibition of mRNA expression of an endogenous tumor promoter TNF al
pha. Biochem Biophys Res Comm 239:334-339, 1997]。さらに、特定の植物由
来の食品またはそれらから調製される嗜好品が種々の疾患に対して陽性の作用を
有することが知られている。例えば、リスベラトロール(resveratrol)は白ワ
イン、しかし特に赤ワインにおいて(他の成分に加えて)見い出されるものであ
るが、これは梗塞形成、心血管疾患およびガンに対して作用する[Gehm, B.D.;
McAndrews, J.M.; Chien, P.-Y.; Jameson, J.L. Resveratrol, a polyphenolic
compound found in grapes and wine, is an agonist for estrogen receptor.
Proc Natl Acad Sci USA 94:14138-14143, (1997);Jang, M.; Cai, L.; Udean
i, G.O.; Slowing, K.V.; Thomas, C.F.; Beecher, C.W.W.; Fong, H.H.S; Farn
sworth, N.R.; Kinghorn, A.D.; Mehtha, R.G.; Moon, R.C.; Pezzuto, J.M. Ca
ncer chemopreventive activity of resveratrol, a natural product derived
from grapes. Science 275:218-220, (1997)]。同様の作用が、カテキン、エピ
カテキン-3-ガレート、エピガロカテキンおよびエピガロカテキン-3-ガレートの
ような物質においても見い出されており、これらは全てチャ(Camellia sinensi
s)の葉に見い出されている。特に未発酵の茶葉(緑茶)から作られる飲料は健
康増進性である[Hu, G.; Han, C.; Chen, J. Inhibition of oncogene express
ion by green tea and (-)-epigallocatechin gallate in mice. Nutr cancer 2
4:203-209; (1995); Scholz, E.; Bertram, B. Camellia sinensis (L.) O. Ku
ntze. Der Teestrauch [the tea shrub]. Z. Phytotherapie 17:235-250, (1995
);Yu, R.; Jiao, J.J.; Duh, J.L.; Gudehithlu, K.; Tan, T.H.; Kong, A.N.
Activation of mitogen-activated protein kianses by green tea polyphenols
: potential signaling pathways in the regulation of antioxidant responsi
ve elements-mediated phase II enzyme gene expression. Carcinigenesis 18:
451-456, (1997);Jankun, J.; Selman, S.H.; Swiercz, R. Why drinking gree
n tea could prevent cancer. Nature 387:561, (1997)]。さらに、カンキツ類
の果実に由来するポリメトキシル化フラボンもまた、潜在的な抗腫瘍作用を示す
[Chem, J.; Montanari, A.M.; Widmer, W.W. Two new polymethoxylierte flav
one, a class of compounds with potential anticancer activity, isolated f
rom cold pressed dancy tangerine peel oil solids. J Agric Food Chem 45:3
64-368, (1997)]。
Various phenolic substances have been found in plants, for example, caffeic acid, ferulic acid, chlorogenic acid, gallic acid, eugenol, lignan, coumarin, lignin, stilbene (polydatin, resveratrol), flavonoid (flavone). , Catechins, flavanones, anthocyanidins, isoflavones), and polymethoxylated flavones. Therefore, phenol is also generally a component of many plant-derived foods and treats. Certain phenolic substances are of particular importance. Because they can show antioxidant effects on human or animal metabolism after being taken up with food [Baum, BO; Perun, AL Antiox.
idant efficiency versus structure. Soc. Plast. Engrs Trans 2: 250-257 (19
62); Gardner, PT; McPhail, DB; Duthie, GG Electron spin resonance
spectroscopic assessment of the antioxidant potential of teas in aqueous
and organic media. J. Sci. Food Agric. 76: 257-262, (1997) ; Rice-Evans,
CA; Miller, NJ; Pananga, G. Structure-antioxidant activity relations
hip of flavonoids and phenolic acids. Free Radic. Biol. Med. 20: 933-956,
(1996); Salah, N .; Miller, NJ; Paganga, G .; Tijburg, L .; Bolwell, GP
.; Rice-Evans, C. Polyphenolic flavonoids as scavenger of aqueous phase
radicals and as chain-breaking antioxidants. Arch Biochem Biophys 322: 33
9-346, (1995); Stryer, L. Biochemistry S. Francisco: Freeman, (1975); Vieira, O .; Escargueil-Blanc, I .; Meilhac, O .; Basile,
JP; Laranjinha, J .; Almeida, L; Salvayre, R .; Negre-Salvayre, A. Effe
ct of dietary phenolic compounds on apoptosis of human cultured endothel
ial cells induced by oxidized LDL. Br J Pharmacol 123: 565-573, (1998)]
. Moreover, polyphenols also have many effects on cellular metabolism. In particular, they modulate signaling enzymes such as protein kinase C, tyrosine protein kinases and phosphatidylinositol 3-kinase [
Agullo, G .; Gamet-payrastre, L .; Manenti, S .; Viala, C .; Remesy, C .; Cha
p, H .; Payrastre, B. Relationship between flavonoid structure and inhibi
tion of phosphatidylinositol 3-kinase: a comparison with tyrosine kinase
and protein kinase C inhibition. Biochem Pharmacol 53: 1649-1657, (1997)
Ferriola, PC; Cody, V .; Middleton, E. Protein kinase C inhibition by
plant flavonoids. Kinetic mechanisms and structure activity relationshi
p. Biochem Pharmacol 38: 1617-1624, (1989); Cushman, M .; Nagarathman, D .;
Burg, DL; Geahlen, RL Synthesis and protein-tyrosine kinase inhibit
ory activity of flavonoids analogues. J. Meed Chem 34: 798-806, (1991) ; H
agiwara, M .; Inoue, S .; Tanaka, T .; Nunoki, K .; Ito, M .; Hidaka, H. Diff
erential effects of flavonoids as inhibitors of tyrosine protein kinases
and serine / threonin protein kinases. Biochem Pharmacol 37: 2987-2992, (1
988)], thereby down-regulating inducible NO synthesis [Kobuchi, H .;
Droy-Lefaix, MT; Christen, Y .; Packer, L. Ginkgo biloba extract (EGb7
61): inhibitory effect on nitric oxide production in the macrophage cell
line RAW 264.7. Biochem Pharmacol 53: 897-903, (1997)], and further regulates gene expression of eg interleukins and adhesion molecules (ICAM-1, VCAM-1) [Kobuchi, H .; Droy-Lefaix, MT; Christen, Y .; Packer, L. Ginkgo biloba
extract (EGb761): inhibitory effect on nitric oxide production in the m
acrophage cell line RAW 264.7. Biochem Pharmacol 53: 897-903, (1997); Wol
le, J .; Hill, RR; Ferguson, E .; Devall, LJ; Trivedi, BK; Newton, R
.S .; Saxena, U. Selective inhibition of Tumor necrosis Factor-induced va
scular cell adhesion molecule-1 gene expression by a novel flavonoid. La
ck of effect on transcriptional factor NF-kB. Atherioscler Thromb Vasc B
iol 16: 1501-1508, (1996)]. These effects are now found to be beneficial in the prevention of infarction, cardiovascular disease, diabetes, various specific cancers, tumors and other chronic diseases [Bertuglia, S .; Malandrino, S. Colantuoni, A. Effects
of the natural flavonoid delphinidin on diabetic microangiopathy. Arznei
-Forsch / Drug Res. 45: 481-485, (1995); Griffiths, K .; Adlercreutz, H .; Bo
yle, P .; Denis, L .; Nicholson, RI; Morton, MS Nutrition and Cancer O
xford: Isis Medical Media, (1996); Hertog, MGL; Fesrens, EJM; Holl
man, PCK; Katan, MB; Kromhout, D. Dietary antioxidant flavonoids an
d risk of coronary heart disease: the Zutphen elderly study. The Lancet
342: 1007-1011, (1993); Kapiotis, S .; Hermann, M .; Held, I .; Seelos, C .;
Ehringer, H .; Gmeiner, BM Genistein, the dietary-derived angiogenesis
inhibitor, prevents LDL oxidation and protects endothelial cells from da
mage by atherogenic LDL. Arterioscler Thromb Vasc Biol 17: 2868-74, (1997
); Stampfer, MJ; Hennekens, CH; Manson, JE; Colditz, GA; Rosner,
B .; Willet, WC Vitamin E consumption and the risk of coronary disease
in women. New Engl J Med 328: 1444-1449, (1993); Tijburg, LBM; Matter
n, T .; Folts, JD; Weisgerber, UM; Katan, MB Tea flavonoids and car
diovascular diseases: Review. Crit Rev Food Sci Nutr 37: 771-785, (1997) ; Ki
rk, EA; Sutherland, P .; Wang, SA; Chait, A .; LeBoeuf, RC Dietary i
soflavones reduce plasma chloresterol and atherosclerosis in C57BL / 6 mic
e but not LDL receptor-deficient mice. J Nutr 128: 954-9, (1998) -Cited document-]. Therefore, a series of therapeutic compositions, health-enhancing compositions or tonics whose effects are based on their phenolic content have already been obtained from suitable plants [Gerritsen, ME; Carley, WW; Ranges, GE; Shen, CP;
Phan, SA; Ligon, GF; Perry, CA Flavonoids inhibit cytokine-induce
d endothelial cell adhesion protein gene expression. Am J Pathol 147: 278
-292, (1995); Lin, JK; Chen, YC; Huang, YT; Lin-Shiau, SY Suppre
ssion of protein kinase C and nuclear oncogene expression as possible mo
lecular mechanisms of cancer chemoprevention by apigenin and curcumin. J
Cell Biochem Suppl 28-29: 39-48, 1997; Zi, X .; Mukhtar, H .; Agarval ;, R.
Novel cancer chemopreventive effects of a flavonoid antioxidant silymar
in: inhibition of mRNA expression of an endogenous tumor promoter TNF al
pha. Biochem Biophys Res Comm 239: 334-339, 1997]. Further, it is known that foods derived from a specific plant or luxury products prepared from them have a positive effect on various diseases. For example, resveratrol, which is found (in addition to other ingredients) in white wines, but especially in red wines, acts against infarction, cardiovascular disease and cancer [Gehm, BD ;
McAndrews, JM; Chien, P.-Y .; Jameson, JL Resveratrol, a polyphenolic
compound found in grapes and wine, is an agonist for estrogen receptor.
Proc Natl Acad Sci USA 94: 14138-14143, (1997); Jang, M .; Cai, L .; Udean
i, GO; Slowing, KV; Thomas, CF; Beecher, CWW; Fong, HHS; Farn
sworth, NR; Kinghorn, AD; Mehtha, RG; Moon, RC; Pezzuto, JM Ca
ncer chemopreventive activity of resveratrol, a natural product derived
from grapes. Science 275: 218-220, (1997)]. Similar effects have been found in substances such as catechin, epicatechin-3-gallate, epigallocatechin and epigallocatechin-3-gallate, all of which are tea (Camellia sinensi).
s) found in leaves. Beverages made from unfermented tea leaves (green tea) are especially health-promoting [Hu, G .; Han, C .; Chen, J. Inhibition of oncogene express
ion by green tea and (-)-epigallocatechin gallate in mice. Nutr cancer 2
4: 203-209; (1995); Scholz, E .; Bertram, B. Camellia sinensis (L.) O. Ku
ntze. Der Teestrauch [the tea shrub]. Z. Phytotherapie 17: 235-250, (1995
); Yu, R .; Jiao, JJ; Duh, JL; Gudehithlu, K .; Tan, TH; Kong, AN
Activation of mitogen-activated protein kianses by green tea polyphenols
: potential signaling pathways in the regulation of antioxidant responsi
ve elements-mediated phase II enzyme gene expression. Carcinigenesis 18:
451-456, (1997); Jankun, J .; Selman, SH; Swiercz, R. Why drinking gree
n tea could prevent cancer. Nature 387: 561, (1997)]. In addition, polymethoxylated flavones from citrus fruits also show potential antitumor activity [Chem, J .; Montanari, AM; Widmer, WW Two new polymethoxylierte flav
one, a class of compounds with potential anticancer activity, isolated f
rom cold pressed dancy tangerine peel oil solids. J Agric Food Chem 45: 3
64-368, (1997)].

【0006】 栽培植物においてフラボノイドおよびフェノール成分の含有量を増大させる簡
易で安価な方法を見い出すことが本発明の目的である。
It is an object of the present invention to find a simple and inexpensive way to increase the content of flavonoids and phenolic components in cultivated plants.

【0007】 本発明者らは、この目的が、驚くべきことに、アシルシクロヘキサンジオン群
由来の成長調節物質についての生理学的研究に基づき、現在利用可能な遺伝子工
学的方法により達成されること、そして該方法を利用して、治療用、健康増進用
、もしくは強壮用の成分の含有量が増大していることにより特徴付けられる植物
を作製できることを見い出した。
The inventors have surprisingly achieved this object by the genetic engineering methods currently available, based on physiological studies on growth regulators from the acylcyclohexanedione group, and It has been found that the method can be used to produce plants characterized by an increased content of therapeutic, health-promoting, or tonic ingredients.

【0008】 プロヘキサジオン−カルシウムおよびトリネキサパック−エチル(以前の名称
:シメクタカーブ)のようなアシルシクロヘキサンジオンは、植物の縦方向の成
長を抑制するための生体調節物質として用いられる。それらが生体調節作用を示
すのは、それらが縦方向の成長を促進するジベレリンの生合成を妨げるからであ
る。2-オキソグルタル酸との構造的関連のために、それらは、補基質として2-オ
キソグルタル酸を必要とするある種のジオキシゲナーゼを阻害する[Rademacher
, W, Biochemical effects of plant growth retardants, Plant Biochemical R
egurators中, Gausman, HW(編), Marcel Dekker, Inc., New York, 169-200頁
(1991)]。そのような化合物はフェノール代謝にも関与し、したがって、種々
の植物種において、アントシアニンの生成を阻害し得ることが知られている[Ra
demacher, W.ら, The mode of action of acylcyclohexanediones - a new type
of growth retardant, Progress in Plant Growth Regulation中, Karssen, CM
, van Loon, LC, Vreugdenhil, D(編), Kluwer Academic Publishers, Dordrech
t (1992)]。フェノール成分のバランスに及ぼすそのような効果は、プロヘキサ
ジオン−カルシウムの火傷症に対する副作用の原因であると考えられる[Radema
cher, W.ら, prohexadione-calcium − a new plant growth regulator for app
le with interesting biochemical features, 25th Annual Meeting of the Pla
nt Growth Regulation Society of America, 1998年7月7〜10日, Chicago で
展示されたポスター]。A. Lux-Endrich(Technical University of Munich, We
ihenstephanでの博士号論文, 1998)は、プロヘキサジオン−カルシウムが引き
起こす火傷症に対するプロヘキサジオン−カルシウムの作用機構に関する研究中
に、リンゴの細胞培養物において、フェノール物質の含有量が数倍増大し、その
過程において、通常は存在しない一連のフェノールが見い出されることを見い出
した。また、これらの研究の中で、プロヘキサジオン−カルシウムが比較的多量
のルテオリフラバンおよびエリオジクチオールをリンゴのシュート組織内に生じ
させることも見い出された。ルテオリフラバンは通常はリンゴ組織内には存在せ
ず、エリオジクチオールはフラボノイド代謝の中間体としてのみ少量存在するだ
けである。しかし、処理した組織において、予想されたフラボノイドであるカテ
キンおよびシアニジンは検出不能であったか、または顕著に少ない量で存在して
いただけだった[S. Rommeltら, 8th International Workshop on Fire Blight,
Kusadasi, Turkey, 1998年10月12〜15日で提出された文書]。
Acylcyclohexanediones such as prohexadione-calcium and trinexapac-ethyl (formerly known as Simectacurb) are used as bioregulators to control the vertical growth of plants. They exhibit bioregulatory effects because they interfere with the biosynthesis of gibberellin, which promotes longitudinal growth. Due to their structural association with 2-oxoglutarate, they inhibit certain dioxygenases that require 2-oxoglutarate as a co-substrate [Rademacher
, W, Biochemical effects of plant growth retardants, Plant Biochemical R
Among egurators, Gausman, HW (ed.), Marcel Dekker, Inc., New York, pp. 169-200
(1991)]. It is known that such compounds are also involved in phenol metabolism and therefore can inhibit anthocyanin production in various plant species [Ra
demacher, W. et al., The mode of action of acylcyclohexanediones-a new type
of growth retardant, Progress in Plant Growth Regulation, Karssen, CM
, van Loon, LC, Vreugdenhil, D (ed.), Kluwer Academic Publishers, Dordrech
t (1992)]. Such effects on the balance of the phenolic component are thought to be responsible for the side effects of prohexadione-calcium on burns [Radema
cher, W. et al., prohexadione-calcium − a new plant growth regulator for app
le with interesting biochemical features, 25 th Annual Meeting of the Pla
nt Growth Regulation Society of America, 7-10 July 1998, poster at Chicago]. A. Lux-Endrich (Technical University of Munich, We
Ph.D. dissertation at ihenstephan, 1998) found that the content of phenolic substances increased several-fold in apple cell cultures during the study of the mechanism of action of prohexadione-calcium on burn injury caused by prohexadione-calcium. However, in the process, they found a series of phenols that are not normally present. It was also found in these studies that prohexadione-calcium produced relatively high amounts of luteoliflavan and eriodictyol in shoot tissues of apple. Luteoli flavan is not normally present in apple tissue, and eriodictyol is only present in small amounts only as an intermediate in flavonoid metabolism. However, in the treated tissue, the expected flavonoids and is catechin and or cyanidin was undetectable, or was only present at a significantly lower amount [S. Rommelt et al, 8 th International Workshop on Fire Blight ,
Kusadasi, Turkey, documents submitted 12-15 October 1998].

【0009】 現在では、プロヘキサジオン−カルシウム、トリネキサパック−エチルおよび
他のアシルシクロヘキサンジオンが、フェノール物質の代謝において重要な役割
を担う2-オキソグルタル酸依存性ヒドロキシラーゼを阻害することが認められて
いる。これらは、主に、カルコンシンセターゼ(CHS)およびフラバノン3-ヒド
ロキシラーゼ(F3H)である[W. HellerおよびG. Forkmann, Biosynthesis, The
Flavonoids中, Harborne, JB(編), Chapman and Hall, New York, 1998]。
しかし、アシルシクロヘキサンジオンが未だ知られていない他の2-オキソグルタ
ル酸依存性ヒドロキシラーゼも阻害する、ということを無視することはできない
。さらに、カテキン、シアニジンおよび他のフラボノイド合成の最終生成物の欠
如が植物に現われること、および重要な酵素であるフェニルアラニンアンモニウ
ムリアーゼ(PAL)の活性がフィードバック機構により増大することは明らかで
あると思われる。しかし、CHSおよびF3Hが阻害され続けるために、これらのフラ
ボノイド最終生成物が生成できず、その結果として、ルテオリフラバン、エリオ
ジクチオールおよび他のフェノールの増大した生成が起こる(図1)。
[0009] Prohexadione-calcium, trinexapac-ethyl and other acylcyclohexanediones are now found to inhibit 2-oxoglutarate-dependent hydroxylases, which play an important role in the metabolism of phenolic substances. ing. These are primarily chalcone synthetase (CHS) and flavanone 3-hydroxylase (F3H) [W. Heller and G. Forkmann, Biosynthesis, The
In Flavonoids, Harborne, JB (eds.), Chapman and Hall, New York, 1998].
However, it cannot be ignored that acylcyclohexanedione also inhibits other as yet unknown 2-oxoglutarate-dependent hydroxylases. Furthermore, it appears that deficiencies in catechin, cyanidin, and other end products of flavonoid synthesis appear in plants, and that the activity of the key enzyme phenylalanine ammonium lyase (PAL) is increased by a feedback mechanism. . However, due to the continued inhibition of CHS and F3H, these flavonoid end products could not be produced, resulting in increased production of luteoliflavan, eriodictythiol and other phenols (FIG. 1).

【0010】 酵素フラバノン3-ヒドキシラーゼ(F3H)の酵素活性が低下するために、フラ
ボノイドであるエリオジクチオール、プロアントシアニジン(C3原子にて水素
により置換されている)、例えばルテオフェロール、ルテオリフラバン、アピゲ
ニフラバンおよびトリセチフラバン、ならびに上記の構造的に関連する物質の均
一および不均一オリゴマーおよびポリマーがより多量に生成される。
Due to the reduced enzymatic activity of the enzyme flavanone 3-hydroxylase (F3H), the flavonoids eriodictyol, proanthocyanidins (substituted by hydrogen at the C 3 atom), such as luteoferol, luteoliflavan , Apigeniflavan and tricetiflavan, as well as homogeneous and heterogeneous oligomers and polymers of the above structurally related substances.

【0011】 植物において、酵素フラバノン3-ヒドロキシラーゼ(F3H)の酵素活性が低下
した後、フェノールであるヒドロキシケイ皮酸(p-クマル酸、フェルラ酸、シナ
ピン酸)、サリチル酸、またはウンベリフェロン(それらから生成される均一ま
たは不均一オリゴマーおよびポリマーを含む)の濃度の上昇が見られる。同様に
して、カルコン(例えばフロレチン)およびスチルベン(例えばリスベラトロー
ル)の濃度が増大する。
[0011] In plants, after the enzymatic activity of the enzyme flavanone 3-hydroxylase (F3H) decreases, the phenol hydroxycinnamic acid (p-coumaric acid, ferulic acid, sinapinic acid), salicylic acid, or umbelliferone ( Increasing concentrations of homogenous or heterogeneous oligomers and polymers produced from them) are seen. Similarly, the concentrations of chalcones (eg phloretin) and stilbenes (eg resveratrol) are increased.

【0012】 酵素フラバノン3-ヒドロキシラーゼの酵素活性は低下するので、フラボノイド
の配糖体、フェノール化合物、カルコンおよびスチルベンの濃度も増大する。
As the enzymatic activity of the enzyme flavanone 3-hydroxylase decreases, so does the concentration of flavonoid glycosides, phenolic compounds, chalcones and stilbenes.

【0013】 これらの知見およびそれらから導かれる仮説に基づき、植物体全体または個々
の植物器官もしくは植物組織において、F3H活性をアンチセンス構築物により完
全または部分的に、恒久的または一時的に低下させて、治療用、健康増進用また
は強壮用の成分の含有量が量および質の点で改善されるようにした、遺伝的改変
栽培植物を作製した。
Based on these findings and hypotheses derived from them, F3H activity in whole plants or individual plant organs or tissues can be reduced completely or partially by antisense constructs, permanently or temporarily. Genetically modified cultivated plants were produced in which the content of therapeutic, health-promoting or tonic components was improved in quantity and quality.

【0014】 フラバノン3-ヒドロキシラーゼをアンチセンス方向で発現させることによりフ
ラボノイドおよびフェノール化合物の含有量を増大させるための本発明に従う方
法は、以下の栽培植物にうまく適用することができるが、該方法は記載の植物に
限定されない:ブドウのつる、サクランボ、トマト、スモモ、リンボクの実、コ
ケモモ、イチゴ、カンキツ類の果実(例えばオレンジ、グレープフルーツ)、ポ
ポー、赤キャベツ、ブロッコリー、メキャベツ、カカオ、ケール、ニンジン、パ
セリ、セルリアック/セロリ、タマネギ、ニンニク、チャ、コーヒー、ホップ、
ダイズ、アブラナ、オートムギ、コムギ、ライムギ、カイドウ(Aronia melanoc
arpa)、イチョウ(Ginkgo biloba)。
The method according to the invention for increasing the content of flavonoids and phenolic compounds by expressing flavanone 3-hydroxylase in the antisense orientation can be successfully applied to the following cultivated plants, which method: Are not limited to the plants mentioned: grape vines, cherries, tomatoes, plums, limbs, cowberry, strawberries, citrus fruits (eg oranges, grapefruits), popo, red cabbage, broccoli, mecha cabbage, cacao, kale, carrots. , Parsley, celeriac / celery, onion, garlic, tea, coffee, hops,
Soybean, canola, oats, wheat, rye, caydon (Aronia melanoc
arpa), Ginkgo biloba.

【0015】 さらに、本発明は、本発明の方法に従って作製され、かつ酵素フラバノン3-ヒ
ドロキシラーゼの酵素活性が低下している、フラボノイドおよびフェノール化合
物の含有量が増大している植物に関する。
The invention further relates to plants produced according to the method of the invention and having an increased content of flavonoids and phenolic compounds, which have a reduced enzymatic activity of the enzyme flavanone 3-hydroxylase.

【0016】 アンチセンス技法を利用してそのフラバノン3-ヒドロキシラーゼ活性が低下し
ている植物を作製するための別法として、共抑制または特異的抗体の発現のよう
な文献から公知となっている分子遺伝学の他の手法を用いてこの効果を達成する
ことも可能である。
Alternative methods for producing plants whose flavanone 3-hydroxylase activity is reduced using antisense techniques are known from the literature such as co-suppression or expression of specific antibodies. It is also possible to achieve this effect using other methods of molecular genetics.

【0017】 さらに、本発明は、ヒトおよび動物のための食品、栄養補助食品としての、も
しくは治療用組成物、健康増進用組成物もしくは強壮剤(搾り汁、浸出物、抽出
物、発酵産物)を製造するための、ならびに化粧品の製造のための、本発明に従
う方法により作製される植物またはそれら植物の部分の使用に関する。
Furthermore, the present invention relates to foods for humans and animals, as dietary supplements or as therapeutic compositions, health promoting compositions or tonics (squeezed juices, exudates, extracts, fermentation products). The use of plants or parts of plants produced by the method according to the invention for the manufacture of, as well as for the manufacture of cosmetics.

【0018】 驚くべきことに、ここでは、本発明に従って作製された植物もしくはこれら植
物の部分、またはそれらから製造される産物(茶、抽出物、発酵産物、搾り汁な
ど)が以下の効果を有することが見い出された。
Surprisingly, here the plants or parts of these plants produced according to the invention or the products produced therefrom (tea, extracts, fermentation products, juices etc.) have the following effects: It was discovered.

【0019】 (1)in vitroでの抗酸化能[電子スピン共鳴(ESR)、LDL酸化、総合的抗酸化
能、NO除去]が改善される; (2)酵素、特にシグナル伝達酵素(プロテインキナーゼC、チロシンプロテイ
ンキナーゼ、ホスファチジルイノシトール3-キナーゼ)に対するモジュレート効
果が見られる; (3)酸化還元感受性転写因子(NF-kB、AP-1)のモジュレーションが内皮細胞
、リンパ球および平滑筋細胞において誘導される; (4)炎症性疾患の病因に関わる標的遺伝子(サイトカインIL-1およびIL-8、マ
クロファージ化学誘導タンパク1(MCP-1)、接着因子ICAM-1およびVCAM-1)の
遺伝子発現の調節がモジュレートされる; (5)抗凝集効果が誘導される; (6)肝細胞におけるコレステロール合成が阻害される; (7)抗増殖性/抗新生物性効果が現れる。
(1) The in vitro antioxidant ability [electron spin resonance (ESR), LDL oxidation, comprehensive antioxidant ability, NO removal] is improved; (2) enzyme, especially signal transduction enzyme (protein kinase) C, tyrosine protein kinase, phosphatidylinositol 3-kinase) have a modulating effect; (3) redox-sensitive transcription factor (NF-kB, AP-1) modulation in endothelial cells, lymphocytes and smooth muscle cells (4) Gene expression of target genes involved in the pathogenesis of inflammatory diseases (cytokines IL-1 and IL-8, macrophage chemoinducible protein 1 (MCP-1), adhesion factors ICAM-1 and VCAM-1) (5) Induction of anti-aggregation effect; (6) Inhibition of cholesterol synthesis in hepatocytes; (7) Anti-proliferative / anti-neoplastic effect Appear.

【0020】実施例1 トマト(Lycopersicon esculentum Mill;品種Moneymaker)からのフラバノン3- ヒドロキシラーゼの遺伝子のクローニング トマト(Lycopersicon esculentum Mill;品種Moneymaker)の熟したトマト果
実を洗い、水気を切り、滅菌ナイフを用いて果皮を種子、中心コルメラおよび木
部から切り離した。果皮(約50g)を液体窒素中で凍結させた。次に、該物質を
ブレンダーで細かく切り刻んだ。予備冷却した乳鉢内で、その刻んだ物質を100m
lのホモジナイズ用溶媒に入れ、混合した。次に、懸濁液を滅菌ガーゼを通して
搾り出すことにより遠心フラスコに移した。次に、1/10容量の10%SDSを添加し
、該物質を十分に混合した。氷上に10分置いた後、1容量のフェノール/クロロ
ホルムを添加し、遠心フラスコを密封し、内容物を十分に混合した。4000rpmで1
5分間遠心分離した後、上清を新しい反応容器に移した。これに続いて、フェノ
ール/クロロホルム抽出をさらに3回、およびクロロホルム抽出を1回行った。
次に、1容量の3M NaAcおよび2.5容量のエタノールを添加した。核酸を−20℃
で一夜沈殿させた。翌朝、該核酸を冷却遠心機(4℃)で10,000rpmにて15分間
ペレット化した。上清を捨て、ペレットを5〜10mlの冷3M NaAcに再懸濁した
。この洗浄ステップを2回繰り返した。該ペレットを80%エタノールで洗浄した
。完全に乾燥したら、該ペレットを約0.5mlの滅菌DEPC水にとり、RNA濃度を分光
光度法により測定した。
Example 1 Cloning of flavanone 3 -hydroxylase gene from tomato (Lycopersicon esculentum Mill; variety Moneymaker). Ripe tomato fruits of tomato (Lycopersicon esculentum Mill; variety Moneymaker) were washed, drained and sterilized with a knife. The pericarp was used to separate the seed, the central columella and the xylem. Pericarp (about 50 g) was frozen in liquid nitrogen. The material was then chopped with a blender. 100 m of the chopped material in a pre-cooled mortar
l of homogenizing solvent and mixed. The suspension was then transferred to a centrifuge flask by squeezing through sterile gauze. Then 1/10 volume of 10% SDS was added and the material was mixed well. After 10 minutes on ice, 1 volume of phenol / chloroform was added, the centrifuge flask was sealed and the contents were mixed well. 1 at 4000 rpm
After centrifugation for 5 minutes, the supernatant was transferred to a new reaction vessel. This was followed by another 3 phenol / chloroform extractions and 1 chloroform extraction.
Then 1 volume of 3M NaAc and 2.5 volumes of ethanol were added. Nucleic acid -20 ℃
It was allowed to settle overnight. The next morning, the nucleic acids were pelleted in a refrigerated centrifuge (4 ° C) for 15 minutes at 10,000 rpm. The supernatant was discarded and the pellet resuspended in 5-10 ml cold 3M NaAc. This washing step was repeated twice. The pellet was washed with 80% ethanol. Once completely dry, the pellet was taken up in about 0.5 ml of sterile DEPC water and RNA concentration was measured spectrophotometrically.

【0021】 20μgの全RNAをまず3.3μlの3M酢酸ナトリウム溶液、2μlの1M硫酸マグ
ネシウムで処理し、その混合物をDEPC水で最終容量100μlとなるようにした。1
μlのRNase不含DNase(Boehringer Mannheim)をこれに添加し、混合物を37℃で
45分間インキュベートした。この酵素を、フェノール/クロロホルム/イソアミ
ルアルコールを加えて振り混ぜて抽出することで除去した後、RNAをエタノール
で沈殿させ、ペレットを100μlのDEPC水にとった。この溶液からのRNA 2.5μgを
cDNAキット(Gibco BRL)を用いて転写してcDNAとした。
20 μg of total RNA was first treated with 3.3 μl of 3M sodium acetate solution, 2 μl of 1M magnesium sulfate and the mixture was brought to a final volume of 100 μl with DEPC water. 1
μl RNase-free DNase (Boehringer Mannheim) was added to this and the mixture was incubated at 37 ° C.
Incubated for 45 minutes. The enzyme was removed by adding phenol / chloroform / isoamyl alcohol and shaking to extract, then RNA was precipitated with ethanol and the pellet was taken up in 100 μl of DEPC water. 2.5 μg RNA from this solution
It was transcribed using a cDNA kit (Gibco BRL) to obtain cDNA.

【0022】 フラバノン3-ヒドロキシラーゼをコードするcDNAクローンから誘導されるアミ
ノ酸配列を用いて、一次配列内の保存領域を同定し[Britschら, Eur. J. Bioch
em. 217, 745-754 (1993)]、これらは縮重PCRオリゴヌクレオチドを設計するた
めのベースとしての役割を果たした。ペプチド配列SRWPDK(ペチュニア雑種(Pet
unia hybrida)配列FL3H PETHY中のアミノ酸147〜152)を用いて、5′オリゴヌ
クレオチドを決定したところ、以下の配列を有していた。
Amino acid sequences derived from a cDNA clone encoding flavanone 3-hydroxylase were used to identify conserved regions within the primary sequence [Britsch et al., Eur. J. Bioch.
em. 217, 745-754 (1993)], which served as the basis for designing degenerate PCR oligonucleotides. Peptide sequence SRWPDK (Petunia hybrid (Pet
unia hybrida) The 5'oligonucleotide was determined using amino acids 147 to 152) in the sequence FL3H PETHY and had the following sequence.

【0023】 5’-TCI (A/C) G (A/G) TGG CC(A/C/G) GA (C/T) AA (A/G) CC-3[0023]   5'-TCI (A / C) G (A / G) TGG CC (A / C / G) GA (C / T) AA (A / G) CC-3

【0024】 ペプチド配列DHQAVV(ペチュニア雑種(Petunia hybrida)配列FL3H PETHY中の
アミノ酸276〜281)を用いることにより導き出されたオリゴヌクレオチドの配列
は以下のとおりであった:5’-CTT CAC ACA (C/G/T) GC (C/T) TG (A/G)TG (A/
G)TC-3。
The sequence of the oligonucleotides derived by using the peptide sequence DHQAVV (amino acids 276-281 in the Petunia hybrida sequence FL3H PETHY) was as follows: 5'-CTT CAC ACA (C / G / T) GC (C / T) TG (A / G) TG (A /
G) TC-3.

【0025】 Perkin ElmerのtTthポリメラーゼを用いて、製造業者の説明書に従ってPCR反
応を行った。用いた鋳型はcDNAの1/8(0.3μgのRNAに相当)であった。PCRプロ
グラムは以下のとおりとした。
PCR reactions were performed using Perkin Elmer tTth polymerase according to the manufacturer's instructions. The template used was 1/8 of cDNA (corresponding to 0.3 μg of RNA). The PCR program was as follows.

【0026】 30サイクル 94℃、4秒 40℃、30秒 72℃、2分 72℃、10分[0026]   30 cycles   94 ° C, 4 seconds   40 ° C, 30 seconds   72 ° C, 2 minutes   72 ° C, 10 minutes

【0027】 この断片をPromegaのベクターpGEM-Tに製造業者の説明書に従ってクローニン
グした。
This fragment was cloned into the vector pGEM-T from Promega according to the manufacturer's instructions.

【0028】 該断片が正しいことを配列決定により確認した。制限切断部位NcoIおよびPstI
(ベクターpGEM-Tのポリリンカー内に存在する)を用いて、PCR断片を単離し、
突出部をT4-ポリメラーゼを用いて平滑末端にした。この断片をSmaI(平滑)切
断ベクターpBinAR[HofgenおよびWillmitzer, Plant Sci. 66:221-230 (1990)]
にクローニングした(図2を参照)。このベクターは、CaMV(カリフラワーモザ
イクウイルス)35Sプロモーター[Franckら, Cell 21:285-294 (1980)]、およ
びオクトピンシンターゼ遺伝子由来の終結シグナル[Gielenら, EMBO J. 3:835-
846 (1984)]を含んでいる。このベクターは、植物において、抗生物質カナマイ
シンに対する耐性を媒介する。得られたDNA構築物は、該PCR断片をセンスおよび
アンチセンス方向で含んでいた。トランスジェニック植物の作製にはアンチセン
ス構築物を用いた。
The fragment was confirmed to be correct by sequencing. Restriction cleavage sites NcoI and PstI
(Present in the polylinker of vector pGEM-T) is used to isolate the PCR fragment,
The overhang was made blunt with T4-polymerase. This fragment was digested with SmaI (blunt) vector pBinAR [Hofgen and Willmitzer, Plant Sci. 66: 221-230 (1990)].
(See Figure 2). This vector contains a CaMV (cauliflower mosaic virus) 35S promoter [Franck et al., Cell 21: 285-294 (1980)] and a termination signal derived from the octopine synthase gene [Gielen et al., EMBO J. 3: 835-.
846 (1984)]. This vector mediates resistance to the antibiotic kanamycin in plants. The resulting DNA construct contained the PCR fragment in sense and antisense orientations. The antisense construct was used for the production of transgenic plants.

【0029】 図2:断片A(529bp)はCaMV35Sプロモーター(カリフラワーモザイクウイル
スのヌクレオチド6909〜7437)を含む。断片BはF3H遺伝子の断片をアンチセン
ス方向で含む。断片C(192bp)はオクトピンシンターゼ遺伝子の終結シグナル
を含む。
FIG. 2: Fragment A (529 bp) contains the CaMV 35S promoter (nucleotides 6909-7437 of the cauliflower mosaic virus). Fragment B contains a fragment of the F3H gene in the antisense orientation. Fragment C (192 bp) contains the termination signal for the octopine synthase gene.

【0030】5’RACE系を用いたトマト(Lycopersicon esculentum Mill;品種Moneymaker)
からのフラバノン3-ヒドロキシラーゼのより大きなcDNA断片のクローニング F3HのmRNA流動均衡量が低減している植物の作製が、アンチセンス構築物にお
いて用いられるF3H PCR断片のサイズが小さいせいでうまくいかないことを回避
するためには、より大きなF3H断片を用いた第二のアンチセンス構築物を作製す
べきである。
Tomatoes (Lycopersicon esculentum Mill; variety Moneymaker) using 5'RACE system
Cloning of a Larger cDNA Fragment of Flavanone 3-Hydroxylase from Escherichia coli Avoids the Generation of Plants with Reduced F3H mRNA Flow Balance, Due to the Small Size of F3H PCR Fragments Used in Antisense Constructs In order to make a second antisense construct with a larger F3H fragment.

【0031】 より大きなF3H断片のクローニングには、5’ RACE法(cDNA末端の迅速な増幅
のための系)を用いた。
The 5'RACE method (a system for rapid amplification of cDNA ends) was used for cloning larger F3H fragments.

【0032】cDNA末端の迅速な増幅のための5’RACE系(Life Technologies TM のVersion 2〜0 )を用いた5’ RACE法によるF3H PCR断片の伸長 全RNAは、トマト(Lycopersicon esculentum Mill;品種Moneymaker)の熟し
たトマト果実から単離した(上記を参照)。
Extension of F3H PCR fragment by 5'RACE method using 5'RACE system ( Version 2 to 0 of Life Technologies ) for rapid amplification of cDNA ends Total tomato (Lycopersicon esculentum Mill; cultivar) Moneymaker) isolated from ripe tomato fruit (see above).

【0033】 cDNAの第1鎖の合成は、GSP-1(遺伝子特異的プライマー)5’-TTCACCACTGCCTG
GTGGTCC-3’を用いて製造業者の説明書に従って行った。RNase消化した後、該cD
NAを、Life TechnologiesTMによるGlassMAXスピンシステムを用いて製造業者の
説明書に従って精製した。
The synthesis of the first strand of the cDNA is performed by GSP-1 (gene specific primer) 5'-TTCACCACTGCCTG
Performed according to the manufacturer's instructions using GTG GTCC-3 '. After digestion with RNase, the cD
NA was purified using the GlassMAX spin system from Life Technologies according to the manufacturer's instructions.

【0034】 シトシンホモポリマーを、ターミナルデオキシヌクレオチジルトランスフェラ
ーゼを用いて製造業者の説明書に従って、精製した一本鎖F3H cDNAの3′末端に
付加した。
Cytosine homopolymer was added to the 3'end of the purified single-stranded F3H cDNA using terminal deoxynucleotidyl transferase according to the manufacturer's instructions.

【0035】 5′伸長F3H cDNAを、第2の遺伝子特異的プライマー(GSP-2)(これはGSP-1
認識配列の上流3′側領域に結合し、それにより「nested」PCRが行われるよう
にする)を用いて増幅した。用いた5′プライマーは、「5’RACE 末端切断アン
カープライマー」であり、これは製造業者により提供されたものであり、該cDNA
のホモポリマー性dC尾部に相補的である。
The 5′-extended F3H cDNA was used as a second gene-specific primer (GSP-2) (this was GSP-1).
It was attached to the region 3'upstream of the recognition sequence, thereby allowing a "nested" PCR to be performed). The 5'primer used was the "5'RACE Cleavage Anchor Primer", which was provided by the manufacturer and the cDNA
Is complementary to the homopolymeric dC tail of.

【0036】 こうして増幅したcDNAは、F3Hextendedと名づけ、これを製造業者の説明書に
従ってPromegaのベクターpGEM-Tにクローニングした。
The cDNA thus amplified was named F3H extended and cloned into the vector pGEM-T of Promega according to the manufacturer's instructions.

【0037】 該cDNAが同一であることは配列決定により確認した。[0037]   The identity of the cDNAs was confirmed by sequencing.

【0038】 F3Hextended cDNA断片は、制限切断部位NcoIおよびPstI(ベクターpGEM-Tのポ
リリンカー内に存在する)を用いて単離し、その突出部をT4-ポリメラーゼを用
いて平滑末端にした。この断片をSmaI(平滑)切断ベクターpBinAR(Hofgenおよ
びWillmitzer, 1990)にクローニングした(図3を参照)。このベクターは、Ca
MV(カリフラワーモザイクウイルス)35Sプロモーター(Franckら, 1980)およ
びオクトピンシンターゼ遺伝子由来の終結シグナル(Gielenら, 1984)を含んで
いる。このベクターは、植物において、抗生物質カナマイシンに対する耐性を媒
介する。得られたDNA構築物は、該PCR断片をセンスおよびアンチセンス方向で含
んでいた。トランスジェニック植物の作製にはアンチセンス構築物を用いた。
The F3H extended cDNA fragment was isolated using the restriction cleavage sites NcoI and PstI (present within the polylinker of the vector pGEM-T) and its overhangs made blunt-ended using T4-polymerase. This fragment was cloned into the SmaI (blunt) cut vector pBinAR (Hofgen and Willmitzer, 1990) (see Figure 3). This vector is Ca
It contains the MV (cauliflower mosaic virus) 35S promoter (Franck et al., 1980) and the termination signal from the octopine synthase gene (Gielen et al., 1984). This vector mediates resistance to the antibiotic kanamycin in plants. The resulting DNA construct contained the PCR fragment in sense and antisense orientations. The antisense construct was used for the production of transgenic plants.

【0039】 図3:断片A(529bp)はCaMV35Sプロモーター(カリフラワーモザイクウイル
スのヌクレオチド6909〜7437)を含む。断片BはF3H遺伝子の断片をアンチセン
ス方向で含む。断片C(192bp)はオクトピンシンターゼ遺伝子の終結シグナル
を含む。
FIG. 3: Fragment A (529 bp) contains the CaMV 35S promoter (cauliflower mosaic virus nucleotides 6909-7437). Fragment B contains a fragment of the F3H gene in the antisense orientation. Fragment C (192 bp) contains the termination signal for the octopine synthase gene.

【0040】実施例2 フラバノン3-ヒドロキシラーゼの部分断片をアンチセンス方向で発現するトラン スジェニックトマト(Lycopersicon esculentum Mill;品種Moneymaker)の作製 用いた方法は、Lingら, Plant Cell Report 17, 843-847 (1998)の方法であっ
た。栽培は約22℃にて、16時間-明/8時間-暗、という管理体制下で行った。
[0040] Example 2 flavanone 3-hydroxylase transgenic tomatoes expressing partial fragments in antisense orientation; method used for manufacturing a (Lycopersicon esculentum Mill cultivar Moneymaker) is, Ling et al., Plant Cell Report 17, 843- 847 (1998). Cultivation was carried out at about 22 ° C. under the control system of 16 hours-light / 8 hours-dark.

【0041】 トマト種子(Lycopersicon esculentum Mill;品種Moneymaker)は、4%濃度
の次亜塩素酸ナトリウム溶液中で10分間インキュベートすることにより滅菌し、
続いて滅菌蒸留水で3〜4回洗浄し、発芽させるために3%スクロースを加えた
MS培地(pH 6.1)上にのせた。7〜10日の発芽期間の後、トランスフォーメーシ
ョンで用いるために子葉を用意した。
Tomato seeds (Lycopersicon esculentum Mill; variety Moneymaker) were sterilized by incubation in a 4% strength sodium hypochlorite solution for 10 minutes,
Subsequently, it was washed 3 to 4 times with sterile distilled water, and 3% sucrose was added for germination.
It was placed on MS medium (pH 6.1). After a germination period of 7-10 days, cotyledons were prepared for use in transformation.

【0042】 第1日目:「MSBN」培地を含むシャーレに1.5mlのおよそ10日令のタバコ懸濁培養
物を上層した。該プレートをフィルムで覆い、室温で翌日までインキュベートし
た。
Day 1: A Petri dish containing "MSBN" medium was overlaid with 1.5 ml of approximately 10 day old tobacco suspension culture. The plate was covered with film and incubated at room temperature until the next day.

【0043】 第2日目:滅菌濾紙を、タバコ懸濁培養物を上層した該プレート上に、気泡が形
成されないようにのせた。横方向に切断した子葉を該濾紙上に上下逆さにのせた
。該シャーレを培養チャンバー内で3日間インキュベートした。
Day 2: Sterile filter paper was placed on the plate overlaid with the tobacco suspension culture to prevent air bubbles from forming. The cotyledons cut laterally were placed upside down on the filter paper. The dish was incubated in the culture chamber for 3 days.

【0044】 第5日目:アグロバクテリウム培養物(LBA4404)を、約3000gにて10分間遠心分
離することにより沈殿させ、MS培地に再懸濁して、ODが0.3となるようにした。
子葉切片をこの懸濁液上に入れ、ゆっくり振盪させながら室温で30分間インキュ
ベートした。次に、該子葉切片を滅菌濾紙上である程度乾かし、元のプレートに
戻して、共培養を該培養チャンバー内で3日間継続した。
Day 5: Agrobacterium culture (LBA4404) was precipitated by centrifugation at about 3000 g for 10 minutes and resuspended in MS medium to an OD of 0.3.
Cotyledon sections were placed on this suspension and incubated for 30 minutes at room temperature with gentle shaking. Then, the cotyledon pieces were dried to some extent on sterile filter paper, returned to the original plate, and co-culture was continued in the culture chamber for 3 days.

【0045】 第8日目:共培養した子葉切片をMSZ2K50+βにのせ、該培養チャンバー内でさら
に4週間にわたってインキュベートした。次に、それらを継代培養した。
Day 8: Co-cultured cotyledonary sections were mounted on MSZ2K50 + β and incubated in the culture chamber for an additional 4 weeks. Then, they were subcultured.

【0046】 形成されたシュートを根誘導培地に移した。[0046]   The formed shoots were transferred to root induction medium.

【0047】 うまく発根したら、該植物を試験し、温室に移した。[0047]   Once rooted successfully, the plants were tested and transferred to the greenhouse.

【0048】実施例3 一次ラット肝細胞の培養物におけるコレステロール生合成の阻害 ストック溶液の調製 A)生来的に有するフラバノン3-ヒドロキシラーゼ遺伝子のみを含む(対照)
、およびB)実施例2に記載のように、さらにフラバノン3-ヒドロキシラーゼの
部分断片をアンチセンス方向で含む、10〜20mgの熟したトマト(品種:「Moneym
aker」)の凍結乾燥物を正確に秤量し、全フラボノイド10mMのストック溶液が得
られるような量のDMSOで処理した。試験を始める直前に、これらのストック溶液
の培地による希釈物を調製した。10-4〜10-8Mの間での段階的10倍希釈を行った
Example 3 Inhibition of Cholesterol Biosynthesis in Cultures of Primary Rat Hepatocytes Preparation of Stock Solution A) Containing only the flavanone 3-hydroxylase gene inherently present (control)
And B) 10-20 mg of ripe tomato (variety: "Moneym", further comprising a flavanone 3-hydroxylase partial fragment in the antisense orientation, as described in Example 2.
aker ') lyophilisate was accurately weighed and treated with DMSO in an amount such that a stock solution of 10 mM total flavonoids was obtained. Immediately before starting the test, dilutions of these stock solutions with medium were prepared. Serial 10-fold dilutions between 10 -4 and 10 -8 M were performed.

【0049】肝細胞培養物の調製 一次肝細胞は、雄のSprague-Dawleyラット(240〜290g)の肝臓からコラゲナ
ーゼ灌流[Gebhardtら, Arzneimittel-Forschung/Drug Res. 41:800-804 (1991)
1990]により得た。該肝細胞を、コラーゲン被覆シャーレ(6ウェルプレート
、Greiner, Nurtingen)内で、10%ウシ血清を加えたWilliams Medium E中で125
,000個/cm2の細胞密度で培養した。より詳細なことは、特に培地については、G
ebhardtら, Cell Biol. Toxicol. 6:369-372 (1990)およびMewesら, Cancer Res
. 53:5135-5142 (1993)に見られる。2時間後、培養物を、0.1μMのインスリン
を加えた無血清培地に移した。さらに20時間後、それらを試験に用いた。試験物
質は、それぞれの場合について、2〜3匹のラットからの3つの独立した培養物
において試験した。
Preparation of Hepatocyte Cultures Primary hepatocytes were isolated from the liver of male Sprague-Dawley rats (240-290 g) by collagenase perfusion [Gebhardt et al., Arzneimittel-Forschung / Drug Res. 41: 800-804 (1991).
1990]. 125 the hepatocytes in a collagen-coated dish (6 well plate, Greiner, Nurtingen) in Williams Medium E supplemented with 10% bovine serum.
The cells were cultured at a cell density of 1,000 cells / cm 2 . For more details, see G
ebhardt et al., Cell Biol. Toxicol. 6: 369-372 (1990) and Mewes et al., Cancer Res.
. 53: 5135-5142 (1993). After 2 hours, the culture was transferred to serum-free medium supplemented with 0.1 μM insulin. After a further 20 hours they were used in the test. The test substances were tested in each case in 3 independent cultures from 2-3 rats.

【0050】試験物質AおよびBを用いた肝細胞培養物のインキュベーション コレステロール生合成が試験物質AおよびBにより影響を受けることを実証す
るために、肝細胞培養物を合計22時間保持した。次に、それらを、14Cアセテー
ト(トレーサー量だけ)を加えた無血清Williams Medium Eと共に、指示濃度の
試験物質と共に2時間にわたりインキュベートした。各試験系には、対照を含め
た。方法論は、Gebhardt(1991)およびGebhardt, Lipids 28:613-619(1993)によ
り詳細に記載されている。トレーサー量の14Cアセテートは速やかに細胞内アセ
チル-CoAプールと入れ替わり、それによりステロール画分(その90%を超える量
がコレステロールから構成される)への14Cアセテートの取込みを面倒のないや
り方で測定できるようになる(Gebhardt, 1993)。
Incubation of hepatocyte cultures with test substances A and B In order to demonstrate that cholesterol biosynthesis is influenced by test substances A and B, hepatocyte cultures were kept for a total of 22 hours. They were then incubated with serum-free Williams Medium E supplemented with 14 C acetate (tracer amount only) for 2 hours with the indicated concentrations of test substances. A control was included in each test system. The methodology is described in more detail by Gebhardt (1991) and Gebhardt, Lipids 28: 613-619 (1993). A tracer amount of 14 C-acetate rapidly displaces the intracellular acetyl-CoA pool, thereby facilitating uptake of 14 C-acetate into the sterol fraction (over 90% of which is composed of cholesterol). Be able to measure (Gebhardt, 1993).

【0051】コレステロール生合成への影響の分析方法 ステロール画分(非加水分解性脂質)への14Cアセテートの取込みは、Gebhar
dt(1991)の方法により測定した。用いた抽出[Extrelut(登録商標)カラム(Merc
k, Darmstadt)を使用]において、14Cアセテート(およびそれから生成される
少量の他の低分子量代謝産物)の90%を上回る量が取り除かれた。この試験によ
り、試験物質の影響下でのコレステロールと前駆体ステロールとの間の相対的合
成速度の比較ができるようになる(Gebhardt, 1993)。
Method for Analyzing Effects on Cholesterol Biosynthesis Incorporation of 14 C-acetate into sterol fractions (non-hydrolyzable lipids) was determined by Gebhar
It was measured by the method of dt (1991). Extraction used [Extrelut® column (Merc
k, Darmstadt)], more than 90% of 14 C acetate (and small amounts of other low molecular weight metabolites produced therefrom) were removed. This test makes it possible to compare the relative synthesis rates between cholesterol and the precursor sterols under the influence of test substances (Gebhardt, 1993).

【0052】肝細胞培養物の視覚的かつ微生物に関する質の確認 試験インキュベーションの前後に、用いる培養物の全てを、微生物の混入およ
び細胞単層の完全性について顕微鏡下で視覚的に確認した。認識可能な細胞形態
の変化(特に高濃度において)は、サンプルのいずれにおいても見られなかった
。このことは、試験結果が試験化合物の細胞傷害性作用により影響を受けた可能
性をほぼ退けるものである。
Visual and microbial qualification test of hepatocyte cultures Before and after incubation, all cultures used were visually checked under the microscope for microbial contamination and cell monolayer integrity. No discernible changes in cell morphology (especially at high concentrations) were seen in any of the samples. This largely excludes the possibility that the test results were affected by the cytotoxic effect of the test compound.

【0053】 全ての培養物についての慣用の増殖不能性試験によっては、どのような微生物
の混入の兆候も示されなかった。
Routine nonviability testing on all cultures did not show any signs of microbial contamination.

【0054】結果 遺伝的に改変されていないトマトからのサンプルA)(対照)は、コレステロ
ール生合成に対して何ら効果を示さなかった。これに対して、フラバノン3-ヒド
ロキシラーゼの部分断片をアンチセンス方向で含むトマトからのサンプルBによ
りコレステロール合成は、有意に阻害された。
Results Sample A) from a genetically unmodified tomato (control) showed no effect on cholesterol biosynthesis. In contrast, cholesterol synthesis was significantly inhibited by sample B from tomato containing a partial fragment of flavanone 3-hydroxylase in the antisense orientation.

【図面の簡単な説明】[Brief description of drawings]

【図1】 図1は、フラバノン3-ヒドロキシラーゼの阻害により、カテキン、シアニジン
等のフラボノイド最終生成物が生成されず、ルテオリフラバン等のフェノールの
生成が増大することを示している。
FIG. 1 shows that inhibition of flavanone 3-hydroxylase does not produce flavonoid end products such as catechin and cyanidin, but increases phenol production such as luteoliflavan.

【図2】 図2:断片A(529bp)はCaMV35Sプロモーター(カリフラワーモザイクウイル
スのヌクレオチド6909〜7437)を含む。断片BはF3H遺伝子の断片をアンチセン
ス方向で含む。断片C(192bp)はオクトピンシンターゼ遺伝子の終結シグナル
を含む。
FIG. 2: Fragment A (529 bp) contains the CaMV 35S promoter (nucleotides 6909-7437 of the cauliflower mosaic virus). Fragment B contains a fragment of the F3H gene in the antisense orientation. Fragment C (192 bp) contains the termination signal for the octopine synthase gene.

【図3】 図3:断片A(529bp)はCaMV35Sプロモーター(カリフラワーモザイクウイル
スのヌクレオチド6909〜7437)を含む。断片BはF3H遺伝子の断片をアンチセン
ス方向で含む。断片C(192bp)はオクトピンシンターゼ遺伝子の終結シグナル
を含む。
FIG. 3: Fragment A (529 bp) contains the CaMV 35S promoter (cauliflower mosaic virus nucleotides 6909-7437). Fragment B contains a fragment of the F3H gene in the antisense orientation. Fragment C (192 bp) contains the termination signal for the octopine synthase gene.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) A61K 35/78 A61K 35/78 H 4C083 J 4C088 K N R U V X A61P 1/14 A61P 1/14 3/06 3/06 29/00 29/00 35/00 35/00 39/06 39/06 43/00 111 43/00 111 C12N 5/10 C12N 5/00 C // C12N 15/09 ZNA 15/00 ZNAA (81)指定国 EP(AT,BE,CH,CY, DE,DK,ES,FI,FR,GB,GR,IE,I T,LU,MC,NL,PT,SE),OA(BF,BJ ,CF,CG,CI,CM,GA,GN,GW,ML, MR,NE,SN,TD,TG),AP(GH,GM,K E,LS,MW,MZ,SD,SL,SZ,TZ,UG ,ZW),EA(AM,AZ,BY,KG,KZ,MD, RU,TJ,TM),AE,AG,AL,AM,AT, AU,AZ,BA,BB,BG,BR,BY,CA,C H,CN,CR,CU,CZ,DE,DK,DM,DZ ,EE,ES,FI,GB,GD,GE,GH,GM, HR,HU,ID,IL,IN,IS,JP,KE,K G,KP,KR,KZ,LC,LK,LR,LS,LT ,LU,LV,MA,MD,MG,MK,MN,MW, MX,MZ,NO,NZ,PL,PT,RO,RU,S D,SE,SG,SI,SK,SL,TJ,TM,TR ,TT,TZ,UA,UG,US,UZ,VN,YU, ZA,ZW (72)発明者 シュヴェーデン,ユルゲン ドイツ連邦共和国 ディー−67433 ニュ ースタット,ハインリッヒ−シュトリーフ ラー−シュトラーセ 19 (72)発明者 ハーバーズ,カリン ドイツ連邦共和国 ディー−06484 クェ ドリンバーグ,アム ヘインジ 6 Fターム(参考) 2B030 AA02 AB03 AD08 CA17 CA19 CB02 CD02 CD03 CD07 CD09 CD13 CD21 2B150 AB03 AC37 CE01 CE16 CE18 CE23 CE25 DD36 DD37 DD40 DD45 4B018 MD42 MD48 ME02 4B024 AA08 BA08 CA04 DA01 DA05 EA01 EA04 FA02 GA11 4B065 AA88X AB01 BA01 BA24 CA41 CA44 4C083 AA111 CC01 4C088 AB02 AB12 AB14 AB15 AB40 AB44 AB45 AB48 AB51 AB52 AB56 AB59 AB62 AB73 AB85 AC02 AC03 AC04 AC05 AC11 AC12 AC13 BA07 BA08 CA01 CA03 CA25 NA05 NA14 ZA66 ZB01 ZB11 ZB21 ZB26 ZC02 ZC19 ZC21 ZC33 ─────────────────────────────────────────────────── ─── Continued Front Page (51) Int.Cl. 7 Identification Code FI Theme Coat (Reference) A61K 35/78 A61K 35/78 H 4C083 J 4C088 K N R U V X A61P 1/14 A61P 1/14 3 / 06 3/06 29/00 29/00 35/00 35/00 39/06 39/06 43/00 111 43/00 111 C12N 5/10 C12N 5/00 C // C12N 15/09 ZNA 15/00 ZNAA (81) Designated countries EP (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OA (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG), AP (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG ZW), EA (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE , KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW (72) Inventor Schweden, Jurgen German Federation Republic D-67433 Neustadt, Heinrich-Stree Ehrler-Strasse 19 (72) Inventor Harbors, Karin Germany D-06484 Quedlinburg, Amheinge 6 F Term (reference) 2B030 AA02 AB03 AD08 CA17 CA19 CB02 CD02 CD03 CD07 CD09 CD13 CD21 2B150 AB03 AC37 CE01 CE16 CE18 CE23 CE25 DD36 DD37 DD40 DD45 4B018 MD42 MD48 ME02 4B024 AA08 BA08 CA04 DA01 DA05 EA01 EA04 FA02 GA11 4B065 AA88X AB01 BA01 BA24 CA41 CA44 4C083 AA111 CC01 4C088 AB02 AB12 AB12 AB14 AB15 AB40 AB05 AB02 AB52 AB52 AB52 AB52 AB52 AB52 AB52 AB52 AB52 AB52 AB52 AB52 AB52 AB52 AB52 AB51 AB52 AB52 AB51 AB52 AB52 AB52 AB52 AB52 AB51 AB52 AB52 AB52 AB51 AB52 AB52 AB52 AB51 AB52 AB52 AB52 AB51 AB52 AB52 AB52 AB51 AB52 AB52 AB52 AB52 AB52 AB52 AB52 AB52 AB51 AB52 AB52 AB52 AB51 AB52 AB52 AB52 AB51 AB52 AB52 AB51 AB52 AB52 AB52 AB51 AB52 AB52 AB52 AB52 AB52 AB52 AB52 AB52 AB52 AB52 AB52 AB52 AB52 AB52 AC11 AC12 AC13 BA07 BA08 CA01 CA03 CA25 NA05 NA14 ZA66 ZB01 ZB11 ZB21 ZB26 ZC02 ZC19 ZC21 ZC33

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 分子遺伝学の手法により酵素フラバノン3-ヒドロキシラーゼ
の活性が低下している植物を作製することを特徴とする、植物におけるフラボノ
イドおよびフェノール成分の含有量を増大させる方法。
1. A method for increasing the content of flavonoid and phenol components in a plant, which comprises producing a plant in which the activity of the enzyme flavanone 3-hydroxylase is reduced by a method of molecular genetics.
【請求項2】 植物におけるフラボノイドおよびフェノール成分の含有量を
増大させる請求項1に記載の方法であって、前記酵素フラバノン3-ヒドロキシラ
ーゼの活性を、前記植物の植物体全体または一部において、分子生物学の手法(
例えば、アンチセンス構築物、共抑制、特異的抗体の発現、または特異的インヒ
ビターの発現)により完全または部分的に、恒久的または一時的に低下させる上
記方法。
2. The method according to claim 1, wherein the content of flavonoids and phenolic components in a plant is increased, wherein the activity of the enzyme flavanone 3-hydroxylase is increased in whole or part of the plant body of the plant. Method of molecular biology (
For example, the method as described above, wherein the antisense construct, co-suppression, expression of a specific antibody, or expression of a specific inhibitor) is permanently or temporarily reduced, either completely or partially.
【請求項3】 前記植物がブドウのつる、サクランボ、トマト、スモモ、リ
ンボクの実、コケモモ、イチゴ、カンキツ類の果実(例えばオレンジ、グレープ
フルーツ)、ポポー、赤キャベツ、ブロッコリー、メキャベツ、カカオ、ケール
、ニンジン、パセリ、セルリアック/セロリ、タマネギ、ニンニク、チャ、コー
ヒー、ホップ、ダイズ、アブラナ、オートムギ、コムギ、ライムギ、カイドウ(
Aronia melanocarpa)、イチョウ(Ginkgo biloba)である、請求項1または2
に記載の方法。
3. The plant is grape vine, cherry, tomato, plum, limpet, cowberry, strawberry, citrus fruit (eg, orange, grapefruit), popow, red cabbage, broccoli, mecha cabbage, cacao, kale, carrot. , Parsley, celeriac / celery, onion, garlic, tea, coffee, hops, soybeans, rape, oats, wheat, rye, caidou (
Aronia melanocarpa) and Ginkgo biloba).
The method described in.
【請求項4】 請求項1〜3のいずれか1項に記載の方法により作製される
フラボノイドおよびフェノール成分の含有量が増大している植物であって、酵素
フラバノン3-ヒドロキシラーゼの酵素活性が低下している上記植物。
4. A plant having an increased content of flavonoids and phenol components produced by the method according to any one of claims 1 to 3, wherein the enzyme flavanone 3-hydroxylase has an enzymatic activity. The above plants that are declining.
【請求項5】 ヒトおよび動物のための食品、栄養補助食品としての、また
は、治療用組成物、健康増進用組成物、もしくは強壮剤(搾り汁、茶、抽出物、
発酵産物)を製造するための、ならびに化粧品の製造のための、請求項1〜3の
いずれか1項に記載の方法により作製される植物またはこれら植物の部分の使用
5. Human and animal foods, dietary supplements, or therapeutic compositions, health promoting compositions or tonics (squeezed juices, teas, extracts,
Use of plants or parts of these plants produced by the method according to any one of claims 1 to 3 for the production of fermentation products) as well as for the production of cosmetics.
JP2001505720A 1999-06-17 2000-06-07 Method for producing plant with increased content of flavonoids and phenolic compounds Withdrawn JP2003503032A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19927574A DE19927574A1 (en) 1999-06-17 1999-06-17 Increasing content of flavonoids and phenols in plants, useful for e.g. preventing cardiovascular disease, by reducing activity of flavanone-3-hydroxylase
DE19927574.2 1999-06-17
PCT/EP2000/005257 WO2000078980A1 (en) 1999-06-17 2000-06-07 Method for producing plants with increased flavonoid and phenolic compound content

Publications (1)

Publication Number Publication Date
JP2003503032A true JP2003503032A (en) 2003-01-28

Family

ID=7911499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001505720A Withdrawn JP2003503032A (en) 1999-06-17 2000-06-07 Method for producing plant with increased content of flavonoids and phenolic compounds

Country Status (16)

Country Link
EP (1) EP1102855A1 (en)
JP (1) JP2003503032A (en)
KR (1) KR20020068256A (en)
CN (1) CN1314943A (en)
AR (1) AR024381A1 (en)
AU (1) AU5970400A (en)
BG (1) BG105246A (en)
BR (1) BR0006869A (en)
CA (1) CA2340319A1 (en)
CO (1) CO5280139A1 (en)
DE (1) DE19927574A1 (en)
HU (1) HUP0103307A2 (en)
IL (1) IL141173A0 (en)
PL (1) PL346059A1 (en)
WO (1) WO2000078980A1 (en)
ZA (1) ZA200101328B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5529353B1 (en) * 2012-06-07 2014-06-25 一郎 山田 Garlic egg yolk composition
KR20230057405A (en) 2020-08-25 2023-04-28 오츠카 세이야쿠 가부시키가이샤 Extracts containing kaempferol aglycone

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100642939B1 (en) * 2003-02-11 2006-11-10 학교법인 신천학원 Bathroom soap comprising plum extracts and extracting method thereof
JP2007520230A (en) * 2004-02-06 2007-07-26 コンク ユニヴァーシティ インダストリアル コーペレーション コープ Germinated beans containing high-concentration isoflavones and method for producing the same
KR100553522B1 (en) * 2004-02-06 2006-02-20 학교법인 건국대학교 Isoflavone Fortifying Sprouted Mung Bean and the Method Thereof
KR100663669B1 (en) * 2005-05-18 2007-01-02 금호석유화학 주식회사 Transgenic rice line producing high level of flavonoids in the endosperm
MX2011011051A (en) * 2009-04-21 2012-06-01 Haas Inc John I Animal feed compositions and feeding methods.
EP2286669A1 (en) * 2009-07-29 2011-02-23 Nestec S.A. Flavanones-containing food compositions
KR101415687B1 (en) * 2012-09-19 2014-07-10 농업회사법인 호트팜 주식회사 Multiple Propagation Methods of in vitro Plantlets Derived from Node Cultures of Aronia using Tissue Culture Techniques
WO2015140589A1 (en) * 2014-03-20 2015-09-24 Hongkong Chuanghui International Limited Method for preparation multifunctional liquid medicament from vegetable feedstock, and the product produced by the method
CN105985936A (en) * 2015-02-02 2016-10-05 中国人民解放军第二军医大学 Erigeron breviscapus flavanone-3-hydroxylase as well as coding gene and application thereof
CN111875689B (en) * 2020-08-07 2022-02-01 山东玄康种业科技有限公司 Method for creating male sterile line by using tomato green stem close linkage marker
CN112391362B (en) * 2020-11-04 2022-07-05 江南大学 Flavone 3 beta-hydroxylase mutant with improved catalytic activity and application thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5432068A (en) * 1990-06-12 1995-07-11 Pioneer Hi-Bred International, Inc. Control of male fertility using externally inducible promoter sequences
KR100292234B1 (en) * 1992-03-09 2001-06-01 시몬스메어 래리 엠. Control of Plant Fertility
GB9525459D0 (en) * 1995-12-13 1996-02-14 Zeneca Ltd Genetic control of fruit ripening
WO1999043825A1 (en) * 1998-02-25 1999-09-02 E.I. Du Pont De Nemours And Company Plant flavanone-3-hydroxylase
WO2000050613A2 (en) * 1999-02-22 2000-08-31 Yissum Research And Development Company Of The Hebrew University Of Jerusalem Transgenic plants and method for transforming carnations

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5529353B1 (en) * 2012-06-07 2014-06-25 一郎 山田 Garlic egg yolk composition
KR20230057405A (en) 2020-08-25 2023-04-28 오츠카 세이야쿠 가부시키가이샤 Extracts containing kaempferol aglycone

Also Published As

Publication number Publication date
IL141173A0 (en) 2002-02-10
CO5280139A1 (en) 2003-05-30
WO2000078980A1 (en) 2000-12-28
AU5970400A (en) 2001-01-09
PL346059A1 (en) 2002-01-14
EP1102855A1 (en) 2001-05-30
KR20020068256A (en) 2002-08-27
CN1314943A (en) 2001-09-26
AR024381A1 (en) 2002-10-02
HUP0103307A2 (en) 2001-12-28
ZA200101328B (en) 2002-02-18
BR0006869A (en) 2001-08-07
CA2340319A1 (en) 2000-12-28
BG105246A (en) 2001-10-31
DE19927574A1 (en) 2000-12-21

Similar Documents

Publication Publication Date Title
Mouradov et al. Flavonoids: a metabolic network mediating plants adaptation to their real estate
Meng et al. Metabolomics integrated with transcriptomics reveals redirection of the phenylpropanoids metabolic flux in Ginkgo biloba
Zhang et al. Down-regulation of Kelch domain-containing F-box protein in Arabidopsis enhances the production of (poly) phenols and tolerance to ultraviolet radiation
Gülck et al. Synthetic biology of cannabinoids and cannabinoid glucosides in Nicotiana benthamiana and Saccharomyces cerevisiae
Li et al. Purple canola: Arabidopsis PAP1 increases antioxidants and phenolics in Brassica napus leaves
Karppinen et al. Changes in the abscisic acid levels and related gene expression during fruit development and ripening in bilberry (Vaccinium myrtillus L.)
Zhang et al. Transcriptome and metabolic profiling unveiled roles of peroxidases in theaflavin production in black tea processing and determination of tea processing suitability
Wang et al. Expression of chalcone synthase and chalcone isomerase genes and accumulation of corresponding flavonoids during fruit maturation of Guoqing No. 4 satsuma mandarin (Citrus unshiu Marcow)
JP2003503032A (en) Method for producing plant with increased content of flavonoids and phenolic compounds
Gagné et al. Leucoanthocyanidin reductase and anthocyanidin reductase gene expression and activity in flowers, young berries and skins of Vitis vinifera L. cv. Cabernet-Sauvignon during development
Wu et al. Overexpression of the GbF3′ H1 gene enhanced the epigallocatechin, gallocatechin, and catechin contents in transgenic Populus
JP2006052217A (en) Method for increasing content of flavonoid and phenolic ingredient in plant
Shi et al. Proanthocyanidin synthesis in Chinese bayberry (Myrica rubra Sieb. et Zucc.) fruits
Xin et al. Mulberry genes MnANR and MnLAR confer transgenic plants with resistance to Botrytis cinerea
Mora et al. Regulation of plant tannin synthesis in crop species
Siebeneichler et al. Changes in the abscisic acid, phenylpropanoids and ascorbic acid metabolism during strawberry fruit growth and ripening
Iijima et al. Involvement of ethylene in the accumulation of esculeoside A during fruit ripening of tomato (Solanum lycopersicum)
Suvanto et al. Changes in the proanthocyanidin composition and related gene expression in bilberry (Vaccinium myrtillus L.) tissues
Gosch et al. Effect of prohexadione-Ca on various fruit crops: flavonoid composition and substrate specificity of their dihydroflavonol 4-reductases
Castrillón-Arbeláez et al. Secondary metabolism in Amaranthus spp.—a genomic approach to understand its diversity and responsiveness to stress in marginally studied crops with high agronomic potential
Wang et al. Molecular evidence for catechin synthesis and accumulation in tea buds (Camellia sinensis)
Wang et al. A synchronized increase of stilbenes and flavonoids in metabolically engineered Vitis vinifera cv. Gamay Red cell culture
US20110283424A1 (en) Gene Encoding Lignan Methylation Enzyme
US20240147927A1 (en) Methods of high production of polyphenols from red lettuces and uses thereof
Wang et al. Over 1000-fold synergistic boost in Viniferin levels by elicitation of Vitis vinifera cv. Gamay red cell cultures over accumulating phenylalanine

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070807