JP2003343976A - Heat treating device in magnetic field - Google Patents

Heat treating device in magnetic field

Info

Publication number
JP2003343976A
JP2003343976A JP2002193972A JP2002193972A JP2003343976A JP 2003343976 A JP2003343976 A JP 2003343976A JP 2002193972 A JP2002193972 A JP 2002193972A JP 2002193972 A JP2002193972 A JP 2002193972A JP 2003343976 A JP2003343976 A JP 2003343976A
Authority
JP
Japan
Prior art keywords
magnetic field
heat
coil
heat treatment
disk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002193972A
Other languages
Japanese (ja)
Other versions
JP3533572B2 (en
Inventor
Isao Sasaki
伊佐男 佐々木
Mansuke Sasaki
万助 佐々木
Atsushi Sasaki
淳 佐々木
Hitoshi Mori
仁 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TESLA KK
Original Assignee
TESLA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TESLA KK filed Critical TESLA KK
Priority to JP2002193972A priority Critical patent/JP3533572B2/en
Publication of JP2003343976A publication Critical patent/JP2003343976A/en
Application granted granted Critical
Publication of JP3533572B2 publication Critical patent/JP3533572B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Muffle Furnaces And Rotary Kilns (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat treating device in a magnetic field capable of improving characteristic of a disclike member to be treated such as a magnetic disc uniformly in the circumferential direction, saving energy, and controlling temperature with high precision. <P>SOLUTION: This heat treating device in a magnetic field performs heat treatment in a vacuum vessel by generating a radial magnetic field in the radial direction of the member to be treated by a pair of coils arranged opposingly and symmetrically on the same upper and lower shaft of the disclike member to be treated. Two pairs of coils are inserted and fixed into 9a and 9b up and down of a cylindrical heat block 6 having non-magnetism and high heat conduction property. These pairs of coils are excited in a reverse phase to generate a radial magnetic field at a position of a sample chamber 10 in which the member to be treated is inserted. Heating of the member to be treated is performed by Joule heat and a heater coil wound in a non-inducing manner around outer periphery of the heat block. Coil pressing flanges 8a, 8b are replaced with flanges in which a spiral thin channel for refluxing a medium for cooling is buried to control temperature with high precision in processes of heating and removing heat. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は,減圧された容器,
とくに真空容器内に配置された被処理部材に磁界を印加
しながら加熱処理を行う磁界中熱処理装置に関する.
TECHNICAL FIELD The present invention relates to a depressurized container,
In particular, it relates to a heat treatment apparatus in a magnetic field for performing heat treatment while applying a magnetic field to a member to be treated placed in a vacuum container.

【0002】[0002]

【従来の技術】この種の磁界中熱処理装置としては,例
えば,珪素鋼板の特性改善のための「珪素鋼板の磁場中
熱処理方法」(特許3019705)や,磁気抵抗効果
型ヘッドの製造プロセスで使用される「磁界中熱処理装
置」(特開2001−102211)などが知られてい
る.
2. Description of the Related Art A magnetic field heat treatment apparatus of this type is used, for example, in a "magnetic field heat treatment method for a silicon steel sheet" (Patent 3019705) for improving the characteristics of a silicon steel sheet, or in a manufacturing process of a magnetoresistive head. The “heat treatment apparatus in magnetic field” (Japanese Patent Laid-Open No. 2001-102121) is known.

【0003】[0003]

【発明が解決しようとする課題】上記のような磁界中熱
処理装置は,磁界発生手段として常伝導ソレノイドコイ
ルあるいは超伝導ソレノイドコイルを使用し,それらの
発生する磁界はソレノイドコイルの軸方向に強い成分を
持つ分布となる.このような磁界中で磁気ディスクのよ
うな回転体の熱処理を行うと,磁気異方性の付与などの
特性の改善が円周方向に対して一様に確保できないとい
う問題点があった.
The heat treatment apparatus in a magnetic field as described above uses a normal conduction solenoid coil or a superconducting solenoid coil as the magnetic field generating means, and the magnetic field generated by them is a strong component in the axial direction of the solenoid coil. The distribution has. When heat treatment is applied to a rotating body such as a magnetic disk in such a magnetic field, there is a problem that improvement in characteristics such as imparting magnetic anisotropy cannot be secured uniformly in the circumferential direction.

【0004】さらに,上記のような磁界中熱処理装置
は,被処理部材を加熱するために独立した加熱用ヒータ
を用いており,常伝導コイルを用いた装置ではソレノイ
ドコイルのジュール熱による発熱は冷却水等で外部に放
出しており,被処理部材の加熱のために積極的に利用す
ることはない.また,超伝導ソレノイドコイルを用いた
装置では,ソレノイドコイルを液体ヘリュウムなどで冷
却して超伝導状態にし,ジュール熱の発生そのものを抑
制するようにしており,ソレノイドコイルの発熱を有効
利用するというエネルギー節約の観点から問題があっ
た.
Further, the magnetic field heat treatment apparatus as described above uses an independent heating heater to heat the member to be processed. In the apparatus using the normal conduction coil, the heat generated by the Joule heat of the solenoid coil is cooled. It is released to the outside with water, etc., and is not actively used for heating the processed material. Further, in the device using the superconducting solenoid coil, the solenoid coil is cooled with liquid helium to be in a superconducting state so as to suppress the generation of Joule heat itself. There was a problem from the viewpoint of saving.

【0005】そこで,本発明の課題は,磁気ディスクの
ような円盤状被処理部材に対して,円周方向に一様な特
性改善が実現できる磁界中熱処理装置を提供することに
ある.
SUMMARY OF THE INVENTION An object of the present invention is to provide a magnetic field heat treatment apparatus capable of uniformly improving the characteristics of a disk-shaped member to be processed such as a magnetic disk in the circumferential direction.

【0006】本発明の他の課題は,エネルギー節約を実
現できる加熱装置を具備した磁界中熱処理装置を提供す
ることにある.
Another object of the present invention is to provide a heat treatment apparatus in a magnetic field equipped with a heating device capable of realizing energy saving.

【0007】本発明のさらに他の課題は,円盤状被処理
部材の加熱温度を高精度に制御可能とした磁界中熱処理
装置を提供することにある.
Still another object of the present invention is to provide a magnetic field heat treatment apparatus capable of controlling the heating temperature of a disk-shaped member to be processed with high accuracy.

【0008】[0008]

【課題を解決するための手段】本発明によれば,減圧さ
れた容器内に配置された円盤状被処理部材に磁界を印加
しながら熱処理を行う磁界中熱処理装置において,該円
盤状被処理部材の上下同一軸上に対称的に配置された対
向するコイル対により,該円盤状被処理部材の半径方向
に放射状磁界を発生せしめる磁界発生手段と,該円盤状
被処理部材の加熱において該コイル対の発熱および該コ
イル対の近傍に配置されたヒータからの発熱を併用する
加熱手段を有し,さらに必要に応じて,温度調整用の冷
却手段を有することを特徴とする磁界中熱処理装置が提
供できる.
According to the present invention, in a magnetic field heat treatment apparatus for performing heat treatment while applying a magnetic field to a disk-shaped member to be processed arranged in a depressurized container, the disk-shaped member to be processed is provided. Magnetic field generating means for generating a radial magnetic field in the radial direction of the disk-shaped member to be processed by opposing coil pairs that are symmetrically arranged on the same vertical axis, and the coil pair in heating the disk-shaped member to be processed. An apparatus for heat treatment in a magnetic field is provided, which has a heating means that uses both the heat generation of the above and the heat generated from a heater arranged in the vicinity of the coil pair, and further has a cooling means for adjusting the temperature if necessary. it can.

【0009】本発明の好ましい第一の態様によれば,前
記コイル対の外形半径が,該コイル対の対称点に向って
連続的あるいは段階的に縮小する形状を有し,前記円盤
状被処理部材の中心部分を除く大半の領域に,半径方向
成分からなる放射状磁界を均一に印加できる磁界発生手
段を提供できる.
According to a preferred first aspect of the present invention, the outer radius of the coil pair has a shape that reduces continuously or stepwise toward the point of symmetry of the coil pair, and the disk-shaped object to be treated. It is possible to provide a magnetic field generating means that can uniformly apply a radial magnetic field consisting of radial components to most of the region except the central part of the member.

【0010】本発明の好ましい第二の態様によれば,前
記コイル対を密着格納するための円筒状コイルケースが
非磁性かつ高熱伝導性の部材からなるヒートブロックを
かねており,該ヒートブロックにはその外周に加熱用ヒ
ータコイルを密着して無誘導巻回しており,かつ,前記
円盤状被処理部材を収納配置するための空隙を該ヒート
ブロック円筒軸方向中央位置に該コイル対の軸に対して
垂直な平面内に設けており,該円盤状被処理部材を所定
の位置に固定保持するとともに該円盤状被処理部材を効
率よく加熱できるヒートブロックを具備した磁界中熱処
理装置を提供できる.
According to a preferred second aspect of the present invention, the cylindrical coil case for tightly storing the coil pair also serves as a heat block made of a non-magnetic and highly heat-conductive member, and the heat block is A heater coil for heating is closely wound around the outer periphery of the heat block, and a space for accommodating and arranging the disk-shaped member to be processed is provided at a central position in the axial direction of the heat block cylinder relative to the axis of the coil pair. It is possible to provide a heat treatment apparatus in a magnetic field provided with a heat block that is provided in a vertical plane and that holds the disk-shaped member to be processed in a fixed position and can efficiently heat the disk-shaped member to be processed.

【0011】第二の態様においては,さらに必要に応じ
て,前記ヒートブロック円筒上下面に冷却用媒体を還流
する渦巻状細溝を埋設してなるフランジを設置可能とし
ており,前記円盤状被処理部材の加熱温度を精密に制御
できる加熱装置を提供できる.
In the second aspect, further, if necessary, a flange formed by burying spiral narrow grooves for circulating a cooling medium in the upper and lower surfaces of the heat block cylinder can be installed, and the disk-shaped object to be treated can be installed. It is possible to provide a heating device that can precisely control the heating temperature of members.

【0012】[0012]

【発明の実施の形態】 図1を参照して,本発明の基本
部分を説明する.本装置は主として磁気ディスク,中で
も垂直磁気異方性を持つ高保磁力の記録層とその下部に
あって記録層の減磁を低減しかつ記録ヘッドと再生ヘッ
ドの動作効率を高めるための面内異方性を持つ低保磁力
の下打ち層を基本構成とするいわゆる2層膜垂直磁気デ
ィスクの製造プロセスに適用される.図1は,円筒座標
系(半径方向座標r,円筒軸方向座標z)の原点を対称
点としてz軸上に配置されたコイル対1aと1b,およ
び,該コイル対の中央にあってz軸に垂直な平面に配置
された円盤状被処理部材である磁気ディスク2の断面図
を示す.コイル1aとコイル1bはそれぞれの軸方向磁
界が逆位相になるように励磁されており,その結果,該
コイル対の中央に置かれた磁気ディスク2の平面には,
半径方向の磁界が印加される.コイル1aとコイル1b
の対象性を良好に保てば磁気ディスク2に印加される磁
界は軸方向成分のない半径方向成分のみを持つことにな
る.さらに,コイル1aとコイル1bの内径形状と外形
形状を適当に設計することにより,磁気ディスク2の記
録層が利用される領域において熱処理に十分な均一性を
持つr方向成分磁界(以下放射状磁界という)を発生さ
せることが出来る.
BEST MODE FOR CARRYING OUT THE INVENTION The basic part of the present invention will be described with reference to FIG. This device is mainly used for magnetic disks, and in particular, it has a high coercive force recording layer with perpendicular magnetic anisotropy and an in-plane difference for reducing the demagnetization of the recording layer and improving the operating efficiency of the recording head and the reproducing head. It is applied to the so-called double-layered perpendicular magnetic disk manufacturing process, which basically has an underlayer with a low coercive force. FIG. 1 shows coil pairs 1a and 1b arranged on the z-axis with the origin of the cylindrical coordinate system (radial direction coordinate r, cylindrical axis direction coordinate z) as the symmetry point, and the z-axis at the center of the coil pair. A cross-sectional view of a magnetic disk 2, which is a disk-shaped member to be processed, is arranged on a plane perpendicular to. The coils 1a and 1b are excited so that their axial magnetic fields have opposite phases, and as a result, the plane of the magnetic disk 2 placed at the center of the coil pair is
A radial magnetic field is applied. Coil 1a and coil 1b
If the symmetry of is kept good, the magnetic field applied to the magnetic disk 2 has only a radial component without an axial component. Further, by appropriately designing the inner and outer shapes of the coils 1a and 1b, the r-direction component magnetic field (hereinafter referred to as the radial magnetic field) having sufficient uniformity for heat treatment in the region where the recording layer of the magnetic disk 2 is used. ) Can be generated.

【0013】図2を参照して,本発明の放射状磁界発生
手段の第1の実施の形態について説明する.本実施例は
2対のソレノイドを用いて出来るだけ均一な放射状磁界
を発生させるように設計したものである.本実施例で
は,巻き線に2mm×2mmの無酸素銅からなる平角線
を用い,コイル3a,3bはそれぞれ内径5mm,外径
107.22mm,巻き線間隔0.22mmで92回巻
きとし,コイル4a,4bはそれぞれ内径2mm,外径
19.78mm,巻き線間隔0.22mmで32回巻き
とした.これらのコイル対を3aと4a,および,3b
と4bはそれぞれ同位相に,3aと3b,および,4a
と4bはそれぞれ逆位相になるように結線して32Aの
直流電流を流した.図3にコイル対3a,3bの内側空
隙Gapを4,6,8mmとした時のz=0の平面にお
ける放射状磁界であるr方向成分磁界Hrの分布を示
す.Gap=6mmにおいて,図2に示す直径約65m
mの磁気ディスク2の記録領域であるr=5mmからr
=32mmの領域において,磁界中熱処理に必要な放射
状磁界16,000A/mを精度プラスマイナス5%で
実現できている.図4は図3のGap=6mmの時の放
射状磁界がコイル対3とコイル対4によってどのように
合成されているかを示す.コイル対4は中心部分の放射
状磁界に寄与し,コイル対3は中心からはなれた部分の
放射状磁界に寄与している.この図から容易に推測され
るように,コイル対3とコイル対4の好ましい形状によ
り磁気ディスクの必要な領域における放射状磁界の分布
をより均一に設計することが出来る.さらには,コイル
対3とコイル対4の間に第3のコイル対を配置すれば,
放射状磁界分布の均一性はさらに向上するであろうこと
は容易に推察できることである.磁気ディスクの受ける
磁界は磁気ディスクがコイル対の中央に位置している限
りr方向成分のみであるが,中央位置からずれると軸方
向成分磁界も受けることになる.図5はz軸上z=0,
0.2,0.5mmにおける軸方向成分磁界Hzの分布
を示す.本実施例では中央位置からずれると軸方向成分
磁界はz軸に近づくほど大きくなっているが,z軸上z
=0.2mmの平面上でも,r=5mmの位置におい
て,その大きさは高々935A/mであり,これはその
点のr方向成分磁界のわずか6.3%である.
The first embodiment of the radial magnetic field generating means of the present invention will be described with reference to FIG. This embodiment is designed to generate a radial magnetic field as uniform as possible using two pairs of solenoids. In this embodiment, a rectangular wire made of oxygen-free copper having a size of 2 mm × 2 mm is used as the winding wire, and the coils 3a and 3b are wound 9 times with an inner diameter of 5 mm, an outer diameter of 107.22 mm, and a winding interval of 0.22 mm. Each of 4a and 4b had an inner diameter of 2 mm, an outer diameter of 19.78 mm, and a winding interval of 0.22 mm, and was wound 32 times. These coil pairs are 3a and 4a, and 3b
And 4b have the same phase, 3a and 3b, and 4a, respectively.
And 4b were connected so that they had opposite phases, and a direct current of 32 A was applied. FIG. 3 shows the distribution of the r-direction component magnetic field Hr, which is the radial magnetic field in the plane of z = 0 when the inner gap Gap of the coil pair 3a, 3b is set to 4, 6, 8 mm. When Gap = 6 mm, the diameter shown in FIG. 2 is about 65 m.
The recording area of the magnetic disk 2 of m is r = 5 mm to r
In the region of = 32 mm, the radial magnetic field of 16,000 A / m necessary for the heat treatment in the magnetic field can be realized with an accuracy of ± 5%. FIG. 4 shows how the radial magnetic field when Gap = 6 mm in FIG. 3 is combined by the coil pair 3 and the coil pair 4. Coil pair 4 contributes to the radial magnetic field in the central portion, and coil pair 3 contributes to the radial magnetic field in the portion away from the center. As can be easily inferred from this figure, the distribution of the radial magnetic field in the required area of the magnetic disk can be designed more uniformly by the preferable shapes of the coil pair 3 and the coil pair 4. Furthermore, if the third coil pair is arranged between the coil pair 3 and the coil pair 4,
It can be easily inferred that the uniformity of the radial magnetic field distribution will be further improved. The magnetic field that a magnetic disk receives is only the r-direction component as long as the magnetic disk is located at the center of the coil pair, but if it deviates from the center position, it also receives the axial component magnetic field. FIG. 5 shows z = 0 on the z-axis,
The distribution of the axial component magnetic field Hz at 0.2 and 0.5 mm is shown. In the present embodiment, the axial component magnetic field becomes larger as it gets closer to the z-axis when it deviates from the center position.
Even on a plane of = 0.2 mm, the magnitude is at most 935 A / m at the position of r = 5 mm, which is only 6.3% of the r-direction component magnetic field at that point.

【0014】図6,図7を用いて,本発明の放射状磁界
発生手段の第2の実施の形態について説明する.図6は
放射状磁界の均一性をさらに向上させるため,第1の実
施例に用いたものと同じ2mm×2mmの無酸素銅から
なる平角線を用いて,厚さ2mm,内径2mmで外径と
巻数が異なる12層のコイル対を形成し,それらを層間
隔2.22mmで12段積層したものである.第1層か
ら第12層の外径と巻数は,第1層と第2層が外径1
0.89mm,巻数2,第3層から第6層が外径15.
33mm,巻数3,第7層が外径19.78mm,巻数
4,第8層と第9層が外径24.22mm,巻数5,第
10層が外径37.56mm,巻数8,第11層が外径
68.67mm,巻数15,第12層が外径144.2
2mm,巻数32である.12段積層したコイル5aと
コイル5bの全巻き数はそれぞれ85ターンである.コ
イル間隔Gap=6mmとして,コイル5aとコイル5
bに逆位相の電流72Aを流した時の放射状磁界の分布
を図7に示す.必要な領域r=5〜32mmでの放射状
磁界強度は平均値=16,114A/m,最大値=1
6,387A/m(+1.6%),最小値=15,74
7A/m(−2.3%)であり,きわめて均一な放射状
磁界分布が得られた.
A second embodiment of the radial magnetic field generating means of the present invention will be described with reference to FIGS. 6 and 7. In FIG. 6, in order to further improve the uniformity of the radial magnetic field, the same rectangular wire made of 2 mm × 2 mm oxygen-free copper as used in the first embodiment is used, and the thickness is 2 mm, the inner diameter is 2 mm, and the outer diameter is 2 mm. 12 layers of coil pairs with different numbers of turns are formed, and 12 layers are laminated with a layer interval of 2.22 mm. The outer diameter and the number of turns of the first to twelfth layers are such that the outer diameter of the first layer and the second layer is 1
0.89 mm, the number of windings 2, the third to sixth layers have an outer diameter of 15.
33mm, the number of turns 3, the 7th layer has an outer diameter of 19.78mm, the number of turns 4, the 8th and 9th layers has an outer diameter of 24.22mm, the number of turns 5, 10th layer has an outer diameter of 37.56mm, the number of turns 8th, 11th The layer has an outer diameter of 68.67 mm, the number of turns is 15, and the twelfth layer has an outer diameter of 144.2.
The number of turns is 2 mm and the number of turns is 32. The total number of turns of each of the coil 5a and the coil 5b, which are stacked in 12 stages, is 85 turns. With the coil gap Gap = 6 mm, the coil 5a and the coil 5 are
Fig. 7 shows the distribution of the radial magnetic field when an antiphase current 72A is applied to b. The radial magnetic field strength in the required area r = 5 to 32 mm is average value = 16,114 A / m, maximum value = 1.
6,387 A / m (+ 1.6%), minimum value = 15,74
It was 7 A / m (-2.3%), and a very uniform radial magnetic field distribution was obtained.

【0015】次に,図8を用いて,本発明の加熱手段の
第1の実施形態を説明する.図8のヒートブロック6は
無酸素銅からなる直径130mm,高さ72mmの円筒
状であり,その上下面に,本発明の放射状磁界発生手段
の第1の実施形態として説明した図2に示す2対のコイ
ルを密着格納する掘り込み9aと9bが形成されてお
り,円盤状被処理部材である磁気ディスクを格納するた
め,円筒軸上中心位置に軸に垂直な面内で,幅65m
m,高さ6mmの試料室10が設けられている.さらに
ヒートブロック6の中心部外周には加熱用ヒータコイル
7を無誘導巻回している.コイル対はヒートブロック内
に格納された後,フランジ8aと8bによってヒートブ
ロックに密着固定される.本発明の特徴の一つは,磁界
発生用コイルが発生するジュール熱を被処理部材の加熱
に積極的に利用することである.図2に示すコイル対を
32Aの電流で励磁した時,コイルによる発熱量は44
0Wとなる.コイル対のみでヒートブロックを90分以
内に摂氏約350度まで昇温できる.さらに,ヒートブ
ロック外部に巻回されたヒータに最大7Aの電流を流し
て700Wの発熱量を得て,ヒートブロックを摂氏50
0度以上に加熱できる.
Next, the first embodiment of the heating means of the present invention will be described with reference to FIG. The heat block 6 of FIG. 8 is a cylindrical shape made of oxygen-free copper and having a diameter of 130 mm and a height of 72 mm, and the upper and lower surfaces of the heat block 6 shown in FIG. 2 explained as the first embodiment of the radial magnetic field generating means of the present invention. The dugouts 9a and 9b for tightly storing the pair of coils are formed. In order to store the magnetic disk that is the disk-shaped member to be processed, the width of 65m in the plane perpendicular to the axis at the center position on the cylinder axis
A sample chamber 10 having a height of 6 m and a height of 6 mm is provided. Further, a heater coil 7 for heating is wound around the center of the heat block 6 without induction. After the coil pair is stored in the heat block, it is closely fixed to the heat block by the flanges 8a and 8b. One of the features of the present invention is that the Joule heat generated by the magnetic field generating coil is positively used for heating the member to be processed. When the coil pair shown in FIG. 2 is excited by a current of 32 A, the amount of heat generated by the coil is 44
It becomes 0W. The heat block can be heated up to about 350 degrees Celsius within 90 minutes using only the coil pair. Furthermore, a maximum current of 7 A is applied to the heater wound outside the heat block to obtain a heat generation amount of 700 W, and the heat block is heated to 50 degrees Celsius.
Can be heated above 0 degrees.

【0016】上記加熱手段の第1の実施形態よりも,加
熱・除熱の過程においてより高精度の温度制御が必要な
場合の第2の実施形態を図9に示す.本実施形態では,
図8のヒートブロック上下のフランジを,冷却用媒体を
還流する渦巻状細溝を埋設したフランジ11aと11b
に取り替えることによって達成される.該細溝は無酸素
銅からなる厚さ6mmのフランジ11aと11bに深さ
3mm,幅3mm,ピッチ4mmで掘削された渦巻状の
溝を上部から密閉した構造からなり,冷却用媒体の注入
口12aと12b,および排出口13aと13bが接続
されている.この冷却用フランジ11aと11bを磁界
発生コイルがすでに格納されたヒートブロック6に密着
固定して使用する.冷却用媒体として窒素ガスを用い,
外部に設置された熱変換器を通して最大毎分30リット
ル供給することにより,ヒートブロックの温度を室温か
ら摂氏500度の間の任意の値に精度よく制御すること
が可能となる.
FIG. 9 shows a second embodiment in the case where more accurate temperature control is required in the heating and heat removal process than the first embodiment of the heating means. In this embodiment,
The flanges 11a and 11b in which the upper and lower flanges of the heat block in FIG. 8 are embedded with spiral fine grooves for circulating the cooling medium.
This is achieved by replacing The narrow groove has a structure in which a spiral groove excavated at a depth of 3 mm, a width of 3 mm, and a pitch of 4 mm in flanges 11a and 11b made of oxygen-free copper and having a depth of 3 mm is sealed from above, and a cooling medium injection port is provided. 12a and 12b and outlets 13a and 13b are connected. The cooling flanges 11a and 11b are used by closely fixing to the heat block 6 in which the magnetic field generating coil is already stored. Nitrogen gas is used as a cooling medium,
By supplying a maximum of 30 liters per minute through an external heat converter, the temperature of the heat block can be accurately controlled to any value between room temperature and 500 degrees Celsius.

【0017】図10を用いて,本発明の磁界中熱処理装
置における円盤状被処理部材の設置手段の第1の形態を
説明する.円盤状被処理部材である直径65mmの磁気
ディスク16は幅70mm,長さ150mm,厚さ1.
365mmの石英板からなる試料台14の上に乗せて,
図8に示した試料室10に該磁気ディスクの中心が該試
料室の中心と一致しするように挿入される.該試料台に
は先端から53mm,幅中央に直径10mm,高さ2.
635mmの円形突起15があり,上記磁気ディスクを
この円形突起にはめ込んだ後,その上に該磁気ディスク
と同形で厚さ2mmの石英板からなる上蓋17をはめ込
んで固定する.このような設置手段により円盤状被処理
部材である磁気ディスクには図4に示した放射状磁界が
必要とされる記録領域全面にわたって均一に印加される
ようになっている.
Referring to FIG. 10, the first embodiment of the disk-shaped member to be treated in the magnetic field heat treatment apparatus of the present invention will be described. The magnetic disk 16 having a diameter of 65 mm, which is a disk-shaped member to be processed, has a width of 70 mm, a length of 150 mm, and a thickness of 1.
Place it on the sample table 14 consisting of a 365 mm quartz plate,
The magnetic disk is inserted into the sample chamber 10 shown in FIG. 8 so that the center of the magnetic disk coincides with the center of the sample chamber. 53 mm from the tip, 10 mm in diameter in the width center, and height of 2.
There is a circular projection 15 of 635 mm, and after fitting the magnetic disk into this circular projection, an upper lid 17 made of a quartz plate having the same shape as the magnetic disk and having a thickness of 2 mm is fitted and fixed thereon. By such an installation means, the radial magnetic field shown in FIG. 4 is uniformly applied to the entire surface of the recording area where the magnetic disk as the disk-shaped member to be processed is required.

【0018】以上述べてきた本発明の磁界中熱処理装置
はロータリーポンプなどの排気手段を備えた真空チャン
バーの内部に設置されて,真空装置の一回の排気で1枚
の磁気ディスクを磁界中熱処理する.磁気ディスクの特
性として磁界中熱処理の効果に及ぼす軸方向磁界成分の
影響が無視できる場合には.図10に示す円形突起10
をより高くして,複数枚の磁気ディスクを重ねて装填す
るように設計することは容易である.
The magnetic field heat treatment apparatus of the present invention described above is installed inside a vacuum chamber equipped with an evacuation means such as a rotary pump, and one magnetic disk is heat treated in the magnetic field by one evacuation of the vacuum apparatus. Do. When the effect of the axial magnetic field component on the effect of heat treatment in a magnetic field is negligible as a characteristic of a magnetic disk. The circular protrusion 10 shown in FIG.
It is easy to design the system so that the height is higher and multiple magnetic disks are stacked and loaded.

【0019】図11を用いて,複数枚の円盤状被処理部
材を磁界中熱処理する本発明の他の実施形態を説明す
る.開発工程あるいは生産工程において本発明の磁界中
熱処理装置を利用するにあたり,真空装置の一回の排気
で複数枚の磁気ディスクを軸方向磁界成分の影響をほと
んど受けることなく磁界中熱処理できる方がより好まし
い場合がある.ここに述べる実施の形態はこの問題を解
決するものである.図11に示す基底ブロック19は前
記図2と同じコイル構成の基本形であり,その上部に追
加ブロック18を積み上げることによって,全体で10
枚の円盤状被処理部材を磁界中熱処理できる.追加ブロ
ック18a〜18iを同形の追加ブロック18を用いて
説明すれば,追加ブロック18は図2に示すコイル3
a,4a,4bと同じコイル21a,21b,21cか
らなり,円盤状被処理部材20はコイル21bと21c
の間に設置される.さらに,図2に示すコイル3bに対
応するコイルは下部に配置されるブロックのコイル21
aが兼用する.追加ブロック18aにおいては基底ブロ
ック19の上部コイルがこれを兼用する.すなわち,本
発明の複数枚一括熱処理の形態では,中間のコイルを省
略しており,装置の小型化とエネルギー効率の向上が実
現しており,複数枚の円盤状被処理部材を一括して磁界
中熱処理することができる.
Another embodiment of the present invention in which a plurality of disk-shaped members to be processed are heat-treated in a magnetic field will be described with reference to FIG. When using the magnetic field heat treatment apparatus of the present invention in the development process or the production process, it is more preferable that the magnetic disk heat treatment can be performed on a plurality of magnetic disks by a single evacuation of the vacuum device without being affected by the axial magnetic field component. It may be preferable. The embodiment described here solves this problem. The base block 19 shown in FIG. 11 has the same basic coil configuration as that shown in FIG. 2, and by stacking the additional block 18 on top of it, a total of 10
A disk-shaped member to be processed can be heat-treated in a magnetic field. If the additional blocks 18a to 18i are described using the same-shaped additional block 18, the additional block 18 is the coil 3 shown in FIG.
a, 4a, 4b and the same coils 21a, 21b, 21c, and the disk-shaped processed member 20 includes coils 21b and 21c.
It is installed between. Further, the coil corresponding to the coil 3b shown in FIG.
a is also used. In the additional block 18a, the upper coil of the base block 19 also serves as this. That is, in the form of batch heat treatment of a plurality of sheets of the present invention, the intermediate coil is omitted, the size reduction of the apparatus and the improvement of energy efficiency are realized, and a plurality of disk-shaped processed members are collectively subjected to a magnetic field. Medium heat treatment is possible.

【0020】以上,本発明を,直径65mmの磁気ディ
スクを磁界中熱処理する好ましい実施の形態について説
明してきたが,本発明は他の寸法の磁気ディスクの放射
状磁界中熱処理にも容易に適用可能であることは言うに
及ばず,さらには磁気ディスクの磁界中熱処理だけに限
定されるものでもなく,放射状磁界を印加しながら熱処
理することが好ましい材料プロセス全般に適用可能であ
る.
Although the present invention has been described with reference to the preferred embodiment in which a magnetic disk having a diameter of 65 mm is heat-treated in a magnetic field, the present invention can be easily applied to a heat treatment in a radial magnetic field of a magnetic disk having another size. Needless to say, the present invention is not limited to heat treatment in a magnetic field of a magnetic disk, but can be applied to all material processes in which heat treatment is preferably performed while applying a radial magnetic field.

【0021】[0021]

【発明の効果】以上説明してきたように,本発明によれ
ば,磁気ディスクのような円盤状被処理部材に対して,
円周方向に一様な特性改善が実現できる磁界中熱処理が
できるほか,エネルギー節約を実現できる加熱装置を具
備し,かつ,円盤状被処理部材の加熱温度を高精度に制
御可能とした放射状磁界中熱処理装置を提供することで
きる.
As described above, according to the present invention, for a disk-shaped member to be processed such as a magnetic disk,
Radial magnetic field that can perform heat treatment in a magnetic field that can achieve uniform property improvement in the circumferential direction and that has a heating device that can save energy and that can control the heating temperature of a disk-shaped member to be processed with high accuracy. We can provide medium heat treatment equipment.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による被処理部材に均一は放射状磁界を
発生させるコイル対の概念断面図.
FIG. 1 is a conceptual cross-sectional view of a coil pair that uniformly generates a radial magnetic field on a member to be processed according to the present invention.

【図2】本発明による磁界中熱処理装置に用いられる放
射状磁界発生手段の第1の実施の形態を示す概略構成断
面図.
FIG. 2 is a schematic configuration sectional view showing a first embodiment of a radial magnetic field generating means used in a magnetic field heat treatment apparatus according to the present invention.

【図3】図2に示される放射状磁界発生手段の第1の実
施形態による放射状磁界の分布を示すグラフ.
FIG. 3 is a graph showing a distribution of a radial magnetic field according to the first embodiment of the radial magnetic field generating means shown in FIG.

【図4】図2に示される放射状磁界発生手段の第1の実
施形態による放射状磁界が合成される様子を示すグラ
フ.
FIG. 4 is a graph showing how the radial magnetic fields are synthesized by the first embodiment of the radial magnetic field generating means shown in FIG.

【図5】図2に示される放射状磁界発生手段の第1の実
施形態による軸方向磁界の分布を示すグラフ.
5 is a graph showing a distribution of an axial magnetic field according to the first embodiment of the radial magnetic field generating means shown in FIG.

【図6】本発明による磁界中熱処理装置に用いられる放
射状磁界発生手段の第2の実施の形態を示す概略構成断
面図.
FIG. 6 is a schematic configuration sectional view showing a second embodiment of a radial magnetic field generating means used in a magnetic field heat treatment apparatus according to the present invention.

【図7】図6に示される放射状磁界発生手段の第2の実
施形態による放射状磁界の分布を示すグラフ.
FIG. 7 is a graph showing the distribution of the radial magnetic field according to the second embodiment of the radial magnetic field generating means shown in FIG.

【図8】本発明による加熱手段の第1の実施形態を示す
概略構成断面図(左)と概観図(右).
FIG. 8 is a schematic configuration sectional view (left) and a schematic view (right) showing a first embodiment of a heating means according to the present invention.

【図9】本発明による冷却手段を備えた加熱手段の第2
の実施形態を示す概略構成断面図.
FIG. 9: Second heating means with cooling means according to the invention
FIG. 2 is a schematic cross-sectional view showing an embodiment of FIG.

【図10】本発明による円盤状被処理部材の第1の設置
手段を示す概略構成図.
FIG. 10 is a schematic configuration diagram showing a first setting means for a disk-shaped processed member according to the present invention.

【図11】本発明による複数個の円盤状被処理部材を一
括磁界中熱処理する実施形態を示す概略構成図.
FIG. 11 is a schematic configuration diagram showing an embodiment of heat treating a plurality of disk-shaped members to be processed in a collective magnetic field according to the present invention.

【符号の説明】[Explanation of symbols]

1a,1b,3a,3b,4a,4b,5a,5b
コイル 2,20 円盤状被処理部材 6 ヒートブロック 7 加熱用ヒータコイル 8a,8b フランジ 9a,9b コイル格納掘り込み 10 試料室 11a,11b 冷却用フランジ 12a,12b 冷却用媒体の注入口 13a,13b 冷却用媒体の排出口 14 試料台 15 突起 16 円盤状被処理部材 17 上蓋 18,18a〜8i 追加ブロック 19 基底ブロック 21a,21b,21c コイル
1a, 1b, 3a, 3b, 4a, 4b, 5a, 5b
Coil 2, 20 Disk-shaped processed member 6 Heat block 7 Heating heater coil 8a, 8b Flange 9a, 9b Coil storage digging 10 Sample chamber 11a, 11b Cooling flange 12a, 12b Cooling medium inlet 13a, 13b Cooling Medium discharge port 14 Sample stage 15 Protrusion 16 Disc-shaped processed member 17 Upper lid 18, 18a to 8i Additional block 19 Base block 21a, 21b, 21c Coil

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森 仁 宮城県仙台市若林区一本杉町1丁目1番 第一リースビル402号 Fターム(参考) 4K061 AA01 DA05 FA04 FA12 5D112 AA24 DD08 FB29 GB01 GB10   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Hitoshi Mori             1-1-1, Ipponsugi-cho, Wakabayashi-ku, Sendai City, Miyagi Prefecture             Daiichi Lease Building No. 402 F-term (reference) 4K061 AA01 DA05 FA04 FA12                 5D112 AA24 DD08 FB29 GB01 GB10

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】減圧された容器内に配置された円盤状被処
理部材に磁界を印加しながら熱処理を行う磁界中熱処理
装置において,該円盤状被処理部材の上下同一軸上に対
称的に配置された対向するコイル対により,該円盤状被
処理部材の半径方向に放射状磁界を発生せしめる磁界発
生手段と,該円盤状被処理部材の加熱において該コイル
対の発熱および該コイル対の近傍に配置されたヒータか
らの発熱を併用する加熱手段を有し,さらに必要に応じ
て,温度調整用の冷却手段を有することを特徴とする磁
界中熱処理装置.
1. In a magnetic field heat treatment apparatus for performing heat treatment while applying a magnetic field to a disk-shaped member to be processed arranged in a depressurized container, the disk-shaped member to be processed is symmetrically arranged on the same vertical axis. Magnetic field generating means for generating a radial magnetic field in the radial direction of the disk-shaped member to be processed by the opposed coil pairs, and heat generation of the coil pair in heating the disk-shaped member to be processed and arrangement in the vicinity of the coil pair. An apparatus for heat treatment in a magnetic field, characterized by having a heating means which also uses heat generated from the above-mentioned heater, and further having a cooling means for temperature adjustment, if necessary.
【請求項2】請求項1記載の磁界中熱処理装置におい
て,前記コイル対の外形半径が,該コイル対の対称点に
向って連続的あるいは段階的に縮小する形状を有し,前
記円盤状被処理部材の中心部分を除く大半の領域に,半
径方向成分からなる放射状磁界を均一に印加できるよう
にしたことを特徴とする磁界中熱処理装置.
2. The magnetic field heat treatment apparatus according to claim 1, wherein the outer radius of the coil pair has a shape that continuously or stepwise decreases toward a symmetry point of the coil pair, A heat treatment apparatus in a magnetic field characterized in that a radial magnetic field consisting of a radial component can be uniformly applied to most of the region except the central part of the processing member.
【請求項3】請求項1記載の磁界中熱処理装置におい
て,前記コイル対を密着格納するための円筒状コイルケ
ースが非磁性かつ高熱伝送性の部材からなるヒートブロ
ックをかねており,該ヒートブロックはその外周に加熱
用ヒータコイルを密着して無誘導巻回しており,かつ,
前記円盤状被処理部材を収納配置するための空隙を該ヒ
ートブロック円筒軸方向中央位置に該コイル対の軸に対
して垂直な平面内に設けており,さらに必要に応じて,
該ヒートブロック円筒上下面に冷却用媒体を還流する渦
巻状細溝を埋設してなるフランジを設置可能としたこと
を特徴とする磁界中熱処理装置.
3. The heat treatment apparatus in a magnetic field according to claim 1, wherein the cylindrical coil case for tightly storing the coil pair also functions as a heat block made of a non-magnetic and highly heat-conductive member. A heater coil for heating is closely adhered to the outer periphery of the coil and is non-inductively wound, and
A space for accommodating and arranging the disk-shaped member to be processed is provided at a central position in the axial direction of the heat block in a plane perpendicular to the axis of the coil pair, and further, if necessary,
A heat treatment apparatus in a magnetic field, wherein a flange formed by burying spiral fine grooves for circulating a cooling medium on the upper and lower surfaces of the heat block cylinder can be installed.
JP2002193972A 2002-05-29 2002-05-29 Magnetic field heat treatment equipment Expired - Fee Related JP3533572B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002193972A JP3533572B2 (en) 2002-05-29 2002-05-29 Magnetic field heat treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002193972A JP3533572B2 (en) 2002-05-29 2002-05-29 Magnetic field heat treatment equipment

Publications (2)

Publication Number Publication Date
JP2003343976A true JP2003343976A (en) 2003-12-03
JP3533572B2 JP3533572B2 (en) 2004-05-31

Family

ID=29774473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002193972A Expired - Fee Related JP3533572B2 (en) 2002-05-29 2002-05-29 Magnetic field heat treatment equipment

Country Status (1)

Country Link
JP (1) JP3533572B2 (en)

Also Published As

Publication number Publication date
JP3533572B2 (en) 2004-05-31

Similar Documents

Publication Publication Date Title
US6833107B2 (en) Heat-treating furnace with magnetic field and heat treatment method using same
CN102088215B (en) Rotor for axial air gap-type permanent magnetic rotating machine
JP5372326B2 (en) Selective etching process and components made therefrom for cutting amorphous metal shapes
US7163602B2 (en) Apparatus for generating planar plasma using concentric coils and ferromagnetic cores
EP1835516B1 (en) Magnetizing method for permanent magnet
CA2386078C (en) Uniform gas distribution in large area plasma source
CA2279229C (en) Method and apparatus to produce large inductive plasma for plasma processing
BRPI0712613A2 (en) high density, high efficiency permanent magnet electromagnetic device and method of manufacturing a high density, high efficiency permanent magnetic nagneto electromagnetic device
KR101505873B1 (en) Method for manufacturing split electromagnetic inductive apparatus for power supply
CN102484071A (en) Apparatus for heat-treating semiconductor substrate
US20120064259A1 (en) Rotary magnet sputtering apparatus
JP4611519B2 (en) Method for magnetizing permanent magnet of motor rotor and method for assembling hermetic compressor motor
JP2003343976A (en) Heat treating device in magnetic field
US7626302B2 (en) Stator component for an electric motor
JP4423586B2 (en) Heat treatment furnace in magnetic field
US20070231603A1 (en) Permanent magnetic circuit, axisymmetric magnetic field generating method, and manufacturing method for perpendicular magnetic recording medium
JP4305810B2 (en) Heat treatment furnace in magnetic field and heat treatment method using the same
CN211530963U (en) Disc type full-superconducting motor
KR20110048935A (en) Magnetic field generating unit for magnetic refrigerator and magnetic refrigerator comprising the same
JP2017158326A (en) Intra-magnetic-field thermal treatment device, manufacturing method of stator of rotary machine, and rotary machine
KR101184133B1 (en) Induction heating unit
JP2020147842A (en) Magnetic field heat treatment apparatus, electromagnetic steel sheet, motor, and manufacturing method of motor
KR100532365B1 (en) Inductively-coupled plasma source producing uniform plasma by using multi-coils
KR102593142B1 (en) Apparatus for treating substrate and method for controlling temperature of ferrite core
JP2003319587A (en) Small core loss inner rotor motor and its manufacturing method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20031224

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20040127

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20040224

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20040225

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees