JP2003346838A - Direct fuel cell and method of manufacturing the fuel cell - Google Patents

Direct fuel cell and method of manufacturing the fuel cell

Info

Publication number
JP2003346838A
JP2003346838A JP2002154481A JP2002154481A JP2003346838A JP 2003346838 A JP2003346838 A JP 2003346838A JP 2002154481 A JP2002154481 A JP 2002154481A JP 2002154481 A JP2002154481 A JP 2002154481A JP 2003346838 A JP2003346838 A JP 2003346838A
Authority
JP
Japan
Prior art keywords
fuel cell
cells
direct fuel
manufacturing
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002154481A
Other languages
Japanese (ja)
Inventor
Ryoichi Okuyama
良一 奥山
Satoru Nakamura
知 中村
Eiichi Nomura
栄一 野村
Shiro Tanshu
紫朗 丹宗
Kenichi Saito
憲一 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP2002154481A priority Critical patent/JP2003346838A/en
Publication of JP2003346838A publication Critical patent/JP2003346838A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mass-production direct fuel cell and a method of manufacturing the fuel cell at an advantageous cost. <P>SOLUTION: In this direct fuel cell, a fuel electrode 10 and an air electrode 12 are formed on the front and rear of a proton conductive part 6 opposite to each other by arranging a plurality of cells adjacent to each other, and the cells are electrically connected to each other. The proton conductive part 6 is formed by providing a proton conductivity thereto by graft-polymerizing monomer with ion-exchange groups after reaction active point is produced with a synthetic resin film 3 partially being irradiated with electron beam or radioactive ray. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、有機溶媒と水をプ
ロトン導電体に直接供給して発電する直接形燃料電池と
その製造方法に関し、特に、携帯電話や携帯用の情報端
末などの携帯用電子機器の電源に最適な小型の直接形燃
料電池とその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a direct fuel cell for directly generating an electric power by supplying an organic solvent and water to a proton conductor and a method for producing the same, and more particularly to a portable fuel cell such as a portable telephone or a portable information terminal. The present invention relates to a small direct fuel cell optimal for a power supply of an electronic device and a method for manufacturing the same.

【0002】[0002]

【従来の技術】近年、環境問題や資源問題への対策が重
要になっており、その対策のひとつとして、直接型燃料
電池の開発が行われている。特に、メタノールを燃料に
用い、改質やガス化を行わずに直接発電する直接メタノ
ール形燃料電池は、構造がシンプルで、小型化、軽量化
が容易であり、携帯電話や携帯用のコンピューター等の
小型コンシューマ電源として有望である。
2. Description of the Related Art In recent years, measures against environmental problems and resource problems have become important, and as one of the measures, a direct fuel cell has been developed. In particular, direct methanol fuel cells, which use methanol as fuel and generate electricity directly without reforming or gasification, have a simple structure, are easily reduced in size and weight, and are easily used in mobile phones and portable computers. Promising as a small consumer power supply.

【0003】直接メタノール形燃料電池では、燃料極側
に3%程度の濃度のメタノール水溶液を供給すると、電
池反応によって炭酸ガスが発生し、燃料排気側では廃燃
料と炭酸ガスが排出される。一方、空気極側では、酸化
剤として空気を供給すると、電池反応により水が発生
し、空気出口から排出される。このような直接メタノー
ル形燃料電池を携帯電話等の小型電源として用いる場合
には、直接メタノール形燃料電池の作動電圧が、単電池
当たり0.5〜0.4V程度と低電圧であるため、複数
の単電池を直列に接続して昇圧する必要があった。
In a direct methanol fuel cell, when an aqueous methanol solution having a concentration of about 3% is supplied to the fuel electrode side, carbon dioxide gas is generated by a cell reaction, and waste fuel and carbon dioxide gas are discharged on the fuel exhaust side. On the other hand, on the air electrode side, when air is supplied as an oxidant, water is generated by a battery reaction and is discharged from the air outlet. When such a direct methanol fuel cell is used as a small power source for a mobile phone or the like, the operating voltage of the direct methanol fuel cell is as low as about 0.5 to 0.4 V per cell. It was necessary to connect these cells in series and boost the voltage.

【0004】[0004]

【発明が解決しようとする課題】このような電池の直列
接続として、小型の単電池を多数積層するバイポーラー
方式の直列接続と、燃料極と空気極とを一枚の固体電解
質膜の表裏で対向させて複数の単電池を隣接して形成
し、各単電池間を電気的に接続するシート方式の直列接
続とが提案されている。
As such a series connection of batteries, a bipolar series connection in which a number of small cells are stacked, and a fuel electrode and an air electrode are formed on the front and back of a single solid electrolyte membrane. A sheet-type series connection in which a plurality of unit cells are formed adjacent to each other and electrically connected to each other has been proposed.

【0005】しかしながら、バイポーラー方式の直列接
続では、燃料流路、空気流路を持ったセパレーターを用
いて、単電池を積層する必要があり、小型化が困難であ
るうえに、セパレーターにコストがかかる。
[0005] However, in the bipolar series connection, cells need to be stacked using a separator having a fuel flow path and an air flow path, and it is difficult to reduce the size of the cells. Take it.

【0006】これに対し、シート方式の直列接続では、
固体電解質膜によって単電池が形成される部分と単電池
が形成されない部分とを作製する必要があるため、単電
池が形成される部分には固体電解質膜の本来の機能であ
るプロトン導電性(プロトン導電率が10-2S/cm2
以上)をもたせ、単電池が形成されない部分にはプロト
ン導電に対して絶縁性(プロトン導電率が10-3S/c
2以下)をもたせるようにしなければならず、一例と
して、米国特許第4673624号には、絶縁性ポリマ
ーの断面の微小な穴に硫酸を含浸させることが開示さ
れ、米国特許第5759712号には、同様な穴にナフ
ィオン(登録商標)等のプロトン導電性物質を含浸させ
ることが開示されている。また、このような直列接続で
は、固体電解質膜内に接続用の配線を設けて固体電解質
膜の表裏両面を貫通させる膜内接続としたり、図5に示
したように、プロトン導電体の素材膜56を用い、プロ
トン導電性を残す部分をマスク57でマスクして、この
部分をプロトン導電部6とし、これ以外の部分に絶縁性
の合成樹脂等を含浸させて、プロトン導電体膜中の親水
性領域をブロックし、プロトン導電性に関し絶縁化し
て、絶縁部8とする必要がある。
On the other hand, in the sheet type series connection,
Since it is necessary to prepare a portion where a unit cell is formed by the solid electrolyte membrane and a portion where the unit cell is not formed, the portion where the unit cell is formed is provided with proton conductivity (proton conductivity) which is an original function of the solid electrolyte membrane. Conductivity of 10 -2 S / cm 2
Above, and the portion where no single cell is formed is insulative to proton conductivity (proton conductivity is 10 −3 S / c).
m 2 or less) must be so impart a, as an example, U.S. Patent No. 4,673,624, discloses impregnating sulfuric acid to small holes in the cross-section of the insulating polymer, in U.S. Patent No. 5,759,712 is It is disclosed that similar holes are impregnated with a proton conductive substance such as Nafion (registered trademark). Further, in such a series connection, a wiring for connection is provided in the solid electrolyte membrane to make an in-membrane connection in which the front and back surfaces of the solid electrolyte membrane are penetrated, or as shown in FIG. Using a mask 56, a portion where proton conductivity is to be left is masked with a mask 57, this portion is used as a proton conductive portion 6, and other portions are impregnated with an insulating synthetic resin or the like, so that the hydrophilicity in the proton conductor film is reduced. It is necessary to block the conductive region and insulate it with respect to proton conductivity to form the insulating portion 8.

【0007】しかしながら、上述したような、絶縁性ポ
リマーの断面に微小な穴をあけ、その穴にプロトン導電
性物質を含浸させることは、加工が複雑で、量産性の点
で問題があるため、コスト面での問題があった。また、
プロトン導電性物質として、ナフィオン(登録商標)を
用いることは内部抵抗の低下には寄与するものの、単電
池が形成される部分の全体から見ると、ナフィオン(登
録商標)を含浸させただけではそれが十分でなく、性能
面での問題があった。また、固体電解質膜の膜内に接続
用の配線を設けて固体電解質膜の表裏両面を貫通させる
膜内接続では、固体電解質膜を貫通するように配線する
必要があり、製造工程が複雑となる。また、図5に示し
たものでは、プロトン導電体の素材膜56として、厚さ
が20〜200μmのナフィオン(登録商標)膜等の固
体高分子電解質膜を用いているから、コスト面での問題
がある。
However, as described above, making a minute hole in the cross section of the insulating polymer and impregnating the hole with a proton conductive material is complicated in processing and has a problem in mass production. There was a cost problem. Also,
Although the use of Nafion (registered trademark) as a proton conductive material contributes to a reduction in internal resistance, the impregnation with Nafion (registered trademark) alone implies that the Nafion (registered trademark) impregnated from the perspective of the entire part where the unit cells are formed. Was not enough, and there was a problem in performance. In the case of an intra-membrane connection in which wiring for connection is provided in the solid electrolyte membrane to penetrate both the front and back surfaces of the solid electrolyte membrane, it is necessary to perform wiring so as to penetrate the solid electrolyte membrane, which complicates the manufacturing process. . In the embodiment shown in FIG. 5, a solid polymer electrolyte membrane such as a Nafion (registered trademark) membrane having a thickness of 20 to 200 μm is used as the material film 56 of the proton conductor. There is.

【0008】[0008]

【課題を解決するための手段】本発明の基本的課題は、
複数の単電池を、プロトン導電部の表裏で燃料極と空気
極とを対向させることによって形成することができる、
量産に適した膜の製造方法を得ることおよびこの膜を用
いた直接形燃料電池を得ることを目的とする。
The basic object of the present invention is to provide:
A plurality of cells can be formed by facing the fuel electrode and the air electrode on the front and back of the proton conductive portion,
It is an object of the present invention to obtain a method for manufacturing a membrane suitable for mass production and to obtain a direct fuel cell using the membrane.

【0009】請求項1記載の発明は、複数の単電池を隣
接して形成し、各単電池間を電気的に接続してなる直接
形燃料電池の単電池が、燃料極と空気極とを、イオン交
換基のグラフト重合によってプロトン導電性を付与した
プロトン導電部の表裏で対向させて形成したことを特徴
とする。
According to the first aspect of the present invention, a unit cell of a direct fuel cell in which a plurality of unit cells are formed adjacent to each other and the unit cells are electrically connected to each other, has a fuel electrode and an air electrode. In addition, it is characterized in that it is formed so as to be opposed to the front and back sides of the proton conductive portion provided with proton conductivity by graft polymerization of an ion exchange group.

【0010】請求項1の発明では、プロトン導電性を付
与したプロトン導電部の表裏で燃料極と空気極とを対向
させて複数の単電池を形成し、各単電池間をプロトン導
電に関して絶縁性にすることができるので、単電池間の
リーク電流が低減できる直接形燃料電池を得ることがで
きる。
According to the first aspect of the present invention, a plurality of cells are formed by opposing the fuel electrode and the air electrode on the front and back of the proton conductive portion provided with proton conductivity, and each cell is insulated with respect to proton conductivity. Therefore, it is possible to obtain a direct fuel cell in which the leakage current between the cells can be reduced.

【0011】請求項2記載の発明は、燃料極と空気極と
をプロトン導電部の表裏で対向させて複数の単電池を隣
接して形成し、各単電池間を電気的に接続してなる直接
形燃料電池の製造方法であって、合成樹脂フィルムに、
電子線または放射線を部分的に照射して反応活性点を生
じさせた後、イオン交換基を有するモノマーをグラフト
重合してプロトン導電性を付与することによって前記プ
ロトン導電部を形成し、残余部をプロトン導電に関して
絶縁性にすることを特徴とする。
According to a second aspect of the present invention, a plurality of cells are formed adjacent to each other with the fuel electrode and the air electrode facing each other on the front and back of the proton conductive portion, and the cells are electrically connected. A method for manufacturing a direct fuel cell, comprising:
After partially irradiating an electron beam or radiation to generate a reactive active site, the proton-conductive portion is formed by graft-polymerizing a monomer having an ion-exchange group to impart proton conductivity, and forming a remaining portion. It is characterized by being insulative with respect to proton conduction.

【0012】請求項2の発明では、合成樹脂フィルムに
電子線または放射線を連続して照射して反応活性点(ラ
ジカル)を生じさせ、次にこれを、イオン交換基を有す
るモノマー溶液中に浸漬または置換反応等によってイオ
ン交換基を導入できる前駆モノマー溶液中に浸漬するこ
とによってグラフト重合するので、合成樹脂フィルムを
連続して供給することで量産化が可能になる。また、微
小な穴を設けたり、この穴にプロトン導電性物質を含浸
させるといった工程が不要にできるので、工程の簡素化
が実現できる。また、単電池の部分を均一にプロトン導
電性を付与することができるので、単電池の内部抵抗を
低下させることができる。また、素材膜として、ナフィ
オン(登録商標)膜等のプロトン導電体の固体高分子電
解質膜を用いずに、合成樹脂フィルムを用いているか
ら、コスト面でも有利である。
According to the second aspect of the present invention, the synthetic resin film is continuously irradiated with an electron beam or radiation to generate reactive active points (radicals), which are then immersed in a monomer solution having an ion exchange group. Alternatively, since the graft polymerization is performed by immersion in a precursor monomer solution into which an ion exchange group can be introduced by a substitution reaction or the like, mass production becomes possible by continuously supplying a synthetic resin film. In addition, since a step of providing a minute hole or impregnating the hole with a proton conductive substance can be omitted, the process can be simplified. In addition, since the proton conductivity can be uniformly applied to the unit cell, the internal resistance of the unit cell can be reduced. In addition, since a synthetic resin film is used as the material film without using a solid polymer electrolyte membrane of a proton conductor such as a Nafion (registered trademark) film, it is advantageous in terms of cost.

【0013】前記合成樹脂フィルムとしては、化学的に
安定で、機械的強度の高いポリエチレンやポリプロピレ
ンなどのポリオレフィン系樹脂、ポリテトラフロロエチ
レンなどのフッ素系樹脂からなるものがよい。
The synthetic resin film is preferably made of a chemically stable, high mechanical strength polyolefin resin such as polyethylene or polypropylene, or a fluorine resin such as polytetrafluoroethylene.

【0014】また、前記イオン交換基を有するモノマー
溶液としては、不飽和結合を有し、さらにプロトン導電
性を付与するためのスルホン基を有するビニルスルホン
酸ナトリウム溶液のようなスチレンスルホン酸溶液、イ
オン交換基を導入できる前駆モノマー溶液としては、ス
ルホン化によってプロトン導電性が付与できるスチレ
ン、アリルベンゼン、2−フェニル−2−ブテン、ビニ
ルナフタレン、ビニルピリジン、ビニル安息香酸、ビニ
ルビフェニールのようなスチレン溶液が使用できる。
The monomer solution having an ion exchange group includes a styrene sulfonic acid solution such as a sodium vinyl sulfonate solution having an unsaturated bond and further having a sulfone group for imparting proton conductivity. Examples of the precursor monomer solution into which an exchange group can be introduced include styrene solutions such as styrene, allylbenzene, 2-phenyl-2-butene, vinylnaphthalene, vinylpyridine, vinylbenzoic acid, and vinyl biphenyl which can impart proton conductivity by sulfonation. Can be used.

【0015】請求項3記載の発明は、請求項2の直接形
燃料電池の製造方法において、燃料極と空気極とをプロ
トン導電部の表裏で交互に対向させて複数の単電池を隣
接して形成し、各単電池間を電気的に接続してなること
を特徴とする。
According to a third aspect of the present invention, in the method for manufacturing a direct fuel cell according to the second aspect, a plurality of unit cells are arranged adjacent to each other by alternately opposing a fuel electrode and an air electrode on the front and back of the proton conductive portion. And each of the cells is electrically connected.

【0016】請求項4記載の発明は、請求項2または3
記載の直接形燃料電池の製造方法において、燃料極と空
気極とをプロトン導電部の表裏で対向させて形成した複
数の単電池が1列に配列されることを特徴とする。
The invention according to claim 4 is the invention according to claim 2 or 3.
In the method for manufacturing a direct fuel cell described above, a plurality of cells formed with the fuel electrode and the air electrode facing each other on the front and back of the proton conductive portion are arranged in a row.

【0017】請求項5記載の発明は、請求項2または3
記載の直接形燃料電池の製造方法において、燃料極と空
気極とをプロトン導電部の表裏で対向させて形成した複
数の単電池が複数列に配列されることを特徴とする。
The invention according to claim 5 is the invention according to claim 2 or 3.
The method for manufacturing a direct fuel cell described above is characterized in that a plurality of cells formed by opposing a fuel electrode and an air electrode on the front and back of the proton conductive portion are arranged in a plurality of rows.

【0018】請求項6記載の発明は、請求項2〜5のい
ずれかに記載の直接形燃料電池の製造方法において、複
数の単電池が隣接して形成された合成樹脂フィルムをロ
ール状にすることを特徴とする。
According to a sixth aspect of the present invention, in the method for manufacturing a direct fuel cell according to any one of the second to fifth aspects, the synthetic resin film in which a plurality of cells are formed adjacent to each other is rolled. It is characterized by the following.

【0019】請求項3〜6の発明では、請求項2の製造
方法によって製造した直接形燃料電池を、携帯電話や携
帯用の情報端末などの携帯用電子機器の電源に適した多
様な形状のものにすることができ、小型の直接形燃料電
池の用途拡大に寄与することができる。
According to the third to sixth aspects of the present invention, the direct fuel cell manufactured by the manufacturing method of the second aspect has various shapes suitable for a power supply of a portable electronic device such as a mobile phone or a portable information terminal. This can contribute to expanding the use of small direct fuel cells.

【0020】[0020]

【発明の実施の形態】以下、本発明を、その実施の形態
に基づいて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described based on its embodiments.

【0021】本発明は、プロトン導電部の表裏両面で対
向する燃料極と空気極によって複数の単電池を形成し、
隣接した2つの単電池の燃料極と空気極とを、燃料極や
空気極の配列方向で定まる所定の向きに従って接続し、
各単電池間を直列に接続した直接形燃料電池とその製造
方法である。本発明の直接形燃料電池とその製造方法に
よれば、複数の単電池を直列に接続したMEA(プロト
ン導電部と電極との複合体)が構成できるので、3V〜
12Vなどの携帯電話や携帯用のパーソナルコンピュー
タなどの携帯情報端末などで用いやすい電圧が得られ
る。また、この単電池の直列接続体では、バイポーラー
方式とは異なり、セパレータの構造が簡単になる。な
お、以下の説明では、直接形燃料電池の燃料として、メ
タノール−水系を示しているが、エチルアルコール、イ
ソプロピルアルコール、ブタノール、ジメチルエーテル
等の有機物やこれらの水等との混合物などを用いること
ができる。
According to the present invention, a plurality of cells are formed by a fuel electrode and an air electrode which are opposed to each other on both front and back surfaces of a proton conductive portion,
Connecting the fuel electrode and the air electrode of two adjacent unit cells in a predetermined direction determined by the arrangement direction of the fuel electrode and the air electrode,
This is a direct fuel cell in which each unit cell is connected in series and a method for manufacturing the same. According to the direct fuel cell of the present invention and the method of manufacturing the same, an MEA (composite of a proton conductive portion and an electrode) in which a plurality of cells are connected in series can be configured.
It is possible to obtain a voltage that can be easily used in a portable information terminal such as a mobile phone or a portable personal computer such as 12V. In addition, in the series connection of the unit cells, the structure of the separator is simplified, unlike the bipolar system. In the following description, a methanol-water system is shown as a fuel for a direct fuel cell, but an organic substance such as ethyl alcohol, isopropyl alcohol, butanol, or dimethyl ether, or a mixture thereof with water or the like can be used. .

【0022】すなわち、図3に本発明に係る直接形燃料
電池の断面図を示す。図3に示したように、プロトン導
電性のあるプロトン導電部6とプロトン導電に関して絶
縁性のある絶縁部8を有した膜4の、プロトン導電部6
の表裏両面に、燃料極10と空気極12とを直線状に交
互に配列して複数の単電池を形成してMEA2を構成し
ている。燃料極10は、例えばC(カーボン)−Pt−
Ruの導電性触媒にナフィオン(登録商標)とPTFE
(ポリテトラフルオロエチレン)を混合したものとし、
これ以外にカーボンペーパーなどのバッキング層を燃料
流路側に設ける。空気極12はC(カーボン)−Pt−
Ruの導電性触媒に代えて、好ましくはC(カーボン)
−Ptの導電性触媒を用い、他の点では燃料極10と同
様とし、同様にカーボンペーパーなどのバッキング層を
設けることが好ましい。この実施の形態では、膜4に設
けたプロトン導電部6の厚さを180μm、燃料極10
と空気極12の厚さを200μmとしたが、燃料極10
と空気極12には、前記導電性触媒からなる、厚さが1
00〜500μmの触媒層を設けることができる。な
お、図3において、14は燃料極10と空気極12との
間の接続部で、金属板や金属フィルム、カーボンペーパ
ー、導電性高分子などを用い、電子伝導性のあるもので
あればよい。図3の場合は、燃料極10とその左側の隣
接した空気極12との間に設け、燃料極10と空気極1
2との配列方向に関して、所定の向きにある燃料極10
と空気極12とを電子的に接続している。また、16,
17は出力端子で、直接形燃料電池(以下単に「燃料電
池」ということがある)のケーシングに設ける出力端子
などに接続する。これにより、複数の単電池がMEA2
上に直線的に直列に配列され、出力端子16,17間に
単電池の個数に比例した起電力を得ることができる。
That is, FIG. 3 is a sectional view of a direct fuel cell according to the present invention. As shown in FIG. 3, the proton conductive portion 6 of the film 4 having the proton conductive portion 6 having proton conductivity and the insulating portion 8 having insulation with respect to proton conductivity.
A plurality of cells are formed by alternately arranging the fuel electrodes 10 and the air electrodes 12 on both front and back surfaces of the MEA 2 to constitute the MEA 2. The fuel electrode 10 is made of, for example, C (carbon) -Pt-
Nafion (registered trademark) and PTFE as Ru conductive catalyst
(Polytetrafluoroethylene),
In addition, a backing layer such as carbon paper is provided on the fuel flow path side. The air electrode 12 is C (carbon) -Pt-
Instead of Ru conductive catalyst, preferably C (carbon)
It is preferable to use a conductive catalyst of -Pt and to make the same as the fuel electrode 10 in other points, and to similarly provide a backing layer such as carbon paper. In this embodiment, the thickness of the proton conductive portion 6 provided on the membrane 4 is 180 μm,
And the thickness of the air electrode 12 was set to 200 μm.
And the air electrode 12 having the thickness of 1
A catalyst layer of 00 to 500 μm can be provided. In FIG. 3, reference numeral 14 denotes a connection portion between the fuel electrode 10 and the air electrode 12, which may be made of a metal plate, a metal film, carbon paper, a conductive polymer, or the like, as long as it has electron conductivity. . In the case of FIG. 3, the fuel electrode 10 and the air electrode 1 are provided between the fuel electrode 10 and the adjacent air electrode 12 on the left side thereof.
The fuel electrode 10 in a predetermined direction with respect to the
And the air electrode 12 are electronically connected. Also, 16,
Reference numeral 17 denotes an output terminal which is connected to an output terminal provided on a casing of a direct fuel cell (hereinafter sometimes simply referred to as "fuel cell"). As a result, a plurality of cells are MEA2
The upper part is linearly arranged in series, and an electromotive force proportional to the number of cells can be obtained between the output terminals 16 and 17.

【0023】図3のような、膜4にプロトン導電部6と
絶縁部8を設ける本発明の直接形燃料電池の製造方法
は、図1にその工程図の一例を示している。すなわち、
図1に示したように、膜4の材料となるポリエチレンフ
ィルムが巻回された材料ロール1から、フィルム3がバ
ッチ式で電子線照射装置5に送られ、このことが検知さ
れると、前記フィルム3と電子線照射装置5との間に位
置する、シャッター57を備えたマスク板58のシャッ
ター57が開かれて、所定の照射パターンが形成される
ように電子線照射されて、照射パターンに対応した反応
活性点(ラジカル)を生成させる。所定の照射パターン
が形成された後は、前記シャッター57は閉じられ、こ
れに連続するフィルム3が、材料ロール1から、電子線
照射装置5に送られて、同様に電子線照射される。前記
反応活性点(ラジカル)を生成させたフィルム3aは、
約30%のビニルスルホン酸ナトリウム溶液が貯留され
たグラフト反応槽7に送られて、前記反応活性点(ラジ
カル)にベンゼンスルホン酸基を導入する。この、ベン
ゼンスルホン酸基を導入したフィルム3bは、水洗槽9
で水洗され、乾燥室11で乾燥されて、プロトン導電部
6と絶縁部8を有するフィルム3cとして製品ロール1
3に巻回される。
FIG. 1 shows an example of a process diagram of a method for manufacturing a direct fuel cell according to the present invention in which a proton conductive portion 6 and an insulating portion 8 are provided on a membrane 4 as shown in FIG. That is,
As shown in FIG. 1, a film 3 is sent from a material roll 1 on which a polyethylene film as a material of a film 4 is wound to an electron beam irradiation device 5 in a batch system. The shutter 57 of the mask plate 58 provided with the shutter 57, which is located between the film 3 and the electron beam irradiation device 5, is opened, and is irradiated with an electron beam so that a predetermined irradiation pattern is formed. A corresponding reaction active site (radical) is generated. After a predetermined irradiation pattern is formed, the shutter 57 is closed, and the film 3 continuing from the shutter 57 is sent from the material roll 1 to the electron beam irradiation device 5 and similarly irradiated with the electron beam. The film 3a that has generated the reaction active points (radicals)
About 30% sodium vinyl sulfonate solution is sent to the graft reaction tank 7 in which benzene sulfonic acid groups are introduced into the reaction active points (radicals). The film 3b into which the benzenesulfonic acid group is introduced is placed in a washing tank 9
And dried in a drying chamber 11 to form a film 3c having a proton conductive portion 6 and an insulating portion 8 as a product roll 1.
It is wound around 3.

【0024】前述した所定の照射パターンを形成する方
法としては、図2(a)に示したように、鉛などの重金
属製の、シャッター57を備えたマスク板58をフィル
ム3上に配置して所定の照射パターンが形成されるよう
にする。このようにして、図2(b)に示したように、
マスク板58によって覆われていない部分にプロトン導
電部6を形成し、マスク板58によって覆われた部分に
絶縁部8を形成することができる。こうして得たプロト
ン導電部6を介して表裏両面で燃料極10と空気極12
とを対向させて図2(c)に示したような単電池の直列
接続体を構成する。なお、グラフト反応槽7において
は、ビニルスルホン酸ナトリウム溶液にフィルム3aを
浸漬する時間、ビニルスルホン酸ナトリウム溶液の濃度
や温度によって導入されるベンゼンスルホン酸基の量を
変化させることができるので、プロトン導電体膜が使用
される使用温度下におけるプロトン導電率と必要な安定
性に基づいて定めればよい。
As shown in FIG. 2A, a mask plate 58 having a shutter 57 made of heavy metal such as lead and having a shutter 57 is arranged on the film 3 as shown in FIG. A predetermined irradiation pattern is formed. In this way, as shown in FIG.
The proton conductive portion 6 can be formed in a portion not covered by the mask plate 58, and the insulating portion 8 can be formed in a portion covered by the mask plate 58. The fuel electrode 10 and the air electrode 12 are formed on both front and back surfaces through the proton conductive portion 6 thus obtained.
Are opposed to each other to form a series connection of unit cells as shown in FIG. In the graft reaction tank 7, the amount of benzenesulfonic acid groups introduced can be changed depending on the concentration and temperature of the sodium vinylsulfonate solution while the film 3a is immersed in the sodium vinylsulfonate solution. It may be determined based on the proton conductivity and the required stability at the operating temperature at which the conductor film is used.

【0025】上記した実施の形態は、イオン交換基をグ
ラフト重合することによってプロトン導電性を付与する
のを、フィルム3がバッチ式で電子線照射装置5に送ら
れ、このことが検知されて電子線照射されるようにした
が、このような方法に限定されるものではない。たとえ
ば、前記フィルム3にエンドレスのマスク板(図示して
いない)を重ね合わせながら電子線照射装置5に送っ
て、所定の照射パターンが形成されるようにしてもよ
い。また、フィルム3に電子線照射する方法は、あらか
じめフィルム3に電子線照射することによって反応活性
点(ラジカル)を形成し、その後モノマーと反応させる
前照射のほか、モノマーと接触させたフィルム3に電子
線照射する同時照射であってもよく、いずれの方法によ
るかは、適宜選択すればよい。
In the above-described embodiment, the film 3 is fed to the electron beam irradiation device 5 in a batch system to impart proton conductivity by graft polymerization of the ion exchange group, and this is detected, Although the radiation is performed, the method is not limited to such a method. For example, an endless mask plate (not shown) may be sent to the electron beam irradiation device 5 while being superposed on the film 3 so that a predetermined irradiation pattern is formed. In addition, the method of irradiating the film 3 with an electron beam is such that a reactive active point (radical) is formed by irradiating the film 3 with an electron beam in advance, and then the film 3 is brought into contact with the monomer in addition to pre-irradiation with the monomer. Simultaneous irradiation with electron beam irradiation may be performed, and which method may be selected as appropriate.

【0026】前記照射パターンは多様な形状に定めるこ
とができる。すなわち、図3に示した直接形燃料電池で
は、燃料極10と空気極12とを、プロトン導電部6の
表裏で交互に対向させて複数の単電池を隣接して一列に
設けているのに対し、図4に示した直接形燃料電池で
は、燃料極10と空気極12とを、図示されていないプ
ロトン導電部の表裏で交互に対向させて複数の単電池を
隣接して複数列設けている。すなわち、図4には膜24
の表面が示されているが、表面の燃料極10に対向する
裏面には空気極が、空気極12に対向する裏面には燃料
極がそれぞれ設けられている。なお、26は燃料極10
と空気極12との接続部、28は出力端子16,17と
の接続部で、これらには金属板や金属フィルム、カーボ
ンペーパーなどを用い、接続部26にカーボンペーパー
を用い、燃料極10と空気極12をカーボンペーパー上
に所定のパターンで塗布してカットすると、燃料極10
と空気極12と接続部26の複合体を容易に得ることが
できる。このように、燃料極10と空気極12とを2列
に配列すると、MEA22の一端に出力端子16,17
を揃えることができる。また出力端子16,17と反対
側の端部の燃料極12bと空気極10bとを、ともに空
気極あるいは共に燃料極とすると、図4のMEA22の
長手方向と直角な方向(MEA22の短辺方向)で、電
極の極性が揃い、空気流路や燃料流路の形成が容易にな
る。なお図4では、左右2列の燃料極10と空気極12
の列を直列にしているが、これらを並列にしてもよい。
The irradiation pattern can be defined in various shapes. That is, in the direct fuel cell shown in FIG. 3, although the fuel electrode 10 and the air electrode 12 are alternately opposed to each other on the front and back sides of the proton conductive portion 6, a plurality of unit cells are provided adjacently in a line. On the other hand, in the direct fuel cell shown in FIG. 4, the fuel electrode 10 and the air electrode 12 are alternately opposed to each other on the front and back of a proton conductive portion (not shown), and a plurality of unit cells are provided adjacently in a plurality of rows. I have. That is, FIG.
The air electrode is provided on the back surface facing the fuel electrode 10, and the fuel electrode is provided on the back surface facing the air electrode 12. 26 is the fuel electrode 10
A connecting portion between the fuel electrode 10 and the air electrode 12, a connecting portion 28 with the output terminals 16 and 17, and a metal plate, a metal film, carbon paper, or the like are used for these, and a carbon paper is used for the connecting portion 26. When the air electrode 12 is applied in a predetermined pattern on carbon paper and cut, the fuel electrode 10
And a composite of the air electrode 12 and the connecting portion 26 can be easily obtained. As described above, when the fuel electrode 10 and the air electrode 12 are arranged in two rows, the output terminals 16 and 17 are connected to one end of the MEA 22.
Can be aligned. When the fuel electrode 12b and the air electrode 10b at the ends opposite to the output terminals 16 and 17 are both air electrodes or both fuel electrodes, a direction perpendicular to the longitudinal direction of the MEA 22 in FIG. ), The electrodes have the same polarity, and the formation of the air flow path and the fuel flow path is facilitated. In FIG. 4, two rows of fuel electrodes 10 and air electrodes 12
Are arranged in series, but these may be arranged in parallel.

【0027】図3の形状では、アスペクト比(縦横比)
の大きなMEAの形状とするのが容易であり、図4の形
状では、アスペクト比の小さなMEAを得ることができ
る。このような形状は、直接形燃料電池の外形や電池内
でのMEAの実装構造に応じて、燃料極10と空気極1
2との列の数を定めるのがよいが、図示した以外に、M
EAをロール状に巻回した形状の直接形燃料電池も実現
できる。このようにすると、外形が円筒状の直接形燃料
電池が得られ、両出力端子を円筒の中心付近と円周付近
に配置できる。
In the shape of FIG. 3, the aspect ratio (aspect ratio)
It is easy to form an MEA having a large aspect ratio. With the shape of FIG. 4, an MEA having a small aspect ratio can be obtained. Such a shape depends on the outer shape of the direct fuel cell and the mounting structure of the MEA in the cell, and the anode 10 and the cathode 1
It is good to determine the number of columns with 2, but in addition to the illustration, M
A direct fuel cell in which the EA is wound in a roll can also be realized. In this way, a direct fuel cell having a cylindrical outer shape is obtained, and both output terminals can be arranged near the center and the circumference of the cylinder.

【0028】上記した実施の形態は、燃料極10と空気
極12とをプロトン導電部6の表裏で交互に対向させて
複数の単電池を隣接して形成したものについて説明した
が、燃料極10と空気極12とをプロトン導電部6の表
裏で同一極性のもの同士を隣接して形成したものにも適
用することができる。また、本発明は、同心円状といっ
た列以外の配列のものにも適用することができる。
In the embodiment described above, the fuel electrode 10 and the air electrode 12 are alternately opposed to each other on the front and back of the proton conductive portion 6 to form a plurality of unit cells adjacent to each other. The air electrode 12 and the air electrode 12 can also be applied to ones having the same polarity on the front and back of the proton conductive portion 6 and adjacent to each other. Further, the present invention can be applied to an arrangement other than a row such as a concentric circle.

【0029】[0029]

【発明の効果】上記した如く、本発明の実施の形態に係
る直接形燃料電池では、複数の単電池が、燃料極と空気
極とを、イオン交換基のグラフト重合によってプロトン
導電性を付与したプロトン導電部の表裏で対向させるこ
とによって形成し、各単電池間をプロトン導電に関して
絶縁性にしているから、単電池間のリーク電流の低減に
寄与できるとともに、このようなプロトン導電部を有す
る膜を用いることにより、スティック状、角板状、円筒
状などの多様な形状の直接形燃料電池を得ることができ
る。
As described above, in the direct fuel cell according to the embodiment of the present invention, the plurality of cells have proton conductivity provided between the fuel electrode and the air electrode by graft polymerization of ion exchange groups. It is formed by opposing the proton conductive portion on the front and back sides, and since each cell is made to be insulative with respect to proton conductivity, it can contribute to reduction of leak current between the cells and has a membrane having such a proton conductive portion. By using, direct fuel cells having various shapes such as a stick shape, a square plate shape, and a cylindrical shape can be obtained.

【0030】また、本発明の実施の形態に係る直接形燃
料電池の製造方法では、合成樹脂フィルムに、電子線ま
たは放射線を部分的に照射して反応活性点を生じさせた
後、イオン交換基を有するモノマーをグラフト重合して
プロトン導電性を付与することによって前記プロトン導
電部を形成し、残余部をプロトン導電に関して絶縁性に
しているので、ナフィオン(登録商標)膜のような固体
電解質膜を使用せずに合成樹脂フィルムを連続して供給
することで量産化が可能になり、コスト面で有利であ
る。
In the method for manufacturing a direct fuel cell according to the embodiment of the present invention, the synthetic resin film is partially irradiated with an electron beam or radiation to generate a reaction active site, and then the ion exchange group is formed. The proton conductive portion is formed by graft polymerization of a monomer having the following formula to impart proton conductivity, and the remaining portion is made insulative with respect to proton conductivity. Therefore, a solid electrolyte membrane such as a Nafion (registered trademark) membrane is used. By continuously supplying a synthetic resin film without using it, mass production becomes possible, which is advantageous in terms of cost.

【0031】また、本発明の実施の形態に係る直接形燃
料電池の製造方法では、合成樹脂フィルムに微小な穴を
設けたり、この穴にプロトン導電性物質を含浸させると
いった工程が不要にできるので、工程の簡素化が実現で
きる。
Further, in the method for manufacturing a direct fuel cell according to the embodiment of the present invention, a step of providing minute holes in a synthetic resin film or impregnating the holes with a proton conductive substance can be omitted. Thus, the process can be simplified.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の製造方法に係る工程図を示した図であ
る。
FIG. 1 is a view showing a process chart according to a manufacturing method of the present invention.

【図2】本発明の製造方法の一例を示した図である。FIG. 2 is a diagram showing an example of the manufacturing method of the present invention.

【図3】本発明の直接形燃料電池の断面図である。FIG. 3 is a sectional view of a direct fuel cell according to the present invention.

【図4】本発明に係る他の直接形燃料電池の斜視図であ
る。
FIG. 4 is a perspective view of another direct fuel cell according to the present invention.

【図5】従来の製造方法を示した図である。FIG. 5 is a view showing a conventional manufacturing method.

【符号の説明】[Explanation of symbols]

1 材料ロール 2,22 MEA 3 フィルム 4,24 膜 5 電子線照射装置 6 プロトン導電部 7 グラフト反応槽 8 絶縁部 9 水洗槽 10,10b 燃料極 11 乾燥室 12,12b 空気極 13 製品ロール 14,26,28 接続部 16,17 出力端子 58 マスク板 1 Material roll 2,22 MEA 3 film 4,24 membrane 5 Electron beam irradiation device 6 Proton conductive part 7 Graft reaction tank 8 insulation 9 Rinse tank 10,10b fuel electrode 11 Drying room 12,12b air electrode 13 Product Roll 14, 26, 28 connection 16, 17 output terminal 58 Mask plate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 丹宗 紫朗 大阪府高槻市古曽部町二丁目3番21号 株 式会社ユアサコーポレーション内 (72)発明者 齋藤 憲一 大阪府高槻市古曽部町二丁目3番21号 株 式会社ユアサコーポレーション内 Fターム(参考) 5H026 AA08 CV06 CX05 EE18    ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Shirou Tanso             2-3-21 Kosobe-cho, Takatsuki-shi, Osaka             In the formula company Yuasa Corporation (72) Inventor Kenichi Saito             2-3-21 Kosobe-cho, Takatsuki-shi, Osaka             In the formula company Yuasa Corporation F term (reference) 5H026 AA08 CV06 CX05 EE18

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 複数の単電池を隣接して形成し、各単電
池間を電気的に接続してなる直接形燃料電池の単電池
が、燃料極と空気極とを、イオン交換基のグラフト重合
によってプロトン導電性を付与したプロトン導電部の表
裏で対向させて形成したことを特徴とする直接形燃料電
池。
1. A direct fuel cell comprising a plurality of unit cells formed adjacent to each other and electrically connecting the unit cells, wherein a fuel electrode and an air electrode are grafted with an ion exchange group. A direct fuel cell, wherein a proton conductive portion provided with proton conductivity by polymerization is opposed to the front and back sides thereof.
【請求項2】 燃料極と空気極とをプロトン導電部の表
裏で対向させて複数の単電池を隣接して形成し、各単電
池間を電気的に接続してなる直接形燃料電池の製造方法
であって、合成樹脂フィルムに、電子線または放射線を
部分的に照射して反応活性点を生じさせた後、イオン交
換基を有するモノマーをグラフト重合してプロトン導電
性を付与することによって前記プロトン導電部を形成
し、残余部をプロトン導電に関して絶縁性にすることを
特徴とする直接形燃料電池の製造方法。
2. Production of a direct fuel cell in which a plurality of cells are formed adjacent to each other with a fuel electrode and an air electrode facing each other on the front and back sides of a proton conductive portion, and the cells are electrically connected to each other. The method, by partially irradiating a synthetic resin film with an electron beam or radiation to generate reactive active sites, and then graft-polymerizing a monomer having an ion exchange group to impart proton conductivity. A method for manufacturing a direct fuel cell, comprising forming a proton conductive portion and making the remaining portion insulative with respect to proton conductivity.
【請求項3】 請求項2記載の直接形燃料電池の製造方
法において、燃料極と空気極とをプロトン導電部の表裏
で交互に対向させて複数の単電池を隣接して形成し、各
単電池間を電気的に接続してなる直接形燃料電池の製造
方法。
3. A method of manufacturing a direct fuel cell according to claim 2, wherein a plurality of cells are formed adjacent to each other by alternately opposing a fuel electrode and an air electrode on the front and back of the proton conductive portion. A method for manufacturing a direct fuel cell in which cells are electrically connected.
【請求項4】 請求項2または3記載の直接形燃料電池
の製造方法において、燃料極と空気極とをプロトン導電
部の表裏で対向させて形成した複数の単電池が1列に配
列されることを特徴とする直接形燃料電池の製造方法。
4. A method for manufacturing a direct fuel cell according to claim 2, wherein a plurality of cells are formed in a single row in which a fuel electrode and an air electrode are opposed to each other on both sides of the proton conductive portion. A method for manufacturing a direct fuel cell, comprising:
【請求項5】 請求項2または3記載の直接形燃料電池
の製造方法において、燃料極と空気極とをプロトン導電
部の表裏で対向させて形成した複数の単電池が複数列に
配列されることを特徴とする直接形燃料電池の製造方
法。
5. The method for manufacturing a direct fuel cell according to claim 2, wherein a plurality of cells formed by opposing a fuel electrode and an air electrode on the front and back of the proton conductive portion are arranged in a plurality of rows. A method for manufacturing a direct fuel cell, comprising:
【請求項6】 請求項2〜5のいずれかに記載の直接形
燃料電池の製造方法において、複数の単電池が隣接して
形成された合成樹脂フィルムをロール状にすることを特
徴とする直接形燃料電池の製造方法。
6. The method for producing a direct fuel cell according to claim 2, wherein the synthetic resin film formed adjacent to the plurality of cells is formed into a roll shape. Manufacturing method of a solid fuel cell.
JP2002154481A 2002-05-28 2002-05-28 Direct fuel cell and method of manufacturing the fuel cell Pending JP2003346838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002154481A JP2003346838A (en) 2002-05-28 2002-05-28 Direct fuel cell and method of manufacturing the fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002154481A JP2003346838A (en) 2002-05-28 2002-05-28 Direct fuel cell and method of manufacturing the fuel cell

Publications (1)

Publication Number Publication Date
JP2003346838A true JP2003346838A (en) 2003-12-05

Family

ID=29771279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002154481A Pending JP2003346838A (en) 2002-05-28 2002-05-28 Direct fuel cell and method of manufacturing the fuel cell

Country Status (1)

Country Link
JP (1) JP2003346838A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004323811A (en) * 2003-04-23 2004-11-18 Hitachi Kasei Polymer Co Ltd Adhesive composition for laminating flexible printed circuit board and adhesive film
JP2004323810A (en) * 2003-04-23 2004-11-18 Hitachi Kasei Polymer Co Ltd Adhesive composition for flexible printed wiring board, and adhesive film
JP2004323807A (en) * 2003-04-23 2004-11-18 Hitachi Kasei Polymer Co Ltd Flame retardant adhesive composition and cover lay
JPWO2005088749A1 (en) * 2004-03-12 2008-01-31 国立大学法人長岡技術科学大学 Membrane electrode assembly, method for producing membrane electrode assembly, and polymer electrolyte fuel cell
WO2009020086A1 (en) * 2007-08-09 2009-02-12 Shin-Etsu Chemical Co., Ltd. Solid polymer electrolyte membrane, method for producing the same, membrane-electrode assembly for fuel cell, and fuel cell

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004323811A (en) * 2003-04-23 2004-11-18 Hitachi Kasei Polymer Co Ltd Adhesive composition for laminating flexible printed circuit board and adhesive film
JP2004323810A (en) * 2003-04-23 2004-11-18 Hitachi Kasei Polymer Co Ltd Adhesive composition for flexible printed wiring board, and adhesive film
JP2004323807A (en) * 2003-04-23 2004-11-18 Hitachi Kasei Polymer Co Ltd Flame retardant adhesive composition and cover lay
JP4526783B2 (en) * 2003-04-23 2010-08-18 日立化成ポリマー株式会社 Adhesive composition for laminating flexible printed wiring board and adhesive film
JPWO2005088749A1 (en) * 2004-03-12 2008-01-31 国立大学法人長岡技術科学大学 Membrane electrode assembly, method for producing membrane electrode assembly, and polymer electrolyte fuel cell
JP5150895B2 (en) * 2004-03-12 2013-02-27 国立大学法人長岡技術科学大学 Membrane electrode assembly, method for producing membrane electrode assembly, and polymer electrolyte fuel cell
WO2009020086A1 (en) * 2007-08-09 2009-02-12 Shin-Etsu Chemical Co., Ltd. Solid polymer electrolyte membrane, method for producing the same, membrane-electrode assembly for fuel cell, and fuel cell
EP2202832A4 (en) * 2007-08-09 2010-10-13 Shinetsu Chemical Co Solid polymer electrolyte membrane, method for producing the same, membrane-electrode assembly for fuel cell, and fuel cell
JP5321458B2 (en) * 2007-08-09 2013-10-23 信越化学工業株式会社 Solid polymer electrolyte membrane and production method thereof, membrane / electrode assembly for fuel cell, and fuel cell

Similar Documents

Publication Publication Date Title
US5989741A (en) Electrochemical cell system with side-by-side arrangement of cells
US6743541B2 (en) Monopolar cell pack of proton exchange membrane fuel cell and direct methanol fuel cell
US5958616A (en) Membrane and electrode structure for methanol fuel cell
US4876115A (en) Electrode assembly for use in a solid polymer electrolyte fuel cell
CN100409475C (en) Polymer electrolyte membrane and fuel cell employing the same
KR100673754B1 (en) Stack and fuel cell system having the same
JP2002025560A (en) Fuel cell
US6475249B1 (en) Method for manufacturing membrane electrode assembly of fuel cell
JP2003264003A (en) Direct-type fuel cell
JPH07326363A (en) Ion conductivity imparting electrode and jointing material for electrode and electrolyte and cell using the ion conductivity imparting electrode
CN108306031A (en) A method of enhancing high temperature membrane fuel cell catalyst layer proton conductivity
TW201041215A (en) Fuel cell
CA2591671A1 (en) Proton exchange fuel cell
JP2007213988A (en) Electrode catalyst layer for polymer electrolyte fuel cell, its manufacturing method, and polymer electrolyte fuel cell
JP2003346838A (en) Direct fuel cell and method of manufacturing the fuel cell
US6866952B2 (en) Apparatus and method for controlling undesired water and fuel transport in a fuel cell
KR101117630B1 (en) Membrane-electrode assembly for fuel cell and method for preparating the same
CN100521346C (en) A method for preparing a membrane to be assembled in a membrane electrode assembly and membrane electrode assembly
US20100009230A1 (en) Fuel cells based on hollow conductive carbon fibres
JP4649094B2 (en) Manufacturing method of membrane electrode assembly for fuel cell
KR100567408B1 (en) Membrane-electrode assembly having a dual structure catalyst layer and a method of manufacturing the same
JP2006244715A (en) Bipolar membrane and fuel cell using it
JP2003331860A (en) Unit cell structure, fuel cell, and its manufacturing method
JP3495668B2 (en) Fuel cell manufacturing method
KR100481591B1 (en) Polyelectrolyte nanocomposite membrane and the preparation method thereof and the fuel cell using the prepared polyelectrolyte nanocomposite membrane