JP2003344112A - Optical encoder - Google Patents

Optical encoder

Info

Publication number
JP2003344112A
JP2003344112A JP2002150268A JP2002150268A JP2003344112A JP 2003344112 A JP2003344112 A JP 2003344112A JP 2002150268 A JP2002150268 A JP 2002150268A JP 2002150268 A JP2002150268 A JP 2002150268A JP 2003344112 A JP2003344112 A JP 2003344112A
Authority
JP
Japan
Prior art keywords
light
light receiving
receiving element
plate
optical encoder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002150268A
Other languages
Japanese (ja)
Inventor
Hirohiko Sonoki
裕彦 園木
Shin Odajima
慎 小田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Precision Corp
Original Assignee
Nidec Copal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Copal Corp filed Critical Nidec Copal Corp
Priority to JP2002150268A priority Critical patent/JP2003344112A/en
Publication of JP2003344112A publication Critical patent/JP2003344112A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Transform (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical encoder with few fluctuation of an output phase caused by decentering of a rotation slit, and a low price, and high resolution. <P>SOLUTION: The optical encoder comprises a rotation plate 1, a fixation plate 2, a light-emitting element 3 and a light-receiving elements 4A, 4B arranged to face with holding these plates 1, 2 between them. On the rotation plate 1, a slit 11 is formed along a circumference thereof, and light from the light-emitting element 3 is intermittently transmitted with rotation thereof. On the fixation plate 2 with openings 21A, 21B, light transmitting through the rotation plate 1 is separated into at least two fluxes with mutually shifted intermittent phases. The light-receiving elements 4A, 4B individually receive the flux to output at least two electric signals with cycles corresponding to intermittent states and shifted phases. Light guide members 5A, 5B guide from the fixation plate 2 to the light-receiving elements 4A, 4B with expanding the space between the adjacent fluxes. Consequently, the light-receiving elements 4A, 4B can be arranged at an expanded space. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は発光素子と受光素子
を組み合わせた光学式エンコーダに関する。より詳しく
は、受光素子側に導光部材(ライトガイド)を用いた光
学式エンコーダに関する。
TECHNICAL FIELD The present invention relates to an optical encoder in which a light emitting element and a light receiving element are combined. More specifically, the present invention relates to an optical encoder that uses a light guide member (light guide) on the light receiving element side.

【0002】[0002]

【従来の技術】一般に、光学式エンコーダは回転板と固
定板が近接して平行に配置され、これらを挟む形で発光
素子と受光素子が対向している。発光素子と受光素子を
結ぶ光軸は、回転板の回転軸に対して平行な方向に配置
されている。回転板は回転軸を中心として回転する一
方、固定板は回転軸を保持するボディに固定されてい
る。回転板の外周付近には所定本数のスリットが等間隔
で放射状に形成されている。以下、本明細書では回転板
に形成されたスリットを回転スリットと呼ぶ場合があ
る。又、回転スリットの本数は分解能に対応している
為、本明細書では回転スリットの本数を分解能Pとして
表わす場合がある。一方、固定板にも一本又は複数本の
スリットが、回転スリットと同ピッチでほぼ同形状に形
成されている。以下、本明細書では固定板に形成された
スリットを固定スリットと呼ぶ。場合によっては、回転
板側に形成されたスリットから区別する為、固定スリッ
トを開口と呼ぶこともある。回転スリットや固定スリッ
トは、金属や樹脂など遮光性の材料をくり抜いて形成す
る。あるいは、透光性のガラスや樹脂の片面に遮光膜を
成膜した材料を用い、この遮光膜を選択的にエッチング
してスリットを形成する場合もある。この様にして形成
されるスリットの幅寸法はスリットピッチの約半分であ
る。以上の構成により、回転板が回転すると、回転スリ
ットと固定スリットの相対位置が変化し、発光素子から
放射された光が遮光及び透光を繰り返して断続する光束
となり、受光素子に入射する。受光素子は、断続する光
束を周期的な電気信号に変換して出力する。電気信号の
周期又は周波数により、回転板の回転数を検出すること
ができる。
2. Description of the Related Art Generally, in an optical encoder, a rotary plate and a fixed plate are arranged close to each other in parallel, and a light emitting element and a light receiving element face each other with the rotary plate and the fixed plate sandwiched therebetween. An optical axis connecting the light emitting element and the light receiving element is arranged in a direction parallel to the rotation axis of the rotary plate. The rotary plate rotates about the rotary shaft, while the fixed plate is fixed to the body holding the rotary shaft. A predetermined number of slits are radially formed at equal intervals near the outer circumference of the rotary plate. Hereinafter, in this specification, the slit formed on the rotary plate may be referred to as a rotary slit. Since the number of rotary slits corresponds to the resolution, the number of rotary slits may be referred to as the resolution P in this specification. On the other hand, one or more slits are also formed in the fixed plate at substantially the same shape as the rotary slits at the same pitch. Hereinafter, in the present specification, the slit formed on the fixed plate is referred to as a fixed slit. In some cases, the fixed slit may be referred to as an opening in order to distinguish it from the slit formed on the rotary plate side. The rotary slit and the fixed slit are formed by hollowing out a light-shielding material such as metal or resin. Alternatively, a material in which a light-shielding film is formed on one surface of translucent glass or resin is used, and the light-shielding film may be selectively etched to form slits. The width dimension of the slits thus formed is about half the slit pitch. With the above configuration, when the rotary plate rotates, the relative positions of the rotary slit and the fixed slit change, and the light emitted from the light emitting element becomes a light beam that is interrupted by repeatedly blocking and transmitting light, and enters the light receiving element. The light receiving element converts the intermittent light flux into a periodic electric signal and outputs it. The rotation speed of the rotating plate can be detected by the cycle or frequency of the electric signal.

【0003】[0003]

【発明が解決しようとする課題】光学式エンコーダで
は、断続する位相が互いにずれた複数の光束を生成し、
受光素子から対応する互いに位相のずれた電気信号を出
力する場合がある。例えば、回転数に加えて回転方向を
検出する場合、互いに位相が例えば90度ずれた二個の
電気信号を出力する。二相の電気信号の相対的な位相関
係に基づいて、回転板の回転方向を検出することができ
る。位相の異なる電気信号を出力させる場合、周方向に
沿って並んだ回転スリットの列(以下本明細書ではトラ
ックと呼ぶ場合がある)に対して複数の固定スリットを
所定の角度間隔(n×Ap+Af)だけずらして配置す
る。ここで、nは0から分解能Pの間の正整数、Apは
回転スリットの角度間隔、Afは必要とする位相差分に
相当する角度差である。あるいは、回転板に同心状のト
ラックを複数本設け、且つ各トラックに形成される回転
スリットの位置を相対的にAf分ずらす構造としてもよ
い。この場合には、各トラックに対応する固定スリット
は、互いにn×Ap分ずらせばよい。いずれの場合も、
n=0の時複数の固定スリットは最も近接的に配置さ
れ、n=P/2の場合複数の固定スリットは径方向に離
間して最も離れた位置に配される。
In an optical encoder, a plurality of light beams having intermittent intermittent phase shifts are generated,
In some cases, the light receiving elements may output corresponding electrical signals that are out of phase with each other. For example, when the rotation direction is detected in addition to the rotation speed, two electric signals whose phases are shifted by 90 degrees from each other are output. The rotation direction of the rotary plate can be detected based on the relative phase relationship between the two-phase electric signals. When outputting electric signals having different phases, a plurality of fixed slits are arranged at predetermined angular intervals (n × Ap + Af) with respect to a row of rotating slits (which may be hereinafter referred to as tracks in the present specification) arranged along the circumferential direction. ) Only shift them. Here, n is a positive integer between 0 and the resolution P, Ap is the angular interval of the rotary slits, and Af is the angular difference corresponding to the required phase difference. Alternatively, the rotary plate may be provided with a plurality of concentric tracks, and the position of the rotary slit formed in each track may be relatively shifted by Af. In this case, the fixed slits corresponding to each track may be displaced from each other by n × Ap. In either case,
When n = 0, the plurality of fixed slits are arranged closest to each other, and when n = P / 2, the plurality of fixed slits are radially separated from each other and arranged at the farthest position.

【0004】理想的には回転板が回転軸に対して無偏芯
で取り付けられる。しかしながら、実際には様々な誤差
要因により、回転板は回転軸に対して多少の偏芯があ
る。従って、回転板に形成された回転スリットの列から
なる円形トラックも、回転軸に対して偏芯がある。この
偏芯があると、複数の電気信号の間に現われる位相差
が、回転板の回転に伴って設定位相差からずれ、いわゆ
る位相変動が生じる。回転スリットの偏芯による各受光
素子出力の位相変動は、n=P/2で最大となり、n=
0又はPで最小となる。又、回転スリットが2トラック
設けられている場合、径方向のトラック間隔が小さい
程、位相変動も少なくなる。要するに、複数の受光素子
の配置間隔は狭い程、出力電気信号の位相変動は小さく
なる。複数の受光素子の間隔を狭める手段として、例え
ば同一のチップ上に複数の受光領域を集積形成する方法
が挙げられる。しかしながら、複数の受光領域を1チッ
プ上に集積形成した場合、受光素子が高価なものになっ
てしまう。逆に、1チップ当たり1受光領域を有する安
価な汎用品を使用した場合、各チップを近接配置するこ
とができず位相変動が著しくなり高分解能化が困難であ
る。
Ideally, the rotary plate is attached eccentrically to the rotary shaft. However, in reality, due to various error factors, the rotary plate has some eccentricity with respect to the rotary shaft. Therefore, the circular track made up of rows of rotary slits formed on the rotary plate is also eccentric with respect to the rotary shaft. If there is this eccentricity, the phase difference appearing between the plurality of electric signals deviates from the set phase difference as the rotary plate rotates, and so-called phase fluctuation occurs. The phase variation of each light receiving element output due to the eccentricity of the rotary slit becomes maximum at n = P / 2, and n = P / 2.
The minimum is 0 or P. Further, when the rotary slit is provided with two tracks, the smaller the track spacing in the radial direction, the smaller the phase fluctuation. In short, the smaller the arrangement interval of the plurality of light receiving elements, the smaller the phase fluctuation of the output electric signal. As a means for narrowing the interval between the plurality of light receiving elements, for example, a method of integrally forming a plurality of light receiving regions on the same chip can be mentioned. However, when a plurality of light receiving regions are integrated and formed on one chip, the light receiving element becomes expensive. On the other hand, when an inexpensive general-purpose product having one light receiving area per chip is used, the chips cannot be arranged close to each other, and the phase variation becomes significant, which makes it difficult to achieve high resolution.

【0005】[0005]

【課題を解決するための手段】上述した従来の技術の課
題に鑑み、本発明は回転スリットの偏芯による出力位相
変動が少ない低価格高分解能の光学式エンコーダを提供
することを目的とする。係る目的を達成するために以下
の手段を講じた。すなわち、互いに平行配置された回転
板及び固定板と、これらを間にして互いに対向配置され
た発光素子及び受光素子とを備え、前記回転板はその周
方向に沿って所定の間隔でスリットが形成されており、
回転に伴なって該発光素子からの光を断続して透過し、
前記固定板は開口を有しており、該断続して回転板を透
過した光を該断続の位相が互いにずれた少なくとも二本
の光束に分離し、前記受光素子は少なくとも二個配され
ており、該光束をそれぞれ受光して、該断続に応じた周
期を有し且つ互いに位相のずれた少なくとも二個の電気
信号を出力する光学式エンコーダにおいて、該固定板と
該受光素子との間に配された導光部材を有しており、互
いに近接した該光束の間隔を拡大しながら該光束を該固
定板から対応する該受光素子に導光し、以って該光束の
分離間隔に比べて拡大された間隔で該受光素子を配置可
能にしたことを特徴とする。具体的には、前記導光部材
は、該光束を取り込む入射面と該光束を各受光素子に送
り出す出射面とを含む透明な成形品からなり、入射面及
び出射面以外は反射面を構成する。或いは、前記導光部
材は、該光束をそれぞれ取り込む入射口と該光束を各受
光素子に送り出す出射口とを有する光ファイバからな
る。
SUMMARY OF THE INVENTION In view of the above-mentioned problems of the prior art, it is an object of the present invention to provide an optical encoder of low cost and high resolution in which the output phase fluctuation due to the eccentricity of the rotary slit is small. The following measures have been taken to achieve this purpose. That is, the rotating plate and the fixed plate are arranged in parallel to each other, and the light emitting element and the light receiving element are arranged to face each other with the rotating plate and the fixed plate interposed therebetween, and the rotating plate has slits formed at predetermined intervals along the circumferential direction. Has been done,
Light from the light emitting element is intermittently transmitted with rotation,
The fixed plate has an opening, and splits the intermittently transmitted light that has passed through the rotary plate into at least two light beams whose intermittent phases are shifted from each other, and at least two light receiving elements are arranged. , An optical encoder that receives each of the light fluxes and outputs at least two electrical signals that have a cycle corresponding to the interruption and are out of phase with each other, and is arranged between the fixed plate and the light receiving element. The light guide member is provided, and guides the light flux from the fixed plate to the corresponding light receiving element while expanding the distance between the light fluxes that are close to each other. It is characterized in that the light receiving elements can be arranged at an enlarged interval. Specifically, the light guide member is made of a transparent molded product including an incident surface that takes in the light flux and an emission surface that sends out the light flux to each light receiving element, and forms a reflection surface other than the incident surface and the emission surface. . Alternatively, the light guide member is composed of an optical fiber having an entrance for taking in the light flux and an exit for sending the light flux to each light receiving element.

【0006】本発明によれば、小型の光学式ロータリエ
ンコーダにおいて、固定スリットと受光素子の間に導光
部材(ライトガイド)が配されている。ライトガイドは
位相の異なる複数の光束を狭い領域で受光した後、これ
より広い領域に離して配置された複数の受光素子に向け
て光束を導く構造となっている。各出力相の固定スリッ
ト(開口)はなるべく狭い領域に配する一方、広い領域
に間隔を取って低価格受光素子を配置する。狭い領域に
配された固定スリットと広い領域に配された受光素子の
間にライトガイドを挿入し、光束を受光素子まで導く。
例えばライトガイドは、入射した光束が全反射を繰り返
して出射する様な形状並びに構造を有している。異なる
空間位相を持つ複数の固定スリットが近接して配置さ
れ、これから離間配置された受光素子まで、受光量をな
るべく損なわずに光束を導くライトガイドを用いること
で、出力信号波形の位相差精度がよく、低価格の光学式
ロータリエンコーダを得ることができる。
According to the present invention, in the small-sized optical rotary encoder, the light guide member (light guide) is arranged between the fixed slit and the light receiving element. The light guide has a structure in which a plurality of light beams having different phases are received in a narrow region and then the light beams are guided to a plurality of light receiving elements arranged in a region wider than this. The fixed slits (openings) for each output phase are arranged in as narrow a region as possible, while the low cost light receiving elements are arranged in a wide region. A light guide is inserted between a fixed slit arranged in a narrow area and a light receiving element arranged in a wide area to guide a light beam to the light receiving element.
For example, the light guide has a shape and a structure in which an incident light beam is repeatedly totally reflected and emitted. A plurality of fixed slits with different spatial phases are arranged close to each other, and by using a light guide that guides the light flux to the light receiving elements that are spaced apart from this, without impairing the received light amount as much as possible, the phase difference accuracy of the output signal waveform can be improved. It is possible to obtain an inexpensive optical rotary encoder.

【0007】[0007]

【発明の実施の形態】以下図面を参照して本発明の実施
の形態を詳細に説明する。図1は本発明に係る光学式エ
ンコーダの実施形態を示す模式的な斜視図である。図示
する様に、本光学式エンコーダは互いに平行配置された
回転板1及び固定板2と、これらを間にして互いに対向
配置された発光素子3及び受光素子4A,4Bとを備え
ている。回転板1は、その周方向に沿って所定の角度間
隔Apで回転スリット11が形成されている。回転スリ
ット11の本数は分解能Pで表わされる。係る構成によ
り、回転板1は回転軸12を中心として回転し、発光素
子3から放射される光を回転スリット11で断続して透
過する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a schematic perspective view showing an embodiment of an optical encoder according to the present invention. As shown in the figure, the present optical encoder includes a rotary plate 1 and a fixed plate 2 which are arranged in parallel to each other, and a light emitting element 3 and light receiving elements 4A and 4B which are opposed to each other with the rotary plate 1 and the fixed plate 2 interposed therebetween. The rotary plate 1 has rotary slits 11 formed at predetermined angular intervals Ap along the circumferential direction. The number of the rotary slits 11 is represented by the resolution P. With such a configuration, the rotary plate 1 rotates about the rotary shaft 12, and the light emitted from the light emitting element 3 is intermittently transmitted by the rotary slit 11.

【0008】一方、固定板2は開口を有しており、断続
して回転板1を透過した光を該断続の位相が互いにずれ
た少なくとも二本の光束に分離する。本実施形態では固
定板2の開口は固定スリット21A及び固定スリット2
1Bからなり、互いに位相がずれた二本の光束に分離し
ている。尚、本実施形態では各固定スリット21A,2
1Bは、それぞれ二本のスリットからなる。二本のスリ
ットの角度間隔は回転スリット11の角度間隔と同一で
ある。固定スリット21Aと固定スリット21Bは、互
いにn×Ap+Afだけ離れている。これらと対応する
様に、受光素子4A,4Bが二個配されており、上述し
た二本の光束をそれぞれ受光して、該断続に応じた周期
を有し且つ互いに位相のずれた二相の電気信号を出力す
る。
On the other hand, the fixed plate 2 has an opening, and splits the light that has been intermittently transmitted through the rotary plate 1 into at least two light beams whose intermittent phases are shifted from each other. In this embodiment, the openings of the fixed plate 2 are fixed slits 21A and fixed slits 2A.
It is composed of 1B and is separated into two light fluxes which are out of phase with each other. In addition, in this embodiment, each fixed slit 21A, 2
Each of 1B is composed of two slits. The angular spacing of the two slits is the same as the angular spacing of the rotary slit 11. The fixed slit 21A and the fixed slit 21B are separated from each other by n × Ap + Af. Corresponding to these, two light receiving elements 4A and 4B are arranged, and each of the two light fluxes described above is received, and the two light beams having a phase corresponding to the interruption and having a phase shift from each other are provided. Output an electric signal.

【0009】本発明の特徴事項として、固定板2と受光
素子4A,4Bとの間に導光部材が配されている。本実
施形態では、この導光部材は二個のライトガイド5A,
5Bで構成されている。一対のライトガイド5A,5B
は、互いに近接した二本の光束の間隔を拡大しながら二
本の光束を固定板2から対応する二個の受光素子4A,
4Bに導光している。係る構成により、二本の光束の分
離間隔(n×Ap+Af)に比べて拡大された間隔で二
個の受光素子4A,4Bを配置可能である。本実施形態
では、ライトガイド5Aは対応する固定スリット21A
を通過した光束を取り込む入射面51Aと、この取り込
んだ光束を対応する受光素子4Aに送り出す出射面52
Aとを含む透明な成形品からなり、入射面51A及び出
射面52A以外の側面は、全て反射面を構成している。
同様に、ライトガイド5Bも、入射面51B及び出射面
52Bを除き、反射面で囲まれた成形品からなる。場合
によっては、導光部材は、二本の光束をそれぞれ取り込
む入射口と二本の光束を各受光素子に送り出す出射口と
を有する光ファイバで代用してもよい。
As a feature of the present invention, a light guide member is arranged between the fixed plate 2 and the light receiving elements 4A and 4B. In the present embodiment, this light guide member includes two light guides 5A,
It is composed of 5B. A pair of light guides 5A, 5B
Is the two light receiving elements 4A corresponding to the two light beams from the fixed plate 2 while expanding the distance between the two light beams close to each other.
Light is guided to 4B. With such a configuration, it is possible to dispose the two light receiving elements 4A and 4B at an interval that is larger than the separation interval (n × Ap + Af) between the two light beams. In this embodiment, the light guide 5A has a corresponding fixed slit 21A.
The incident surface 51A that takes in the light flux that has passed through and the outgoing surface 52 that sends this taken light flux to the corresponding light receiving element 4A.
A side surface other than the entrance surface 51A and the exit surface 52A constitutes a reflection surface.
Similarly, the light guide 5B is also a molded product surrounded by a reflecting surface except for the incident surface 51B and the emitting surface 52B. In some cases, the light guide member may be replaced by an optical fiber having an entrance for taking in the two light beams and an exit for sending the two light beams to the respective light receiving elements.

【0010】以上の様に、回転板1と平行に固定板2が
組み付けられている。固定板2には二箇所に固定スリッ
ト21A,21Bの群が形成されている。二つの固定ス
リット21A,21Bは、前述した様にn×Ap+Af
の角度間隔だけ互いに離れている。又、発光素子3と受
光素子4A,4Bは、回転板1と固定板2を挟む形で対
向して組み付けられている。換言すると、発光素子3と
受光素子4A,4Bを結ぶ光軸31は、回転軸12と平
行に設定されている。ここで、一対の受光素子4A,4
Bの配置間隔は、固定スリット21A,21Bの配置間
隔n×Ap+Afよりも拡大している。受光素子4A,
4Bと固定板2との間にライトガイド5A,5Bを設
け、各固定スリット21A,21Bを通過した光束が光
量の損失なく、対応する受光素子4A,4Bに入射す
る。ライトガイド5A,5Bは無色透明な主にPCやP
MMA樹脂の成形品であり、入射面から入射した光が樹
脂内部で全反射を繰り返しながら出射面まで導かれ、対
応する受光素子4A,4Bに向かって光束を出射する。
ライトガイド5A,5Bの材質はガラスでもよく、又入
射面及び出射面以外の表面に反射膜のメッキ又は蒸着を
施してもよい。場合によっては、ライトガイドに代えて
光ファイバを利用してもよい。発光素子3は複数でもよ
いが、固定板2が近接しているので、単一として低価格
化が可能である。図示の実施形態は受光素子が二個で二
相の電気信号を得る場合であるが、三相以上の場合も同
様な原理で各位相の変動を抑えることができる。例えば
四相の場合、対応する固定スリットも四個必要になる
が、この時には配置間隔を狭める為、四個の固定スリッ
トを田の字状に配置することが好ましい。尚、図示の実
施形態では固定板2がライトガイド5A,5B側に配置
されているが、これに代えて固定板2を発光素子3側に
配置してもよい。あるいは、固定板2は回転板を上下か
ら挟む様に、受光素子及び発光素子の両側に設けてもよ
い。
As described above, the fixed plate 2 is assembled in parallel with the rotary plate 1. The fixed plate 2 is formed with a group of fixed slits 21A and 21B at two locations. The two fixed slits 21A and 21B are n × Ap + Af as described above.
Are separated from each other by an angular interval of. The light emitting element 3 and the light receiving elements 4A and 4B are assembled so as to face each other with the rotary plate 1 and the fixed plate 2 sandwiched therebetween. In other words, the optical axis 31 connecting the light emitting element 3 and the light receiving elements 4A and 4B is set parallel to the rotation axis 12. Here, the pair of light receiving elements 4A, 4A
The arrangement interval of B is larger than the arrangement interval of fixed slits 21A and 21B n × Ap + Af. Light receiving element 4A,
Light guides 5A and 5B are provided between 4B and the fixed plate 2 so that the light flux passing through the respective fixed slits 21A and 21B is incident on the corresponding light receiving elements 4A and 4B without loss of light quantity. The light guides 5A and 5B are mainly colorless and transparent, such as PC and P.
It is a molded product of MMA resin, and light incident from the incident surface is guided to the emission surface while repeating total reflection inside the resin, and emits a light beam toward the corresponding light receiving elements 4A and 4B.
The material of the light guides 5A and 5B may be glass, or the surfaces other than the incident surface and the emission surface may be plated or vapor-deposited with a reflective film. In some cases, an optical fiber may be used instead of the light guide. A plurality of light emitting elements 3 may be provided, but since the fixing plate 2 is close to each other, it is possible to reduce the cost as a single unit. Although the illustrated embodiment is a case where two light receiving elements are used to obtain a two-phase electric signal, the fluctuation of each phase can be suppressed by the same principle even in the case of three or more phases. For example, in the case of four phases, four corresponding fixed slits are required, but in this case, it is preferable to arrange the four fixed slits in a square shape in order to narrow the arrangement interval. Although the fixed plate 2 is arranged on the light guides 5A and 5B side in the illustrated embodiment, the fixed plate 2 may be arranged on the light emitting element 3 side instead. Alternatively, the fixed plate 2 may be provided on both sides of the light receiving element and the light emitting element so as to sandwich the rotating plate from above and below.

【0011】本発明の理解を容易にする為、回転板の偏
芯と電気信号の位相変動との関係を簡潔に説明する。図
2は、一対の受光素子1,2が回転板の周方向に沿って
離間配置された場合を表わしている。ここで受光素子1
と受光素子2の間隔をdsで表わし、回転軸から各受光
素子1,2までの距離をrsで表わしてある。図示する
様に、回転板が偏芯していると、回転に伴い回転板の中
心位置が円軌道上を移動する。回転板の中心から見て、
受光素子1から受光素子2までの角度は、回転板の中心
が受光素子1と受光素子2の中間位置に最も近づいた時
θ1となって最大となり、最も遠ざかった時にθ2とな
って最小となる。又、1ピッチ当たりの角度は2π/P
なので、各受光素子から出力される電気信号の位相変動
は、(θ1−θ2)/(2π/P)×100(%)で表
わされる。従って、θ1−θ2が小さい程位相変動が小
さくなる。θ1−θ2を小さくする為には、回転板の偏
芯φを小さくするとともに、rsを大きくする一方ds
を小さくする必要がある。本発明では、一対の受光素子
1,2の間隔dsを小さくする為、ライトガイドを用い
ている。
To facilitate understanding of the present invention, the relationship between the eccentricity of the rotating plate and the phase fluctuation of the electric signal will be briefly described. FIG. 2 shows a case where the pair of light receiving elements 1 and 2 are arranged apart from each other along the circumferential direction of the rotary plate. Here, the light receiving element 1
The distance between the light receiving element 2 and the light receiving element 2 is represented by ds, and the distance from the rotation axis to each of the light receiving elements 1 and 2 is represented by rs. As shown in the figure, when the rotary plate is eccentric, the center position of the rotary plate moves on a circular orbit as it rotates. Seen from the center of the rotating plate,
The angle from the light receiving element 1 to the light receiving element 2 becomes θ1 when the center of the rotating plate is closest to the intermediate position between the light receiving element 1 and the light receiving element 2, and becomes maximum when it is farthest, and becomes the minimum. . The angle per pitch is 2π / P
Therefore, the phase fluctuation of the electric signal output from each light receiving element is represented by (θ1−θ2) / (2π / P) × 100 (%). Therefore, the smaller θ1-θ2, the smaller the phase fluctuation. In order to reduce θ1-θ2, the eccentricity φ of the rotary plate is reduced and rs is increased while ds is increased.
Needs to be small. In the present invention, a light guide is used in order to reduce the distance ds between the pair of light receiving elements 1 and 2.

【0012】図3は、一対の受光素子1,2が径方向に
配置されている場合を表わしている。理解を容易にする
為、図2と対応する部分には対応する参照符号を付して
ある。回転板の中心から見て、受光素子1から受光素子
2までの角度は、回転板の中心が受光素子1と受光素子
2が並んだラインと垂直方向へ最も離れたポイント付近
にある時、最大となる。この場合も、図から明らかな様
にθ1−θ2が小さい程位相変動が小さくなる。θ1−
θ2を小さくする為には、回転スリットの偏芯φを小さ
くするとともに、rsを大きくする一方dsを小さくす
る必要がある。本発明によって解決しようとする課題
は、dsを如何に小さくするかである。
FIG. 3 shows a case where the pair of light receiving elements 1 and 2 are arranged in the radial direction. To facilitate understanding, the parts corresponding to those in FIG. 2 are designated by the corresponding reference numerals. When viewed from the center of the rotating plate, the angle from the light receiving element 1 to the light receiving element 2 is maximum when the center of the rotating plate is near the point where the light receiving element 1 and the light receiving element 2 are lined up in the direction most distant from the line. Becomes Also in this case, as is clear from the figure, the smaller the θ1-θ2, the smaller the phase fluctuation. θ1-
In order to reduce θ2, it is necessary to reduce the eccentricity φ of the rotary slit, increase rs, and reduce ds. The problem to be solved by the present invention is how to reduce ds.

【0013】その課題を解決する手段として、受光域を
分割した受光素子(例えばフォトダイオードアレイ)を
使用する手法が考えられる。この手法を図4の参考図に
示す。(A)に示す様に、受光素子4を構成するフォト
ダイオードアレイは、受光領域1〜4がワンチップ上に
集積形成され、ベアチップのまま光学式エンコーダの回
路基板に実装して使用される。図示のフォトダイオード
アレイは、径方向外側のトラックに対して受光域1,受
光域2を配置し、径方向内側のトラックに対して受光域
3,受光域4を配置した例である。周方向に沿って離間
した受光域1及び受光域2は、例えば180度位相がず
れている。同様に周方向に沿って離間した受光域3及び
受光域4も、位相が互いに180度ずれている。又、径
方向に沿って互いに離間した受光域1及び受光域4は、
例えば位相が互いに90度ずれている。同様に受光域2
と受光域3も位相が90度ずれている。しかしながら、
この様に四つの受光域がコンパクトに実装されたフォト
ダイオードアレイは高価な為、低価格のエンコーダに組
み込むことが困難である。場合によっては、フォトダイ
オードアレイに代えて、個々のダイオードチップにリー
ドを配線し、樹脂の一体成形によりパッケージにされた
ものを回路基板に実装して使用することもある。しかし
ながら、このパッケージ部品も、単体のチップ部品に比
べて高価である。
As a means for solving the problem, a method of using a light receiving element (for example, a photodiode array) whose light receiving area is divided can be considered. This technique is shown in the reference diagram of FIG. As shown in (A), in the photodiode array forming the light receiving element 4, the light receiving regions 1 to 4 are integrated and formed on one chip, and the bare chip is mounted on the circuit board of the optical encoder for use. The illustrated photodiode array is an example in which a light receiving area 1 and a light receiving area 2 are arranged on a radially outer track, and a light receiving area 3 and a light receiving area 4 are arranged on a radially inner track. The light receiving area 1 and the light receiving area 2 separated along the circumferential direction are out of phase with each other by 180 degrees, for example. Similarly, the light receiving areas 3 and 4 which are separated from each other along the circumferential direction are also 180 degrees out of phase with each other. Further, the light receiving area 1 and the light receiving area 4 which are separated from each other along the radial direction are
For example, the phases are 90 degrees out of phase with each other. Similarly, light receiving area 2
Also, the phase of the light receiving area 3 is shifted by 90 degrees. However,
Since the photodiode array in which the four light receiving areas are compactly mounted in this way is expensive, it is difficult to incorporate it in a low-cost encoder. In some cases, instead of the photodiode array, the leads are wired to the individual diode chips, and the packaged one-piece resin is mounted on the circuit board for use. However, this package component is also more expensive than a single chip component.

【0014】(B)は本発明に従って、ライトガイドを
用い各受光域1〜4の拡大配置を可能とした構成を模式
的に表わしている。(A)の参考例と(B)の実施例を
比較すれば明らかな様に、ライトガイドを用いること
で、互いに隣り合う受光域の配置間隔を、径方向及び周
方向共に拡大することができる。この結果、価格的に高
価なフォトダイオードアレイに代えて、単体のフォトチ
ップ41〜44を例えば図の様に田の字状に配置するこ
とができる。ワンチップの受光素子41,42,43,
44はそれぞれ低価格の汎用フォトトランジスタを用い
ることができる。また、田の字状の配置にこだわらず、
ライトガイドを用いることにより種々の配置が可能であ
る事は勿論である。
FIG. 1B schematically shows a structure in which the light receiving areas 1 to 4 can be enlarged and arranged by using a light guide according to the present invention. As is clear from a comparison between the reference example of (A) and the example of (B), by using the light guide, the arrangement intervals of the light receiving regions adjacent to each other can be increased in both the radial direction and the circumferential direction. . As a result, the single photo chips 41 to 44 can be arranged, for example, in the shape of a square as shown in the figure, instead of the costly photodiode array. One-chip light receiving element 41, 42, 43,
Low cost general purpose phototransistors 44 can be used respectively. Also, regardless of the layout of the rice field,
Of course, various arrangements are possible by using the light guide.

【0015】[0015]

【発明の効果】以上説明した様に、本発明によれば、複
数の固定スリット群を近接配置した場合でも、受光素子
は間隔を開けて配置でき、低価格な汎用のフォトトラン
ジスタチップが使用できるので、回転スリットの偏芯に
よる位相精度の悪化を抑制した低価格高分解能の光学式
エンコーダが得られる。
As described above, according to the present invention, even when a plurality of fixed slit groups are arranged close to each other, the light receiving elements can be arranged at intervals, and a low-priced general-purpose phototransistor chip can be used. Therefore, it is possible to obtain a low-cost, high-resolution optical encoder that suppresses deterioration of phase accuracy due to eccentricity of the rotary slit.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る光学式エンコーダの模式的な斜視
図である。
FIG. 1 is a schematic perspective view of an optical encoder according to the present invention.

【図2】回転板の偏芯と位相変動との関係を示す模式図
である。
FIG. 2 is a schematic diagram showing a relationship between eccentricity of a rotating plate and phase fluctuation.

【図3】回転板の偏芯と位相変動との関係を示す模式図
である。
FIG. 3 is a schematic diagram showing a relationship between eccentricity of a rotating plate and phase fluctuation.

【図4】受光素子のレイアウトの参考例及び実施例を示
す模式的な平面図である。
FIG. 4 is a schematic plan view showing a reference example and an example of a layout of a light receiving element.

【符号の説明】[Explanation of symbols]

1・・・回転板、2・・・固定板、3・・・発光素子、
4A・・・受光素子、4B・・・受光素子、5A・・・
ライトガイド、5B・・・ライトガイド、11・・・回
転スリット、12・・・回転軸、21A・・・固定スリ
ット、21B・・・固定スリット、31・・・光軸、5
1A・・・入射面、51B・・・入射面、52A・・・
出射面、52B・・・出射面
1 ... Rotating plate, 2 ... Fixed plate, 3 ... Light emitting element,
4A ... Light receiving element, 4B ... Light receiving element, 5A ...
Light guide, 5B ... Light guide, 11 ... Rotating slit, 12 ... Rotating shaft, 21A ... Fixed slit, 21B ... Fixed slit, 31 ... Optical axis, 5
1A ... Incident surface, 51B ... Incident surface, 52A ...
Emitting surface, 52B ... Emitting surface

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2F103 BA08 BA37 CA02 DA01 DA13 EA12 EB01 EB12 EB16 EB33 EB37 EC07 EC08 EC17 FA01 FA11    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 2F103 BA08 BA37 CA02 DA01 DA13                       EA12 EB01 EB12 EB16 EB33                       EB37 EC07 EC08 EC17 FA01                       FA11

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 互いに平行配置された回転板及び固定板
と、これらを間にして互いに対向配置された発光素子及
び受光素子とを備え、 前記回転板はその周方向に沿って所定の間隔でスリット
が形成されており、回転に伴なって該発光素子からの光
を断続して透過し、 前記固定板は開口を有しており、該断続して回転板を透
過した光を該断続の位相が互いにずれた少なくとも二本
の光束に分離し、 前記受光素子は少なくとも二個配されており、該光束を
それぞれ受光して、該断続に応じた周期を有し且つ互い
に位相のずれた少なくとも二個の電気信号を出力する光
学式エンコーダにおいて、 該固定板と該受光素子との間に配された導光部材を有し
ており、互いに近接した該光束の間隔を拡大しながら該
光束を該固定板から対応する該受光素子に導光し、 以って該光束の分離間隔に比べて拡大された間隔で該受
光素子を配置可能にしたことを特徴とする光学式エンコ
ーダ。
1. A rotary plate and a fixed plate, which are arranged in parallel with each other, and a light emitting element and a light receiving element, which are opposed to each other with the rotary plate and the fixed plate interposed therebetween, and the rotary plate is arranged at predetermined intervals along the circumferential direction. A slit is formed, and the light from the light emitting element is intermittently transmitted with rotation, and the fixed plate has an opening, and the light transmitted through the rotary plate intermittently is intermittently transmitted. The light is separated into at least two light beams whose phases are shifted from each other, and at least two light receiving elements are arranged, each of which receives the light beams, has a cycle corresponding to the intermittent, and is at least out of phase with each other. An optical encoder that outputs two electric signals has a light guide member arranged between the fixed plate and the light receiving element, and expands the distance between the light fluxes close to each other while The light receiving element corresponding to the fixed plate Guiding and optical encoder being characterized in that to allow placing the light receiving element in expanded intervals than the separation distance of the light beam I following.
【請求項2】 前記導光部材は、該光束を取り込む入射
面と該光束を各受光素子に送り出す出射面とを含む透明
な成形品からなり、入射面及び出射面以外は反射面を構
成することを特徴とする請求項1記載の光学式エンコー
ダ。
2. The light guide member is made of a transparent molded product including an incident surface for taking in the light flux and an exit surface for sending the light flux to each light receiving element, and constitutes a reflecting surface except for the entrance surface and the exit surface. The optical encoder according to claim 1, wherein:
【請求項3】 前記導光部材は、該光束をそれぞれ取り
込む入射口と該光束を各受光素子に送り出す出射口とを
有する光ファイバからなることを特徴とする請求項1記
載の光学式エンコーダ。
3. The optical encoder according to claim 1, wherein the light guide member comprises an optical fiber having an entrance for taking in each of the light beams and an exit for sending out the light beams to each light receiving element.
JP2002150268A 2002-05-24 2002-05-24 Optical encoder Pending JP2003344112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002150268A JP2003344112A (en) 2002-05-24 2002-05-24 Optical encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002150268A JP2003344112A (en) 2002-05-24 2002-05-24 Optical encoder

Publications (1)

Publication Number Publication Date
JP2003344112A true JP2003344112A (en) 2003-12-03

Family

ID=29768163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002150268A Pending JP2003344112A (en) 2002-05-24 2002-05-24 Optical encoder

Country Status (1)

Country Link
JP (1) JP2003344112A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6784417B2 (en) * 2002-12-09 2004-08-31 Nidec Copal Corporation Optical encoder
KR100730484B1 (en) * 2006-03-23 2007-06-20 주식회사 인지디스플레이 Stud classifier
CN100460824C (en) * 2004-04-22 2009-02-11 安华高科技Ecbuip(新加坡)私人有限公司 Photodetector array arrangement for optical encoders

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6784417B2 (en) * 2002-12-09 2004-08-31 Nidec Copal Corporation Optical encoder
CN100460824C (en) * 2004-04-22 2009-02-11 安华高科技Ecbuip(新加坡)私人有限公司 Photodetector array arrangement for optical encoders
KR100730484B1 (en) * 2006-03-23 2007-06-20 주식회사 인지디스플레이 Stud classifier

Similar Documents

Publication Publication Date Title
JP2004191087A (en) Optical encoder
JP4854809B2 (en) Optical encoder
KR100818018B1 (en) Optical rotary encoder
RU2471289C1 (en) Optical encoder
US6803560B1 (en) Optical encoder
JP6420846B2 (en) Optical rotary encoder
JP2005331261A (en) Optical displacement sensor and external force detection device
KR100274131B1 (en) Displacement information detection device
JP4914681B2 (en) Reflective optical encoder
JP2002048602A (en) Optical encoder
JP2003344112A (en) Optical encoder
US6759647B2 (en) Projection encoder
JP2005315863A (en) Optical rotary encoder
JP5147877B2 (en) Optical encoder sensor and optical encoder
JPH08233608A (en) Optical encoder
JP2007078693A (en) Transmissive optical encoder
JPH05256666A (en) Rotary encoder
US20050001156A1 (en) Rotation detector
JP3604574B2 (en) Optical encoder
JP2013083673A (en) Detection unit and encoder
JPH05248818A (en) Optical encoder
JP2001004411A (en) Optical encoder
JP2000275065A (en) Optical encoder
JPH1123321A (en) Optical scale and displacement-information measuring apparatus unit the same
JP2004239855A (en) Reflex photoelectric encoder