JP2003346306A - Magnetic memory - Google Patents

Magnetic memory

Info

Publication number
JP2003346306A
JP2003346306A JP2003098757A JP2003098757A JP2003346306A JP 2003346306 A JP2003346306 A JP 2003346306A JP 2003098757 A JP2003098757 A JP 2003098757A JP 2003098757 A JP2003098757 A JP 2003098757A JP 2003346306 A JP2003346306 A JP 2003346306A
Authority
JP
Japan
Prior art keywords
magnetic
film
recording
head
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003098757A
Other languages
Japanese (ja)
Inventor
Masaaki Sano
雅章 佐野
Yoshiaki Kita
芳明 北
Shunichi Narumi
俊一 鳴海
Takashi Kawabe
隆 川辺
Moriaki Fuyama
盛明 府山
公史 ▲高▼野
Koji Takano
Hisano Yamamoto
久乃 山本
Kenzo Masuda
賢三 益田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003098757A priority Critical patent/JP2003346306A/en
Publication of JP2003346306A publication Critical patent/JP2003346306A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thin film-magnetic recording head, that uses a thin film material of high magnetic saturation density with a large resistivity suitable for a magnetic recording device which can secure a media transfer speed of 15 MB/s or higher, by avoiding access time increases and transfer speed drops due to the high recording density, and to provide its manufacturing method and a magnetic recording device using it. <P>SOLUTION: By manufacturing a magnetic film having a high saturation magnetic flux density of 1.5 T or higher and a resistivity of 40 μΩcm or higher by a frame plating method, after adding 40 to 60 Ni-Fe and Co, Mo, Cr, B, In, Pd, and the like to its material, it is possible to obtain a recording head which can make satisfactory recording in high-frequency ranges, and to obtain a high-density magnetic recording device which makes a disk turn at 4000 rpm or a higher speed, with a media transfer speed of 15 MB/s or higher at a recording frequency of 45 MHz or higher. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、磁気ヘッド用磁気コア
に関し、特に高記録密度用記録・再生分離型磁気ヘッド
の記録用ヘッドに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic core for a magnetic head, and more particularly to a recording head of a separate recording / reproducing magnetic head for high recording density.

【0002】[0002]

【従来の技術】近年、磁気ディスク装置の高記録密度化
に伴って、記録媒体の高保磁力化が進み、該高保磁力媒
体に十分記録し得る能力を有する薄膜磁気ヘッドが要求
されている。そのためには、磁気ヘッドのコア材料には
飽和磁束密度(BS )の高い材料を用いることが必要で
ある。これらの材料として、従来、膜厚が3μm程度の
Ni−Fe合金膜が用いられてきた。しかし、このNi
−Fe合金膜は比抵抗が16〜20μΩcmと低いた
め、うず電流損失が大きく、このために高周波領域にお
ける記録磁界強度が低下し、記録周波数は高々30MH
z程度が限度である。また、これに替わる材料としてC
o系非晶質材料,Fe−Al−Si系センダト合金薄膜
等が提案されているが前者は非晶質であるがゆえに熱的
に不安定であること、また、後者は500℃程度の高い
温度での熱処理が必要であることなどから磁気ディスク
用の磁気コア材としては製造プロセス的に難点があり、
実用化に至っていない。また、最近では、薄膜磁気ヘッ
ド用磁気コア材料としてCo−Ni−Fe3元系材料が
提案されている(特開昭60−82638号,特開昭61−76642
号,特開昭64−8605号,特開平2−68906号,特開平2−2
90995号)。
2. Description of the Related Art In recent years, as the recording density of magnetic disk devices has increased, the coercive force of recording media has increased, and there has been a demand for a thin-film magnetic head capable of sufficiently recording on the high coercive force medium. For this purpose, it is necessary to use a material having a high saturation magnetic flux density (B S ) as a core material of the magnetic head. Conventionally, a Ni—Fe alloy film having a thickness of about 3 μm has been used as these materials. However, this Ni
Since the Fe alloy film has a low specific resistance of 16 to 20 μΩcm, the eddy current loss is large, so that the recording magnetic field intensity in a high frequency region is reduced, and the recording frequency is at most 30 MHz.
The limit is about z. As an alternative material, C
An o-based amorphous material, an Fe-Al-Si-based sendato alloy thin film, etc. have been proposed, but the former is amorphous and therefore thermally unstable, and the latter is as high as 500 ° C. Due to the need for heat treatment at temperature, there is a problem in the manufacturing process as a magnetic core material for magnetic disks,
It has not been put to practical use. Recently, a Co-Ni-Fe ternary material has been proposed as a magnetic core material for a thin-film magnetic head (JP-A-60-82638, JP-A-61-76642).
JP-A-64-8605, JP-A-2-68906, JP-A-2-2-2
90995).

【0003】[0003]

【発明が解決しようとする課題】これらの3元系材料は
飽和磁束密度(BS )は1.5T 以上と高いが、Ni−
Fe合金膜同様比抵抗及び結晶粒径について全く考慮さ
れておらず、更にNi−Fe合金膜同様高周波特性に難
点があった。
THE INVENTION Problems to be Solved] The ternary material saturation magnetic flux density (B S) is above the high 1.5T, Ni-
As in the case of the Fe alloy film, no consideration was given to the specific resistance and the crystal grain size.

【0004】一方、磁気ディスク装置の記憶容量は年々
確実に増大しており、現在製品化されている3.5 イン
チ装置の面記録密度、最大で350Mb/in2 まで高
められている。この場合のデータ記録周波数は27MH
z程度であり、従来のNi−Fe合金膜あるいはCo−
Ni−Fe合金膜では磁気ヘッドの性能限界に近づきつ
つある。
On the other hand, the storage capacity of magnetic disk devices has been steadily increasing year by year, and the surface recording density of currently commercialized 3.5-inch devices has been increased to 350 Mb / in 2 at the maximum. The data recording frequency in this case is 27 MH
z, which is equivalent to that of a conventional Ni-Fe alloy film or Co-
The Ni—Fe alloy film is approaching the performance limit of the magnetic head.

【0005】また、高周波用として40〜55Ni−F
eにNb,Ta,Cr,Mo等を添加したスパッタリン
グ法で形成する磁性膜として特開平3−68744号が提案さ
れているが、結晶磁気異方性が大きい材料ゆえ磁気特性
的にスパッタリング法による厚膜形成が困難である。
[0005] Also, 40-55Ni-F
Japanese Patent Application Laid-Open No. 3-68744 has been proposed as a magnetic film formed by a sputtering method in which Nb, Ta, Cr, Mo, etc. are added to e. It is difficult to form a thick film.

【0006】本発明の目的は、高周波領域での高記録密
度用即ち、高速アクセス,高速転送対応の磁気ヘッド
と、及びこれを用いた磁気記憶装置を提供することにあ
る。
An object of the present invention is to provide a magnetic head for high recording density in a high frequency region, that is, a high speed access and high speed transfer, and a magnetic storage device using the same.

【0007】[0007]

【課題を解決するための手段】本発明は、上述した問題
に鑑み成されたもので、高速転送,高記録密度を達成さ
せるための磁気ディスク装置、即ち、磁気ディスク装置
が記録・再生時に磁気ディスクが4000rpm 以上で回
転し、記録周波数が45MHz以上に設定されている磁
気記憶装置に搭載し、その性能を発揮させるための薄膜
磁気ヘッドとしては飽和磁束密度(BS )が大きく、困
難軸方向の保磁力が小さく、かつ、比抵抗が大きい材料
が要求される。従って、比抵抗も高く、飽和磁束密度も
高い組成領域はNi:38〜60重量%の範囲である。
しかしながら、この組成領域は結晶磁気異方性が最も大
きい範囲であるために通常薄膜磁気ヘッド等に適用され
る2μm以上の厚膜の磁性膜をスパッタリング法等で作
製する場合、膜の結晶粒が大きくなってしまい、保磁力
が大きく、一軸異方性が付与されにくい。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-described problems, and has been made in consideration of the above-described problems. A magnetic disk device for achieving high-speed transfer and high recording density, that is, a magnetic disk device which performs magnetic recording and reproducing during recording / reproducing. The disk rotates at 4000 rpm or higher and is mounted on a magnetic storage device whose recording frequency is set to 45 MHz or higher. As a thin-film magnetic head for exhibiting its performance, the saturation magnetic flux density (B S ) is large, A material having a small coercive force and a large specific resistance is required. Therefore, the composition region where the specific resistance is high and the saturation magnetic flux density is high is in the range of Ni: 38 to 60% by weight.
However, since this composition region has the largest range of crystal magnetic anisotropy, when a magnetic film having a thickness of 2 μm or more which is usually applied to a thin film magnetic head or the like is formed by a sputtering method or the like, the crystal grains of the film are reduced. It becomes large, the coercive force is large, and uniaxial anisotropy is hardly imparted.

【0008】そこで、結晶粒を小さく抑えられるめっき
法を取上げ、38〜60重量%Ni−Fe2元系合金を
ベースにCo,Mo,Cr,Pd,B,In等の第3元
素の添加を検討し、必要な記録磁界を得る膜厚2〜5μ
mを確保した上で飽和磁束密度(BS ):1.5T以上,
保磁力(HCH):1.0Oe以下で、かつ比抵抗40μΩ
cm以上を有する優れた薄膜の組成範囲と製造方法を見出
したものである。これらの材料を薄膜磁気ヘッドに用い
ることにより、面記録密度:500Mb/in2 以上,
記録周波数:45MHz以上,転送速度15MB/s以
上の高性能磁気記憶装置を提供出来る。
In view of this, a plating method capable of suppressing crystal grains is taken up, and the addition of a third element such as Co, Mo, Cr, Pd, B, or In based on a 38-60% by weight Ni--Fe binary alloy is studied. And a film thickness of 2 to 5 μm to obtain a required recording magnetic field.
m, the saturation magnetic flux density (B S ): 1.5 T or more,
Coercive force (H CH ): less than 1.0 Oe and specific resistance 40 μΩ
The present invention has found a composition range and a manufacturing method of an excellent thin film having a thickness of not less than cm. By using these materials for the thin film magnetic head, the areal recording density: 500 Mb / in 2 or more,
A high-performance magnetic storage device having a recording frequency of 45 MHz or more and a transfer speed of 15 MB / s or more can be provided.

【0009】本発明は、情報を記録する薄膜磁気ディス
クと,該薄膜磁気ディスクの回転手段と,浮動型スライ
ダに設けられ情報の書き込みと読み出しとを行う特にこ
れらを別個に行う薄膜磁気ヘッドと,前記浮動型スライ
ダを支持し薄膜磁気ディスクに対してアクセスする移動
手段とを具備した磁気記憶装置において、前記薄膜磁気
ヘッドの前記書き込み用磁気コアの上部磁気コア及び下
部磁気コアの少なくとも一方は平均結晶粒径が500Å
以下,室温の比抵抗が40μΩcm以上及び困難軸方向の
保磁力が1.0Oe 以下である金属磁性材よりなること
を特徴とする磁気記憶装置にある。
The present invention relates to a thin-film magnetic disk for recording information, a rotating means for the thin-film magnetic disk, a thin-film magnetic head provided on a floating type slider for performing writing and reading of information, and particularly for separately performing these operations. A moving means for supporting the floating slider and accessing the thin-film magnetic disk, wherein at least one of the upper magnetic core and the lower magnetic core of the write magnetic core of the thin-film magnetic head has an average crystallinity. Particle size 500Å
The magnetic storage device is made of a metal magnetic material having a room temperature specific resistance of 40 μΩcm or more and a coercive force in a hard axis direction of 1.0 Oe or less.

【0010】更に、本発明は前記薄膜磁気ヘッドの前記
書き込み用磁気コアの上部磁気コア及び下部磁気コアの
少なくとも一方は重量でNi38〜60重量%及びFe
40〜62重量%を有するNi−Fe系合金の電気めっ
き薄膜よりなることを特徴とする。
Further, according to the present invention, at least one of the upper magnetic core and the lower magnetic core of the write magnetic core of the thin-film magnetic head is 38 to 60% by weight of Ni and Fe
It is characterized by comprising an electroplated thin film of a Ni-Fe alloy having a content of 40 to 62% by weight.

【0011】更に、本発明はメディア転送速度が1秒間
当たり15メガバイト以上,記録データの面記録密度が
1平方インチ当たり500メガビット以上及び情報の記
憶媒体が直径3.5 インチ以下の円盤状磁気ディスクを
具備した磁気記憶装置において、前記磁気ディスクが記
録・再生時に4000rpm 以上で回転し、記録周波数が
45MHz以上であり、前記記録を行う薄膜磁気ヘッド
の少なくとも上部磁気コアは、重量でNi38〜60重
量%及びFe40〜62重量%を有するNi−Fe系合
金からなり、その膜厚が1〜5μm,平均結晶粒径が5
00Å以下,比抵抗が40〜60μΩcm,困難軸方向の
保磁力が1.0Oe 以下及び、該記録用磁気ヘッドの記
録起磁力が0.5 アンペア・ターン以上であることを特
徴とする。
Further, the present invention provides a disk-shaped magnetic disk having a media transfer speed of 15 megabytes or more per second, a surface recording density of recorded data of 500 megabits or more per square inch, and an information storage medium having a diameter of 3.5 inches or less. Wherein the magnetic disk rotates at 4000 rpm or more during recording / reproducing, the recording frequency is 45 MHz or more, and at least the upper magnetic core of the thin-film magnetic head for performing the recording has a Ni weight of 38 to 60 wt. % And an Fe—40 to 62% by weight Ni-Fe alloy having a thickness of 1 to 5 μm and an average crystal grain size of 5%.
The recording head is characterized in that the specific resistance is 40-60 μΩcm, the coercive force in the hard axis direction is 1.0 Oe or less, and the recording magnetomotive force of the recording magnetic head is 0.5 Amp-turn or more.

【0012】本発明に係る前記磁気コアは重量でCo1
5重量%以下及びMo,Cr,Pd,B及びInの1種
以上を総量で3重量%以下の少なくとも一方を含むこと
ができるものである。
[0012] The magnetic core according to the present invention is Co1 by weight.
It can contain at least one of 5% by weight or less and one or more of Mo, Cr, Pd, B and In in a total amount of 3% by weight or less.

【0013】更に、本発明は、情報を記録する薄膜磁気
ディスクと,該薄膜磁気ディスクの回転手段と,浮動型
スライダに設けられ情報の書き込みと読み出しとを別々
の素子で行う記録再生分離型薄膜磁気ヘッドと,前記浮
動型スライダを支持し薄膜磁気ディスクに対してアクセ
スする移動手段とを具備した磁気記憶装置においても前
述の記録部の薄膜磁気ヘッドの磁性膜に前述と同様の特
性,組成のものを用いることを特徴とする。
Further, the present invention relates to a thin film magnetic disk for recording information, a rotating means for the thin film magnetic disk, and a read / write separation type thin film provided on a floating type slider for writing and reading information with separate elements. In a magnetic storage device having a magnetic head and a moving means for supporting the floating slider and accessing the thin-film magnetic disk, the magnetic film of the thin-film magnetic head of the recording section has the same characteristics and composition as those described above. It is characterized by using a thing.

【0014】更に、本発明は、メディア転送速度が1秒
間当たり15メガバイト以上,記録データの面記録密度
が1平方インチ当たり500メガビット以上及び情報の
記憶媒体が直径3.5 インチ以下の円盤状磁気ディスク
を具備した磁気記憶装置において、前記磁気ディスクが
記録・再生時に4000rpm 以上で回転し、記録周波数
が45MHz以上であり、前記記録再生とを別々の素子
で行う記録再生分離型薄膜磁気ヘッドを有し、前記記録
を行う薄膜磁気ヘッドの少なくとも上部磁気コアに同様
の特性,組成のものを用いることを特徴とする。
Further, the present invention relates to a disk-shaped magnetic medium having a medium transfer speed of 15 megabytes or more per second, a surface recording density of recorded data of 500 megabits or more per square inch, and an information storage medium having a diameter of 3.5 inches or less. In a magnetic storage device having a disk, the magnetic disk rotates at 4000 rpm or more during recording / reproducing, has a recording frequency of 45 MHz or more, and has a separate read / write thin film magnetic head for performing the recording / reproducing with separate elements. The thin-film magnetic head for performing the recording is characterized in that at least the upper magnetic core has the same characteristics and composition.

【0015】本発明は、下部磁性膜と,該下部磁性膜上
に形成され一端が前記下部磁性膜の一端に接し、他端が
前記下部磁性膜の他端に磁気ギャップを介して対向し、
これによって下部磁性膜と共に一部に磁気ギャップを有
する磁気回路を形成する上部磁性膜と,両磁性膜間を通
り磁気回路と交差する所定巻回数のコイルを形成する導
体コイルとを具備した薄膜磁気ヘッドにおいて、前記下
部及び上部磁性膜の少なくとも一方が、めっき法で形成
され、重量でNi38〜60重量%及びFe40〜62
重量%を含有するNi−Fe系合金からなり、膜厚が1
〜5μm,平均結晶粒径が500Å以下及び困難軸方向
の保磁力が1.0Oe 以下であることを特徴とする薄膜
磁気ヘッドにある。
According to the present invention, there is provided a lower magnetic film, wherein one end formed on the lower magnetic film is in contact with one end of the lower magnetic film, and the other end is opposed to the other end of the lower magnetic film via a magnetic gap;
A thin-film magnetic device comprising: an upper magnetic film that forms a magnetic circuit having a magnetic gap partially with the lower magnetic film; and a conductor coil that forms a predetermined number of turns of a coil that passes between the magnetic films and intersects the magnetic circuit. In the head, at least one of the lower magnetic film and the upper magnetic film is formed by a plating method, and is Ni in an amount of 38 to 60% by weight and Fe in an amount of 40 to 62%.
% Of a Ni-Fe alloy containing 1% by weight.
.About.5 .mu.m, an average crystal grain size of not more than 500 DEG, and a coercive force in a hard axis direction of not more than 1.0 Oe.

【0016】本発明は、下部磁性膜と,該下部磁性膜上
に形成され一端が前記下部磁性膜の一端に接し、他端が
前記下部磁性膜の他端に磁気ギャップを介して対向し、
これによって下部磁性膜と共に一部に磁気ギャップを有
する磁気回路を形成する上部磁性膜と,両磁性膜間を通
り磁気回路と交差する所定巻回数のコイルを形成する導
体コイルとを具備した薄膜磁気ヘッドの製造方法におい
て、前記下部及び上部磁性膜の少なくとも一方を、めっ
き浴が金属イオン濃度が15〜20g/lのNi++イオ
ン及び2.0〜2.7g/lのFe++イオンを含み、か
つ、Ni++イオンとFe++イオンの比(Ni++/Fe+
+)が7〜8と、応力緩和剤及び界面活性剤とを含み、
pHが2.5〜3.5であるNi−Fe合金の電気めっき
浴を用い電気めっきによって形成することを特徴とする
薄膜磁気ヘッドの製造方法にある。
According to the present invention, a lower magnetic film is formed on the lower magnetic film, one end of which is in contact with one end of the lower magnetic film, and the other end of which faces the other end of the lower magnetic film via a magnetic gap;
A thin-film magnetic device comprising: an upper magnetic film that forms a magnetic circuit having a magnetic gap partially with the lower magnetic film; and a conductor coil that forms a predetermined number of turns of a coil that passes between the magnetic films and intersects the magnetic circuit. In the method of manufacturing a head, at least one of the lower and upper magnetic films is formed by plating a metal bath with Ni ++ ions having a metal ion concentration of 15 to 20 g / l and Fe ++ ions having a metal ion concentration of 2.0 to 2.7 g / l. And the ratio of Ni ++ ions to Fe ++ ions (Ni ++ / Fe +
+) Comprises 7-8, a stress relieving agent and a surfactant,
A method for manufacturing a thin-film magnetic head, characterized in that the thin-film magnetic head is formed by electroplating using an Ni-Fe alloy electroplating bath having a pH of 2.5 to 3.5.

【0017】特に、浴温度は20〜35℃に保持して5
〜30mA/cm2 の電流密度で磁界中フレームめっきに
より作製するのが好ましい。
In particular, the bath temperature is kept at 20 to 35 ° C.,
It is preferable to manufacture by frame plating in a magnetic field at a current density of 3030 mA / cm 2 .

【0018】更に、本発明はCoイオンを0.4〜0.6
g/l,Cr,Mo,Pd,In,Bの各イオンを0.
1g/l 以下を添加したことを特徴とする。更に、本
発明は磁界中フレームによって電気めっきによって作製
するのが好ましい。
Further, in the present invention, Co ions are added in an amount of 0.4 to 0.6.
g / l, Cr, Mo, Pd, In, and B ions are each added to 0.1 g.
1 g / l or less is added. Further, the present invention is preferably made by electroplating with a frame in a magnetic field.

【0019】本発明は、記録ヘッドの磁極磁性膜のうず
電流損失を考慮して膜厚,比抵抗,比透磁率を設計し、
記録周波数に伴う書きにじみ量、あるいはオーバーライ
ト値の変動を防止すること、ならびにデータの記録周波
数を高く設定し、かつ、上記ヘッドに適した磁気ディス
クを高速で回転させることにより解決される。
According to the present invention, the film thickness, the specific resistance, and the relative magnetic permeability are designed in consideration of the eddy current loss of the magnetic pole magnetic film of the recording head.
The problem can be solved by preventing the fluctuation of the write bleed amount or the overwrite value accompanying the recording frequency, and by setting the data recording frequency high and rotating the magnetic disk suitable for the head at a high speed.

【0020】(1)メディア転送速度が1秒間当たり1
5メガバイト以上,記録データの面記録密度が1平方イ
ンチ当たり500メガビット以上となる手段を有するこ
とが好ましい。
(1) The media transfer rate is 1 per second
It is preferable to have a unit that has a surface recording density of 5 megabytes or more and a recording density of 500 megabits or more per square inch.

【0021】(2)情報の記憶を直径3.5 インチ以下
の円盤状の磁気ディスクに行うときは、記録再生時にこ
の磁気ディスクが4000rpm 以上で回転し、記録周波
数が45MHz以上に設定されることが好ましい。
(2) When storing information on a disk-shaped magnetic disk having a diameter of 3.5 inches or less, the magnetic disk rotates at 4000 rpm or more during recording and reproduction, and the recording frequency is set to 45 MHz or more. Is preferred.

【0022】(3)保磁力2kOe以上の金属磁性膜を
用いた磁気ディスクを有することが好ましい。
(3) It is preferable to have a magnetic disk using a metal magnetic film having a coercive force of 2 kOe or more.

【0023】(4)記録電流の立上り時間が5ナノ秒
(ns)以下に設定されることが好ましい。
(4) The rise time of the recording current is preferably set to 5 nanoseconds (ns) or less.

【0024】(5)磁気ディスク媒体に情報の記録を行
う誘導型磁気ヘッドの記録用コイルは、薄膜プロセスを
利用して形成されており、端子数は3で、各端子間のイ
ンダクタンスは1マイクロヘンリー(μH)以下である
ことが好ましい。
(5) The recording coil of the induction type magnetic head for recording information on the magnetic disk medium is formed by using a thin film process, the number of terminals is 3, and the inductance between each terminal is 1 micron. Henry (μH) or less is preferable.

【0025】(6)磁気ディスク媒体に情報の記録を行
う誘導型磁気ヘッドの記録用コイルは2層構造であり、
1層目コイルと2層目コイルの巻線数は等しく、かつ巻
線方向は互いに逆向きであることが好ましい。
(6) The recording coil of the induction type magnetic head for recording information on the magnetic disk medium has a two-layer structure.
It is preferable that the number of windings of the first-layer coil and the number of windings of the second-layer coil are equal, and the winding directions are opposite to each other.

【0026】(7)磁気ディスク媒体に情報の記録を行
う誘導型磁気ヘッドの記録用コイルは1層構造であり、
コイル始点(a)から終点(b)間の巻線数の半分に相
当する位置(c)に別の端子が接続されており、(c)−
(a)間、および(c)−(b)間に流れる電流は互いに
逆位相であることが好ましい。
(7) The recording coil of the induction type magnetic head for recording information on the magnetic disk medium has a single-layer structure.
Another terminal is connected to a position (c) corresponding to half of the number of turns between the coil start point (a) and the end point (b), and (c)-
It is preferable that the currents flowing between (a) and (c)-(b) have opposite phases.

【0027】(8)データの記録、あるいは記録再生に
用いる磁気ヘッドの記録磁極を構成する磁性膜の膜厚を
d(μm),比抵抗をρ(μΩcm),低周波領域におけ
る比透磁率をμとしたとき、それぞれのパラメータがμ
2/ρ≦500 なる関係を満足する手段を有すること
が好ましい。
(8) The thickness of the magnetic film constituting the recording pole of the magnetic head used for data recording or recording / reproducing is d (μm), the specific resistance is ρ (μΩcm), and the relative magnetic permeability in the low frequency region is When μ, each parameter is μ
It is preferable to have a means that satisfies the relationship d 2 / ρ ≦ 500.

【0028】(9)データの記録、あるいは記録再生に
用いる磁気ヘッドの記録磁極の少なくとも一部は、磁性
層と絶縁層とが交互に積層された多層構造となってお
り、その膜厚は2.7μm 以下であることが好ましい。
(9) At least a part of the recording magnetic pole of the magnetic head used for data recording or recording / reproducing has a multilayer structure in which magnetic layers and insulating layers are alternately laminated. It is preferably not more than 0.7 μm.

【0029】(10)データの記録、あるいは記録再生
に用いる磁気ヘッドの記録用磁性材の少なくとも上部磁
性材に前述のFe−Ni系合金、下部にはCo系非晶質
合金、あるいはFe系非晶質合金が用いることが好まし
い。
(10) The above-mentioned Fe—Ni-based alloy is used for at least the upper magnetic material of the recording magnetic material of the magnetic head used for data recording or recording / reproducing, and the Co-based amorphous alloy or the Fe-based non-alloy is used for the lower magnetic material. It is preferable to use a crystalline alloy.

【0030】(11)磁気ヘッドの記録磁極材料内には
Zr,Y,Ti,Hf,Al、あるいはSiの内の少な
くとも一種を含むことが好ましい。
(11) The recording pole material of the magnetic head preferably contains at least one of Zr, Y, Ti, Hf, Al and Si.

【0031】(12)データの記録、あるいは記録再生
に用いる磁気ヘッドの記録起磁力、すなわち記録電流と
コイル巻線数との積が0.5アンペア・ターン(AT)以
上に設定されていることが好ましい。
(12) The recording magnetomotive force of the magnetic head used for data recording or recording / reproducing, that is, the product of the recording current and the number of coil turns, is set to 0.5 ampere turn (AT) or more. Is preferred.

【0032】(13)データの記録、あるいは記録再生
に用いる磁気ヘッドの記録磁極の少なくとも一部の比抵
抗は40μΩcm以上、比透磁率は500以上であること
が好ましい。
(13) It is preferable that the specific resistance of at least a part of the recording magnetic pole of the magnetic head used for data recording or recording / reproducing be 40 μΩcm or more and the relative magnetic permeability be 500 or more.

【0033】(14)磁気ディスク媒体に情報の記録を
行う誘導型磁気ヘッドの記録用コイルは1層構造であ
り、コイル始点(a)から終点(b)間の巻線数の半分
に相当する位置(c)に別の端子が接続されており、
(c)−(a)間、および(c)−(b)間に流れる電流は互
いに逆位相であること、再生ヘッドとしてスピンバルブ
型素子,巨大磁気抵抗効果型素子を用いた記録再生分離
型ヘッドを用いることが好ましい。
(14) The recording coil of the induction type magnetic head for recording information on the magnetic disk medium has a single-layer structure, and corresponds to half the number of turns between the coil start point (a) and the end point (b). Another terminal is connected to the position (c),
The currents flowing between (c) and (a) and between (c) and (b) have opposite phases, and a read / write separation type using a spin-valve element or a giant magnetoresistive element as a reproducing head. It is preferable to use a head.

【0034】記録周波数45MHz以上の高周波領域で
は磁気ヘッドのヘッド効率(磁束を誘導する効率)はう
ず電流損が支配的になる。従って、うず電流損を軽減す
るためには磁気コアの膜厚を薄くするのが最も効果的で
あるが、膜厚を薄くすると記録磁界が不足し記録不可能
となる。保磁力:2000Oe以上、特に2300Oe
以上の高保磁力媒体に十分記録するためには飽和磁束密
度が高いことは勿論のこと膜厚は2μm以上が必要とな
る。通常、多層膜化するのはこのうず電流損を低減させ
るためであるが、高記録密度対応のヘッドプロセスでは
寸法精度的に困難である。そのため磁気コアの比抵抗を
大きくしてうず電流損を低減させ、磁気コアの透磁率
(μ)の周波数特性を高周波側まで伸ばすことが必要で
ある。
In a high frequency region of a recording frequency of 45 MHz or more, eddy current loss is dominant in the head efficiency (efficiency of inducing magnetic flux) of the magnetic head. Therefore, in order to reduce the eddy current loss, it is most effective to reduce the thickness of the magnetic core. However, if the thickness is reduced, the recording magnetic field becomes insufficient and recording becomes impossible. Coercive force: 2000 Oe or more, especially 2300 Oe
In order to sufficiently record data on the medium having a high coercive force, not only the saturation magnetic flux density is high but also the film thickness needs to be 2 μm or more. Normally, a multilayer film is used to reduce the eddy current loss, but it is difficult in terms of dimensional accuracy in a head process corresponding to a high recording density. Therefore, it is necessary to reduce the eddy current loss by increasing the specific resistance of the magnetic core and extend the frequency characteristic of the magnetic permeability (μ) of the magnetic core to the high frequency side.

【0035】Ni−Fe2元系磁性膜(膜厚:3μm)
ではNi38〜60重量%の範囲で飽和磁束密度(B
S )が1.5T 以上を示すと共に、比抵抗(ρ)が40
〜50μΩcmを示す。即ち、Niが38重量%より少な
くなると比抵抗(ρ)は高いが、飽和磁束密度(BS
が1.5T を下まわる。また、Niが60重量%を越え
るとやはり飽和磁束密度(BS )が1.5T を下まわる
ので好ましくない。特に、40〜50重量%が好まし
い。このような組成の膜を作製する場合はめっき法が良
い。即ち、電気めっき法により結晶粒径を非常に微細に
するために結晶磁気異方性の大きい本組成でも保磁力を
小さくできることと、結晶の配向性を極力なくすことが
できるためである。例えば、結晶の配向比を(111)
/(200)<5.0 以下にすることが望ましい。その
ような膜を作製するためのめっき浴組成のNi及びFe
イオン濃度はNi++:15〜20g/l,Fe++:2.
0〜2.7g/lで、イオン比(Ni++/Fe++)は7
〜8であった。また、この時のめっき電流密度は10〜
20mA/cm2、pHは3.0、浴温度は30℃である。
Ni—Fe binary magnetic film (thickness: 3 μm)
In the case of Ni, a saturation magnetic flux density (B
S ) is 1.5T or more, and the specific resistance (ρ) is 40
〜50 μΩcm. That is, when Ni is less than 38% by weight, the specific resistance (ρ) is high, but the saturation magnetic flux density (B S ) is high.
Falls below 1.5T. On the other hand, if the Ni content exceeds 60% by weight, the saturation magnetic flux density (B s ) also falls below 1.5T, which is not preferable. In particular, 40 to 50% by weight is preferable. When a film having such a composition is produced, a plating method is preferable. That is, the coercive force can be reduced even with the present composition having large crystal magnetic anisotropy in order to make the crystal grain size extremely fine by electroplating, and the crystal orientation can be minimized. For example, if the orientation ratio of the crystal is (111)
/(200)<5.0. Ni and Fe of the plating bath composition for producing such a film
The ion concentration is Ni ++: 15 to 20 g / l, Fe ++: 2.
0 to 2.7 g / l, and the ion ratio (Ni ++ / Fe ++) is 7
-8. The plating current density at this time is 10 to
20 mA / cm 2 , pH 3.0, bath temperature 30 ° C.

【0036】一方、Co,Mo,Cr,B,In及びP
dの少なくとも1種の元素を添加する場合、Coは15
重量%以下、Moは3重量%以下が飽和磁束密度(B
S )を1.5T以上に保ち、比抵抗(ρ)を40μΩcm以
上を確保する上で望ましい。浴組成でCoの場合CoS
4・6H2Oを100g/l(Coイオンで21g/l)
まで、Moの場合Na2MoO4・2H2Oを4.8g/l
(Moイオンで1.9g/l)までの添加が望ましい。例
えば、Moの替わりにCr〔Cr2(SO4)3・18H
2O〕 を添加した場合もほぼ同様の結果を示した。B,
In等は比抵抗(ρ)の増大は10%程度でそれ程大き
な効果はなかった。一方、Coの添加は膜の比抵抗
(ρ)は若干低下するが飽和磁束密度(BS )は約10
%増大するので、Moとの共用が望ましい。また、Co
は膜の異方性磁界(HK )を増加させるので磁気特性の
安定化には好ましい。
On the other hand, Co, Mo, Cr, B, In and P
When at least one element of d is added, Co is 15
Wt% or less, Mo has a saturation magnetic flux density (B
It is desirable to keep S ) at 1.5 T or more and to secure a specific resistance (ρ) of 40 μΩcm or more. CoS in case of Co in bath composition
O 4 · 6H 2 O and 100 g / l (Co ions at 21g / l)
Up to 4.8 g / l of Na 2 MoO 4 .2H 2 O in the case of Mo
(Mo ions up to 1.9 g / l) is desirable. For example, instead of Mo, Cr [Cr 2 (SO 4 ) 3 .18H
Almost the same results were obtained when 2 O] was added. B,
For In and the like, the increase in specific resistance (ρ) was about 10%, and there was no significant effect. On the other hand, when Co is added, the specific resistance (ρ) of the film slightly decreases, but the saturation magnetic flux density (B S ) becomes about 10
Therefore, it is desirable to share with Mo. Also, Co
Increases the anisotropic magnetic field (H K ) of the film and is therefore preferred for stabilizing the magnetic properties.

【0037】尚、Coは15重量%以上になると膜の飽
和磁束密度(BS )は増大するが比抵抗(ρ)が小さく
なり過ぎて、Mo,Crの添加量を多くしないと膜の比
抵抗(ρ)を所望の値まで大きくできない。そのため膜
の保磁力が大きくなり好ましくない。また、Mo,Cr
等はやはり膜の保磁力を大きくしないで比抵抗(ρ)を
所望の値まで大きくするためには3重量%以下とする。
When the content of Co exceeds 15% by weight, the saturation magnetic flux density (B s ) of the film increases, but the specific resistance (ρ) becomes too small. The resistance (ρ) cannot be increased to a desired value. Therefore, the coercive force of the film becomes large, which is not preferable. In addition, Mo, Cr
In order to increase the specific resistance (ρ) to a desired value without increasing the coercive force of the film, the content is set to 3% by weight or less.

【0038】また、B,In,Pd等の添加量も同様で
ある。これらの場合のめっき条件は上述のNi−Fe2
元系の場合とまったく同様でよい。
The same applies to the amounts of B, In, Pd and the like. The plating conditions in these cases are the same as those described above for Ni-Fe2.
It may be exactly the same as the original system.

【0039】磁性膜の高周波損失(tanδ)が、うず電流
損失のみによるものと仮定すると tanδ=μ″/μ′ =R/ωL =μ0μπd2f/Cρ …(1) と表せる。ここで、μ′およびμ″はそれぞれ複素透磁
率の実数部分と虚数部分である。また、Cは膜形状によ
り決まる定数、μ0 は真空の透磁率である。上式(1)
より、磁性膜固有の比透磁率μ,膜厚d,比抵抗ρがわ
かれば、周波数fに対するうず電流損失tanδ を見積も
ることができる。なお、周波数に対するヘッド効率(磁
束を誘導する効率)の変化は、複素透磁率の実数部分の
変化に比例すると考えられるので、(1)式からδを算
出し、このcos 成分をとることにより、ヘッド効率の周
波数依存性を求めることができる。すなわち、各周波数
におけるヘッド効率ηは次式で表わせる。
Assuming that the high frequency loss (tan δ) of the magnetic film is caused only by the eddy current loss, it can be expressed as: tan δ = μ ″ / μ ′ = R / ωL = μ 0 μπd 2 f / Cρ (1) , Μ ′ and μ ″ are the real and imaginary parts of the complex permeability, respectively. C is a constant determined by the film shape, and μ 0 is the magnetic permeability in vacuum. Equation (1) above
Thus, if the specific magnetic permeability μ, the film thickness d, and the specific resistance ρ inherent to the magnetic film are known, the eddy current loss tanδ with respect to the frequency f can be estimated. Since the change in the head efficiency (efficiency for inducing magnetic flux) with respect to the frequency is considered to be proportional to the change in the real part of the complex magnetic permeability, δ is calculated from equation (1), and by taking this cos component, The frequency dependence of the head efficiency can be obtained. That is, the head efficiency η at each frequency can be expressed by the following equation.

【0040】 η=cos[arctan(μ0μπd2f/Cρ)] …(2) (2)式より、磁性膜固有の比透磁率μ,膜厚d、およ
び比抵抗ρにより求まる値であるμd2/ρ の値を規定
することで、任意の周波数fにおけるヘッド効率ηを外
挿することができる。
Η = cos [arctan (μ 0 μπd 2 f / Cρ)] (2) It is a value obtained from the specific permeability μ, the film thickness d, and the specific resistance ρ inherent in the magnetic film from the equation (2). By defining the value of μd 2 / ρ, the head efficiency η at an arbitrary frequency f can be extrapolated.

【0041】上記ヘッドと高周波記録時の書きにじみ、
オーバーライト変動の小さな保磁力2kOe以上の金属
磁性膜を用いた磁気ディスクと組み合わせることによ
り、面記録密度が500Mb/in2 以上,記録周波数
45MHz以上,メディア転送速度15MB/s以上の
高性能磁気ディスク装置が得られる。
With the above head, writing blur at the time of high frequency recording,
A high performance magnetic disk with a surface recording density of 500 Mb / in 2 or more, a recording frequency of 45 MHz or more, and a media transfer speed of 15 MB / s or more by combining with a magnetic disk using a metal magnetic film having a coercive force of 2 kOe or more with small overwrite fluctuation. A device is obtained.

【0042】I/Oインターフェースにデータ・バスが
2バイド幅のFast and Wide SCSI(Samll Computer Sys
tem Interface)を用いた場合、入出力装置の価格と入出
力装置を構成する磁気ディスク装置1台当たりの転送速
度との関係から、データ・バスが2バイド幅のFast and
Wide SCSIインターフェースを用いると最大20M
B/sまでのデータ転送が可能となる。この場合、磁気
ディスク装置1台当たりの転送速度は15MB/s以上
であれば、入出力装置の価格低減が可能となることがわ
かる。
The data bus is connected to the I / O interface by a 2-byte wide Fast and Wide SCSI (Samll Computer Sys- tem).
When the I / O device is used, the data bus has a 2-byte width of Fast and Fast due to the relationship between the price of the I / O device and the transfer speed per magnetic disk device that constitutes the I / O device.
Up to 20M using Wide SCSI interface
Data transfer up to B / s becomes possible. In this case, if the transfer speed per magnetic disk device is 15 MB / s or more, the price of the input / output device can be reduced.

【0043】また磁気ディスク装置1台当たりの容量は
550MBあればWindows(登録商標), Workplace等の
OS(Operation Software)を取り扱うことが可能とな
る。この容量は3.5 インチの磁気ディスク1枚で実現
するには、データの記録可能な面記録密度は500Mb
/in2 以上である必要がある。
If the capacity per magnetic disk unit is 550 MB, it is possible to handle OS (Operation Software) such as Windows (registered trademark) and Workplace. To achieve this capacity with one 3.5-inch magnetic disk, the surface recording density at which data can be recorded is 500 Mb.
/ In 2 or more.

【0044】[0044]

【発明の実施の形態】(実施例1)図1,図2に本発明
の一例である磁気ディスク装置の全体図、及び平面図を
示す。本磁気ディスク装置の構成は、情報を記録するた
めの磁気ディスク1,これを回転する手段のDCモータ
(図面省略),情報を書き込み,読み取りするための磁
気ヘッド2,これを支持して磁気ディスクに対して位置
を変える手段の位置決め装置、即ち、アクチュエータ4
とボイスコイルモータ5、及び装置内部を清浄に保つた
めのエアフィルタ6などからなる。アクチュエータは、
キャリッジ7とレール8,軸受9から成り、ボイスコイ
ルモータはボイスコイル10,マグネット11からな
る。これらの図では、同一の回転軸に8枚の磁気ディス
クを取付け、合計の記憶容量を大きくした例を示してい
る。
(Embodiment 1) FIGS. 1 and 2 show an overall view and a plan view of a magnetic disk drive which is an example of the present invention. The magnetic disk drive comprises a magnetic disk for recording information, a DC motor (not shown) for rotating the magnetic disk, a magnetic head for writing and reading information, and a magnetic disk for supporting the magnetic head. Positioning means of means for changing the position with respect to
And a voice coil motor 5, and an air filter 6 for keeping the inside of the apparatus clean. The actuator is
The voice coil motor includes a carriage 7, a rail 8, and a bearing 9. The voice coil motor includes a voice coil 10 and a magnet 11. These figures show an example in which eight magnetic disks are mounted on the same rotating shaft to increase the total storage capacity.

【0045】図3は本発明に係る磁気記録再生装置の正
面図、図4は同じくその平面図である。図において、1
は磁気ディスク、2は磁気ヘッド、3はジンバル系支持
装置、4は位置決め装置(アクチュエータ)である。磁
気ディスク1は回転駆動機構により、矢印aの方向に回
転駆動される。磁気ヘッド2は支持装置3によって支持
され、位置決め装置4により、回転直径O1 上で、矢印
1 またはb2 の方向に駆動されて位置決めされ、それ
によって所定のシリンダT1 〜Tn において、磁気記
録,再生が行われる。
FIG. 3 is a front view of a magnetic recording / reproducing apparatus according to the present invention, and FIG. 4 is a plan view of the same. In the figure, 1
, A magnetic disk; 2, a magnetic head; 3, a gimbal support device; 4, a positioning device (actuator); The magnetic disk 1 is driven to rotate in the direction of arrow a by the rotation drive mechanism. The magnetic head 2 is supported by the supporting device 3, by the positioning device 4, on rotation diameter O 1, is positioned is driven in the direction of arrow b 1 or b 2, in which the predetermined cylinder T 1 through T n, Magnetic recording and reproduction are performed.

【0046】磁気ディスク1は表面粗さRMAX が100
Å以下、望ましくは50Å以下の表面性の良好な媒体と
する。磁気ディスク1は、剛性基体の表面に真空成膜法
によって磁気記録層を形成してある。磁気記録層はγ−
Fe23またはCo−Ni,Co−Cr等の磁性薄膜と
して形成する。真空成膜法によって形成される磁気記録
層の膜厚は0.5μm 以下であるので、剛性基体の表面
性がそのまま記録層の表面性として反映される。従っ
て、剛性基体は、表面粗さRMAX が100Å以下のもの
を使用する。そのような剛性基体としては、ガラス,化
学強化されたソーダアルミノ珪酸ガラスまたはセラミッ
クを主成分とする剛性基体が適している。
The magnetic disk 1 has a surface roughness R MAX of 100.
A medium having a good surface property of not more than {preferably not more than 50}. The magnetic disk 1 has a magnetic recording layer formed on the surface of a rigid substrate by a vacuum film forming method. The magnetic recording layer is γ-
It is formed as a magnetic thin film of Fe 2 O 3 or Co—Ni, Co—Cr or the like. Since the thickness of the magnetic recording layer formed by the vacuum film forming method is 0.5 μm or less, the surface properties of the rigid substrate are directly reflected as the surface properties of the recording layer. Therefore, a rigid substrate having a surface roughness R MAX of 100 ° or less is used. As such a rigid substrate, a rigid substrate mainly composed of glass, chemically strengthened soda-aluminosilicate glass or ceramic is suitable.

【0047】磁気記録層は、γ−Fe23等の磁性酸化
鉄や磁性窒化物で構成することができる。また、磁性層
が金属や合金などの場合には、表面に酸化物層,窒化物
層を設けるか、表面を酸化皮膜とするのが望ましい。ま
た、炭素保護膜の使用等も望ましい。こうすることによ
り、磁気記録層の耐久性が向上し、極く低浮上量で記録
再生する場合や、コンタクト,スタート,ストップ時に
おいても、磁気ディスク1の損傷を防止できる。酸化物
層及び窒化物層は、反応性スパッタ,反応性蒸着等によ
って形成できる。また、酸化皮膜は、Co−Niまたは
Co−Cr等のように、鉄,コバルト,ニッケルのう
ち、少なくとも1種を含む金属または合金でなる磁気記
録層の表面を、反応性プラズマ処理等により、意図的に
酸化して形成できる。磁気ディスク1は、磁気記録層の
記録残留磁化が膜面に対して垂直方向の成分を主成分と
する垂直記録,膜面内成分を主成分とする面内記録のい
ずれであってもよい。図示は省略したが、磁気記録層の
表面に潤滑剤を塗布してもよい。
The magnetic recording layer can be made of a magnetic iron oxide such as γ-Fe 2 O 3 or a magnetic nitride. When the magnetic layer is made of a metal, an alloy, or the like, it is desirable to provide an oxide layer or a nitride layer on the surface or to make the surface an oxide film. It is also desirable to use a carbon protective film. By doing so, the durability of the magnetic recording layer is improved, and damage to the magnetic disk 1 can be prevented even when recording / reproducing with an extremely low flying height or during contact, start, and stop. The oxide layer and the nitride layer can be formed by reactive sputtering, reactive evaporation, or the like. In addition, the oxide film forms the surface of the magnetic recording layer made of a metal or an alloy containing at least one of iron, cobalt, and nickel, such as Co-Ni or Co-Cr, by reactive plasma treatment or the like. It can be formed by intentionally oxidizing. The magnetic disk 1 may be either perpendicular recording in which the recording residual magnetization of the magnetic recording layer has a component perpendicular to the film surface as a main component, or in-plane recording in which the in-plane component is a main component. Although not shown, a lubricant may be applied to the surface of the magnetic recording layer.

【0048】図5及び図6は磁気ヘッド2とジンバル系
支持装置3の組立構造を示す図である。磁気ヘッド2
は、セラミック構造体でなるスライダ25の空気流出端
部側に読み書き素子22を付着させ、位置決め装置4に
よって駆動される支持装置3により、浮上面23とは反
対側の面24に荷重を加えてピッチ運動及びロール運動
を許容するように支持する。読み書き素子42はIC製
造テクノロジと同様のプロセスにしたがって形成された
薄膜素子である。
FIGS. 5 and 6 are views showing the assembly structure of the magnetic head 2 and the gimbal support device 3. FIG. Magnetic head 2
The read / write element 22 is attached to the air outflow end side of a slider 25 made of a ceramic structure, and a load is applied to the surface 24 opposite to the floating surface 23 by the support device 3 driven by the positioning device 4. Support to allow pitch and roll movements. The read / write element 42 is a thin film element formed according to a process similar to the IC manufacturing technology.

【0049】支持装置3は位置決め装置4に取付けられ
る剛性アーム部51に、弾性金属薄膜でなる支持体37
の一端を、結合具11,12によって取付け固定すると
共に、支持体37の長手方向の一端にある自由端に、同
じく金属薄板である可撓体36を取付け、この可撓体3
6の下面に、磁気ヘッド2を取付けた構造となっている
(図3及び図4参照)。支持体37は剛性アーム部51
に取付けられる部分が弾性バネ部21となっていて、こ
の弾性バネ部41に接続して剛性ビーム部42を形成し
てある。剛性ビーム部42は両側に折曲げ形成したフラ
ンジ42a,42bを有している。可撓体36は支持体
37の長手方向軸線と略平行して伸びる2つの外側可撓
性枠部31,32と、支持体37から離れた端において
外側可撓性枠部31,32を連結する横枠33と、横枠
33の略中央部から外側可撓性枠部31,32に略平行
するように伸びていて先端を自由端とした中央舌状部3
4とを有して構成され、横枠33のある方向とは反対側
の一端を、支持体37の自由端付近に溶接等の手段によ
って取付けてある。
The supporting device 3 includes a rigid arm 51 attached to the positioning device 4 and a support 37 made of an elastic metal thin film.
Is fixed by means of couplings 11 and 12, and a flexible member 36, which is also a thin metal plate, is attached to a free end at one end in the longitudinal direction of the support member 37.
6, the magnetic head 2 is attached to the lower surface (see FIGS. 3 and 4). The support 37 is a rigid arm 51
Is attached to the elastic spring portion 21, and the rigid beam portion 42 is formed by connecting to the elastic spring portion 41. The rigid beam portion 42 has flanges 42a and 42b formed on both sides by bending. The flexible body 36 connects the two outer flexible frames 31 and 32 extending substantially in parallel with the longitudinal axis of the support 37 and the outer flexible frames 31 and 32 at ends separated from the support 37. And a central tongue-shaped portion 3 extending from a substantially central portion of the horizontal frame 33 so as to be substantially parallel to the outer flexible frame portions 31 and 32 and having a free end at the tip.
4, and one end opposite to the direction in which the horizontal frame 33 is located is attached to the vicinity of the free end of the support 37 by welding or the like.

【0050】可撓体36の中央舌状部34の上面には、
例えば半球状等の荷重用突起35が設けられていて、こ
の荷重用突起35により、支持体37の自由端から中央
舌状部34へ荷重を伝えるようにしてある。中央舌状部
34の下面には磁気ヘッド2の面24を接着等の手段に
よって固着してある。
On the upper surface of the central tongue 34 of the flexible body 36,
For example, a hemispherical load projection 35 is provided, and the load projection 35 transmits a load from the free end of the support 37 to the central tongue 34. The surface 24 of the magnetic head 2 is fixed to the lower surface of the central tongue 34 by means such as bonding.

【0051】本実施例においては、上述の表面粗さR
MAX を有する磁気ディスク1を使用し、磁気ヘッド2の
浮上開始浮上量を0.01μm〜0.04μmの範囲に設
定する。そして、磁気ディスク1に設けられる読み書き
シリンダT1 〜Tn のうち、最内周シリンダTnにおけ
る磁気ヘッド2の浮上量gを、浮上開始浮上量0.01
μm〜0.04μm から、その数倍の値の間に設定して
駆動する。磁気ヘッド2を構成するスライダ21の形
状,支持装置3から磁気ヘッド2に加わる荷重,磁気デ
ィスク1の回転数等は、上述のような浮上量が得られる
ように設定する。
In this embodiment, the surface roughness R
Using the magnetic disk 1 having MAX , the flying start flying height of the magnetic head 2 is set in the range of 0.01 μm to 0.04 μm. Of the read or write cylinder T 1 through T n provided in the magnetic disk 1, the flying height g of the magnetic head 2 at the innermost circumferential cylinder T n, flying start flying height 0.01
The drive is performed by setting a value between μm and 0.04 μm and a value several times as large as that. The shape of the slider 21 constituting the magnetic head 2, the load applied to the magnetic head 2 from the support device 3, the number of rotations of the magnetic disk 1, and the like are set so as to obtain the above-mentioned flying height.

【0052】図7は負圧スライダの斜視図である。FIG. 7 is a perspective view of the negative pressure slider.

【0053】負荷スライダ70は、空気導入面71と浮
揚力を発生する2つの正圧発生面72,72とに囲まれ
た負圧発生面73を有し、さらに空気導入面71並びに
2つの正圧発生面72,72と負圧発生面73との境界
において負圧発生面73より段差の大きい溝74とから
構成される。なお、空気流出端75には磁気ディスクに
情報の記録再生を行う薄膜磁気ヘッドエレメント76を
有する。
The load slider 70 has a negative pressure generating surface 73 surrounded by an air introducing surface 71 and two positive pressure generating surfaces 72, 72 for generating a levitation force, and further has an air introducing surface 71 and two positive pressure generating surfaces. At the boundary between the pressure generating surfaces 72, 72 and the negative pressure generating surface 73, a groove 74 having a larger step than the negative pressure generating surface 73 is formed. The air outflow end 75 has a thin-film magnetic head element 76 for recording and reproducing information on the magnetic disk.

【0054】負圧スライダ70の浮上時においては、空
気導入面71から導入された空気は負圧発生面73で膨
張されるが、その際に溝74に向かう空気の流れも作ら
れるため、溝74の内部にも空気導入面71から空気流
出端75に向かう空気の流れが存在する。したがって、
負圧スライダ70の浮上時に空気中に浮遊する塵芥が空
気導入面71から導入されたとしても溝74の内部へ導
入され、溝74内部の空気の流れによって押し流され、
空気流出端78より負圧スライダ70の外へ排出される
ことになる。また負圧スライダ70の浮上時には溝4内
部には常に空気の流れが存在し澱み等がないため、塵芥
が凝集することもない。
When the negative pressure slider 70 flies, the air introduced from the air introduction surface 71 expands on the negative pressure generating surface 73. At this time, the air flows toward the groove 74, so that the air flows toward the groove 74. An air flow from the air introduction surface 71 to the air outflow end 75 also exists inside 74. Therefore,
Even when dust floating in the air when the negative pressure slider 70 floats is introduced from the air introduction surface 71, the dust is introduced into the groove 74 and is swept away by the flow of air inside the groove 74,
The air is discharged out of the negative pressure slider 70 from the air outflow end 78. Further, when the negative pressure slider 70 flies, since the air flow always exists inside the groove 4 and there is no stagnation or the like, dust does not aggregate.

【0055】図8は記録用ヘッドを形成した、記録再生
分離型ヘッドの概念図である。記録再生分離型ヘッド
は、本発明の素子を用いたインダクティブ型の記録ヘッ
ド,再生ヘッドと、及び、漏れ磁界による再生ヘッドの
混乱を防止するためのシールド部からなる。ここでは水
平磁気記録用の記録ヘッドとの搭載を示したが、本発明
の磁気抵抗効果素子を垂直磁気記録用のヘッドと組合わ
せ、垂直記録に用いても良い。ヘッドは、基体80上に
下部シールド膜82,磁気抵抗効果膜86及び電極8
5,上部シールド膜81からなる再生ヘッドと,下部磁
性膜84,コイル87,上部磁性膜83からなる記録ヘ
ッドとを形成してなる。このヘッドによって、記録媒体
上に信号を書き込み、また記録媒体から信号を読み取る
のである。
FIG. 8 is a conceptual diagram of a recording / reproducing separation type head in which a recording head is formed. The recording / reproducing separation type head includes an inductive recording head and a reproducing head using the element of the present invention, and a shield part for preventing the reproducing head from being confused due to a leakage magnetic field. Here, the mounting with a recording head for horizontal magnetic recording is shown, but the magnetoresistive element of the present invention may be combined with a head for perpendicular magnetic recording and used for perpendicular recording. The head has a lower shield film 82, a magnetoresistive film 86 and an electrode 8 on a base 80.
5, a reproducing head composed of an upper shield film 81 and a recording head composed of a lower magnetic film 84, a coil 87, and an upper magnetic film 83 are formed. The head writes a signal on the recording medium and reads a signal from the recording medium.

【0056】再生ヘッドの感知部分と,記録ヘッドの磁
気ギャップはこのように同一スライダ上に重ねた位置に
形成することで、同一トラックに同時に位置決めができ
る。このヘッドをスライダに加工し、磁気記録再生装置
に搭載した。
By forming the sensing part of the reproducing head and the magnetic gap of the recording head in such a manner that they are superimposed on the same slider, they can be positioned simultaneously on the same track. This head was processed into a slider and mounted on a magnetic recording / reproducing apparatus.

【0057】本実施例では、インダクティブ型の記録ヘ
ッドの上部及び下部磁性膜を以下の製法によって形成し
た。
In this embodiment, the upper and lower magnetic films of the inductive recording head were formed by the following method.

【0058】Ni++量:16.7g/l,Fe++量:2.
4g/lを含み、その他通常の応力緩和剤,界面活性剤
を含んだめっき浴において、pH:3.0 ,めっき電流
密度:15mA/cm2 の条件でフレームめっきした上・
下部磁気コアを有する誘導型の薄膜磁気ヘッドを作製し
た。トラック幅は4.0μm、ギャップ長は0.4μmで
ある。この磁性膜の組成は42.4Ni−Fe(重量%)
であり、磁気特性は飽和磁束密度(BS )が1.64
T,困難軸保磁力(HCH)が0.5Oeで比抵抗(ρ)
は48.1μΩcm であった。上部磁気コア83,上部シ
ールド層を兼ねた下部磁気コア84,コイル87であ
る。再生のための磁気抵抗効果型素子86,磁気抵抗効
果型素子にセンス電流を流すための電極85,下部シー
ルド層82,スライダ80の構成を有する。
Ni ++ content: 16.7 g / l, Fe ++ content: 2.
In a plating bath containing 4 g / l and other ordinary stress relieving agents and surfactants, frame plating was performed under the conditions of pH: 3.0, plating current density: 15 mA / cm 2.
An inductive thin film magnetic head having a lower magnetic core was manufactured. The track width is 4.0 μm and the gap length is 0.4 μm. The composition of this magnetic film was 42.4Ni-Fe (% by weight).
And the magnetic characteristics are such that the saturation magnetic flux density (B S ) is 1.64.
T, hard axis coercive force (H CH ) 0.5 Oe and specific resistance (ρ)
Was 48.1 μΩcm 2. An upper magnetic core 83, a lower magnetic core 84 also serving as an upper shield layer, and a coil 87. It has a magnetoresistive element 86 for reproduction, an electrode 85 for passing a sense current to the magnetoresistive element, a lower shield layer 82, and a slider 80.

【0059】このような構成で評価した本発明による記
録ヘッドの性能(オーバーライト特性)を図9に示す。
40MHz以上の高周波領域でも−50dB程度の優れ
た記録性能が得られた。
FIG. 9 shows the performance (overwrite characteristics) of the recording head according to the present invention evaluated with such a configuration.
Excellent recording performance of about -50 dB was obtained even in a high frequency region of 40 MHz or more.

【0060】図10は本実施例によって得られためっき
法とスパッタリング法によって得られた磁性膜の困難軸
保磁力と平均結晶粒径との関係を示すもので、結晶粒径
を500Å以下にすると1.0Oe 以下の低い保磁力が
得られることが分る。
FIG. 10 shows the relationship between the hard-axis coercive force and the average crystal grain size of the magnetic film obtained by the plating method and the sputtering method obtained in this embodiment. It can be seen that a low coercive force of 1.0 Oe or less can be obtained.

【0061】更に、下部磁性膜には上述と同様に電気め
っきによってNi70〜80重量%,残部Feからなる
Ni−Fe合金薄膜又はこの合金薄膜を合金ターゲット
を用いスパッタリングによって形成することもできる。
Further, the lower magnetic film can be formed by electroplating in the same manner as described above by electroplating, using a Ni-Fe alloy thin film composed of 70 to 80% by weight of Ni and the balance Fe, or by sputtering this alloy thin film using an alloy target.

【0062】図11は本発明のインダクティブ型の記録
ヘッドの断面図及び図12はその平面図であるが、この
薄膜ヘッドは上部シールド膜81と、その上に付着され
た前述の磁性膜からなる下部磁性膜83及び上部磁性膜
84からなる。図11は図12のA−A断面図である。
非磁性絶縁体89が層83,84の間に付着されてい
る。絶縁体の一部が磁気ギャップ88を規定し、これは
例えば周知技術によりエア・ベアリング関係に置かれた
磁性媒体と変換関係で相互作用する。支持体80はエア
・ベアリング表面(ABS)を有するスライダの形にな
っており、これはディスク・ファイル動作中に回転する
ディスクの媒体に近接し浮上関係にある。
FIG. 11 is a sectional view of an inductive recording head according to the present invention, and FIG. 12 is a plan view thereof. This thin film head comprises an upper shield film 81 and the above-described magnetic film adhered thereon. It comprises a lower magnetic film 83 and an upper magnetic film 84. FIG. 11 is a sectional view taken along line AA of FIG.
A non-magnetic insulator 89 is deposited between the layers 83,84. A portion of the insulator defines a magnetic gap 88, which, for example, interacts in a transducing relationship with a magnetic medium placed in an air bearing relationship by known techniques. The support 80 is in the form of a slider having an air bearing surface (ABS), which is in close flying relationship with the rotating media of the disk during disk file operations.

【0063】薄膜磁気ヘッドは上部83,下部磁性膜8
4により出来るバック・ギャップ90を有する。バック
・ギャップ90は介在するコイル87により磁気ギャッ
プから隔てられている。
The thin-film magnetic head has an upper 83 and a lower magnetic film 8.
4 has a back gap 90. The back gap 90 is separated from the magnetic gap by an intervening coil 87.

【0064】連続しているコイル87は例えばめっきに
より下部磁性層84の上に作った層になっており、これ
らを電磁結合する。コイル87は絶縁体89で埋められ
てあるコイルの中央には電気接点91があり、同じくコ
イルの外端部終止点には電気接点92として更に大きな
区域がある。接点は外部電線及び読み取り書き込み信号
処理ヘッド回路(図示略)に接続されている。
The continuous coil 87 is a layer formed on the lower magnetic layer 84 by plating, for example, and these are electromagnetically coupled. Coil 87 has an electrical contact 91 at the center of the coil buried with insulator 89, and also has a larger area as electrical contact 92 at the outer end of the coil. The contacts are connected to an external electric wire and a read / write signal processing head circuit (not shown).

【0065】本発明においては、単一の層で作られたコ
イル87が、やや歪んだ楕円形をしており、その断面積
の小さい部分が磁気ギャップに最も近く配置され、磁気
ギャップからの距離が大きくなるにつれ、断面積が徐々
に大きくなる。
In the present invention, the coil 87 made of a single layer has a slightly distorted elliptical shape, a portion having a small cross-sectional area is arranged closest to the magnetic gap, and the distance from the magnetic gap is Becomes larger, the cross-sectional area gradually increases.

【0066】バック・ギャップ90は磁気ギャップのA
BSに相対的に近く位置している。
The back gap 90 is the magnetic gap A
It is located relatively close to the BS.

【0067】しかし楕円形コイルはバック・ギャップ9
0と磁気ギャップ88との間で比較的密に多数本入って
おり、コイルの幅乃至断面直径はこの区域では小さい。
更に、磁気ギャップから最も遠い部分での大きな断面直
径は電気抵抗の減少をもたらす。更に、楕円(長円)形
コイルは角や鋭い隅や端部を持たず、電流への抵抗が少
ない。又、楕円形状は矩形や円形(環状)コイルに比べ
導電体の全長が少なくて済む。これらの利点の結果、コ
イルの全抵抗は比較的少なく、発熱は少なく、適度の放
熱性が得られる。熱を相当量減らすので、薄膜層の層崩
れ,伸長,膨張は防止され、ABSでのボール・チップ
突出の原因が除かれる。
However, the elliptical coil has a back gap 9
The coils are relatively densely packed between the zero and the magnetic gap 88, and the coil width or cross-sectional diameter is small in this area.
Further, a large cross-sectional diameter at the portion farthest from the magnetic gap results in a decrease in electrical resistance. Further, elliptical (elliptical) coils have no corners, sharp corners or edges, and have low resistance to current. In addition, the elliptical shape requires a smaller total length of the conductor than a rectangular or circular (annular) coil. As a result of these advantages, the overall resistance of the coil is relatively low, heat generation is small, and a suitable heat dissipation is obtained. Since the heat is reduced by a considerable amount, collapse, elongation and expansion of the thin film layer are prevented, and the cause of the ball tip protrusion at the ABS is eliminated.

【0068】幅の変化がほぼ均一に進む楕円形コイル形
状は、スパッタリングや蒸着等より安価な従来のめっき
技術で付着できる。他の形状特に角のある形のコイルで
はめっき付着が不均一な幅の構造になり易い。角や鋭い
端縁部の除去は出来上ったコイルにより少ない機械的ス
トレスしか与えない。
An elliptical coil shape in which the change in width progresses almost uniformly can be attached by a conventional plating technique which is less expensive than sputtering, vapor deposition or the like. A coil having another shape, particularly an angular shape, tends to have a structure in which plating adhesion is uneven. The removal of corners and sharp edges places less mechanical stress on the resulting coil.

【0069】本実施例では多数巻回したコイルがほぼ楕
円形状で磁気コア間に形成され、コイル断面径は磁気ギ
ャップからバック・ギャップに向けて徐々に拡がってお
り、信号出力は増加し、発熱が減少される。
In this embodiment, a coil wound in a large number of turns is formed in a substantially elliptical shape between the magnetic cores, and the coil cross-sectional diameter gradually expands from the magnetic gap toward the back gap. Is reduced.

【0070】図13は前述のインダクティブヘッドの下
部に形成した本発明の磁気抵抗効果素子の基体面上の構
成を表す概念図である。磁気抵抗効果膜110は基体1
50上に、記録媒体に対抗する面163に沿って素子の
幅143の長い短冊に形成される。この形状の規定は磁
気抵抗効果膜110に感知すべき磁界のかかる方向16
0に対して垂直な方向に適度の形状異方性を与える効果
がある。磁気抵抗効果膜110には電気的に接触してな
る電極140によって電流を通じ、記録媒体191表面
に平行な方向の幅141及び垂直な方向の幅142の大
きさを有する磁界感知部分にかかる磁界によって生じる
抵抗変化を出力として得る。
FIG. 13 is a conceptual diagram showing the configuration on the substrate surface of the magnetoresistive element of the present invention formed below the inductive head. The magnetoresistive effect film 110 is
A long strip having a width 143 of the element is formed on the surface 50 along the surface 163 facing the recording medium. This shape is defined by the direction 16 in which the magnetic field to be sensed by the magnetoresistive film 110 is applied.
There is an effect of giving an appropriate shape anisotropy in a direction perpendicular to 0. An electric current is applied to the magnetoresistive film 110 by an electrode 140 that is in electrical contact with the magnetoresistive film 110, and a magnetic field is applied to a magnetic field sensing portion having a width 141 in a direction parallel to the surface of the recording medium 191 and a width 142 in a direction perpendicular to the surface of the recording medium 191. The resulting resistance change is obtained as an output.

【0071】本概念図では磁気抵抗効果素子の端部が記
録媒体との対抗面に露出した形状となっているが、記録
媒体からの磁界を導くヨーク状軟磁性体を対抗面から配
置して、内側に設置した磁気抵抗効果素子に磁気的に結
合させると素子の機械的耐久性が増す。特に、素子のM
R高さを小さくすることでヨークの磁路抵抗を減少さ
せ、感度を向上することが出来る。
In this conceptual diagram, the end of the magnetoresistive effect element is exposed on the surface facing the recording medium, but a yoke-like soft magnetic material for guiding a magnetic field from the recording medium is arranged from the facing surface. When the magnetic element is magnetically coupled to the magnetoresistive effect element provided inside, the mechanical durability of the element increases. In particular, the M
By reducing the R height, the magnetic path resistance of the yoke can be reduced and the sensitivity can be improved.

【0072】本発明の磁気抵抗効果素子は例えば図14
のような構成を有する。基体150上に、磁気抵抗効果
膜110、すなわちバイアス膜132,磁性膜111,
非磁性導電膜120,磁性膜112,非磁性導電膜層1
20,磁性膜層111,バイアス膜131を積層し、か
つ電極140を電気的に接合してなる。図12の素子構
成は電極140がバイアス膜131の下に設置されてい
るが、これは例えば上部バイアス膜に酸化ニッケルのよ
うな絶縁体を用いたときに有効な構造の一例となってい
る。
The magnetoresistive effect element of the present invention is, for example, shown in FIG.
It has the following configuration. On the base 150, the magnetoresistive effect film 110, that is, the bias film 132, the magnetic film 111,
Nonmagnetic conductive film 120, magnetic film 112, nonmagnetic conductive film layer 1
20, the magnetic film layer 111 and the bias film 131 are laminated, and the electrode 140 is electrically connected. In the element configuration shown in FIG. 12, the electrode 140 is provided below the bias film 131. This is an example of a structure effective when an insulator such as nickel oxide is used for the upper bias film.

【0073】電極は他の構造、例えばバイアス膜を一部
にだけ形成してその上から電極140を形成しても構わな
い。あるいは導電性バイアス膜、例えばFeMn,Co
Pt膜などを用いて直接これに密着して電極を形成する
方法もある。
The electrode 140 may have another structure, for example, a bias film may be formed only partially and the electrode 140 may be formed thereon. Alternatively, a conductive bias film such as FeMn, Co
There is also a method in which an electrode is formed by using a Pt film or the like to directly adhere to the electrode.

【0074】本素子は、バイアス膜に依って強い異方性
を印加した磁性膜と,前記の異方性に比べて弱い異方性
を一軸異方性,形状異方性、あるいはソフト膜バイアス
などで印加した磁性膜とを、電流は通じるが互いに磁気
的な結合を生じないように非磁性導電膜を介して交互に
積層したことである。特にその異方性の印加方向を以下
に述べる。
This device has a magnetic film to which a strong anisotropy is applied by a bias film, and a uniaxial anisotropy, a shape anisotropy, or a soft film bias which is weaker than the aforementioned anisotropy. And a magnetic film applied by, for example, alternately laminating via a non-magnetic conductive film so that a current can be conducted but magnetic coupling does not occur. In particular, the application direction of the anisotropy will be described below.

【0075】図15は本発明の磁気抵抗効果素子の異方
性制御の例を示す概念図で、図14においてA−A′で
示した素子部分の斜視図である。バイアス膜131及び
132は、図中矢印171及び172の方向に交換結合に
よる異方性を印加する。図中矢印160は感知すべき磁
界の方向、矢印161は磁性膜111に誘導した一方向
異方性の方向を示す。非磁性導電膜120に挟まれた磁
性膜112の容易磁化方向は図中矢印162の方向に一
軸異方性の誘導によって印加する。これは磁性膜の成長
中に所定の方向に磁界を印加することで達成される。本
図の実施例は異方性の印加をバイアス膜と誘導磁気異方
性で実現した例である。この結果矢印161と162は
共に膜面内で、互いに直交する。感知すべき磁界の大き
さに比較して、磁性膜111の異方性を大きく磁性膜1
12の異方性を小さくすることで、磁性膜111の磁化
を外部磁界に対してほぼ固定し、磁性膜112の磁化の
みが外部磁界に対して大きく反応するようになる。さら
に矢印160の方向にかかる感知すべき磁界に対して、
磁性膜111の磁化は異方性161によって磁化と外部
磁界が平行な容易軸励磁の状態に、逆に磁性膜112の
異方性に依って磁化と外部磁界が垂直な困難軸励磁の状
態になっている。この効果によって上記の応答をさらに
顕著なものにできるとともに、外部磁界に対して磁性膜
112の磁化が、矢印162の方向を起点に、回転によ
る困難軸励磁で素子が駆動される状態が実現し、磁壁移
動による励磁に伴うノイズを防止し、高周波での動作を
可能にすることができる。
FIG. 15 is a conceptual diagram showing an example of anisotropy control of the magnetoresistive element of the present invention, and is a perspective view of the element portion indicated by AA 'in FIG. Bias film 131 and
132 applies anisotropy due to exchange coupling in the directions of arrows 171 and 172 in the figure. In the figure, arrow 160 indicates the direction of the magnetic field to be sensed, and arrow 161 indicates the direction of unidirectional anisotropy induced in magnetic film 111. The direction of easy magnetization of the magnetic film 112 sandwiched between the nonmagnetic conductive films 120 is applied in the direction of arrow 162 in the figure by induction of uniaxial anisotropy. This is achieved by applying a magnetic field in a predetermined direction during the growth of the magnetic film. The embodiment of this figure is an example in which the application of anisotropy is realized by a bias film and induced magnetic anisotropy. As a result, the arrows 161 and 162 are both orthogonal to each other in the film plane. Compared with the magnitude of the magnetic field to be sensed, the magnetic film
By reducing the anisotropy of 12, the magnetization of the magnetic film 111 is substantially fixed to the external magnetic field, and only the magnetization of the magnetic film 112 responds greatly to the external magnetic field. Further, for the magnetic field to be sensed in the direction of arrow 160,
The magnetization of the magnetic film 111 is in an easy axis excitation state in which the magnetization and the external magnetic field are parallel due to the anisotropy 161, and is in a difficult axis excitation state in which the magnetization and the external magnetic field are perpendicular due to the anisotropy of the magnetic film 112. Has become. By this effect, the above response can be made more remarkable, and a state is realized in which the magnetization of the magnetic film 112 with respect to an external magnetic field is driven by hard axis excitation due to rotation starting from the direction of arrow 162. In addition, it is possible to prevent noise accompanying excitation due to domain wall movement, and to enable operation at a high frequency.

【0076】本実施例の磁気抵抗効果素子の別の実施例
として、異方性の印加を2種類の異なるバイアス膜、つ
まり反強磁性膜との硬磁性膜で実現した例である。基体
150上に、反強磁性膜132,磁性膜111,非磁性膜
120,磁性膜112,硬磁性膜133を積層して、電
極を接続してなる。反強磁性膜132,硬磁性膜133を
各々が非磁性膜で分離された2層の磁性膜111,11
2に密着しており、感知すべき磁界の方向160に対し
て平行および直行した方向172および173に磁界中
熱処理あるいは磁化処理をして磁性膜111,112の
磁化をそれぞれ矢印161,162の方向に誘導する。
反強磁性膜は例えば酸化ニッケル,硬磁性膜はコバルト
白金合金などが用いられる。硬磁性膜と反強磁性膜の位
置が逆か、それぞれの磁化の誘導方向が逆であっても同
等の効果がある。
As another embodiment of the magnetoresistive element of this embodiment, an application of anisotropy is realized by two kinds of different bias films, that is, a hard magnetic film and an antiferromagnetic film. Substrate
An antiferromagnetic film 132, a magnetic film 111, a nonmagnetic film 120, a magnetic film 112, and a hard magnetic film 133 are stacked on 150, and electrodes are connected. The antiferromagnetic film 132 and the hard magnetic film 133 are separated from each other by a non-magnetic film.
2 and heat-treated or magnetized in a magnetic field in directions 172 and 173 parallel and perpendicular to the direction 160 of the magnetic field to be sensed to change the magnetization of the magnetic films 111 and 112 in the directions of arrows 161 and 162, respectively. Lead to.
For example, nickel oxide is used for the antiferromagnetic film, and cobalt platinum alloy is used for the hard magnetic film. The same effect is obtained even if the positions of the hard magnetic film and the antiferromagnetic film are reversed or the directions of induction of the respective magnetizations are reversed.

【0077】本実施例の磁気抵抗効果素子を構成する膜
は高周波マグネトロンスパッタリング装置により以下の
ように作製した。アルゴン3ミリトールの雰囲気中に
て、厚さ1mm,直径3インチのセラミックス基板および
Si単結晶基板上に以下の材料を順に積層して作製し
た。スパッタリングターゲットとして酸化ニッケル,コ
バルト,ニッケル−20at%鉄合金,銅のターゲット
を用いた。ニッケル−鉄中へのコバルトの添加にはニッ
ケル−20at%鉄合金ターゲット上にコバルトのチッ
プを配置した。またコバルト中へのニッケル,鉄の添加
にはコバルトターゲット上にニッケルおよび鉄のチップ
を配置した。積層膜は、各ターゲットを配置したカソー
ドに各々高周波電力を印加して装置内にプラズマを発生
させておき、各カソードごとに配置されたシャッターを
一つずつ開閉して順次各層を形成した。膜形成時には基
板面内で直交する二対の電磁石を用いて基板に平行にお
よそ50エルステッドの磁界を印加して、一軸異方性を
もたせるとともに、酸化ニッケル膜の交換結合バイアス
の方向をそれぞれの方向に誘導した。
The film constituting the magnetoresistive effect element of this example was manufactured as follows using a high-frequency magnetron sputtering apparatus. In an atmosphere of 3 mTorr of argon, the following materials were sequentially laminated on a ceramic substrate having a thickness of 1 mm and a diameter of 3 inches and a Si single crystal substrate. Nickel oxide, cobalt, nickel-20 at% iron alloy, and copper targets were used as sputtering targets. For addition of cobalt into nickel-iron, a cobalt tip was placed on a nickel-20 at% iron alloy target. To add nickel and iron to cobalt, nickel and iron chips were arranged on a cobalt target. In the laminated film, high frequency power was applied to each of the cathodes on which the respective targets were arranged to generate plasma in the apparatus, and shutters arranged for the respective cathodes were opened and closed one by one to form layers sequentially. At the time of film formation, a magnetic field of about 50 Oe is applied in parallel to the substrate by using two pairs of electromagnets orthogonal to each other in the plane of the substrate to have uniaxial anisotropy and change the direction of the exchange coupling bias of the nickel oxide film in each direction. Guided in the direction.

【0078】異方性の誘導は、基板近傍に取付けた二対
の電磁石によって、各磁性膜の形成時に誘導すべき方向
に磁界を加えて行った。あるいは、多層膜形成後に反強
磁性膜のネール温度近傍で磁界中熱処理を行い、反強磁
性バイアスの方向を磁界の方向に誘導した。
The induction of anisotropy was performed by applying a magnetic field in the direction to be induced when forming each magnetic film by using two pairs of electromagnets mounted near the substrate. Alternatively, a heat treatment in a magnetic field is performed near the Neel temperature of the antiferromagnetic film after the formation of the multilayer film, and the direction of the antiferromagnetic bias is induced in the direction of the magnetic field.

【0079】磁気抵抗効果素子の性能の評価は膜を短冊
形状にパターニングし、電極を形成して行った。この
時、磁性膜の一軸異方性の方向と素子の電流方向が平行
となるようにした。電気抵抗は電極端子間に一定の電流
を通じ、素子の面内に電流方向に垂直な方向に磁界を印
加して、素子の電気抵抗を電極端子間の電圧として測定
し、磁気抵抗変化率として感知した。
The performance of the magnetoresistance effect element was evaluated by patterning the film into a strip shape and forming electrodes. At this time, the direction of the uniaxial anisotropy of the magnetic film was made parallel to the current direction of the element. The electric resistance is measured by applying a constant current between the electrode terminals and applying a magnetic field in the plane of the element in the direction perpendicular to the current direction. The electric resistance of the element is measured as the voltage between the electrode terminals and sensed as the magnetoresistance change rate. did.

【0080】表1では素子の特性を抵抗変化率と飽和磁
界で表した。素子としての再生出力はこの抵抗変化率の
大きさに、感度は飽和磁界の小ささに、それぞれ対応す
る。
In Table 1, the characteristics of the device are represented by the rate of change in resistance and the saturation magnetic field. The reproduced output as an element corresponds to the magnitude of the resistance change rate, and the sensitivity corresponds to the small saturation magnetic field.

【0081】表1の結果から明らかなように特に磁気抵
抗素子No.1〜5は4%以上の抵抗変化率と良好な磁気
特性を有するものであり、No.6,7に比べ、抵抗変化
率において優れている。特に、試料No.1,2,4は飽
和磁界10エルステッド程度の良好な磁界感度と抵抗変
化率6から7%の高い出力を示している。
As is clear from the results shown in Table 1, the magnetoresistive elements Nos. 1 to 5 in particular have a resistance change rate of 4% or more and have good magnetic properties. Excellent in rate. In particular, Samples Nos. 1, 2, and 4 show good magnetic field sensitivity of about 10 Oe and a high output of 6-7% in resistance change rate.

【0082】[0082]

【表1】 [Table 1]

【0083】本実施例における磁気記憶装置において、
一対の電極85に挟まれた領域が再生トラック幅となる
が、これは2μmとした。記録時には、ターン数が20
のコイル87に15mAopの電流を流して任意の情報を
媒体磁性層に記録し、一方再生時にはリード線に8mA
の直流電流を印加して媒体磁性層からの漏洩磁界を検出
した。
In the magnetic storage device of this embodiment,
The area sandwiched between the pair of electrodes 85 is the reproduction track width, which is 2 μm. At the time of recording, the number of turns is 20
A current of 15 mAop is applied to the coil 87 to record arbitrary information on the magnetic layer of the medium.
And a leakage magnetic field from the medium magnetic layer was detected.

【0084】この磁気ヘッドを、記録ビット方向の保磁
力が2100エルステッド,保磁力配向比が1.2 のC
oCrTa(Crの添加量は16アトミック%)を記録
層とする3.5 インチの磁気ディスクと組み合わせて磁
気記憶装置を構成した。なお、ここで使用した磁気ディ
スク記録層の残留磁束密度と膜厚との積Br・δは10
0ガウス・μmである。本実施例により構成した磁気記
憶装置の仕様を表2に示す。
This magnetic head was manufactured using a C head having a coercive force in the recording bit direction of 2100 Oersted and a coercive force orientation ratio of 1.2.
A magnetic storage device was constructed by combining with a 3.5-inch magnetic disk having oCrTa (the amount of Cr added was 16 atomic%) as a recording layer. The product Br · δ of the residual magnetic flux density and the film thickness of the magnetic disk recording layer used here is 10
0 Gauss · μm. Table 2 shows the specifications of the magnetic storage device according to the present embodiment.

【0085】[0085]

【表2】 [Table 2]

【0086】(実施例2)図6はめっき浴の金属イオン
濃度即ち、Ni++量及びFe++量を種々変えてめっきし
た磁性膜の組成と磁気特性及び比抵抗(ρ)の関係を示
したものである。
(Example 2) FIG. 6 shows the relationship between the composition of the magnetic film plated by changing the metal ion concentration of the plating bath, that is, the amount of Ni ++ and the amount of Fe ++, the magnetic characteristics and the specific resistance (ρ). It is shown.

【0087】Ni++はNiCl2・6H2OをFe++はF
eSO4・7H2Oを使用し、その他通常の応力緩和剤,
界面活性剤を添加した。pH:3.0 ,浴温度:30
℃,めっき電流密度:15mA/cm2の条件でめっきし
た。膜厚は3.0μmである。
Ni ++ is NiCl 2 .6H 2 O and Fe ++ is F
Using the eSO 4 · 7H 2 O, and other conventional stress relaxing agent,
Surfactant was added. pH: 3.0, bath temperature: 30
C., plating current density: 15 mA / cm 2 . The thickness is 3.0 μm.

【0088】膜のNi含有量が38〜60重量%の範囲
で飽和磁束密度(BS )が1.5T以上,比抵抗(ρ)が
40μΩcm以上と従来良く知られている80Ni−Fe
パーマロイ膜に比較し飽和磁束密度(BS )で1.5以
上,比抵抗(ρ)で2倍以上と優れた特性を示すことが
わかる。また、困難軸保磁力(HCH)は80Ni−Fe
パーマロイ膜とほぼ同様に1Oe以下と小さい。バルク
材の値に比べ飽和磁束密度(BS )及び比抵抗(ρ)の
傾向はほぼ同じであるが、Ni含有量が多くなるにつれ
て低下する量が小さい。これはバルク材に比べ結晶粒径
が40〜80Åと著しく小さいためである。
When the Ni content of the film is in the range of 38 to 60% by weight, the saturation magnetic flux density (B s ) is at least 1.5 T and the specific resistance (ρ) is at least 40 μΩcm.
Comparative saturated magnetic flux density in the permalloy film (B S) in 1.5 above, the specific resistance ([rho) in it can be seen that excellent properties more than double. The hard axis coercive force (H CH ) is 80Ni-Fe
It is as small as 1 Oe or less almost similarly to the permalloy film. The trends of the saturation magnetic flux density (B S ) and the specific resistance (ρ) are almost the same as those of the bulk material, but the amount that decreases as the Ni content increases is small. This is because the crystal grain size is remarkably small at 40 to 80 ° as compared with the bulk material.

【0089】このような特性はpHを2.5〜3.5程度
まで、また、めっき電流密度を5〜30mA/cm2 の範
囲に変えても大きな変化はなかった。浴温度についても
25〜35℃の範囲に変えたが、温度が高くなるほどN
i含有量が若干多くなる程度で、特性そのものに影響す
るものではなかった。
These characteristics did not change significantly even when the pH was changed to about 2.5 to 3.5 and the plating current density was changed to the range of 5 to 30 mA / cm 2 . The bath temperature was also changed to the range of 25 to 35 ° C.
Only a slight increase in the i content did not affect the properties themselves.

【0090】本実施例における磁性膜はインダクティブ
型薄膜磁気ヘッドの上部磁気コア,下部にNi70〜8
0重量%を含むFe−Ni系合金を用いた組み合わせに
好適であるが、上下磁気コアの両者にも用いることがで
きる。
The magnetic film in this embodiment is composed of an upper magnetic core of an inductive thin film magnetic head and Ni 70 to 8 below.
It is suitable for a combination using an Fe-Ni-based alloy containing 0% by weight, but can be used for both upper and lower magnetic cores.

【0091】特に、図16に示すようにNi40〜50
重量%でBS で1.6T と最も高い値を示し、膜の(N
i/Fe)比が0.667〜1.00のNiとFeとの組
み合わせを有するものが好ましい。尚、Ni38〜60
重量%における膜の(Ni/Fe)比は0.613〜1.
50である。
In particular, as shown in FIG.
The highest value was 1.6 T in B S by weight%, and the (N
Those having a combination of Ni and Fe having an (i / Fe) ratio of 0.667 to 1.00 are preferable. In addition, Ni38-60
The (Ni / Fe) ratio of the film in weight% is 0.613-1.
50.

【0092】(実施例3)図17は(Ni44重量%−
Fe)系合金にMoを含有させた磁性膜の磁気特性と比
抵抗(ρ)についての検討結果である。
Example 3 FIG. 17 shows (Ni 44% by weight)
It is a result of study on magnetic properties and specific resistance (ρ) of a magnetic film containing Mo in an Fe) -based alloy.

【0093】即ち、Ni++量:16.7g/l,Fe++
量:2.2g/lを含むめっき浴に比抵抗(ρ)を増大
せしめる元素としてMoを添加した場合の磁性膜の磁気
特性と比抵抗(ρ)を示したものである。MoはNa2
MoO4・4H2O を用い最大5g/l添加した。Mo
を添加することによって磁性膜の比抵抗(ρ)は添加量
に比例して増大することがわかる。例えば、Mo:2重
量%添加で磁性膜の比抵抗(ρ)はおよそ60μΩcm以
上と80Ni−Feパーマロイ膜の3倍以上の値を示
す。その時、飽和磁束密度(BS )はおよそ1.50Tと
5%程度の低下に止まり80Ni−Feパーマロイ膜の
1.5 倍以上の値を維持している。但し、添加量が3重
量%以上(MoはNa2MoO4・4H2O で5g/l以
上)になると保磁力(HCH)が1Oe以上になること
と、飽和磁束密度(BS )が1.5T 以下となり好まし
くない。
That is, the amount of Ni ++: 16.7 g / l, Fe ++
It shows the magnetic properties and the specific resistance (ρ) of the magnetic film when Mo is added as an element for increasing the specific resistance (ρ) to a plating bath containing the amount: 2.2 g / l. Mo is Na 2
MoO 4 · 4H 2 O-added up to 5 g / l using. Mo
It can be seen that the specific resistance (ρ) of the magnetic film increases in proportion to the addition amount by adding. For example, when Mo: 2% by weight is added, the specific resistance (ρ) of the magnetic film is about 60 μΩcm or more, which is three times or more that of the 80Ni—Fe permalloy film. At that time, the saturation magnetic flux density (B S ) is only about 1.50 T, a decrease of about 5%, and maintains a value of 1.5 times or more that of the 80Ni—Fe permalloy film. However, when the addition amount is 3% by weight or more (Mo is 5 g / l or more with Na 2 MoO 4 .4H 2 O), the coercive force (H CH ) becomes 1 Oe or more, and the saturation magnetic flux density (B S ) becomes 1.5 T or less is not preferable.

【0094】Moの替わりにCrについても検討したが
効果はMoとほぼ同様であった。
The effect was almost the same as that of Mo, although Cr was examined instead of Mo.

【0095】本実施例における磁性膜も前述の実施例と
同様に用いることができる。
The magnetic film in this embodiment can be used in the same manner as in the above embodiment.

【0096】(実施例4)図18は(Ni44重量%−
Fe)−Co15重量%−Mo磁性膜の磁気特性を損な
わずに飽和磁束密度(BS )と比抵抗(ρ)を更に増大
させるためにCoとMoを同じに添加した場合の検討結
果である。Coの添加にはCoSO4・7H2Oを用い、
Moの添加は実施例3同様Na2MoO4・4H2Oを用
いた。Coの添加量は13重量%(CoSO4・7H2
で100g/l)一定とした場合の例で、これに対して
Moは4重量%まで添加した。その結果、Coを13重
量%添加することで磁性膜の飽和磁束密度(BS )は
1.78T とおよそ10%増大するが、比抵抗(ρ)は
35μΩcmとおよそ30%も低減してしまう。従って、
Moを添加することによって比抵抗(ρ)は回復し、
2.5 重量%添加で比抵抗(ρ)はおよそ55μΩcmと
なり、逆に約20%の増大を示す。その時、飽和磁束密
度(BS )は1.55T とCoなしの膜に比べ高い値を
示す。また、Coの添加は膜の異方性磁界を増大させる
ので磁気特性的にも安定な方向にある。
(Example 4) FIG. 18 is a graph showing (Ni 44% by weight)
Fe) -Co 15 wt% -Mo The results of a study in the case where Co and Mo are added in the same manner in order to further increase the saturation magnetic flux density (B S ) and the specific resistance (ρ) without impairing the magnetic properties of the magnetic film. . With CoSO 4 · 7H 2 O The addition of Co,
Mo was added in the same manner as in Example 3 using Na 2 MoO 4 .4H 2 O. The addition amount of Co is 13 wt% (CoSO 4 · 7H 2 O
In this case, Mo was added up to 4% by weight. As a result, by adding 13% by weight of Co, the saturation magnetic flux density (B s ) of the magnetic film is increased by about 10% to 1.78T, but the specific resistance (ρ) is reduced by about 30% to 35 μΩcm. . Therefore,
By adding Mo, the specific resistance (ρ) recovers,
With the addition of 2.5% by weight, the specific resistance (ρ) becomes about 55 μΩcm, and conversely shows an increase of about 20%. At that time, the saturation magnetic flux density (B S ) is 1.55 T, which is higher than that of the film without Co. Further, the addition of Co increases the anisotropic magnetic field of the film, so that the magnetic properties are also stable.

【0097】本実施例における磁性膜も前述と同様に適
用できる。
The magnetic film in this embodiment can be applied in the same manner as described above.

【0098】(実施例5)図19は実施例2〜4に示し
た製造方法によって作製した代表的な磁性膜の透磁率
(μ)の周波数特性を測定し、それぞれの1MHzのμ
の値で規格化した結果である。比較試料として80Ni
−Feパーマロイについても測定した。膜厚はすべて3
μmである。本実施例における比抵抗の48〜60μΩ
cmのものは透磁率(μ)の周波数(f)に対する低下を
25%(即ち、初期値の75%)とした場合の周波数
(f)は40MHz〜70MHzとパーマロイの15M
Hzに比べおよそ3〜5倍に伸びており、周波数特性が
向上していることがわかる。
(Example 5) FIG. 19 shows the frequency characteristics of the magnetic permeability (μ) of a typical magnetic film manufactured by the manufacturing method shown in Examples 2 to 4, and the μ characteristic of each 1 MHz was measured.
This is the result of standardization with the value of. 80Ni as a comparative sample
-Fe permalloy was also measured. All film thicknesses are 3
μm. 48 to 60 μΩ of specific resistance in the present embodiment
In the case of cm, the frequency (f) when the decrease of the magnetic permeability (μ) with respect to the frequency (f) is 25% (that is, 75% of the initial value) is 40 MHz to 70 MHz, and the permalloy 15M
It extends about 3 to 5 times compared to Hz, and it can be seen that the frequency characteristics are improved.

【0099】(実施例6)図20及び図21は本発明に
係る磁性膜として実施例1と同様に上部及び下部磁性膜
に用いた2段巻きコイルを有する誘導型薄膜磁気ヘッド
の断面図である。
(Embodiment 6) FIGS. 20 and 21 are cross-sectional views of an induction type thin film magnetic head having a two-stage wound coil used for the upper and lower magnetic films as in the first embodiment as the magnetic film according to the present invention. is there.

【0100】図に示すように、この薄膜磁気ヘッド21
0は、例えばパーマロイなどの磁性材料の2枚の層21
2及び214から形成された下部及び上部磁性膜を含
む。層212及び214は、夫々整形層211及び21
3を含む2段階で付着される。
As shown in FIG.
0 denotes two layers 21 of a magnetic material such as permalloy, for example.
2 and 214 including lower and upper magnetic films. Layers 212 and 214 are shaped layers 211 and 21 respectively.
3 in two stages.

【0101】これらの層212及び214は、物理的に
接触している後部ギャップ領域218と,磁気ギャップ
221を形成するため非磁性材料の薄膜220で隔てら
れている先端領域219とを除き、絶縁層215,12
6及び217によって隔てられている。磁性体の層21
2及び214間のスペースには、平坦な導電コイル222
が設けられる。コイル222は、絶縁材料の層215,
216及び217間に楕円形パターンで付着された2枚
の層中の複数巻223a乃至223nを有している。変
換用ギャップ221の端部は、上記の層を付着させてい
る非磁性体の基板224上に形成されたエア・ベアリン
グ面(ABS)と一致する。変換用ギャップ221は、
回転する磁気ディスクなどの磁気記録媒体(図示せず)
とエア・ベアリング関係で相互作用する。ディスクが回
転するとき、そのヘッドはディスク記録面の非常に近く
でそのエア・ベアリング面(ABS)を飛行する。
These layers 212 and 214 are insulated except for the rear gap region 218 which is in physical contact and the tip region 219 which is separated by a thin film 220 of non-magnetic material to form a magnetic gap 221. Layers 215, 12
6 and 217. Magnetic layer 21
2 and 214 have flat conductive coils 222
Is provided. The coil 222 comprises a layer 215 of insulating material,
It has a plurality of turns 223a through 223n in two layers attached in an elliptical pattern between 216 and 217. The end of the transducing gap 221 coincides with the air bearing surface (ABS) formed on the non-magnetic substrate 224 to which the above-described layers are deposited. The conversion gap 221 is
A magnetic recording medium (not shown) such as a rotating magnetic disk
And air bearing relationships. As the disk rotates, its head flies over its air bearing surface (ABS) very close to the disk recording surface.

【0102】この薄膜磁気ヘッドを製造するには、磁極
片先端領域219の薄い付着層を与えるため、適当なマ
スクを用いて基板224上に磁性層212及び整形層2
11を付着する。それから非磁性層220が、後部ギャ
ップ領域218の部分を除いて層211及び212上に
付着される。そして第1の絶縁層215が、磁気ギャッ
プ221のところを除き、層220の上方に付着され
る。連続的で平坦な導体の第1の層の楕円渦巻状の巻線
223a乃至223nが、例えば電気めっきにより絶縁
層215上に付着される。絶縁層216がコイルの第1
の層の上方に付着され、コイルの第2の層の巻線が付着
され、そのコイルの上方に絶縁層217が付着される。
それから、前述のとおり、磁性層212と物理的に接触
する後部ギャップ領域218のところを除き、磁性層2
14が、絶縁されたコイルの上方に付着される。
To manufacture this thin-film magnetic head, the magnetic layer 212 and the shaping layer 2 are formed on the substrate 224 using a suitable mask to provide a thin adhesion layer in the pole tip region 219.
11 is attached. A non-magnetic layer 220 is then deposited over layers 211 and 212 except for the back gap region 218. Then, a first insulating layer 215 is deposited over layer 220 except at magnetic gap 221. Elliptical spiral windings 223a through 223n of a first layer of continuous, flat conductor are deposited on insulating layer 215, for example, by electroplating. The insulating layer 216 is the first of the coil.
And a second layer winding of the coil is applied, and an insulating layer 217 is applied above the coil.
Then, as described above, except for the rear gap region 218 that is in physical contact with the magnetic layer 212,
14 is attached above the insulated coil.

【0103】磁極片の先端219は予め選択したほぼ一
定の幅Wを有する。この幅Wは、対応する回転可能な磁
気媒体上のトラックの幅とほぼ同じか少し狭い。磁極片
先端の選択した幅Wは磁極片先端を切取ることにより得
られ、その磁極片先端を切取るステップは、第2の磁性
層214のための整形層213を付着するステップの前
に行われる。このように工程を変えると、従来の工程よ
りもはるかに高い精度で磁極片先端の切取りが可能とな
る。
The tip 219 of the pole piece has a pre-selected substantially constant width W. This width W is approximately the same as or slightly smaller than the width of the track on the corresponding rotatable magnetic medium. The selected width W of the pole tip is obtained by trimming the pole tip, the step of trimming the pole tip being performed before the step of depositing the shaping layer 213 for the second magnetic layer 214. Will be By changing the process in this way, it is possible to cut off the tip of the pole piece with much higher accuracy than the conventional process.

【0104】磁性層214を付着した後で且つ整形層2
13を付着する前に、薄膜ヘッド・アセンブリをフォト
レジスト・マスク230で覆う。それからそのヘッドの
磁極片先端領域219のいずれかの側で、フォトレジス
ト・マスク中にウィンドウ(窓)232が形成される。
そのマスクされたヘッドは、イオン・ミリンダ工程を受
ける。その工程中、ヘツドのマスクしていない部分が食
刻され、磁極片先端を、図5に示すような所望の幅に切
取る。
After attaching the magnetic layer 214 and the shaping layer 2
Before depositing 13, the thin film head assembly is covered with a photoresist mask 230. A window 232 is then formed in the photoresist mask on either side of the pole tip region 219 of the head.
The masked head undergoes an ion-milinda process. During that process, the unmasked portion of the head is etched away and the pole tip is cut to the desired width as shown in FIG.

【0105】イオン・ミリンダ工程は、その加工される
面に通常とほぼ同じ影響を及ぼし、これがフォトレジス
トのマスクとともに、マスクしていないヘッド構造をも
食刻させるようにする。これはまたヘッドから食刻され
た物質を、そのマスクの残りの部分上と、その前に食刻
されたヘッド構造とに再付着させる。この理由から、イ
オン・ミリング工程は2段階で実行される。第1のステ
ップでは、マスクしていないヘッド構造が磁性層14,
非磁性ギャップ層220及び磁性層212を経て基板2
24まで食刻される。この材料を完全に除去するため、
その第1のステップは、基板224中へ少し食刻し過ぎ
てしまう程度まで実行されるのが好ましい。このイオン
・ミリング工程中の第2のステップは、全ての再付着物
質を取除くために設けられ、例えば垂直に対し75度〜
80度といった大きな角度で実行される。イオン・ミリ
ング・ステップの好適な実施例では、一立方センチ当た
り約2ワットの電力密度で毎分約550Åというパーマ
ロイ磁性材料のための食刻速度が得られる。フォトレジ
ストが除去され、整形磁性層213が付着されて、薄膜
磁気ヘッドが完成される。
The ion-milinda process has almost the same effect on the surface to be processed, which causes the unmasked head structure to be etched as well as the photoresist mask. This also causes the material etched from the head to be redeposited on the rest of the mask and on the head structure previously etched. For this reason, the ion milling process is performed in two stages. In the first step, the unmasked head structure is
Substrate 2 via non-magnetic gap layer 220 and magnetic layer 212
It is etched up to 24. To completely remove this material,
The first step is preferably performed to the extent that it etches too little into the substrate 224. A second step in this ion milling process is provided to remove any redeposited material, for example, from 75 degrees to vertical.
It is performed at a large angle such as 80 degrees. The preferred embodiment of the ion milling step provides an etch rate for permalloy magnetic material of about 550 ° per minute at a power density of about 2 watts per cubic centimeter. The photoresist is removed and a shaped magnetic layer 213 is deposited, completing the thin-film magnetic head.

【0106】このフォトレジスト・マスクはイオン・ミ
リング工程中に食刻され、このヘッドの上部のレジスト
の厚さは、磁性層214の外形により、磁極片領域の上
方のフォトレジストの厚さよりも薄くなる。
The photoresist mask is etched during the ion milling step, and the thickness of the resist on top of the head is less than the thickness of the photoresist above the pole piece area due to the outer shape of the magnetic layer 214. Become.

【0107】本発明により製造される薄膜磁気ヘッド
は、一端に変換(トランスデューサ)用磁気ギャップと
他端に後部ギャップ領域とを有するヨーク構造であっ
て、そのヨーク構造の磁気ギャップと後部ギャップ領域
との間に付着された、磁気ヨークを付勢するための導電
コイルを有する上記ヨーク構造を2枚の磁性材料の層で
形成させた構成である。
The thin-film magnetic head manufactured according to the present invention has a yoke structure having a conversion (transducer) magnetic gap at one end and a rear gap region at the other end. The yoke structure has a magnetic gap and a rear gap region. The yoke structure having a conductive coil for urging the magnetic yoke, which is attached between them, is formed of two magnetic material layers.

【0108】本実施例で作製した薄膜磁気ヘッドを用い
て構成した磁気記憶装置について述べる。本実施例によ
る磁気ディスク装置は前述のように外径が約3.5 イン
チの磁気ディスク,ディスクを回転させるためのスピン
ドル,磁気ヘッドの位置決め機構,ハウジングを有す
る。磁気ヘッドは記録再生用に誘導型素子を用いた自己
記録再生型ヘッドで、トラック幅は5.0μm である。
ヘッドの上部及び下部磁性膜には飽和磁束密度が1.3
テスラで比抵抗ρ=60μΩcm,比透磁率μ=100
0,膜厚d=3μmの(Ni44重量%−Fe)−2重量
%Mo合金薄膜を用い、ギャップ長は0.4μm であ
る。なお、ヘッドの磁極には飽和磁束密度が1.6T の
同様のNi−Fe系合金のめっき薄膜、あるいはFe−
Co−Ni/Al23/Fe−Co−Ni多層膜,Ni
−Fe薄膜中に粒径が2nm〜3nmのZrO2,Y2
3,TiO2,HfO2,Al23、あるいはSiO2を含
む薄膜等を用いても同等の効果を得ることができる。な
お、磁性膜中の酸化物を混入させる場合、この粒径は
0.5nm〜5nm の間が望ましい。これは、この粒径
の範囲内において飽和磁束密度、あるいは軟磁気特性の
著しい低下を伴わずに磁性膜の比抵抗のみを高めること
ができるためである。なお、Fe−Ni合金薄膜に前述
のような酸化物を含有させることにより比抵抗は約60
μΩcmまで増大するとともに、比透磁率は1000前後
と良好な軟磁気特性を示す。一方、酸化物を含まないN
iFe薄膜等をヘッドの記録磁極に適用する場合には、
比透磁率を500以下にまで下げることで高周波特性を
改善することができる。ただし、この場合、ヘッドの記
録起磁力は0.5AT 以上に設定する必要がある。
A description will be given of a magnetic storage device constructed using the thin-film magnetic head manufactured in this embodiment. As described above, the magnetic disk drive according to this embodiment has a magnetic disk having an outer diameter of about 3.5 inches, a spindle for rotating the disk, a magnetic head positioning mechanism, and a housing. The magnetic head is a self-recording / reproducing head using an inductive element for recording / reproducing, and has a track width of 5.0 μm.
The upper and lower magnetic films of the head have a saturation magnetic flux density of 1.3.
Specific resistance ρ = 60μΩcm, relative magnetic permeability μ = 100 at Tesla
A (Ni 44 wt% -Fe) -2 wt% Mo alloy thin film having a thickness d = 3 μm is used, and the gap length is 0.4 μm. The magnetic pole of the head is made of a similar Ni-Fe alloy plated thin film having a saturation magnetic flux density of 1.6 T or Fe-
Co—Ni / Al 2 O 3 / Fe—Co—Ni multilayer film, Ni
-ZrO 2 , Y 2 O having a particle size of 2 to 3 nm in a Fe thin film
3, TiO 2, HfO 2, Al 2 O 3, or even using a thin film or the like containing SiO 2 can be obtained the same effect. When the oxide in the magnetic film is mixed, the particle diameter is desirably between 0.5 nm and 5 nm. This is because only the specific resistance of the magnetic film can be increased without significantly lowering the saturation magnetic flux density or the soft magnetic characteristics within the range of the particle size. In addition, by including the above-described oxide in the Fe—Ni alloy thin film, the specific resistance becomes about 60.
With the increase to μΩcm, the relative magnetic permeability is around 1000, showing good soft magnetic properties. On the other hand, oxide-free N
When an iFe thin film or the like is applied to the recording magnetic pole of the head,
By lowering the relative magnetic permeability to 500 or less, high-frequency characteristics can be improved. However, in this case, the recording magnetomotive force of the head must be set to 0.5 AT or more.

【0109】磁気ディスク(11)の記録層には、記録
ビット方向の保磁力が2100エルステッド,保磁力配
向比が1.2 のCoCrTa(Crの添加量は16at
%)が用いられている。この磁気ディスクにおける残留
磁束密度と膜厚との積Br・δは300ガウス・μmで
ある。この記録媒体を用いることにより、線記録密度特
性の向上、および高線記録密度領域における媒体雑音を
大幅に低減することが可能となる。なお、媒体保磁力が
200エルステッド以下であると、ビットエラーレート
が低減してしまい装置動作が不可能となる。
In the recording layer of the magnetic disk (11), CoCrTa having a coercive force in the recording bit direction of 2100 Oersted and a coercive force orientation ratio of 1.2 was added at an amount of 16 at.
%) Is used. The product Br · δ of the residual magnetic flux density and the film thickness in this magnetic disk is 300 Gauss · μm. By using this recording medium, it is possible to improve the linear recording density characteristics and to significantly reduce medium noise in a high linear recording density region. If the medium coercive force is 200 Oe or less, the bit error rate is reduced and the device cannot operate.

【0110】記録再生時におけるスピンドルの回転数は
4491rpm に設定されており、この時の磁気ディスク
上のデータ記憶領域最外周におけるヘッドの浮上量は0.
05μmである。記録周波数は、データ記憶領域の最内周
から最外周にかけて各トラック上での線記録密度が等し
くなるように設定されており、最外周においては67.
5MHz に設定されている。
The rotational speed of the spindle at the time of recording / reproducing is set to 4490 rpm, and the flying height of the head at the outermost periphery of the data storage area on the magnetic disk at this time is 0.
05 μm. The recording frequency is set so that the linear recording density on each track is equal from the innermost circumference to the outermost circumference of the data storage area.
It is set to 5 MHz.

【0111】本実施例における磁気ディスク装置では、
各トラック上におけるデータの線記録密度は144kB
PI(kiro Bit Per Inch)、トラック密度は5kTPI
(kiloTrack Per Inch)に設定されており、面記録密度
は1平方インチ当たり720メガビットである。本実施
例では磁気ディスクを4枚用いており、装置のフォーマ
ット容量は2.8 ギガバイト、データの転送速度は1秒
間に15メガバイトである。なお、本実施例では8/9
変換を用いてデータの記録を行っているが、従来の1−
7方式を用いてデータの記録を行っても、本実施例と同
等の性能を有する装置を構成することができる。ただ
し、この場合の記録周波数は45MHzとなる。
In the magnetic disk drive of this embodiment,
The linear recording density of data on each track is 144 kB
PI (k iro B it P er I nch), track density 5kTPI
(K ilo T rack P er I nch) is set to, surface recording density is 720 megabits per square inch. In this embodiment, four magnetic disks are used, the format capacity of the apparatus is 2.8 gigabytes, and the data transfer rate is 15 megabytes per second. In this embodiment, 8/9
Data is recorded using conversion.
Even if data is recorded using the seven methods, an apparatus having the same performance as that of the present embodiment can be configured. However, the recording frequency in this case is 45 MHz.

【0112】本実施例により構成した磁気記憶装置の仕
様を表3に示す。
Table 3 shows the specifications of the magnetic storage device constructed according to this embodiment.

【0113】[0113]

【表3】 [Table 3]

【0114】(実施例7)次に、ディスク径が2.5イ
ンチ,1.8インチ、および1.3 インチの磁気ディス
クを、本発明による磁気ヘッドと組み合わせて磁気記憶
装置を構成した結果について述べる。なお、本実施例で
用いた磁気ヘッド、および磁気ディスクは、実施例6で
用いたものと同じであり、各トラック上におけるデータ
の線記録密度は144kBPI、トラック密度は5kT
PIに設定されている。なおスピンドルの回転数は、そ
れぞれのディスク径において転送速度が15MB/sec
となるように設定している。また、実施例6で述べてい
るように、従来の1−7方式を用いてデータの記録を行
っても、本実施例と同等の性能を有する各装置を構成す
ることができる。ただし、この場合の記録周波数は45
MHzとなる。各装置の仕様を表4〜表6に記す。
(Embodiment 7) Next, the results of constructing a magnetic storage device by combining magnetic disks having a disk diameter of 2.5 inches, 1.8 inches, and 1.3 inches with a magnetic head according to the present invention. State. The magnetic head and magnetic disk used in this embodiment are the same as those used in the sixth embodiment. The linear recording density of data on each track is 144 kBPI, and the track density is 5 kT.
Set to PI. Note that the spindle rotation speed was 15 MB / sec for each disk diameter.
It is set to be. Further, as described in the sixth embodiment, each device having the same performance as that of the present embodiment can be configured even if data is recorded using the conventional 1-7 system. However, the recording frequency in this case is 45
MHz. Tables 4 to 6 show the specifications of each device.

【0115】[0115]

【表4】 [Table 4]

【0116】[0116]

【表5】 [Table 5]

【0117】[0117]

【表6】 [Table 6]

【0118】(実施例8)比抵抗ρ,膜厚dおよび比透
磁率μの異なる磁極を用いた2種類の誘導型薄膜磁気ヘ
ッドを作製し、それぞれの記録磁界強度の周波数依存性
を電子線トモグラフィー法を用いて測定した。試作した
各ヘッドの磁極材料,磁極厚みd,比抵抗ρ、および1
MHz以下の低周波領域における比透磁率μは表7に示
す通りである。
Example 8 Two types of inductive thin-film magnetic heads using magnetic poles having different specific resistances ρ, film thicknesses d and specific magnetic permeability μs were produced, and the frequency dependence of the recording magnetic field strength was measured by using an electron beam. It was measured using the tomography method. The magnetic pole material, magnetic pole thickness d, specific resistance ρ, and 1 for each prototype head
Table 7 shows the relative magnetic permeability μ in the low-frequency region below MHz.

【0119】ヘッドAは、磁極に膜厚3μmの実施例1
に記載の組成を有するNi−Fe合金単層膜を用いてい
る。ヘッドBは実施例4と同様に膜厚2.2μm のFe
−Co−Ni−Mo膜を、膜厚0.1μmのAl23
間層を介して積層した磁極を用いている。よって、この
ヘッドの総磁極膜厚は4.5μm である。なお、ここで
用いたFe−Co−Ni−Mo/Al23/Fe−Co
−Ni−Mo多層膜は、Fe−Co−Ni−Mo膜一層
の厚みが2.7μm 以上になると、記録周波数45MH
zにおける磁界強度の減衰量が10%以上に達し、記録
周波数に伴う書きにじみ量、オーバーライト膜の変動原
因となり望ましくない。本実施例では、Fe−Co−N
i膜一層の厚みを2.2μm に設定した。一方、ヘッド
Cは、磁極の下部磁性膜に膜厚が3μmで比抵抗が90
μΩcmのCo−Ta−Zr非晶質単層膜を用いている。
The head A has a magnetic pole having a thickness of 3 μm according to the first embodiment.
The Ni—Fe alloy single layer film having the composition described in (1) is used. The head B was made of a 2.2 μm thick Fe
The -Co-Ni-Mo film is used magnetic poles laminated through an Al 2 O 3 intermediate layer having a thickness of 0.1 [mu] m. Therefore, the total magnetic pole film thickness of this head is 4.5 μm. Incidentally, Fe-Co-Ni-Mo / Al 2 O 3 / Fe-Co used here
When the thickness of one Fe—Co—Ni—Mo film is 2.7 μm or more, the recording frequency of the Ni—Mo multilayer film is 45 MHz.
The attenuation of the magnetic field intensity at z reaches 10% or more, which is undesirable because it causes the amount of bleeding and the overwrite film to fluctuate with the recording frequency. In this embodiment, Fe-Co-N
The thickness of one i-layer was set to 2.2 μm. On the other hand, the head C has a thickness of 3 μm and a specific resistance of 90 μm on the magnetic film below the magnetic pole.
A Co-Ta-Zr amorphous single layer film of μΩcm is used.

【0120】[0120]

【表7】 [Table 7]

【0121】規格化した記録磁界強度の周波数依存性の
測定結果から、ヘッド効率ηを算出した。Ni−Fe単
層膜を磁極とするヘッドAは、10MHzを超えたあた
りから記録磁界強度が低下していき、100MHzにお
ける強度は、低周波領域における強度の60%以下にま
で減衰している。一方、ヘッドBは、透磁率および比抵
抗がヘッドAに用いているNiFe膜と同等のFe−C
o−Ni−Mo膜を使用しているが、Al23絶縁層を
介して多層化しているため渦電流損失が大幅に緩和され
ている。このヘッドの場合、100MHzにおける磁界
強度の減衰量は20%程度と周波数特性が改善されてい
る。またヘッドCは、100MHzにおいても磁界強度
の減衰量はほぼ0と、優れた周波数特性が得られてい
る。
The head efficiency η was calculated from the measured result of the frequency dependence of the normalized recording magnetic field intensity. In the head A having the Ni-Fe single layer film as the magnetic pole, the recording magnetic field intensity decreases from about 10 MHz, and the intensity at 100 MHz is attenuated to 60% or less of the intensity in the low frequency region. On the other hand, the head B has the same magnetic permeability and specific resistance as Fe—C which is equivalent to that of the NiFe film used for the head A.
using o-Ni-Mo film, but the eddy current loss because of the multi-layered through the Al 2 O 3 insulating layer is greatly reduced. In the case of this head, the attenuation of the magnetic field intensity at 100 MHz is about 20%, and the frequency characteristic is improved. In addition, the head C has excellent frequency characteristics of almost zero attenuation of the magnetic field intensity even at 100 MHz.

【0122】(実施例9)本実施例では、上部及び下部
磁性膜を以下の製法によって形成した。
Embodiment 9 In this embodiment, the upper and lower magnetic films were formed by the following manufacturing method.

【0123】Ni++量:16.7g/l,Fe++量:2.
4g/lを含み、その他通常の応力緩和剤,界面活性剤
を含んだめっき浴において、pH:3.0 ,めっき電流
密度:15mA/cm2 の条件でフレームめっきした上・
下部磁気コアを有する誘導型の薄膜磁気ヘッドを作製し
た。トラック幅は4.0μm、ギャップ長は0.4μmで
ある。この磁性膜の組成は42.4Ni−Fe(重量%)
であり、磁気特性は飽和磁束密度(BS )が1.64
T,困難軸保磁力(HCH)が0.5Oeで比抵抗(ρ)
は48.1μΩcm であった。
Ni ++ content: 16.7 g / l, Fe ++ content: 2.
In a plating bath containing 4 g / l and other ordinary stress relieving agents and surfactants, frame plating was performed under the conditions of pH: 3.0, plating current density: 15 mA / cm 2.
An inductive thin film magnetic head having a lower magnetic core was manufactured. The track width is 4.0 μm and the gap length is 0.4 μm. The composition of this magnetic film was 42.4Ni-Fe (% by weight).
And the magnetic characteristics are such that the saturation magnetic flux density (B S ) is 1.64.
T, hard axis coercive force (H CH ) 0.5 Oe and specific resistance (ρ)
Was 48.1 μΩcm 2.

【0124】図22は記録・再生分離型薄膜磁気ヘッド
の斜視図及び図23は記録ヘッドの平面図である。上部
磁気コア320,上部シールド層を兼ねた下部磁気コア
321,コイル325を有し、この3つで記録ヘッドを構成
している。再生のための磁気抵抗効果型素子323,磁
気抵抗効果型素子323にセンス電流を流すための電極
324,下部シールド層322を有し、スライダ326
の構成を有する。
FIG. 22 is a perspective view of a recording / reproducing separated thin film magnetic head, and FIG. 23 is a plan view of the recording head. Upper magnetic core 320, lower magnetic core also serving as upper shield layer
321 and a coil 325, and these three constitute a recording head. A slider 326 has an electrode 324 and a lower shield layer 322 for allowing a sense current to flow through the magnetoresistive element 323 for reproduction and the magnetoresistive element 323.
It has a configuration of

【0125】この誘導型の薄膜磁気ヘッドを実施例1に
示す磁気ディスク装置に搭載し、記録性能を評価した。
媒体は外径が3.5 インチ,保磁力が2500Oeであ
る。
The inductive type thin film magnetic head was mounted on the magnetic disk device shown in Example 1, and the recording performance was evaluated.
The medium has an outer diameter of 3.5 inches and a coercive force of 2500 Oe.

【0126】このような構成で評価した本発明による記
録ヘッドの性能(オーバーライト特性)は40MHz以
上の高周波領域でも−50dB程度の優れた記録性能が
得られた。
The performance (overwrite characteristic) of the recording head according to the present invention evaluated in such a configuration was excellent in recording performance of about -50 dB even in a high frequency region of 40 MHz or more.

【0127】(実施例10)本実施例における磁気記憶
装置は、図22に示す記録には誘導型の記録ヘッドを用
い、再生に磁気抵抗効果型素子(MR素子)を用いた記
録再生分離ヘッドを用いたものである。インダクティブ
型ヘッドの記録磁極の上部磁性膜を前述のように形成す
るとともに、もう一方の記録磁極を兼ねた上部シールド
層81にはFe−Co−Ni膜一層の厚みを2.2μm
としたFe−Co−Ni/Al23/Fe−Co−Ni
多層膜を用いている。なお、Al23 中間層の厚みは
0.1μm、記録磁極のトラック幅は3μmとした。下
部シールド層82には厚みが1μmのNi−Fe合金を
用いた。磁気抵抗効果型素子86には厚みが15nmの
Ni−Fe合金を用いており、これをソフトフィルムバ
イアス方式を利用して駆動している。なお、磁気抵抗効
果型素子86にはNi−Fe合金のかわりにNi−Fe
層,Cu層,Co層、およびNi−O系,Fe−Mn
系、あるいはCr−Mn系の反強磁性膜からなるスピン
バルブ型素子、あるいはCo−Ag,Co−Au,Ni
Fe−Ag,Co−Cu,Fe−Agなどの合金系巨大
磁気抵抗効果素子、あるいはCo/Cr,Fe/Cr,
Co/Cu,NiFe/Cu系の多層膜系巨大磁気抵抗
効果素子を用いることもできる。
(Embodiment 10) In the magnetic storage device of this embodiment, a recording / reproducing separation head using an inductive recording head for recording and a magnetoresistive element (MR element) for reproduction shown in FIG. Is used. The upper magnetic film of the recording magnetic pole of the inductive head is formed as described above, and the upper shield layer 81 also serving as the other recording magnetic pole has a thickness of one Fe-Co-Ni film of 2.2 μm.
And the Fe-Co-Ni / Al 2 O 3 / Fe-Co-Ni
A multilayer film is used. The thickness of the Al 2 O 3 intermediate layer was 0.1 μm, and the track width of the recording pole was 3 μm. For the lower shield layer 82, a 1 μm thick Ni—Fe alloy was used. The magnetoresistive element 86 is made of a 15-nm-thick Ni—Fe alloy, and is driven using a soft film bias method. It should be noted that the magnetoresistive element 86 is made of Ni—Fe alloy instead of Ni—Fe alloy.
Layer, Cu layer, Co layer, and Ni-O system, Fe-Mn
Spin-valve type element made of an antiferromagnetic film based on Cr-based or Cr-Mn-based, or Co-Ag, Co-Au, Ni
Alloy-based giant magnetoresistive elements such as Fe-Ag, Co-Cu, Fe-Ag, or Co / Cr, Fe / Cr,
A Co / Cu or NiFe / Cu multilayer giant magnetoresistive element can also be used.

【0128】本実施例により構成した磁気記憶装置は前
述の表2と同様の仕様が達成できるものである。
The magnetic storage device constructed according to the present embodiment can achieve the same specifications as in Table 2 described above.

【0129】[0129]

【発明の効果】本発明によれば、特定の組成で、低コス
トなフレームめっき法により、高保磁力媒体に対して
も、かつ、高周波領域でも十分記録可能な記録ヘッドメ
ディア転送速度15MB/s以上を確保し、記録周波数
45MHz以上,磁気ディスクを4000rpm 以上の高
速で回転させることによりデータの高速転送,アクセス
時間の短縮,記憶容量の増大が可能となる高記録密度磁
気記憶装置が得られる。
According to the present invention, a recording head medium transfer speed of at least 15 MB / s capable of sufficiently recording even in a high coercive force medium and in a high frequency region by a low-cost frame plating method with a specific composition. By rotating the magnetic disk at a recording frequency of 45 MHz or more and at a high speed of 4000 rpm or more, a high-density magnetic storage device capable of high-speed data transfer, reduced access time, and increased storage capacity can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】磁気記録装置の斜視図。FIG. 1 is a perspective view of a magnetic recording device.

【図2】磁気記録装置の断面図。FIG. 2 is a sectional view of a magnetic recording device.

【図3】磁気記録装置の正面図。FIG. 3 is a front view of the magnetic recording device.

【図4】磁気記録装置の平面図。FIG. 4 is a plan view of the magnetic recording device.

【図5】磁気ヘッドと支持装置の組立図。FIG. 5 is an assembly diagram of a magnetic head and a supporting device.

【図6】磁気ヘッドと支持装置の組立図。FIG. 6 is an assembly view of a magnetic head and a supporting device.

【図7】薄膜磁気ヘッドが設けられたスライダの斜視
図。
FIG. 7 is a perspective view of a slider provided with a thin-film magnetic head.

【図8】記録再生分離型薄膜磁気ヘッドの斜視図。FIG. 8 is a perspective view of a read / write separated thin film magnetic head.

【図9】周波数とオーバーライトとの関係を示す線図。FIG. 9 is a diagram showing a relationship between frequency and overwriting.

【図10】結晶粒径と困難軸方向での保磁力との関係を
示す線図。
FIG. 10 is a diagram showing a relationship between a crystal grain size and a coercive force in a hard axis direction.

【図11】誘導型薄膜磁気ヘッドの断面図。FIG. 11 is a sectional view of an inductive thin film magnetic head.

【図12】誘導型薄膜磁気ヘッドの平面図。FIG. 12 is a plan view of an inductive thin film magnetic head.

【図13】磁気抵抗効果型薄膜磁気ヘッドの膜構成を示
す平面図。
FIG. 13 is a plan view showing a film configuration of a magnetoresistive thin-film magnetic head.

【図14】磁気抵抗効果型ヘッドの膜構成を示す図。FIG. 14 is a diagram showing a film configuration of a magnetoresistive head.

【図15】磁気抵抗効果型ヘッドの膜構成を示す図。FIG. 15 is a diagram showing a film configuration of a magnetoresistive head.

【図16】Ni量又は(Ni/Fe)比とBS ,ρ及び
CHとの関係を示す線図。
FIG. 16 is a diagram showing the relationship between Ni amount or (Ni / Fe) ratio and B s , ρ, and H CH .

【図17】Mo量とBS ,ρ及びHCHとの関係を示す線
図。
FIG. 17 is a diagram showing the relationship between the amount of Mo and B S , ρ, and H CH .

【図18】Mo量とBS ,ρ及びHCHとの関係を示す線
図。
FIG. 18 is a diagram showing the relationship between the amount of Mo and B S , ρ, and H CH .

【図19】周波数と(μf/μ1MHz)との関係を示
す線図。
FIG. 19 is a diagram showing a relationship between frequency and (μf / μ1 MHz).

【図20】薄膜磁気ヘッドの平面図。FIG. 20 is a plan view of the thin-film magnetic head.

【図21】薄膜磁気ヘッドの断面図。FIG. 21 is a sectional view of a thin-film magnetic head.

【図22】記録再生分離型薄膜磁気ヘッドの斜視図。FIG. 22 is a perspective view of a read / write separated thin film magnetic head.

【図23】誘導型薄膜磁気ヘッドの平面図。FIG. 23 is a plan view of an inductive thin film magnetic head.

【符号の説明】[Explanation of symbols]

1…磁気ディスク、2…薄膜磁気ヘッド、3…ジンバル
系支持装置、4…位置決め装置、25…スライダ、80
…基体(スライダ)、81,321…上部シールド膜、
82,322…下部シールド膜、83,320…上部磁
性膜、84…下部磁性膜、85,324…電極、86,
110,323…磁気抵抗効果膜、87,222,32
5…コイル、88,221…磁気ギャップ、89…絶縁
体、90…バック・ギャップ。
DESCRIPTION OF SYMBOLS 1 ... Magnetic disk, 2 ... Thin film magnetic head, 3 ... Gimbal system support device, 4 ... Positioning device, 25 ... Slider, 80
... Base (slider), 81,321 ... Top shield film,
82, 322: lower shield film, 83, 320: upper magnetic film, 84: lower magnetic film, 85, 324: electrode, 86,
110,323 ... Magnetoresistance effect film, 87,222,32
5: coil, 88, 221: magnetic gap, 89: insulator, 90: back gap.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鳴海 俊一 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 川辺 隆 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 府山 盛明 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 ▲高▼野 公史 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 山本 久乃 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 益田 賢三 神奈川県小田原市国府津2880番地 株式会 社日立製作所ストレージシステム事業部内 Fターム(参考) 5D033 BA02 DA04 DA31    ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Shunichi Narumi             1-280 Higashi-Koigakubo, Kokubunji-shi, Tokyo             Central Research Laboratory, Hitachi, Ltd. (72) Inventor Takashi Kawabe             1-280 Higashi-Koigakubo, Kokubunji-shi, Tokyo             Central Research Laboratory, Hitachi, Ltd. (72) Inventor Moriaki Fuyama             1-280 Higashi-Koigakubo, Kokubunji-shi, Tokyo             Central Research Laboratory, Hitachi, Ltd. (72) Inventor ▲ Taka ▼ Kimifumi No             1-280 Higashi-Koigakubo, Kokubunji-shi, Tokyo             Central Research Laboratory, Hitachi, Ltd. (72) Inventor Hisano Yamamoto             1-280 Higashi-Koigakubo, Kokubunji-shi, Tokyo             Central Research Laboratory, Hitachi, Ltd. (72) Inventor Kenzo Masuda             2880 Kozu, Odawara City, Kanagawa Pref.             Hitachi, Ltd. Storage Systems Division F-term (reference) 5D033 BA02 DA04 DA31

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】下部磁性膜と,該下部磁性膜上に形成され
一端が前記下部磁性膜の一端に接し、他端が前記下部磁
性膜の他端に磁気ギャップを介して対向し、これによっ
て下部磁性膜と共に一部に磁気ギャップを有する磁気回
路を形成する上部磁性膜と,両磁性膜間を通り磁気回路
と交差する所定巻回数のコイルを形成する導体コイルと
を具備した薄膜磁気ヘッドの製造方法において、 前記下部及び上部磁性膜の少なくとも一方を、めっき浴
が金属イオン濃度が15〜20g/lのNi++イオン及
び2.0〜2.7g/lのFe++イオンを含み、かつ、N
i++イオンとFe++イオンの比(Ni++/Fe++)が7
〜8と、応力緩和剤及び界面活性剤とを含み、pHが
2.5〜3.5であるNi−Fe合金の電気めっき浴を用
い電気めっきによって形成することを特徴とする薄膜磁
気ヘッドの製造方法。
A lower magnetic film, one end of which is formed on the lower magnetic film and is in contact with one end of the lower magnetic film, and the other end of which is opposed to the other end of the lower magnetic film via a magnetic gap; A thin-film magnetic head comprising: an upper magnetic film that forms a magnetic circuit partially having a magnetic gap together with a lower magnetic film; and a conductor coil that forms a predetermined number of turns of a coil passing between the magnetic films and intersecting the magnetic circuit. In the manufacturing method, at least one of the lower and upper magnetic films may include a plating bath containing Ni ++ ions having a metal ion concentration of 15 to 20 g / l and Fe ++ ions having a metal ion concentration of 2.0 to 2.7 g / l, And N
i ++ ion to Fe ++ ion ratio (Ni ++ / Fe ++) of 7
And a thin film magnetic head formed by electroplating using an Ni-Fe alloy electroplating bath having a pH of 2.5 to 3.5, which comprises a stress relaxing agent and a surfactant. Production method.
JP2003098757A 2003-04-02 2003-04-02 Magnetic memory Pending JP2003346306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003098757A JP2003346306A (en) 2003-04-02 2003-04-02 Magnetic memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003098757A JP2003346306A (en) 2003-04-02 2003-04-02 Magnetic memory

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000340373A Division JP2001160206A (en) 2000-11-02 2000-11-02 Magnetic storage device

Publications (1)

Publication Number Publication Date
JP2003346306A true JP2003346306A (en) 2003-12-05

Family

ID=29774742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003098757A Pending JP2003346306A (en) 2003-04-02 2003-04-02 Magnetic memory

Country Status (1)

Country Link
JP (1) JP2003346306A (en)

Similar Documents

Publication Publication Date Title
US6490131B2 (en) Thin film magnetic head with electroplated Ni-Fe alloy thin film having small average crystal grain size range
US6034847A (en) Apparatus and thin film magnetic head with magnetic membrane layers of different resistivity
JP3947727B2 (en) A vertical writer with a main pole of magnetically soft and stable high magnetic moment
JP3799168B2 (en) Magnetic recording / reproducing device
US7072155B2 (en) Magnetoresistive sensor including magnetic domain control layers having high electric resistivity, magnetic head and magnetic disk apparatus
JP3803180B2 (en) Magnetic recording medium, method for manufacturing the same, and magnetic disk drive
JPH0997409A (en) Magnetoresistive magnetic head and magnetic recording and reproducing device
JP2817501B2 (en) Magnetic disk drive and magnetic head used therefor
US8724262B1 (en) Magnetic head and magnetic recording/reproduction apparatus that decreases oscillation driving voltage of a spin torque oscillation element
JP4011355B2 (en) Soft magnetic film and thin film magnetic head
WO1997008687A1 (en) Magnetic head and magnetic memory apparatus using the head
JP3787403B2 (en) Magnetoresistive head
JP3267046B2 (en) Magnetic storage device
JPH10241125A (en) Thin film magnetic head and recording/reproducing separation type magnetic head and magnetic recording/ reproducing apparatus using the same
JPH117609A (en) Thin film magnetic head, and recording and reproducing separation type head, and magnetic storing and reproducing device using it
JP3730976B2 (en) Thin film magnetic head, head gimbal assembly, and hard disk drive
JP2003346306A (en) Magnetic memory
JP3932587B2 (en) Magnetic laminate, magnetic sensor, magnetic recording medium, and magnetic recording / reproducing apparatus
JPH11161920A (en) Recording/reproducing head, head disk assembly using it and magnetic disk device
JP2001160206A (en) Magnetic storage device
JP3764775B2 (en) Manufacturing method of magnetoresistive head
JPH08115516A (en) Magnetic recording medium and magnetic recorder
JP3936405B2 (en) Magnetoresistive head and magnetic disk drive
JP2024148603A (en) Magnetic recording medium and magnetic recording device
JPH11134621A (en) Recording and reproducing separation type head and its production

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040723

A131 Notification of reasons for refusal

Effective date: 20040803

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20041130

Free format text: JAPANESE INTERMEDIATE CODE: A02