JP2003342773A - High-pressure hydrogen manufacturing method and device for the same - Google Patents

High-pressure hydrogen manufacturing method and device for the same

Info

Publication number
JP2003342773A
JP2003342773A JP2002153961A JP2002153961A JP2003342773A JP 2003342773 A JP2003342773 A JP 2003342773A JP 2002153961 A JP2002153961 A JP 2002153961A JP 2002153961 A JP2002153961 A JP 2002153961A JP 2003342773 A JP2003342773 A JP 2003342773A
Authority
JP
Japan
Prior art keywords
pressure
hydrogen
pure water
oxygen
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002153961A
Other languages
Japanese (ja)
Other versions
JP4010185B2 (en
Inventor
Michiyuki Harada
宙幸 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Corp
Original Assignee
Mitsubishi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Corp filed Critical Mitsubishi Corp
Priority to JP2002153961A priority Critical patent/JP4010185B2/en
Priority to CNB038003473A priority patent/CN1330792C/en
Priority to EP03701743A priority patent/EP1473386A4/en
Priority to MXPA03010957A priority patent/MXPA03010957A/en
Priority to BR0302900-0A priority patent/BR0302900A/en
Priority to KR10-2003-7015472A priority patent/KR20040080332A/en
Priority to PCT/JP2003/000319 priority patent/WO2003064727A1/en
Priority to CA002446563A priority patent/CA2446563A1/en
Priority to TW092101974A priority patent/TWI226909B/en
Priority to US10/352,968 priority patent/US7048839B2/en
Priority to NO20034366A priority patent/NO20034366L/en
Priority to IS7045A priority patent/IS7045A/en
Publication of JP2003342773A publication Critical patent/JP2003342773A/en
Priority to HK04108456A priority patent/HK1065570A1/en
Priority to US11/297,519 priority patent/US20060157354A1/en
Application granted granted Critical
Publication of JP4010185B2 publication Critical patent/JP4010185B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a device for manufacturing high-pressure hydrogen for stably, efficiently and safely generating hydrogen only by water electrolysis by the power generated by a considerably changing natural energy such as solar beam without using any gas compressor. <P>SOLUTION: High-pressure hydrogen is manufactured by electrolysis of pure water using a hydro-electrolysis cell 1 formed of a solid polymer electrolytic film while regulating the differential pressure between the pressure in a high- pressure hydrogen vessel 2 to store generated hydrogen and the pressure in a high-pressure oxygen vessel 62 to store oxygen by the movement of pure water in the vessels 2 and 62. A differential pressure detector 53 or a pressure regulator is provided, and the pressure is regulated by the movement of pure water thereby. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、ガス圧縮機を用
いることなく、固体高分子電解質膜(PEM)を用い
て、純水の電気分解だけで高圧の水素、すなわち圧縮水
素ガスを発生する高圧水素製造装置に関するものであっ
て、水素クリーンエネルギー関連技術に属するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention uses a solid polymer electrolyte membrane (PEM) without using a gas compressor, and produces high-pressure hydrogen by simply electrolyzing pure water, that is, high-pressure hydrogen. The present invention relates to a hydrogen production device and belongs to hydrogen clean energy related technology.

【0002】[0002]

【従来の技術】現在エネルギーの主流となっている石炭
や石油などの化石燃料は、その使用に伴って排出される
二酸化炭素が地球温暖化の原因とされ、加えて、化石燃
料の燃焼で排出される窒素酸化物やイオウ酸化物が人の
健康を損ね、酸性雨を降らせたりする原因ともなってい
るとともに、その埋蔵量は無限ではなく、早晩、枯渇す
るおそれがある等の多くの問題を有している。
2. Description of the Prior Art Fossil fuels such as coal and petroleum, which are the mainstream of energy at present, are caused by global warming due to the carbon dioxide emitted by their use. Nitrogen oxides and sulfur oxides are harmful to human health and cause acid rain, and their reserves are not infinite and there are many problems such as depletion sooner or later. is doing.

【0003】これらの問題を解決するため、再生可能
で、クリーンな自然エネルギーによって、化石燃料を代
替するための技術開発が求められている。そのなかで
も、太陽エネルギーは、地球が受ける1時間分のエネル
ギーが、人類が今日消費している1年分以上のエネルギ
ーに匹敵するもので、太陽エネルギーだけで、人類のエ
ネルギー需要を賄うことも夢ではないものである。
In order to solve these problems, it is required to develop a technology for replacing fossil fuel with renewable and clean natural energy. Among them, solar energy is equivalent to one hour of energy that the earth receives for more than a year's energy consumed by humanity today, and solar energy alone can cover humanity's energy demand. It is not a dream.

【0004】また、自然エネルギーの利用方法として
は、太陽光発電や風力発電等が良く知られているよう
に、自然エネルギーは、一般に、電力として取り出され
利用されているが、電力は、そのままでは、貯蔵した
り、持ち運んだりすることができないので、電池に充電
して貯蔵して利用する方法が行われているものの、電池
は、きわめて重く、自己放電するので、使用しなくても
消耗する等の問題を有している。
As well known as a method for utilizing natural energy, such as solar power generation and wind power generation, natural energy is generally extracted and used as electric power, but the electric power is not used as it is. Since it cannot be stored or carried, there is a method of charging and storing the battery for use, but the battery is extremely heavy and self-discharges, so it is consumed even if it is not used. Have a problem.

【0005】そのため、自然エネルギーで得た電力を水
電解によって、クリーンな水素エネルギーに効率よく変
換し、水素をエネルギーとして使用する水素経済社会へ
の移行が検討されている。さらに、水素を燃料とする燃
料電池(PEFC)の開発が盛んに進められ、これを自
動車や家庭用の自家発電に広く使用することが検討され
ているもので、水素経済社会への移行のため、自然エネ
ルギーで効率よく水素を製造することが求められてい
る。
Therefore, the shift to a hydrogen economic society in which electric power obtained from natural energy is efficiently converted into clean hydrogen energy by water electrolysis and hydrogen is used as energy is under study. Furthermore, the development of a fuel cell (PEFC) that uses hydrogen as fuel has been actively promoted, and its widespread use in private power generation for automobiles and households is under consideration. However, it is required to efficiently produce hydrogen with natural energy.

【0006】このような要望を受けて、プロトン(水素
イオン)伝導性を有する固体高分子電解質膜(以下、P
EMという。)によって、純水を直接電気分解し、水素
と酸素にするPEM水電解が効率よく水素を製造する方
法として注目されている。このPEM水電解は、変動へ
の追随性に欠け、起動停止が自由に行えないアルカリ水
電解とは異なり、起動停止が自由に行えるという特長を
有しているため、定常性に乏しい自然エネルギーから得
た、変動の激しい電力を水素に変換する手法として最適
なものである。
In response to such a demand, a solid polymer electrolyte membrane having proton (hydrogen ion) conductivity (hereinafter referred to as P
It is called EM. ), PEM water electrolysis that directly electrolyzes pure water into hydrogen and oxygen attracts attention as a method for efficiently producing hydrogen. This PEM water electrolysis lacks the ability to follow fluctuations, and unlike alkaline water electrolysis, which cannot be started and stopped freely, it has the feature that it can be started and stopped freely. This is the most suitable method for converting the obtained electric power that fluctuates into hydrogen.

【0007】かくして得られた水素を、エネルギーとし
て利用する際の最大の課題は、気体である水素を如何に
して安全に、しかもコンパクトにして持ち運び(輸送)
したり、貯蔵したりするかにあるので、気体である水素
を、液体水素にすることや吸蔵合金に吸蔵させる手法が
検討されてきたが、最近では、高圧水素の安全性が見直
されて、水素を350気圧又はそれ以上の高圧に圧縮し
た圧縮水素として、ボンベ等に充填して貯蔵及び輸送す
る方法が採用される機会が増え、水素経済社会を構成す
る技術として、広く用いられるようになってきている。
The biggest problem in using the thus obtained hydrogen as energy is how to safely and compactly carry hydrogen as a gas (transportation).
Since it is either stored or stored, a method of making gaseous hydrogen into liquid hydrogen and storing it in a storage alloy has been studied, but recently, the safety of high pressure hydrogen has been reviewed, As the compressed hydrogen obtained by compressing hydrogen to a high pressure of 350 atm or higher, the method of filling and storing in a cylinder or the like is increasingly adopted, and it has been widely used as a technology that constitutes a hydrogen economic society. Is coming.

【0008】水の電気分解は、それ自身で高圧の水素及
び酸素を発生できる昇圧能力を有しているもので、原理
的には、コンプレッサー等の昇圧装置を用いないで、電
気分解だけで千気圧以上の高圧水素を発生することも夢
ではなく、しかも、機械的に昇圧する場合に比べて可動
部が無いため、定期的に点検し、消耗部品を取替える等
の保守作業の必要がなく、昇圧効率が良いので動力費も
少なくて済む等多くの利点を有している。
[0008] The electrolysis of water has a pressurizing ability to generate high-pressure hydrogen and oxygen by itself, and in principle, electrolysis can be performed without using a booster such as a compressor. It is not a dream to generate high-pressure hydrogen above atmospheric pressure, and since there is no moving part compared to when mechanically boosting pressure, there is no need for maintenance work such as regular inspection and replacement of consumable parts. It has many advantages such as low boosting efficiency and low power cost.

【0009】しかしながら、PEMを用いた水電解セル
による電気分解では、現状の水電解セルの耐圧が低いた
め、数気圧〜数10気圧程度の水素や酸素の発生がせい
ぜいで、エネルギー利用で必要とされる350気圧又は
それ以上の高圧の水素を発生することはできず、しか
も、このような高い圧力の昇圧装置は、今日現在、それ
自身も開発テーマとされているもので、電気分解だけで
高圧水素を発生できる高圧水素製造装置の出現が待たれ
ていた。
However, in electrolysis using a PEM-based water electrolysis cell, since the current water electrolysis cell has a low withstand voltage, hydrogen or oxygen of several atmospheres to several tens of atmospheres is generated at most, which is necessary for energy utilization. It is not possible to generate high pressure hydrogen of 350 atm or higher, and such a high pressure booster is a development theme of its own as of today. The advent of high-pressure hydrogen production equipment that can generate high-pressure hydrogen has been awaited.

【0010】この問題を最初に解決した特許第3,22
0,607号(米国特許5,690,797号)は、水
電解セルを、純水と酸素を貯留する高圧容器内の純水中
に配置して水電解すると、水電解セルに作用する圧力
は、発生する水素と酸素の差圧のみであることに着目
し、水素と酸素の圧力を等しくなるように制御すること
で、耐圧の低い水電解セルを使用しても、水電解セルの
耐圧を遥かに超える、高圧の水素及び酸素を発生できる
ようにしたものである。
Patent No. 3,22 which first solves this problem
No. 0,607 (US Pat. No. 5,690,797) discloses a pressure applied to a water electrolysis cell when a water electrolysis cell is placed in pure water in a high-pressure container for storing pure water and oxygen and water electrolysis is performed. Pays attention to the fact that only the differential pressure between hydrogen and oxygen is generated, and by controlling the pressures of hydrogen and oxygen to be equal, even if a water electrolysis cell with a low pressure resistance is used, It is capable of generating high pressure hydrogen and oxygen far exceeding the above.

【0011】しかしながら、この発明においては、水電
解セルが純水中に浸漬配置されているので、純水の水質
が低下して比抵抗が低下すると、水電解セルの電極間で
の漏電や電解腐食の問題が発生するため、エネルギー利
用で必要とされる数100気圧以上の高圧水素を発生さ
せることが容易であるとは云えないものであった。
However, according to the present invention, since the water electrolysis cell is soaked in pure water, if the water quality of the pure water deteriorates and the specific resistance decreases, leakage or electrolysis occurs between the electrodes of the water electrolysis cell. Since the problem of corrosion occurs, it cannot be said that it is easy to generate high-pressure hydrogen of several hundred atmospheric pressure or more, which is required for energy utilization.

【0012】特に、純水は、温度の上昇により比抵抗が
低下するが、それに加えて、純水に対する容器壁等の溶
出が早くなるため、常時、イオン交換樹脂で純水を再生
する必要があるが、処理される純水が高圧であると、イ
オン交換樹脂粒が破壊するということからも、発生させ
る圧力には限界があり、水素のエネルギー利用で必要と
する高圧水素発生は困難であった。
In particular, the specific resistance of pure water decreases as the temperature rises, but in addition to that, the elution of the container wall and the like into the pure water becomes faster, so it is necessary to constantly regenerate the pure water with an ion exchange resin. However, if the pure water to be treated has a high pressure, the ion-exchange resin particles will be destroyed, so the pressure that can be generated is limited, and it is difficult to generate high-pressure hydrogen that is necessary for the use of hydrogen energy. It was

【0013】このような問題を防ぐため、水電解セルを
絶縁性液体が充満された高圧容器内に収納するという提
案(特開2001−130901号公報)がなされた
が、絶縁性液体として実用的なものが現状では見当たら
ず、実用性に乏しいことが分かった。
In order to prevent such a problem, a proposal (Japanese Patent Laid-Open No. 2001-130901) to store the water electrolysis cell in a high-pressure container filled with an insulating liquid has been made, but it is practical as an insulating liquid. It was found that there is no such thing in the present situation, and it is poor in practicality.

【0014】例えば、絶縁性液体としてのPCBは難燃
性で、性能的には優れているが、公害等の問題から製造
も使用も禁止され、現在、使用できる絶縁油は、全て、
可燃性で、酸素が漏洩すると爆発する危険性があるの
で、結局、純水が絶縁性液体として優れているが、純水
には、先に述べたように比抵抗の経時変化等の問題があ
り、その使用は困難である。
For example, PCB as an insulating liquid is flame-retardant and excellent in performance, but its production and use are prohibited due to problems such as pollution. Currently, all insulating oils that can be used are
After all, pure water is excellent as an insulating liquid because it is flammable and may explode if oxygen leaks, but pure water has problems such as a change in resistivity over time as described above. Yes, its use is difficult.

【0015】これらの問題を解決するものとして、先
に、発明者は特願2002−019713号公報で、水
電解セルを、発生した水素の貯留部を兼ねる高圧容器内
に配置する、すなわち、水電解セルを高圧水素中に配置
すると共に、水電解セルを配置した高圧容器の圧力と電
解用純水と発生した酸素の貯留部を兼ねる高圧容器の圧
力との差圧を水電解セルの耐圧以下の圧力に調整する、
という提案を行なった。
In order to solve these problems, the inventor previously disclosed in Japanese Patent Application No. 2002-019713 that a water electrolysis cell is arranged in a high-pressure container which also serves as a storage portion for the generated hydrogen, that is, water. While placing the electrolysis cell in high-pressure hydrogen, the pressure difference between the pressure of the high-pressure vessel in which the water electrolysis cell is placed and the pressure of the high-pressure vessel that also functions as a reservoir of pure water for electrolysis and generated oxygen is equal to or lower than the pressure resistance of the water electrolysis cell. Adjust to the pressure of
I made a proposal.

【0016】この提案は、先の特許第3,220,60
7号などで問題とされた、電解腐食や純水比抵抗低下の
問題を一気に解決しただけでなく、水電解セルが破損し
ても純水が酸素と水素を隔離する働きをも兼ねて、爆鳴
気の生ずることを防止できる等、安全性を飛躍的に進歩
させたものである。
This proposal is based on the above-mentioned patent No. 3,220,60.
Not only did it solve the problems of electrolytic corrosion and reduction in the specific resistance of pure water, which were problems with No. 7, etc., but it also served to separate pure water from oxygen even if the water electrolysis cell was damaged. This is a breakthrough in safety such as the prevention of explosions.

【0017】[0017]

【発明が解決しようとする課題】しかしながら、この提
案においては、水電解セルに作用する力を水電解セルの
耐圧以内にするために、発生する水素と酸素の差圧を水
電解セルの耐圧以内に制御するのであるが、水電解セル
の耐圧は一定であるので、発生する水素及び酸素の圧力
が増せば増すほど、高い制御精度が求められることにな
り、圧力制御が、結局は、この提案による発生水素圧力
の制限要因となることになる。
However, in this proposal, in order to keep the force acting on the water electrolysis cell within the pressure resistance of the water electrolysis cell, the generated differential pressure of hydrogen and oxygen is within the pressure resistance of the water electrolysis cell. However, since the pressure resistance of the water electrolysis cell is constant, the higher the pressure of the generated hydrogen and oxygen, the higher the control accuracy is required. Will be a limiting factor for the hydrogen pressure generated.

【0018】すなわち、水電解セルの許容耐圧が4気圧
で、水素及び酸素の発生圧力が10気圧の場合は、圧力
制御精度は4/10、換言すると、40%以内であれば
よいので、通常の圧力制御手法により、水電解セルを破
損させることなく対応が可能であるが、この水電解セル
を用いて400気圧の水素と酸素を発生する場合を考え
ると、4/400、すなわち、1%以上の精密高精度圧
力制御が求められ、通常の圧力制御手法では達成が困難
で、しかも、今後、必要とされる圧力は、さらに高くな
るので、さらに厳しい圧力制御精度が要求されるので、
通常の圧力制御手法では不可能に近く、新しい手法が求
められている。
That is, when the allowable withstand pressure of the water electrolysis cell is 4 atm and the generated pressure of hydrogen and oxygen is 10 atm, the pressure control accuracy is 4/10, in other words, within 40%. Although it is possible to deal with the water electrolysis cell without damaging the water electrolysis cell, considering the case of generating hydrogen and oxygen of 400 atm using this water electrolysis cell, 4/400, that is, 1% The above precise and highly accurate pressure control is required, and it is difficult to achieve it with a normal pressure control method. Moreover, since the required pressure will be higher in the future, further strict pressure control precision is required.
A new method is required because the conventional pressure control method is almost impossible.

【0019】さらに、この提案における方法では、純水
の液面を測定する水面計にも問題が生じる。すなわち、
電気分解の原料となる純水は、水電解で発生した酸素と
共に高圧容器に貯留されるが、標準状態(温度0℃;1
気圧)の酸素の密度は、1.429×10−3g/cc
で、非常に軽く、容器中では、水が下に、酸素が上にな
る常識が通用するが、酸素を理想気体と仮定すると、1
/1.429×10−3=700から、700気圧の酸
素は水と同じ密度になる。このことは、700気圧以上
では、水が酸素に浮くことになり、ガスは水より軽いと
する通常の経験則が通用しなくなる。
Further, in the method proposed in this proposal, there is a problem in the water level gauge for measuring the liquid level of pure water. That is,
Pure water, which is a raw material for electrolysis, is stored in a high-pressure container together with oxygen generated by water electrolysis.
(Atmospheric pressure) oxygen density is 1.429 × 10 −3 g / cc
It is very light, and it is common sense that water is below and oxygen is above in the container.
From /1.429×10 −3 = 700, oxygen at 700 atm has the same density as water. This means that at 700 atmospheric pressure or higher, water floats on oxygen, and the normal rule of thumb that gas is lighter than water does not hold.

【0020】幸いなことに、このような密度の逆転は、
酸素分子の大きさや分子間力を考慮すると、1000気
圧以上でないと起こらないが、従来広く採用されている
フロート式の水面計では、水と酸素の密度差が小さくな
ると、水流等によりその動作が不安定となり、水面を正
確に検知できなくなる。これに加えて、フロート式水面
計に使用するフロートは、見かけの比重を1以下に軽く
製造しなければならないので、耐圧性に問題があり、水
素のエネルギー利用で必要とされるような、圧力に充分
耐えうるフロートの製作が困難とされているので、この
ような問題が解決でき、高圧下で安定に作動する水面計
の開発が先の提案の方法を幅広く、かつ安定に実施する
ために、強く求められている。
Fortunately, such a density reversal is
Considering the size and intermolecular force of oxygen molecules, it does not occur unless the atmospheric pressure is 1000 atm or more. However, in the float type water level meter that has been widely used in the past, when the difference in density between water and oxygen becomes small, the operation is caused by water flow. It becomes unstable and cannot detect the water surface accurately. In addition to this, the float used in the float type water level gauge has to be manufactured to have an apparent specific gravity of 1 or less, so that there is a problem in pressure resistance, and pressure such as that required for energy use of hydrogen is required. Since it is difficult to manufacture a float that can withstand the above conditions, it is possible to solve such problems and to develop a water level gauge that operates stably under high pressure in order to carry out the proposed method widely and stably. , Is strongly demanded.

【0021】以上のような問題、特に圧力制御精度の問
題を解決しない限り、水の電気分解だけで、水素のエネ
ルギー利用で必要とされる350気圧又はそれ以上の高
圧の水素を安定に製造することは不可能とも言えるもの
で、発明者は、以上のような問題を解決し、コンプレッ
サー等の機械的手段を用いないで、エネルギーとして使
用するのに必要とされている350気圧又はそれ以上の
高圧の水素を、水の電気分解だけで安定に、しかも、安
全に発生できる高圧水素製造装置を提供することを目的
として検討を行ったのである。
Unless the above problems, especially the problem of pressure control accuracy, are solved, hydrogen of 350 atm or higher, which is required for energy utilization of hydrogen, can be stably produced only by electrolysis of water. It can be said that it is impossible, and the inventor has solved the problems as described above, and is required to use as energy without using mechanical means such as a compressor. The purpose of this study was to provide a high-pressure hydrogen production device that can safely and safely generate high-pressure hydrogen simply by electrolyzing water.

【0022】その結果、発明者は、発生した水素や酸素
を貯留する水素高圧容器、酸素高圧容器のいずれの容器
内にも、純水が存在することに着目し、純水を圧力の高
い方から低い方に移動させて差圧を解消する方法によっ
て、上記圧力制御の問題が解決でき、また、酸素等の気
体と純水との電気伝導率特性が大きく異なっていること
を利用して、水面を検知することにより、水面計の問題
を解消できることを見出して、この発明を完成させたの
である。
As a result, the inventor has paid attention to the fact that pure water exists in both the hydrogen high-pressure container and the oxygen high-pressure container for storing the generated hydrogen and oxygen, and the pure water having a higher pressure is used. By the method of eliminating the differential pressure by moving from the lower to the above, the problem of the pressure control can be solved, and by utilizing the fact that the electric conductivity characteristics of the gas such as oxygen and pure water are greatly different, The inventors have found that the problem of the water level gauge can be solved by detecting the water level, and have completed the present invention.

【0023】[0023]

【課題を解決するための手段】すなわち、この発明の請
求項1に記載の高圧水素製造方法は、固体高分子電解質
膜よりなる水電解セルによって、純水を電気分解して水
素を発生させるに際し、発生させた水素を貯留する水素
高圧容器と、酸素を貯留する酸素高圧容器の圧力差を、
前記各容器内に存在する純水を、いずれか一方側に移動
させることによって調整することを特徴とするものであ
る。
That is, the method for producing high-pressure hydrogen according to claim 1 of the present invention is to produce hydrogen by electrolyzing pure water with a water electrolysis cell comprising a solid polymer electrolyte membrane. , The pressure difference between the hydrogen high pressure container that stores the generated hydrogen and the oxygen high pressure container that stores oxygen,
The pure water existing in each container is adjusted by moving it to one side.

【0024】また、この発明の請求項2に記載の高圧水
素製造方法は、固体高分子電解質膜からなる水電解セル
によって、純水を電気分解して水素を発生させるに際
し、発生させた水素を貯留する水素高圧容器と、酸素を
貯留する酸素高圧容器の圧力差を、前記各容器の水素
圧、酸素圧の調整、及び各容器内に存在する純水を、い
ずれか一方側に移動させることによって制御することを
特徴とするものである。
Further, in the high-pressure hydrogen production method according to the second aspect of the present invention, when the pure water is electrolyzed to generate hydrogen by the water electrolysis cell composed of the solid polymer electrolyte membrane, the generated hydrogen is generated. The pressure difference between the hydrogen high-pressure container for storing oxygen and the oxygen high-pressure container for storing oxygen is adjusted so that the hydrogen pressure of each container, the adjustment of the oxygen pressure, and the pure water present in each container are moved to either side. It is characterized by being controlled by.

【0025】また、この発明の請求項3に記載の発明
は、請求項1又は2に記載の高圧水素製造方法におい
て、前記圧力差は、水電解セルの耐圧以下に抑えること
を特徴とするものである。
The invention according to claim 3 of the present invention is characterized in that, in the high-pressure hydrogen production method according to claim 1 or 2, the pressure difference is suppressed to a value equal to or lower than the withstand voltage of the water electrolysis cell. Is.

【0026】また、この発明の請求項4に記載の発明
は、請求項1又は2に記載の高圧水素製造方法におい
て、前記純水の移動は、水素高圧容器と酸素高圧容器を
結合する純水配管に接続され、かつ各容器内に設けられ
た開放弁の操作によって行われることを特徴とするもの
である。
The invention according to claim 4 of the present invention is the method for producing high-pressure hydrogen according to claim 1 or 2, wherein the pure water is moved by pure water connecting a hydrogen high-pressure container and an oxygen high-pressure container. It is characterized in that it is performed by operating an opening valve connected to a pipe and provided in each container.

【0027】また、この発明の請求項5に記載の発明
は、請求項4に記載の高圧水素製造方法において、前記
開放弁の操作は、開放弁を容器内の純水中に浸漬させた
状態で行なうことを特徴とするものである。
The invention according to claim 5 of the present invention is the method for producing high-pressure hydrogen according to claim 4, wherein the operation of the opening valve is a state in which the opening valve is immersed in pure water in a container. It is characterized by doing in.

【0028】また、この発明の請求項6に記載の発明
は、請求項1又は2に記載の高圧水素製造方法におい
て、前記純水の移動は、水素高圧容器と酸素高圧容器を
結合する純水配管に設けられた圧力調整器によって、自
動的に行われることを特徴とするものである。
The invention according to claim 6 of the present invention is the method for producing high-pressure hydrogen according to claim 1 or 2, wherein the pure water is moved by pure water connecting a hydrogen high-pressure container and an oxygen high-pressure container. It is characterized in that it is automatically performed by a pressure regulator provided in the pipe.

【0029】また、この発明の請求項7に記載の発明
は、請求項1又は2に記載の高圧水素製造方法におい
て、前記純水の移動は、水素高圧容器と酸素高圧容器を
結合する純水配管に設けられた弁の開閉操作によって行
われることを特徴とするものである。
The invention according to claim 7 of the present invention is the method for producing high-pressure hydrogen according to claim 1 or 2, wherein the movement of the pure water is pure water connecting a hydrogen high-pressure vessel and an oxygen high-pressure vessel. It is characterized in that the operation is performed by opening and closing a valve provided in the pipe.

【0030】また、この発明の請求項8に記載の発明
は、請求項1又は2に記載の高圧水素製造方法におい
て、前記水素高圧容器内に貯留する純水容積を、酸素高
圧容器内に貯留する酸素容積以上に、また、酸素高圧容
器内に貯留する純水容積を、水素高圧容器内に貯留する
水素容積以上に制御しながら行うことを特徴とする高圧
水素製造方法である。
The invention according to claim 8 of the present invention is the method for producing high-pressure hydrogen according to claim 1 or 2, wherein the pure water volume stored in the hydrogen high-pressure container is stored in the oxygen high-pressure container. And a volume of pure water stored in the oxygen high pressure container is controlled to be equal to or larger than the volume of hydrogen stored in the hydrogen high pressure container.

【0031】また、この発明の請求項9に記載の発明
は、請求項1又は2に記載の高圧水素製造方法におい
て、前記酸素高圧容器内に貯留する酸素量を、水素高圧
容器内に貯留する水素量の4%以内に制御しながら行う
ことを特徴とする高圧水素製造方法である。
According to a ninth aspect of the present invention, in the high-pressure hydrogen production method according to the first or second aspect, the amount of oxygen stored in the oxygen high-pressure container is stored in the hydrogen high-pressure container. The high-pressure hydrogen production method is characterized in that the hydrogen is produced while being controlled within 4% of the amount of hydrogen.

【0032】さらに、この発明の請求項10に記載の発
明は、固体高分子電解質膜からなる水電解セル、発生す
る水素と水素に付随する純水を貯留する水素高圧容器、
原料及び戻り純水と発生する酸素を貯留する酸素高圧容
器、水素高圧容器内の純水と酸素高圧容器内の純水を連
通する純水配管、及び水素高圧容器と酸素高圧容器内の
水素と酸素の圧力差を感知し、その圧力差を制御するた
めの差圧検知器を具備することを特徴とする高圧水素製
造装置である。
Further, the invention according to claim 10 of the present invention is a water electrolysis cell comprising a solid polymer electrolyte membrane, a hydrogen high-pressure container for storing generated hydrogen and pure water accompanying hydrogen,
An oxygen high-pressure container for storing raw materials and returned pure water and generated oxygen, a pure water pipe connecting the pure water in the hydrogen high-pressure container with the pure water in the oxygen high-pressure container, and a hydrogen high-pressure container and hydrogen in the oxygen high-pressure container. A high-pressure hydrogen production apparatus comprising a differential pressure detector for detecting a pressure difference of oxygen and controlling the pressure difference.

【0033】また、この発明の請求項11に記載の発明
は、固体高分子電解質膜からなる水電解セル、発生する
水素と水素に付随する純水を貯留する水素高圧容器、原
料純水と発生する酸素を貯留する酸素高圧容器、水素高
圧容器内の純水と酸素高圧容器内の純水とを連通させる
純水配管、及び純水配管に設けられ、水素高圧容器の純
水と酸素高圧容器の純水との圧力差に応じて摺動する摺
動子を内部に有する圧力調整器を具備することを特徴と
する高圧水素製造装置である。
The invention according to claim 11 of the present invention is a water electrolysis cell comprising a solid polymer electrolyte membrane, a hydrogen high-pressure container for storing generated hydrogen and pure water accompanying hydrogen, and pure water as a raw material. Oxygen high pressure container for storing oxygen, pure water pipe for communicating pure water in the hydrogen high pressure container with pure water in the oxygen high pressure container, and pure water of the hydrogen high pressure container and oxygen high pressure container provided in the pure water pipe The high-pressure hydrogen production apparatus is provided with a pressure regulator having a slider inside which slides according to the pressure difference from the pure water.

【0034】また、この発明の請求項12に記載の発明
は、請求項10又は11に記載の高圧水素製造装置にお
いて、前記水電解セルは、水素高圧容器内又は純水酸素
高圧容器内に設置されていることを特徴とするものであ
る。
According to a twelfth aspect of the present invention, in the high-pressure hydrogen production apparatus according to the tenth or eleventh aspect, the water electrolysis cell is installed in a hydrogen high-pressure vessel or a pure water oxygen high-pressure vessel. It is characterized by being.

【0035】また、この発明の請求項13に記載の発明
は、請求項10又は11に記載の高圧水素製造装置にお
いて、前記酸素高圧容器上方に高圧純水供給槽及び純水
補給槽を具備し、それらの底部を接続する送水ポンプ
と、イオン交換樹脂筒と、フィルタを有する純水循環送
り配管、高圧純水供給槽の上部と純水補給槽上部を接続
する純水循環戻り配管、酸素高圧容器上部と高圧純水供
給槽上部を接続する酸素供給配管、高圧純水供給槽底部
と酸素高圧容器内を接続する純水注入配管が配置されて
いる純水製造・供給システムを併せ具備することを特徴
とする高圧水素製造装置である。
According to a thirteenth aspect of the present invention, in the high-pressure hydrogen production apparatus according to the tenth or eleventh aspect, a high-pressure pure water supply tank and a pure water supply tank are provided above the oxygen high-pressure vessel. , A water pump connecting their bottoms, an ion-exchange resin cylinder, a pure water circulation feed pipe having a filter, a pure water circulation return pipe connecting the upper part of the high-pressure pure water supply tank and the upper part of the pure water supply tank, oxygen high pressure An oxygen supply pipe connecting the upper part of the container to the upper part of the high-pressure pure water supply tank, and a pure water production / supply system in which a pure water injection pipe connecting the bottom of the high-pressure pure water supply tank to the inside of the oxygen high-pressure container are arranged. Is a high-pressure hydrogen production apparatus characterized by.

【0036】また、この発明の請求項14に記載の発明
は、請求項10に記載の高圧水素製造装置において、前
記水素高圧容器内の純水と酸素高圧容器内の純水を連通
する純水配管は、水素高圧容器内に開放弁を設けた配管
と、酸素高圧容器内に開放弁を設けた配管の2本からな
ることを特徴とするものである。
According to a fourteenth aspect of the present invention, in the high-pressure hydrogen producing apparatus according to the tenth aspect, pure water in the hydrogen high-pressure container communicates with pure water in the oxygen high-pressure container. The pipe is characterized in that it is composed of two pipes, one having an opening valve provided in the hydrogen high-pressure container and the other having an opening valve provided in the oxygen high-pressure container.

【0037】また、この発明の請求項15に記載の発明
は、請求項14に記載の高圧水素製造装置において、前
記開放弁は、正面視が三角形状の放出口を有しているこ
とを特徴とするものである。
According to a fifteenth aspect of the present invention, in the high-pressure hydrogen production apparatus according to the fourteenth aspect, the release valve has a discharge port having a triangular shape in a front view. It is what

【0038】また、この発明の請求項16に記載の発明
は、請求項10に記載の高圧水素製造装置において、前
記差圧検知器は、水素高圧容器又は酸素高圧容器の圧力
で、軸方向に伸縮するベローズで両端が封止され、内部
に非活性流体が充満された非磁性材料の円筒と、前記円
筒の内面に密着して移動自在に設けられた内部磁性体
と、外面に密着して移動自在に設けられた外部磁性体か
らなる装置主体と、ベローズの伸縮により変化した前記
外部磁性体の位置に基づいて差圧を検知する検出器から
構成されるものであることを特徴とするものである。
According to a sixteenth aspect of the present invention, in the high pressure hydrogen production apparatus according to the tenth aspect, the differential pressure detector is the pressure of the hydrogen high pressure container or the oxygen high pressure container in the axial direction. A cylinder made of a non-magnetic material whose both ends are sealed by a bellows that expands and contracts, and the inside of which is filled with an inert fluid, an inner magnetic body which is movably provided in close contact with the inner surface of the cylinder, and in close contact with the outer surface. It is characterized by comprising a device main body composed of an movably provided external magnetic body and a detector for detecting a differential pressure based on the position of the external magnetic body changed by expansion and contraction of a bellows. Is.

【0039】また、この発明の請求項17に記載の発明
は、請求項16に記載の高圧水素製造装置において、前
記差圧検出器は、外部磁性体に連動して動く遮光板と、
遮光板で遮光される開口部を有する表示板と、開口部を
透過した透過光量を電気信号に変換する光電計から構成
されるものであることを特徴とするものである。
According to a seventeenth aspect of the present invention, in the high-pressure hydrogen producing apparatus according to the sixteenth aspect, the differential pressure detector includes a light-shielding plate that moves in conjunction with an external magnetic body,
It is characterized in that it is composed of a display plate having an opening that is shielded by a light shielding plate and a photoelectric meter that converts the amount of transmitted light that has passed through the opening into an electric signal.

【0040】また、この発明の請求項18に記載の発明
は、請求項16に記載の高圧水素製造装置において、前
記差圧検出器は、外部磁性体に連動して電気抵抗体上を
摺動する摺動子を構成要素に有するものであることを特
徴とするものである。
The invention according to claim 18 of the present invention is the high-pressure hydrogen production apparatus according to claim 16, wherein the differential pressure detector slides on an electric resistor in conjunction with an external magnetic body. The present invention is characterized by having a sliding element as a constituent element.

【0041】また、この発明の請求項19に記載の発明
は、請求項11に記載の高圧水素製造装置において、前
記圧力調整器は、一端部が水素高圧容器内純水に連通
し、他端部が酸素高圧容器内純水に連通する非磁性材料
で作られた中空円筒、両純水を遮断すると共に、中空円
筒の内面に密着して滑動する磁性材料で作られた内部滑
動子及び中空円筒の外面に密着して滑動する磁性材料で
作られた外部滑動子からなる装置主体と、前記外部滑動
子の位置を検出する位置検出器から構成されるものであ
ることを特徴とするものである。
According to a nineteenth aspect of the present invention, in the high-pressure hydrogen production apparatus according to the eleventh aspect, one end of the pressure regulator communicates with pure water in the hydrogen high-pressure container and the other end. Hollow cylinder made of a non-magnetic material that communicates with pure water in an oxygen high-pressure container, an internal slider and hollow that is made of a magnetic material that blocks both pure water and slides in close contact with the inner surface of the hollow cylinder. It is characterized by comprising a device main body composed of an external slider made of a magnetic material that slides in close contact with the outer surface of a cylinder, and a position detector for detecting the position of the external slider. is there.

【0042】また、この発明の請求項20に記載の発明
は、請求項19に記載の高圧水素製造装置において、前
記中空円筒は、両端部にスプリングを有すると共に、内
部滑動子が、端部まで滑動したとき、純水を流通させる
流路を両端に有するものであることを特徴とするもので
ある。
According to a twentieth aspect of the present invention, in the high-pressure hydrogen production apparatus according to the nineteenth aspect, the hollow cylinder has springs at both ends, and the internal slider is extended to the end. When it slides, it has a flow path for passing pure water at both ends.

【0043】また、この発明の請求項21に記載の発明
は、請求項19に記載の高圧水素製造装置において、前
記中空円筒は、両端部にスプリングを有すると共に、内
部滑動子が、端部まで滑動したときに作動する、純水を
流通させる配管に設けた遮断弁を開閉するスイッチを両
端に有するものであることを特徴とするものである。
According to a twenty-first aspect of the present invention, in the high-pressure hydrogen production apparatus according to the nineteenth aspect, the hollow cylinder has springs at both ends, and the inner slider is extended to the end. It is characterized in that it has a switch at both ends for opening and closing a shut-off valve provided in a pipe through which pure water flows, which operates when sliding.

【0044】また、この発明の請求22に記載の発明
は、請求項19に記載の高圧水素製造装置において、前
記中空円筒は、水素高圧容器内に貯留される水素量と、
酸素高圧容器内に貯留される酸素量とのどちらかの少な
いほうの容積と等量、もしくはそれ以下の実質容積を有
するものであることを特徴とするものである。
According to a twenty-second aspect of the present invention, in the high-pressure hydrogen producing apparatus according to the nineteenth aspect, the hollow cylinder has an amount of hydrogen stored in a hydrogen high-pressure container,
It is characterized by having a substantial volume equal to or less than the smaller volume of either the amount of oxygen stored in the oxygen high-pressure container.

【0045】また、この発明の請求項23に記載の発明
は、請求項10乃至22のいずれかに記載の高圧水素製
造装置において、中心電極と、中心電極を中心にした円
筒状電極とを構成要素とする水面計を併せ有することを
特徴とする高圧水素製造装置である。
According to a twenty-third aspect of the present invention, in the high-pressure hydrogen production apparatus according to any one of the tenth to twenty-second aspects, the center electrode and the cylindrical electrode centering on the center electrode are formed. It is a high-pressure hydrogen production apparatus characterized by having a water gauge as an element.

【0046】また、この発明の請求項24に記載の発明
は、請求項23に記載の高圧水素製造装置において、前
記水面計は、棒状の中心電極の外側に外部電極を同心円
上に配置したメイン電極と、先端部以外を電気絶縁性円
筒で覆った棒状の中心電極の外側に外部電極を同心円上
に配置したサブ電極を有することを特徴とするものであ
る。
Further, the invention according to claim 24 of the present invention is the high-pressure hydrogen production apparatus according to claim 23, wherein the water level indicator is a main electrode in which external electrodes are concentrically arranged outside a rod-shaped central electrode. The present invention is characterized by having an electrode and a sub-electrode in which an external electrode is concentrically arranged outside a rod-shaped center electrode whose outer end is covered with an electrically insulating cylinder.

【0047】さらにまた、この発明の請求項25に記載
の発明は、請求項10乃至23のいずれかに記載の高圧
水素製造装置において、水素高圧容器に常時開型水素緊
急放出弁、純水酸素高圧容器に常時開型酸素緊急放出
弁、水電解セルの電源に緊急電源遮断スイッチとを併せ
設けたことを特徴とする高圧水素製造装置である。
Furthermore, the invention according to claim 25 of the present invention is the high-pressure hydrogen production apparatus according to any one of claims 10 to 23, in which the hydrogen high-pressure container is provided with a normally open hydrogen emergency release valve, pure water oxygen. The high-pressure hydrogen production apparatus is characterized in that a normally open oxygen emergency release valve is provided in the high-pressure container, and an emergency power-off switch is provided for the power source of the water electrolysis cell.

【0048】[0048]

【発明の実施の形態】以下、この発明の高圧水素製造方
法とその装置の好適な実施の形態を、添付の図面に基づ
いて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments of the high-pressure hydrogen production method and apparatus of the present invention will be described below with reference to the accompanying drawings.

【0049】図1は、この発明の高圧水素製造装置の一
実施例を示す概略説明図であって、この高圧水素製造装
置は、基本的には、水電解セル1が発生した水素雰囲気
中に収まるように配設された水素高圧容器2と、電解さ
れる原料純水と、戻り純水及び発生した酸素を貯留する
酸素高圧容器62、水素高圧容器2内の純水と、酸素高
圧容器62内の純水を連通する純水配管16a,16b
及び水素高圧容器2と酸素高圧容器62内の水素と酸素
の圧力差を感知し、その圧力差を制御するための差圧検
知器53とで構成されるものである。
FIG. 1 is a schematic explanatory view showing an embodiment of the high-pressure hydrogen producing apparatus of the present invention. This high-pressure hydrogen producing apparatus is basically arranged in the hydrogen atmosphere generated by the water electrolysis cell 1. Hydrogen high-pressure container 2 arranged so as to fit, raw material pure water to be electrolyzed, oxygen high-pressure container 62 for storing return pure water and generated oxygen, pure water in hydrogen high-pressure container 2, and oxygen high-pressure container 62 Pure water pipes 16a, 16b for communicating pure water inside
And a differential pressure detector 53 for sensing the pressure difference between hydrogen and oxygen in the hydrogen high pressure vessel 2 and the oxygen high pressure vessel 62 and controlling the pressure difference.

【0050】図1に示される高圧水素製造装置におい
て、電解される純水は、酸素高圧容器62からポンプ7
により水電解セル1に送られ、電源61から水電解に必
要な電力を供給すると、純水が電気分解して、水素放出
口3から水素と純水が水素高圧容器2内に放出され、発
生した酸素と未分解の純水は、戻り管4を通って酸素高
圧容器62に送られる。
In the high-pressure hydrogen producing apparatus shown in FIG. 1, pure water to be electrolyzed is supplied from the oxygen high-pressure container 62 to the pump 7
When the electric power necessary for water electrolysis is supplied from the power supply 61 to the water electrolysis cell 1, the pure water is electrolyzed and hydrogen and pure water are released from the hydrogen release port 3 into the hydrogen high-pressure container 2 to generate. The oxygen and the undecomposed pure water are sent to the oxygen high pressure container 62 through the return pipe 4.

【0051】水素高圧容器2内及び酸素高圧容器62内
は、それぞれ発生した水素及び酸素により昇圧し、所定
の圧力、例えば、400気圧の状態になるが、水素の需
要の無い時は、この状態で電解を中止して待機している
もので、水素を必要とする時は、弁57を開放し、ニー
ドル弁56を徐々に開くことによって、水素供給口55
から水素が供給される。
The hydrogen high pressure vessel 2 and the oxygen high pressure vessel 62 are pressurized by the generated hydrogen and oxygen, respectively, and are brought to a predetermined pressure, for example, 400 atmospheric pressure. When there is no demand for hydrogen, this state is maintained. When the hydrogen is needed, the valve 57 is opened and the needle valve 56 is gradually opened, so that the hydrogen supply port 55 is stopped.
Is supplied with hydrogen.

【0052】水素の供給によって、水素高圧容器2内の
圧力が低下することが圧力計54で計測されると、圧力
計54に連動する制御装置(図示せず)からの指令で、
電源61から水電解セル1に電力の供給が再開され、圧
力計54の圧力が再び元の値に戻るまで電力が供給され
る。
When the pressure gauge 54 measures that the pressure in the hydrogen high-pressure container 2 is lowered by the supply of hydrogen, a command from a control device (not shown) interlocking with the pressure gauge 54 causes
The power supply from the power supply 61 to the water electrolysis cell 1 is restarted, and the power is supplied until the pressure of the pressure gauge 54 returns to the original value again.

【0053】圧力計54の圧力が回復すると、ニードル
弁56の開度をさらに増し、圧力計54の圧力が回復す
るまで電源61の電力を増す。このようにして、ニード
ル弁56の開度を増しても圧力が低下しなくなるか、ま
たは電源61の供給電力が許容最高電力になれば、その
状態を維持して水素の供給を続ける。
When the pressure of the pressure gauge 54 is restored, the opening degree of the needle valve 56 is further increased and the power of the power source 61 is increased until the pressure of the pressure gauge 54 is restored. In this way, if the pressure does not drop even if the opening degree of the needle valve 56 is increased, or if the power supplied from the power supply 61 reaches the maximum allowable power, that state is maintained and hydrogen supply is continued.

【0054】純水の電解で水素と共に、水電解セル1で
発生する酸素は、酸素高圧容器62上部の酸素貯留部5
2に溜められる。
Oxygen generated in the water electrolysis cell 1 together with hydrogen in the electrolysis of pure water is stored in the oxygen storage portion 5 above the oxygen high pressure vessel 62.
It is stored in 2.

【0055】この酸素貯留部52に溜められた酸素の圧
力と、水素高圧容器2内の水素の圧力との差圧は、電解
中及び水素供給中、下記に具体例の一例が示される差圧
検知器53で計測され、この計測信号により、通常、制
御装置(図示せず)が弁44の開閉及びニードル弁43
の開度を制御し、差圧検知器53からの差圧信号が0に
なるように酸素放出口45からの酸素放出量を制御す
る。
The differential pressure between the pressure of oxygen stored in the oxygen storage section 52 and the pressure of hydrogen in the hydrogen high-pressure vessel 2 is the differential pressure shown below as an example of the specific example during electrolysis and during hydrogen supply. Measured by the detector 53, the control signal (not shown) normally causes the control device (not shown) to open and close the valve 44 and the needle valve 43 based on the measurement signal.
Is controlled to control the amount of oxygen released from the oxygen release port 45 so that the differential pressure signal from the differential pressure detector 53 becomes zero.

【0056】このようにして、水素高圧容器2内の圧力
と、純水酸素高圧容器62内の圧力が等しいように制御
されながら、電解が行われ、水素供給口55からの水素
供給が行われる。
In this way, electrolysis is performed and hydrogen is supplied from the hydrogen supply port 55 while controlling the pressure in the hydrogen high-pressure container 2 and the pressure in the pure water oxygen high-pressure container 62 to be equal. .

【0057】従来の高圧水素製造装置においては、上記
のように、酸素高圧容器62と水素高圧容器2の差圧
は、酸素及び水素、特に酸素の放出により調整している
が、一般に、水電解セル1の耐圧から期待できる許容圧
力は、4気圧程度であるので、前記したように、この水
電解セル1を用いて、例えば、400気圧の水素と酸素
を発生させる場合は、1%以上の高精度の圧力制御が求
めらる。
In the conventional high-pressure hydrogen production apparatus, as described above, the differential pressure between the oxygen high-pressure vessel 62 and the hydrogen high-pressure vessel 2 is adjusted by releasing oxygen and hydrogen, particularly oxygen. Since the allowable pressure that can be expected from the pressure resistance of the cell 1 is about 4 atm, as described above, when using this water electrolysis cell 1 to generate hydrogen and oxygen at 400 atm, for example, 1% or more. High precision pressure control is required.

【0058】そのため、この発明においては、水素供給
口55に接続され、水素供給を受けている装置の水素消
費量の変動や、電源61の供給電力の変動等による圧力
制御乱れにより、差圧が水電解セル1の許容耐圧を超え
る、すなわち、圧力制御乱れによる水電解セル1の許容
耐圧以上の差圧発生を回避するため、水素高圧容器2内
の純水と、酸素高圧容器62内の純水を連通する純水配
管16a,16bと、純水配管16a,16bにそれぞれ接
続され、差圧に基づいて作動する開放弁8及び17が設
けられている。
Therefore, in the present invention, the pressure difference is caused by fluctuations in the amount of hydrogen consumed by the device connected to the hydrogen supply port 55 and receiving hydrogen, fluctuations in pressure control due to fluctuations in the power supplied from the power supply 61, and the like. In order to avoid the occurrence of a differential pressure exceeding the allowable withstand voltage of the water electrolysis cell 1, that is, due to pressure control disturbance, generation of a differential pressure exceeding the allowable withstand pressure of the water electrolysis cell 1, pure water in the hydrogen high pressure vessel 2 and pure water in the oxygen high pressure vessel 62 are avoided. Pure water pipes 16a and 16b communicating with water and open valves 8 and 17 connected to the pure water pipes 16a and 16b, respectively, and operated based on the differential pressure are provided.

【0059】したがって、水素高圧容器2内の水素圧力
が、酸素高圧容器62内の酸素圧力より低くなって、そ
の差圧が、セル1の許容圧力値を超えるおそれが出てき
た場合には、開放弁8から酸素高圧容器62内の純水
が、水素高圧容器2内に放出され、これにより酸素高圧
容器62内の純水容積が減少し、酸素貯留部52の酸素
容積が増え、酸素高圧容器62内の酸素圧力が低下する
と共に、水素高圧容器2内の圧力は高くなって、許容耐
圧以下に差圧が維持される。
Therefore, when the hydrogen pressure in the hydrogen high-pressure vessel 2 becomes lower than the oxygen pressure in the oxygen high-pressure vessel 62, and the differential pressure thereof may exceed the allowable pressure value of the cell 1, Pure water in the oxygen high-pressure container 62 is released from the release valve 8 into the hydrogen high-pressure container 2, which reduces the pure water volume in the oxygen high-pressure container 62 and increases the oxygen volume in the oxygen storage section 52. As the oxygen pressure in the container 62 decreases, the pressure in the hydrogen high-pressure container 2 increases, and the differential pressure is maintained below the allowable withstand pressure.

【0060】その際、水素高圧容器2内の水素容積が2
0L、酸素高圧容器62内の酸素容積が0.4L(水素
の2%)とし、発生圧力が400気圧とすると、0.4
Lの1%である4ccの純水が、酸素高圧容器62から
流出し、水素高圧容器2に流入し、酸素圧力は、400
気圧の1%である4気圧減少し、水素圧力は、0.08
気圧増加するので、合計で4.08気圧の差圧を、僅か
4ccの純水の流出入で効率よく解消させることができ
る。
At this time, the hydrogen volume in the hydrogen high-pressure container 2 is 2
0L, the oxygen volume in the oxygen high pressure vessel 62 is 0.4L (2% of hydrogen), and the generated pressure is 400 atm, 0.4
Pure water of 4 cc, which is 1% of L, flows out from the oxygen high pressure container 62 and flows into the hydrogen high pressure container 2, and the oxygen pressure is 400
Reduced by 4 atm, which is 1% of atmospheric pressure, and hydrogen pressure was 0.08
Since the atmospheric pressure is increased, the total differential pressure of 4.08 atm can be efficiently resolved by the inflow and outflow of pure water of only 4 cc.

【0061】酸素高圧容器62内の水面51を制御する
ことは、特に350気圧以上での水素発生に際しては重
要で、この発明においては、後述するような水面計50
を酸素高圧容器62内に配置し、常時水面51を計測
し、水面51が所定の位置より低下すると、弁38を開
いて高圧純水供給槽41内の純水を、その重力を利用し
て酸素高圧容器62内に流し込み、高圧純水供給槽41
から酸素高圧容器62に純水が流入すると、同時に同じ
量の酸素が、弁39を通って高圧純水供給槽41に流れ
込む。
It is important to control the water level 51 in the oxygen high pressure vessel 62, especially when hydrogen is generated at 350 atm or higher.
Is placed in the oxygen high-pressure container 62, the water surface 51 is constantly measured, and when the water surface 51 falls below a predetermined position, the valve 38 is opened and the pure water in the high-pressure pure water supply tank 41 is utilized by utilizing its gravity. It is poured into the oxygen high-pressure container 62 and supplied to the high-pressure pure water supply tank 41.
When pure water flows into the oxygen high pressure container 62 from the same, the same amount of oxygen simultaneously flows into the high pressure pure water supply tank 41 through the valve 39.

【0062】高圧純水供給槽41内の純水を、酸素高圧
容器62内に重力を利用して流し込むには、高圧純水供
給槽41を酸素高圧容器62より高い位置に、また、高
圧純水供給槽41に純水を補給する純水補給槽40も、
同位置又はさらに高い位置に設置することが肝要であ
る。
In order to flow the pure water in the high-pressure pure water supply tank 41 into the oxygen high-pressure container 62 by using gravity, the high-pressure pure water supply tank 41 is placed at a position higher than the oxygen high-pressure container 62, and the high-pressure pure water supply tank 41. The pure water supply tank 40 that supplies pure water to the water supply tank 41 also
It is important to install at the same position or higher position.

【0063】高圧純水供給槽41への純水補給は、弁3
8と39を閉止して、弁36と37を開放して行われ
る。すなわち、弁38と39を閉にして酸素高圧容器6
2と分離し、弁36及び37を開にして、純水補給槽4
0の純水を、ポンプ32によりイオン交換樹脂筒33及
びフィルタ34を通して行う。
The pure water is supplied to the high-pressure pure water supply tank 41 by the valve 3
This is done by closing valves 8 and 39 and opening valves 36 and 37. That is, the valves 38 and 39 are closed and the oxygen high pressure container 6
2, and valves 36 and 37 are opened, and pure water supply tank 4
Pure water of 0 is supplied by the pump 32 through the ion exchange resin cylinder 33 and the filter 34.

【0064】その際、純水の比抵抗が比抵抗計35によ
り計測され、比抵抗値が低いと、水電解セル1の触媒電
極等が被毒し、水電解セル1の寿命を縮めるので、純水
を循環させて、比抵抗値が所定値以上に高くなるまで、
イオン交換樹脂筒33を複数回通過させ、イオン交換処
理を行う。
At this time, the specific resistance of pure water is measured by the specific resistance meter 35. If the specific resistance value is low, the catalyst electrode of the water electrolysis cell 1 is poisoned and the life of the water electrolysis cell 1 is shortened. By circulating pure water, until the specific resistance becomes higher than a predetermined value,
The ion exchange resin cylinder 33 is passed through a plurality of times to perform an ion exchange process.

【0065】純水補給槽40が高圧純水供給槽41の上
方に設置されていると、高圧純水供給槽41内は、純水
で満たされ、気泡等も除去できるので、弁36及び37
を閉止して、弁38及び39を開にした時の圧力変動
は、純水の体積変化だけで、圧力制御の面では、ほとん
ど無視できる。
When the pure water supply tank 40 is installed above the high pressure pure water supply tank 41, the inside of the high pressure pure water supply tank 41 is filled with pure water and bubbles and the like can be removed.
The pressure fluctuation when the valve is closed and the valves 38 and 39 are opened is only the volume change of pure water, and can be almost ignored in terms of pressure control.

【0066】ポンプ32による純水の循環は、常圧で行
われるので、ポンプ32、イオン交換樹脂筒33、フィ
ルタ34及び比抵抗計35は、全て、常圧で動作する。
このポンプ32による純水循環の終了は、比抵抗計35
により計測される純水比抵抗値により決められる。
Since the pure water is circulated by the pump 32 at normal pressure, the pump 32, the ion exchange resin cylinder 33, the filter 34 and the resistivity meter 35 all operate at normal pressure.
The end of the pure water circulation by the pump 32 is determined by the resistivity meter 35.
It is determined by the pure water specific resistance value measured by.

【0067】また、高圧純水供給槽41と同じ機能を有
する予備槽を設けることによって、どちらか一方を常に
待機させれば、酸素高圧容器62への純水供給に滞りが
生ずることはない。
Further, by providing a spare tank having the same function as the high-pressure pure water supply tank 41, if either one is always on standby, there will be no delay in the pure water supply to the oxygen high-pressure container 62.

【0068】酸素高圧容器62内の純水は、水電解セル
1に送られて水電解の原料となるので、長期に貯留して
純水比抵抗が、例えば、6MΩ/cm以下というよう
に、水質が低下すると、水電解セル1の触媒電極等が被
毒し、水電解セル1の寿命を縮めることがあるので、酸
素高圧容器62内の純水の水質低下を防ぐためには、随
時、純水の一部を新鮮な純水と交換することが望まし
い。
The pure water in the oxygen high-pressure container 62 is sent to the water electrolysis cell 1 and used as a raw material for water electrolysis, so that it is stored for a long period of time and the specific resistance of pure water is, for example, 6 MΩ / cm 2 or less. When the water quality is deteriorated, the catalyst electrode or the like of the water electrolysis cell 1 may be poisoned and the life of the water electrolysis cell 1 may be shortened. Therefore, in order to prevent deterioration of the water quality of the pure water in the oxygen high pressure vessel 62, It is desirable to replace some of the pure water with fresh pure water.

【0069】酸素高圧容器62内の純水の交換は、弁1
8を開いて純水排出槽19に純水酸素高圧容器62内の
純水を流し込み、弁18を閉じ、弁21を開き、純水排
出槽19内の純水を受水槽23に排出し、その分の純水
を、高圧純水供給槽41から補給することで行われる。
The pure water in the oxygen high pressure vessel 62 is replaced by the valve 1
8 is opened, pure water in the pure water oxygen high-pressure container 62 is poured into the pure water discharge tank 19, the valve 18 is closed, the valve 21 is opened, and the pure water in the pure water discharge tank 19 is discharged to the water receiving tank 23, This is done by replenishing that amount of pure water from the high-pressure pure water supply tank 41.

【0070】その際、純水交換操作での圧力変動を少な
くするため、純水排出槽19の容積は、酸素貯留部52
の1%程度にすることがよく、純水の交換頻度は、純水
の使用量にもよるが、1日当たり10回程度(10%程
度)で問題ない。
At this time, in order to reduce the pressure fluctuation during the pure water exchange operation, the volume of the pure water discharge tank 19 is set to the oxygen storage portion 52.
However, the frequency of deionized water replacement is about 10 times per day (about 10%), although it depends on the amount of deionized water used.

【0071】水素高圧容器2には、発生した水素と共
に、水電解セル1の陽極から陰極への浸透純水が水素放
出口3から放出され、水素高圧容器2内の底部に溜ま
る。
In the hydrogen high-pressure container 2, the pure hydrogen permeated from the anode to the cathode of the water electrolysis cell 1 is discharged from the hydrogen discharge port 3 together with the generated hydrogen, and accumulates at the bottom of the hydrogen high-pressure container 2.

【0072】この純水の貯留量は、酸素高圧容器62の
酸素貯留部52容積の2倍程度以上にするのがよく、そ
の量の制御は、水面計10により水面9を検知し、所定
量以上に純水が増えると、弁11を開にして純水受槽1
2に流し込む。純水受槽12の容積は、弁11を開に
し、純水受槽12に純水を流し込む操作での圧力変動が
水電解セル1の耐圧で定まる許容耐圧以下になるように
定める。
It is preferable that the amount of pure water stored is at least about twice the volume of the oxygen storage portion 52 of the oxygen high pressure container 62. The amount of pure water is controlled by detecting the water surface 9 by the water level gauge 10. When the amount of pure water increases, the valve 11 is opened and the pure water receiving tank 1
Pour into 2. The volume of the pure water receiving tank 12 is set so that the pressure fluctuation due to the operation of opening the valve 11 and pouring the pure water into the pure water receiving tank 12 is equal to or less than the allowable withstand pressure determined by the withstand voltage of the water electrolysis cell 1.

【0073】例えば、水素高圧容器2内の水素の最高発
生圧を400気圧、貯留される水素容積を20リット
ル、水電解セル1の許容圧を4気圧とした場合、純水受
槽12の容積を0.2リットル(1%)以下にすると、
弁11を開にして純水を純水受槽12に流入させる操作
での水素圧力変動は、最大でも400×1%=4気圧と
なる。
For example, when the maximum hydrogen generation pressure in the hydrogen high-pressure vessel 2 is 400 atm, the stored hydrogen volume is 20 liters, and the allowable pressure of the water electrolysis cell 1 is 4 atm, the volume of the pure water receiving tank 12 is If it is less than 0.2 liter (1%),
The hydrogen pressure fluctuation in the operation of opening the valve 11 and flowing the pure water into the pure water receiving tank 12 is 400 × 1% = 4 atm at the maximum.

【0074】その際、何らかの要因が重なって、この操
作で4気圧以上の差圧が発生することがあっても、開放
弁8及び17の作用で、水電解セル1の耐圧の許容値を
超える差圧は発生しない。
At this time, even if some factors overlap and a differential pressure of 4 atm or more is generated by this operation, the action of the release valves 8 and 17 exceeds the allowable pressure resistance of the water electrolysis cell 1. No differential pressure is generated.

【0075】なお、図1において、5は水の電気分解で
発生した熱を冷却するための熱交換器、6は水電解セル
1に供給する純水を所望の温度にするための熱交換器、
13は電気抵抗式の水面計、15は純水排出管、20は
電気式の水面計、24はフロート式の水面計、25は水
供給口、27はポンプ、28はイオン交換筒、29はフ
ィルタ、30は純水比抵抗を計測するための純水比抵抗
計、31はフロート式の水面計、46は酸素緊急放出
口、47は酸素緊急放出弁、48は圧力計、49は酸素
中の水素濃度を検知するガス漏洩検知器、58は水素緊
急放出弁、59は水素緊急放出口、60は水素中の酸素
濃度を計測する漏洩検知器である。
In FIG. 1, 5 is a heat exchanger for cooling heat generated by electrolysis of water, and 6 is a heat exchanger for bringing pure water supplied to the water electrolysis cell 1 to a desired temperature. ,
13 is an electric resistance type water level gauge, 15 is a pure water discharge pipe, 20 is an electric type water level gauge, 24 is a float type water level gauge, 25 is a water supply port, 27 is a pump, 28 is an ion exchange tube, 29 is A filter, 30 is a pure water resistivity meter for measuring the pure water specific resistance, 31 is a float type water level gauge, 46 is an oxygen emergency release port, 47 is an oxygen emergency release valve, 48 is a pressure gauge, and 49 is in oxygen. Is a gas leak detector for detecting the hydrogen concentration of the hydrogen, 58 is a hydrogen emergency release valve, 59 is a hydrogen emergency release port, and 60 is a leak detector for measuring the oxygen concentration in hydrogen.

【0076】図2は、この発明に使用する差圧検知器の
一例を示す部分断面図で、図に示されるように、この差
圧検知器53は、水素高圧容器2又は酸素高圧容器62
の圧力で、軸方向に伸縮するベローズ106,107で両端が
封止され、内部に非活性流体が充満された非磁性材料の
円筒101と、円筒101の内面に密着して軸方向にスライド
自在に設けられた内部磁性体104と、円筒101の外面に密
着し、かつ前記内部磁性体104と連動し、軸方向にスラ
イド自在に配置された外部磁性体105からなる装置主体1
00と、前記ベローズ106,107の伸縮によりスライド移動
する外部磁性体105と連動して差圧を検知する検出器120
から構成されている。
FIG. 2 is a partial cross-sectional view showing an example of the differential pressure detector used in the present invention. As shown in the drawing, the differential pressure detector 53 is a hydrogen high pressure container 2 or an oxygen high pressure container 62.
With the pressure of, the both ends are sealed by bellows 106 and 107 that expand and contract in the axial direction, and the cylinder 101 made of a non-magnetic material filled with an inert fluid inside and the inner surface of the cylinder 101 are in close contact and slidable in the axial direction. An apparatus main body 1 including an internal magnetic body 104 provided on the outer peripheral surface of the cylinder 101 and an external magnetic body 105 that is closely attached to the outer surface of the cylinder 101 and interlocks with the internal magnetic body 104 and is slidably arranged in the axial direction.
00 and a detector 120 for detecting the differential pressure in cooperation with the external magnetic body 105 that slides by the expansion and contraction of the bellows 106 and 107.
It consists of

【0077】なお、この検出器120は、外部磁性体105に
連動して動く遮光板119と、遮光板119で遮光される開口
部117,118を有する表示板116と、開口部117,118を透
過した透過光量を電気信号に変換する光電計(図示せ
ず)から構成されるものである。
The detector 120 includes a light shielding plate 119 that moves in conjunction with the external magnetic material 105, a display plate 116 having openings 117 and 118 shielded by the light shielding plate 119, and openings 117 and 118. It is composed of a photoelectric meter (not shown) that converts the transmitted light amount into an electric signal.

【0078】図2示される差圧検知器53では、水素配
管112で水素高圧容器2内の水素が水素圧力室110に送ら
れ、酸素配管113から酸素高圧容器62内の酸素が酸素
圧力室111に送られると、それらの圧力が、各々、ベロ
ーズ106及び107に伝えられる。
In the differential pressure detector 53 shown in FIG. 2, hydrogen in the hydrogen high-pressure vessel 2 is sent to the hydrogen pressure chamber 110 through the hydrogen pipe 112, and oxygen in the oxygen high-pressure vessel 62 is sent from the oxygen pipe 113 to the oxygen pressure chamber 111. Are sent to the bellows 106 and 107, respectively.

【0079】ベローズ106と107及び円筒101内には、機
械油等の流体が充満されているので、圧力を受けても体
積が殆ど変化せず、ベローズ106及び107が水素配管112
及び酸素配管113により送られる高圧の水素及び酸素か
ら圧力を受けても、その圧力で押し潰されることはな
い。
Since the bellows 106 and 107 and the cylinder 101 are filled with a fluid such as mechanical oil, the volume hardly changes even when pressure is applied, and the bellows 106 and 107 are connected to the hydrogen pipe 112.
Also, even if pressure is applied from high-pressure hydrogen and oxygen sent through the oxygen pipe 113, the pressure does not cause crushing.

【0080】水素配管112及び酸素配管113により送られ
る水素と酸素の圧力が等しい場合は、ベローズ106と107
が水素圧力室110及び酸素圧力室111から押される力が等
しいため、内部磁性体104は、円筒101の中央に停止した
状態を維持する。
When the pressures of hydrogen and oxygen sent through the hydrogen pipe 112 and the oxygen pipe 113 are equal, bellows 106 and 107 are used.
Since the forces pushed by the hydrogen pressure chamber 110 and the oxygen pressure chamber 111 are equal to each other, the internal magnetic body 104 remains stopped in the center of the cylinder 101.

【0081】しかしながら、水素配管112で送られる水
素の圧力が、酸素配管113で送られる酸素の圧力より高
い場合は、その差圧によりスプリング114が伸び、スプ
リング115が縮み、差圧とスプリング114及び115の伸び
縮みによる力がバランスする位置まで、酸素圧力室111
側に内部磁性体105が固定棒102及び103で押されて移動
する。
However, when the pressure of hydrogen sent through the hydrogen pipe 112 is higher than that of oxygen sent through the oxygen pipe 113, the differential pressure causes the spring 114 to expand and the spring 115 to contract, so that the differential pressure and the spring 114 and Oxygen pressure chamber 111 until the position where the force due to expansion and contraction of 115 is balanced.
The internal magnetic body 105 is pushed to the side by the fixing rods 102 and 103 to move.

【0082】内部磁性体104と外部磁性体105は、互いに
磁気力を及ぼしあって磁気結合しているので、内部磁性
体104の移動に伴って外部磁性体105が移動し、外部磁性
体105に固定されている遮光板119が移動し、酸素側の開
口部118の一部を覆い、開口部117を透過する光量は変化
しないが、開口部118を透過する光量が減少する。
Since the inner magnetic body 104 and the outer magnetic body 105 exert a magnetic force on each other and are magnetically coupled to each other, the outer magnetic body 105 moves as the inner magnetic body 104 moves, and the outer magnetic body 105 moves. The fixed shading plate 119 moves to cover a part of the opening 118 on the oxygen side and the amount of light transmitted through the opening 117 does not change, but the amount of light transmitted through the opening 118 decreases.

【0083】逆に、水素配管112で送られる水素の圧力
が、酸素配管113から送られる酸素の圧力より低い場合
は、水素側の開口部117の一部が遮光板119で覆われ、開
口部117を透過する光量が減少する。
On the contrary, when the pressure of hydrogen sent through the hydrogen pipe 112 is lower than the pressure of oxygen sent through the oxygen pipe 113, a part of the opening 117 on the hydrogen side is covered with the light shielding plate 119, and the opening is opened. The amount of light that passes through 117 decreases.

【0084】したがって、開口部117及び118を透過する
光量を計測することで、水素配管112で送られる水素の
圧力と、酸素配管113から送られる酸素の圧力との差圧
の大きさと、どちらが高くてどちらが低いかが分かるの
で、例えば、図1の弁44とニードル弁43の開閉を制
御して、酸素の放出量を制御することにより、開口部11
7及び118を透過する光量に差が無いようにし、差圧を0
にすることができる。
Therefore, by measuring the amount of light transmitted through the openings 117 and 118, whichever is higher, the difference in pressure between the hydrogen pressure sent through the hydrogen pipe 112 and the oxygen pressure sent through the oxygen pipe 113 is higher. Which is lower, the opening 11 can be controlled by controlling the opening / closing of the valve 44 and the needle valve 43 in FIG. 1 to control the amount of released oxygen.
Make sure there is no difference in the amount of light passing through 7 and 118, and set the differential pressure to 0.
Can be

【0085】以上の説明においては、光量計測で内部磁
性体104の位置を計測する手法を説明したが、計測はス
ライド抵抗を用いても行える。すなわち、外部磁性体10
5に摺動子を固定し、外部磁性体105と一体の滑動子の動
きに合わせてスライド抵抗上を摺動子が動くようにする
ことで、内部磁性体104の移動量を計測することもでき
る。
In the above description, the method of measuring the position of the internal magnetic body 104 by measuring the light amount has been described, but the measurement can also be performed by using the slide resistance. That is, the external magnetic body 10
It is also possible to measure the amount of movement of the internal magnetic body 104 by fixing the slider to 5 and allowing the slider to move on the slide resistance in accordance with the movement of the slider integrated with the external magnetic body 105. it can.

【0086】図3は、この発明で用いた開放弁8及び1
7の構造を示す断面図(a)と側面図(b)であって、
図示されるように、この開放弁8,17は、円筒状の弁
主体130に、純水放出のための放出口132を設ける
とともに、その内部にシリンダー131と、このシリンダ
ー131と連動するスプリング133とを設け、前記スプリン
グ133を、その付勢力が調整可能なようにネジ135と固定
ナット136で固定し、水素高圧容器2内又は酸素高圧容
器62内の純水を移動させる純水配管16a又は16b
との接続配管138と、通気口137を有するものである。
FIG. 3 shows the release valves 8 and 1 used in the present invention.
7 is a sectional view (a) and a side view (b) showing the structure of FIG.
As shown in the figure, the open valves 8 and 17 are provided with a cylindrical valve main body 130, a discharge port 132 for discharging pure water, a cylinder 131, and a spring 133 interlocking with the cylinder 131 therein. And the spring 133 is fixed by a screw 135 and a fixing nut 136 so that the biasing force of the spring 133 can be adjusted, and pure water pipe 16a for moving pure water in the hydrogen high pressure container 2 or the oxygen high pressure container 62 or 16b
It has a connection pipe 138 for connection with and a vent 137.

【0087】この開放弁8,17は、固定ナット136を
緩めてネジ頭134を回転させ、スプリング133の押える強
さを調整することによって、接続配管138により伝えら
れた純水の圧力で押上げられるシリンダー131が、放出
口132より上方に位置し、接続配管138の純水が放出口13
2より放出する圧力を、所望の圧力(セルの耐圧で定ま
る許容圧)に設定することが可能なもので、固定ナット
136を締めて、設定が変わらないようにすることも可能
なものである。
The open valves 8 and 17 are pushed up by the pure water pressure transmitted by the connecting pipe 138 by loosening the fixing nut 136 and rotating the screw head 134 to adjust the pressing strength of the spring 133. The cylinder 131 is located above the discharge port 132, and the pure water in the connection pipe 138 is discharged from the discharge port 13
The pressure released from 2 can be set to the desired pressure (permissible pressure determined by the pressure resistance of the cell).
It is also possible to tighten 136 so that the setting does not change.

【0088】シリンダー131は、弁主体130が置かれてい
る雰囲気の圧力が接続配管138内の純水圧力より高くな
ると、その差圧でスプリング133が縮み、シリンダー131
が上方に移動を開始し、接続配管138内の純水の圧力が
さらに増すと、シリンダー131が放出口132を越え、放出
口132から接続配管138内の純水が放出されるため、接続
配管138内の圧力が低下するものであるが、放出口132の
形状を逆三角形の形状とすることで、放出される純水量
は、差圧が少ない時は少なく、差圧が大きくなると多く
なり、差圧が速やかに解消できる。
In the cylinder 131, when the pressure of the atmosphere in which the valve main body 130 is placed becomes higher than the pure water pressure in the connecting pipe 138, the spring 133 contracts due to the pressure difference, and the cylinder 131
When the pressure of pure water in the connection pipe 138 further increases, the cylinder 131 crosses the discharge port 132, and the pure water in the connection pipe 138 is discharged from the discharge port 132. Although the pressure in 138 is reduced, by making the shape of the discharge port 132 an inverted triangular shape, the amount of pure water discharged is small when the differential pressure is small, and increases when the differential pressure is large, The differential pressure can be quickly eliminated.

【0089】図4は、酸素等の気体と、純水との電気伝
導率特性が大きく異なっていることを利用した水面計の
断面図で、図1における水面計50であり、棒状の中心
電極150aと、この中心電極150aの外側に、同心円上に配
置された外部電極150bとからなるメイン電極150と、先
端部以外を電気絶縁性円筒で覆った棒状の中心電極151a
と、この中心電極151aの外側に、同心円上に配置された
外部電極151bとからなるサブ電極151とで構成されてい
る。
FIG. 4 is a cross-sectional view of a water level gauge 50 utilizing the fact that the electric conductivity characteristics of a gas such as oxygen and pure water are greatly different. The water level gauge 50 in FIG. 1 has a rod-shaped central electrode. 150a and a main electrode 150 composed of an outer electrode 150b arranged concentrically on the outside of the center electrode 150a, and a rod-shaped center electrode 151a having a portion other than the tip end covered with an electrically insulating cylinder.
And a sub-electrode 151 composed of an outer electrode 151b arranged concentrically outside the center electrode 151a.

【0090】なお、図中、152は純水水面、153a及び153
bは通気口、154a及び154bは外部電極150b,151bの取付
け部、155a及び155bは中心電極150a,150bの取付け部、
156a及び156bは絶縁碍子、157a及び157bは外部電極150
b,151bの取付け用の固定治具、158は取付け用のフラン
ジ、159a及び159bは固定治具157a及び157bを固定するた
めのナット、160a及び160bは絶縁板、161a及び161bは座
金、162a及び162bはリード線、163a及び163bは座金、16
4a及び164bは中心電極150a,150bを固定するためのナッ
ト、165a〜167bはOリングである。
In the figure, reference numeral 152 is the pure water surface, and 153a and 153.
b is a vent hole, 154a and 154b are attachment parts of the external electrodes 150b and 151b, 155a and 155b are attachment parts of the center electrodes 150a and 150b,
156a and 156b are insulators, and 157a and 157b are external electrodes 150.
Fixing jigs for mounting b and 151b, 158 mounting flanges, 159a and 159b nuts for fixing fixing jigs 157a and 157b, 160a and 160b insulating plates, 161a and 161b washers, 162a and 162b is a lead wire, 163a and 163b are washers, 16
4a and 164b are nuts for fixing the center electrodes 150a and 150b, and 165a to 167b are O-rings.

【0091】かかる構成の水面計50において、中心電
極150aと外部電極150bが純水中に浸漬されると、中心電
極150aと外部電極150b間を浸漬している純水の抵抗が、
リード線162aとアース間に、電気抵抗計を接続すると計
測できるので、この抵抗値をRmとする。
In the water level gauge 50 having such a structure, when the center electrode 150a and the outer electrode 150b are immersed in pure water, the resistance of the pure water immersed between the center electrode 150a and the outer electrode 150b becomes
Since an electric resistance meter can be connected between the lead wire 162a and the ground to perform measurement, this resistance value is defined as Rm.

【0092】一方、リード線162bとアース間の電気抵抗
を計測すると、絶縁円筒168で覆われないで露出してい
る中心電極150bの先端部と、外部電極151b間の純水の抵
抗が計測できるので、この抵抗値をRrとする。
On the other hand, when the electric resistance between the lead wire 162b and the ground is measured, the resistance of pure water between the tip of the center electrode 150b exposed without being covered with the insulating cylinder 168 and the external electrode 151b can be measured. Therefore, this resistance value is set to Rr.

【0093】中心電極151aが、絶縁円筒168で覆われて
いない先端部の長さをLrとし、中心電極150aと外部電
極150bが、純水で浸漬されている長さをLxとすると、
Lxは、下記式(1)により求めることができる。
Let Lr be the length of the tip of the center electrode 151a not covered by the insulating cylinder 168, and Lx be the length of the center electrode 150a and the outer electrode 150b immersed in pure water.
Lx can be calculated by the following equation (1).

【0094】[0094]

【式1】 Lx=Lr(Rr/Rm) (1)[Formula 1] Lx = Lr (Rr / Rm) (1)

【0095】上記式(1)によりLxが求まると、純水
水面152の位置が分かる。純水比抵抗は、イオン交換樹
脂筒を出たところでは、18MΩ/cm程度である
が、時間の経過にしたがって、純水容器壁等を溶解して
イオン濃度が増えると共に減少するが、純水比抵抗が経
時変化しても、その都度、Rrを計測して補正するの
で、常に正確な水面位置を検知できる。
When Lx is obtained from the above equation (1), the position of the pure water surface 152 can be known. The pure water specific resistance is about 18 MΩ / cm 2 when it exits the ion exchange resin cylinder, but it decreases with time as the ion concentration increases by dissolving the pure water container wall and the like. Even if the water resistivity changes with time, Rr is measured and corrected each time, so that the accurate water surface position can always be detected.

【0096】酸素及び水素等のガスは、電気的に絶縁性
であるので、リード線164aとアース間の電気抵抗は、中
心電極150aと外部電極150bが浸漬している純水の電気抵
抗だけで定まり、酸素又は水素の電気抵抗による影響は
無視できる。
Since gases such as oxygen and hydrogen are electrically insulating, the electric resistance between the lead wire 164a and the ground is only the electric resistance of pure water in which the center electrode 150a and the outer electrode 150b are immersed. Therefore, the influence of the electrical resistance of oxygen or hydrogen is negligible.

【0097】また、中心電極150aや外部電極150bをはじ
め、全て、耐圧性に優れた構造としているので、材料的
にも耐圧性の高い材料が使用可能で、従来のフロート式
水面計のような圧力制限を受けることはない。
Further, since the structure including the center electrode 150a and the outer electrode 150b is excellent in pressure resistance, it is possible to use a material having high pressure resistance, as in the conventional float type water level gauge. There is no pressure limit.

【0098】さらに、水面計50において、高圧の酸素
と水が共存する雰囲気で、電極間に電気を印可するの
は、電解腐食を発生させるおそれがあるが、計測をパル
ス的に行ったり、中心電極150a,151a及び外部電極150
b,151b等を、電解腐食に強いチタンや白金等の貴金属
メッキを施す等により、それらの問題は回避することが
でき、さらに、リード線164aとアース間の電気抵抗Rr
の計測は、純水比抵抗の計測であるため、純水水質の評
価データとしても利用でき、純水酸素高圧容器62内の
純水を交換する頻度も求めることができる。
Further, in the water level meter 50, applying electricity between the electrodes in an atmosphere in which high-pressure oxygen and water coexist may cause electrolytic corrosion, but the measurement may be performed in a pulsed manner or in the center. Electrodes 150a, 151a and external electrode 150
These problems can be avoided by plating b, 151b, etc. with a noble metal such as titanium or platinum that is resistant to electrolytic corrosion, and further, the electrical resistance Rr between the lead wire 164a and the ground is reduced.
Since the measurement of 1 is a measurement of the specific resistance of pure water, it can also be used as evaluation data for the quality of pure water, and the frequency with which the pure water in the pure water oxygen high-pressure container 62 is replaced can also be obtained.

【0099】図5は、この発明にかかる高圧水素製造装
置の他の実施例で、上記実施例と同様に、水電解セル1
は、水素高圧容器2内に発生した水素雰囲気中に収まる
ように配設され、電解される原料純水と、戻り純水及び
発生した酸素を貯留する酸素高圧容器62をも同様に具
備しているが、差圧検知器53の代わりに、圧力調整器
70を具備したもので、開放弁8及び17は除かれてい
る。
FIG. 5 shows another embodiment of the high-pressure hydrogen producing apparatus according to the present invention, which is similar to the above-mentioned embodiment, in the water electrolysis cell 1.
Is similarly provided with an oxygen high-pressure container 62 which is arranged so as to be contained in the hydrogen atmosphere generated in the hydrogen high-pressure container 2 and which stores the pure water to be electrolyzed, the return pure water and the generated oxygen. However, instead of the differential pressure detector 53, a pressure regulator 70 is provided, and the release valves 8 and 17 are omitted.

【0100】この圧力調整器70は、酸素高圧容器62
と水素高圧容器2との間の純水の圧力差により、両者間
の純水を、圧力の高い方から低い方に移動させ、差圧を
解消させる機能を有するものである。
This pressure regulator 70 is composed of an oxygen high pressure container 62.
Due to the pressure difference between the pure water and the hydrogen high-pressure container 2, the pure water between the two has a function of moving from higher pressure to lower pressure to eliminate the differential pressure.

【0101】すなわち、酸素高圧容器62内の圧力が水
素高圧容器2内の圧力より高くなると、酸素高圧容器6
2内の純水が、圧力調整器70に流入すると共に、同じ
量の純水が圧力調整器70から水素高圧容器2内に押し
戻されるので、酸素高圧容器62内の圧力は純水量が減
少し、酸素貯留部52の容積が増えるので、圧力は下が
り、一方の水素高圧容器2内は純水量が増えるので圧力
が上がって、差圧が解消される。
That is, when the pressure in the oxygen high pressure vessel 62 becomes higher than the pressure in the hydrogen high pressure vessel 2, the oxygen high pressure vessel 6
Since the pure water in 2 flows into the pressure regulator 70 and the same amount of pure water is pushed back from the pressure regulator 70 into the hydrogen high pressure vessel 2, the pressure in the oxygen high pressure vessel 62 decreases with the amount of pure water. Since the volume of the oxygen storage portion 52 increases, the pressure decreases, and the amount of pure water in one hydrogen high pressure container 2 increases, so the pressure increases and the differential pressure is eliminated.

【0102】また、圧力調整器70は、純水の移動量を
検知し、弁44とニードル弁43の開閉を制御装置(図
示せず)で制御して、水素高圧容器2側に移動した純水
を、酸素高圧容器62に戻すと共に、このような移動が
起こらないように、酸素放出口45から放出する酸素量
を調整して、圧力を均等にする機能も有するものであ
る。
Further, the pressure regulator 70 detects the amount of movement of pure water, controls the opening / closing of the valve 44 and the needle valve 43 by a control device (not shown), and moves to the hydrogen high pressure container 2 side. It also has a function of returning the water to the oxygen high pressure container 62 and adjusting the amount of oxygen released from the oxygen release port 45 to make the pressure uniform so that such movement does not occur.

【0103】水電解セル1から発生する水素の発生量
を、圧力計54で測定する圧力が、所定の圧力になるよ
う電源61から水電解セル1に供給する電流量を制御し
て行うこと、酸素高圧容器62への純水補給及び排水
と、水素高圧容器2からの排水については、図1に示さ
れた実施例の方法と同じであるので、説明は省略する。
The amount of hydrogen generated from the water electrolysis cell 1 is controlled by controlling the amount of current supplied from the power supply 61 to the water electrolysis cell 1 so that the pressure measured by the pressure gauge 54 becomes a predetermined pressure. The replenishment of pure water to the oxygen high pressure vessel 62 and the drainage thereof and the drainage of the hydrogen high pressure vessel 2 are the same as the method of the embodiment shown in FIG.

【0104】図6(a)は、上記の実施例で用いられる
具体的な圧力調整器70の部分断面図で、図6(b)は
図6(a)におけるA−A’に沿った断面図で、この圧
力調整器70は、非磁性材料で作られた中空円筒170
と、中空円筒170の内面に密着して滑動する、磁性材料
からなる内部滑動子171と、中空円筒170の外面に密着し
て滑動する、磁性材料で作られた外部滑動子172からな
る装置主体190と、外部滑動子172の位置を検出する位置
検出器200から構成されるもので、前記の内部滑動子171
で二分された中空円筒170の一方には、水素高圧容器2
内の純水184が導入され、他方には酸素高圧容器62内
の純水185が導入されるものである。
FIG. 6A is a partial sectional view of a specific pressure regulator 70 used in the above embodiment, and FIG. 6B is a sectional view taken along the line AA 'in FIG. 6A. In the figure, this pressure regulator 70 shows a hollow cylinder 170 made of a non-magnetic material.
And an internal slider 171 made of a magnetic material that slides in close contact with the inner surface of the hollow cylinder 170, and an external slider 172 made of a magnetic material that slides in close contact with the outer surface of the hollow cylinder 170. 190 and a position detector 200 that detects the position of the outer slider 172.
At one side of the hollow cylinder 170 divided into
Pure water 184 inside is introduced into the other side, and pure water 185 inside the oxygen high pressure vessel 62 is introduced into the other side.

【0105】水素高圧容器2からの純水184と、酸素高
圧容器62からの純水185は、内部滑動子171によって隔
離され、分離されているため、純水184と純水185とが入
り交じることは無く、水素高圧容器2内の圧力と、酸素
高圧容器62内の圧力が等しく、それらの間に差圧が発
生しない状態では、内部滑動子171は、中空円筒170の中
央に位置するように設定してある。
Since the pure water 184 from the hydrogen high pressure container 2 and the pure water 185 from the oxygen high pressure container 62 are separated and separated by the internal slider 171, the pure water 184 and the pure water 185 are mixed. In a state where the pressure inside the hydrogen high pressure vessel 2 and the pressure inside the oxygen high pressure vessel 62 are equal and no differential pressure is generated between them, the internal slider 171 is positioned at the center of the hollow cylinder 170. Is set to.

【0106】したがって、水素高圧容器2内の圧力が、
酸素高圧容器62内の圧力より高くなったとすると、配
管175から水素高圧容器2内の純水が、中空円筒170に流
入して水素高圧容器2内の圧力を下げると共に、内部滑
動子171が押されて、中空円筒170に純水が流入して純水
184の容積が増え、押されて容積が減った純水185は配管
176を通って、純水酸素高圧容器62に流入して、酸素
高圧容器62内の酸素の容積を小さくするので酸素の圧
力が増し、発生した差圧は自動的に解消される。
Therefore, the pressure in the hydrogen high-pressure container 2 becomes
If it becomes higher than the pressure in the oxygen high-pressure vessel 62, the pure water in the hydrogen high-pressure vessel 2 will flow from the pipe 175 into the hollow cylinder 170 to lower the pressure in the hydrogen high-pressure vessel 2 and the internal slider 171 will push it. Then, the pure water flows into the hollow cylinder 170 and the pure water
The volume of 184 has increased, and the volume of pure water that has been pushed down has decreased.
After passing through 176 and flowing into the pure water oxygen high-pressure vessel 62, the volume of oxygen in the oxygen high-pressure vessel 62 is reduced, so that the pressure of oxygen increases and the generated differential pressure is automatically canceled.

【0107】この時、内部滑動子171は、中心からスプ
リング183側にズレた位置に移動し、内部滑動子171と外
部滑動子172は磁力で結合しているので、外部滑動子172
も同じ位置に移動し、外部滑動子172に固定棒181で固定
されている遮光板177も同じように移動して開口部180の
一部を覆い、開口部180を透過する光量が減少する。
At this time, the inner slider 171 moves to the position displaced from the center toward the spring 183, and the inner slider 171 and the outer slider 172 are magnetically coupled to each other.
Also moves to the same position, and the light blocking plate 177 fixed to the outer slider 172 by the fixing rod 181 also moves to cover part of the opening 180, and the amount of light transmitted through the opening 180 decreases.

【0108】したがって、開口部180と開口部179とを透
過する光量を比較することで、内部滑動子171がどちら
に、どれだけ移動したかが分かるので、この開口部180
と開口部179の透過光量比較により、内部滑動子171を元
の中央位置に戻すようにニードル弁43の開度を制御装
置(図示せず)で制御する。
Therefore, by comparing the amount of light transmitted through the opening 180 and the opening 179, it can be known to which side and how much the internal slider 171 has moved.
And the amount of light transmitted through the opening 179 are compared, the opening degree of the needle valve 43 is controlled by a controller (not shown) so as to return the internal slider 171 to the original central position.

【0109】なお、圧力調整器70の光量比較のための
位置検出器200は、差圧検知器53の検出器120と同様の
構成と機能を有するものである。
The position detector 200 for comparing the light amount of the pressure adjuster 70 has the same structure and function as the detector 120 of the differential pressure detector 53.

【0110】このようにして、内部滑動子171が、常
に、中央位置にあるようにニードル弁43の開度を制御
して、酸素放出口45から放出する酸素量又は水素供給
口55から供給する水素量を調整することで、水電解セ
ル1に差圧をかけること無く、高圧の水素が発生でき
る。
In this way, the internal slider 171 controls the opening of the needle valve 43 so that it is always in the center position, and supplies the oxygen from the oxygen release port 45 or the hydrogen supply port 55. By adjusting the amount of hydrogen, high-pressure hydrogen can be generated without applying a differential pressure to the water electrolysis cell 1.

【0111】以上のように制御しても、水素高圧容器2
内の圧力が酸素高圧容器62内の圧力よりも高い状態が
続き、内部滑動子171の移動が止められない場合は、内
部滑動子171がスプリング183に当たり、スプリング171
を押さないと、それ以上内部滑動子171が動けなくなる
ので、内部滑動子171がこの位置まで動く間は、内部滑
動子171の動きに対する制限が無いので、差圧は殆ど発
生しない。
Even with the above control, the hydrogen high-pressure container 2
When the internal pressure continues to be higher than the internal pressure of the oxygen high-pressure vessel 62 and the movement of the internal slider 171 cannot be stopped, the internal slider 171 hits the spring 183 and the spring 171
Since the internal slider 171 cannot be further moved unless is pressed, there is no restriction on the movement of the internal slider 171 while the internal slider 171 is moving to this position, so that a differential pressure is hardly generated.

【0112】しかしながら、内部滑動子171がスプリン
グ183に当たると、内部滑動子171がスプリング183を押
さない限り、それ以上動けなくなる。すなわち、内部滑
動子171の移動による差圧調整はできないが、バイパス
流路174を設けることにより、それ以上に、差圧が大き
くなると、スプリング183が縮んで、水素高圧容器2内
の純水がバイパス流路174を経由して、直接、酸素高圧
容器62内に流入し、差圧が一定以上には大きくするこ
とはない。
However, when the internal slider 171 hits the spring 183, it cannot move any further unless the internal slider 171 pushes the spring 183. That is, the differential pressure cannot be adjusted by moving the internal slider 171. However, by providing the bypass flow passage 174, if the differential pressure becomes larger than that, the spring 183 contracts and pure water in the hydrogen high-pressure container 2 is removed. It does not flow into the oxygen high-pressure container 62 directly via the bypass flow path 174, and the differential pressure does not increase above a certain level.

【0113】水素高圧容器2内の純水がバイパス流路17
4を経由して、直接、酸素高圧容器62内に流入するよ
うなことは、何らかの異常が発生し、制御装置(図示せ
ず)によるニードル弁43の開度制御だけでは、制御で
きなくなった異常事態を示すので、かかる異常事態の際
には、緊急停止して、水電解セル1の電源61を遮断す
ると共に、弁58を除いて全て閉にし、水電解セル1か
らの水素及び酸素の発生を停止させ、水素高圧容器2の
圧力を急速に低下させるよう、緊急遮断スイッチ(図示
せず)や緊急放出弁47、58が設けてある。
Pure water in the hydrogen high-pressure container 2 is bypassed by the bypass passage 17
The fact that the oxygen flows directly into the oxygen high-pressure container 62 via 4 causes some abnormality, which cannot be controlled only by controlling the opening degree of the needle valve 43 by a control device (not shown). In the case of such an abnormal situation, an emergency stop is performed to shut off the power supply 61 of the water electrolysis cell 1 and close all except the valve 58 to generate hydrogen and oxygen from the water electrolysis cell 1. An emergency cutoff switch (not shown) and emergency release valves 47 and 58 are provided to stop the operation of the hydrogen gas and rapidly reduce the pressure of the hydrogen high pressure container 2.

【0114】また、図5には示されていないが、装置を
安全に停止するためには、酸素高圧容器62及び水素高
圧容器2内を、窒素ガスによる置換が行われるよう窒素
配管が設けられている。
Although not shown in FIG. 5, in order to safely stop the apparatus, a nitrogen pipe is provided so that the oxygen high pressure vessel 62 and the hydrogen high pressure vessel 2 are replaced with nitrogen gas. ing.

【0115】また、内部滑動子171がスプリング183を押
して、バイパス流路173又は174に純水が流入する差圧
を、水電解セル1の許容耐圧以内になるようにスプリン
グ182及び183の強さを設定することも、このような緊急
停止においても、水電解セル1が耐圧以上の圧力を受け
て破損することを防止する一つの手段である。
The internal slider 171 pushes the spring 183, and the strength of the springs 182 and 183 is adjusted so that the differential pressure at which pure water flows into the bypass passage 173 or 174 falls within the allowable withstand pressure of the water electrolysis cell 1. Is also one means for preventing the water electrolysis cell 1 from being damaged by receiving a pressure higher than the withstand pressure even in such an emergency stop.

【0116】また、中空円筒170の容積を、内部滑動子1
71の体積を除いて酸素高圧容器62内の酸素貯留部52
の容積に等しくすると、緊急遮断が作動するまでに、±
50%の差圧の解消ができる。
Also, the volume of the hollow cylinder 170 is set to the internal slider 1
The oxygen reservoir 52 in the oxygen high-pressure container 62 except for the volume of 71
Equal to the volume of
50% differential pressure can be eliminated.

【0117】図7及び図8は、他の圧力調整器70の部
分断面図で、これらの図で示される圧力調整器70は、
先の圧力調整器70のバイパス流路173又は174の代わり
に、圧力調整器70と並行し、中間に遮断弁220を有す
る純水配管213と、その開閉を操作するスイッチ211,21
2が設けられているものである。
7 and 8 are partial sectional views of another pressure regulator 70. The pressure regulator 70 shown in these figures is
Instead of the bypass flow path 173 or 174 of the pressure regulator 70, a pure water pipe 213 having a shutoff valve 220 in parallel with the pressure regulator 70 and switches 211 and 21 for operating the opening and closing thereof.
2 is provided.

【0118】これらの圧力調整器70においては、差圧
が内部滑動子171の移動による調整可能以上に大きくな
り、内部滑動子171がスプリング183を縮ませた場合、内
部滑動子171が、末端に設けてあるスイッチ211,212に
より、遮断弁220を開放させ、例えば水素高圧容器2内
の純水を純水配管213経由させて、直接、酸素高圧容器
62内に流入させ、差圧が一定以上には大きくすること
はないよう機能するものである。
In these pressure regulators 70, when the internal pressure of the internal slider 171 contracts the spring 183 and the internal pressure of the internal slider 171 becomes larger than that which can be adjusted by the movement of the internal slider 171. The shutoff valve 220 is opened by the provided switches 211 and 212, and, for example, pure water in the hydrogen high-pressure container 2 is allowed to directly flow into the oxygen high-pressure container 62 via the pure water pipe 213 so that the differential pressure is equal to or higher than a certain level. It's a function that doesn't grow much.

【0119】[0119]

【発明の効果】この発明の高圧水素製造方法ならびに装
置においては、水素高圧容器と酸素高圧容器内のどちら
にも存在する純水を用いて、水素と酸素の差圧が所定の
値(水電解セルの耐圧許容圧)を超えないように容器内
の圧力を調整するため、圧力制御を容易にするととも
に、コンプレッサーを用いること無く、水の電気分解だ
けで、水素のエネルギー利用に必要な350気圧以上の
高圧水素の製造を極めて容易にしたものである。
In the method and apparatus for producing high-pressure hydrogen according to the present invention, pure water existing in both the hydrogen high-pressure container and the oxygen high-pressure container is used, and the differential pressure between hydrogen and oxygen is set to a predetermined value (water electrolysis). Since the pressure inside the container is adjusted so that it does not exceed the withstand pressure of the cell), pressure control is facilitated, and the pressure of 350 atm required for hydrogen energy utilization is achieved by simply electrolyzing water without using a compressor. The above-mentioned production of high-pressure hydrogen is extremely easy.

【0120】しかも、圧力調整に使用される純水は、水
素高圧容器内に、酸素が発生する陽極側に供給した純水
の一部が、水素を発生する陰極側に浸透してくるもので
あるため、特別に純水を供給しなくても自然に純水が供
給されるもので、従来、不要なものとして、処理されて
いたものを有効に利用するもので、そのために特に格別
な装置、操作を必要とするものではなく、しかも、少し
の純水放出で効率よく差圧制御ができる効果的な差圧制
御手段である。
Further, the pure water used for pressure adjustment is such that a part of the pure water supplied to the anode side where oxygen is generated enters the hydrogen high-pressure container and permeates to the cathode side where hydrogen is generated. Therefore, pure water is naturally supplied without specially supplying pure water, which effectively uses what has been treated as unnecessary in the past. It is an effective differential pressure control means that does not require any operation and can efficiently control the differential pressure with a small amount of pure water discharged.

【0121】さらに、発生する水素及び酸素の圧力が高
いほど、少ない純水量で差圧を下げることができるの
で、水素のエネルギー利用で必要な高圧の水素製造に応
用して最適な効果が期待できる。
Further, the higher the pressure of hydrogen and oxygen generated, the lower the differential pressure can be with a small amount of pure water, so that the optimum effect can be expected by applying to the high-pressure hydrogen production necessary for utilizing the energy of hydrogen. .

【0122】また、この発明においては、水素高圧容器
内の純水量を、酸素高圧容器内の酸素が貯留されている
部分の容積より多くし、また、酸素高圧容器内の純水量
を水素高圧容器内の水素が貯留される部分の容積より多
くすることで、水素と酸素が混合し、爆鳴気が発生する
ことも確実に防止できるのである。
Further, in the present invention, the amount of pure water in the hydrogen high-pressure container is made larger than the volume of the portion of the oxygen high-pressure container where oxygen is stored, and the amount of pure water in the oxygen high-pressure container is set to be high. By making the volume larger than that of the portion in which hydrogen is stored, it is possible to reliably prevent the generation of detonation by mixing hydrogen and oxygen.

【0123】さらに、酸素の貯留量を水素の貯留量の4
%以下にして、例え混合しても、爆発下限以下にするこ
とも可能で、酸素高圧容器に大量の純水と少量の酸素
を、水素高圧容器に少量の純水と大量の水素を、各々貯
留することによって、また、水素高圧容器内の純水量
を、酸素高圧容器内の酸素が貯留されている部分の容積
より多くし、また、酸素高圧容器内の純水量を、水素高
圧容器内の水素が貯留される部分の容積より多くするこ
とにより、装置の故障や何らかの不都合の発生によっ
て、酸素高圧容器側の酸素が漏洩して圧力が低下し、水
素高圧容器内の純水が酸素高圧容器に流れ込む事故が発
生しても、酸素高圧容器内の酸素が、全部漏洩して純水
で置換されてからでないと、水素高圧容器内の水素が純
水酸素容器内に流入することは起こず、逆に、水素が漏
洩して水素高圧容器内の圧力が低下し、酸素高圧容器内
の純水が流入しても、水素高圧容器内の水素が全て酸素
高圧容器内の純水で置換された後でないと、酸素高圧容
器内の酸素が水素高圧容器内に流入することはないの
で、爆鳴気が生成される事故が回避できる。
Furthermore, the oxygen storage amount is set to 4 times the hydrogen storage amount.
% Or less, even if mixed or even lower than the explosion lower limit, a large amount of pure water and a small amount of oxygen can be stored in the oxygen high-pressure container, and a small amount of pure water and a large amount of hydrogen can be stored in the hydrogen high-pressure container. By storing, the amount of pure water in the hydrogen high-pressure container is made larger than the volume of the portion of the oxygen high-pressure container in which oxygen is stored, and the amount of pure water in the oxygen high-pressure container is increased. By increasing the volume of the hydrogen storage part, oxygen in the oxygen high pressure container leaks and the pressure drops due to equipment failure or some inconvenience, and the pure water in the hydrogen high pressure container becomes oxygen high pressure container. Even if an accident occurs, the oxygen in the oxygen high-pressure container must be completely leaked and replaced with pure water, and the hydrogen in the hydrogen high-pressure container will not flow into the pure water oxygen container. , On the contrary, hydrogen leaks and Even if the power decreases and pure water in the oxygen high-pressure container flows in, oxygen in the oxygen high-pressure container will not be high unless the hydrogen in the hydrogen high-pressure container is completely replaced with pure water in the oxygen high-pressure container. Since it does not flow into the container, it is possible to avoid an accident in which explosion noise is generated.

【0124】また、この発明においては、従来のフロー
ト式水面計に代えて、酸素等の気体と純水との電気伝導
率特性が大きく異なっていることを利用し、水面を検知
する水面計を使用することにより、高圧酸素と純水の密
度差が小さくなっても、水面を安定に高精度に検知でき
るようにすると共に、フロートが高圧力の水素や酸素で
押し潰されることによる発生圧力の限界を無くした。
Further, in the present invention, instead of the conventional float type water level gauge, a water level gauge for detecting the water level is utilized by utilizing the fact that the electric conductivity characteristics of gas such as oxygen and pure water are greatly different. Even if the density difference between high pressure oxygen and pure water becomes small by using it, the water surface can be detected stably and with high precision, and the pressure generated by the float being crushed by high pressure hydrogen or oxygen I lost the limit.

【0125】以上説明したように、この発明によって、
水電解で発生する水素と酸素の圧力差を自動的に水電解
セルの耐圧以内に制御できることが実現でき、これまで
強く求められていた水素のエネルギー利用で必要とされ
る高圧の水素を、機械的なコンプレッサーを用いない
で、安全に、安定して、しかも安価に製造でき、その実
用上及び経済的効果は計り知れない程大きい。
As described above, according to the present invention,
It is possible to automatically control the pressure difference between hydrogen and oxygen generated in water electrolysis within the pressure resistance of the water electrolysis cell, and the high pressure hydrogen required for the energy use of hydrogen, which has been strongly demanded so far, can be It can be manufactured safely, stably and at low cost without using a conventional compressor, and its practical and economic effects are immeasurable.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例である高圧水素製造装置の
配置図である。
FIG. 1 is a layout view of a high-pressure hydrogen production apparatus that is an embodiment of the present invention.

【図2】この発明で用いられる差圧検知器の構造を示す
部分断面図である。
FIG. 2 is a partial cross-sectional view showing the structure of the differential pressure detector used in the present invention.

【図3】この発明で用いられる開放弁の構造を示す断面
図(a)と側面図(b)である。
FIG. 3 is a sectional view (a) and a side view (b) showing a structure of an opening valve used in the present invention.

【図4】この発明で用いられる水面計の構造を示す断面
図である。
FIG. 4 is a cross-sectional view showing the structure of a water level gauge used in the present invention.

【図5】この発明の他の実施例である高圧水素製造装置
の配置図である。
FIG. 5 is a layout view of a high-pressure hydrogen production apparatus which is another embodiment of the present invention.

【図6】この発明で用いられる圧力調整器の部分断面図
(a)とそのA−A’断面図(b)である。
FIG. 6 is a partial sectional view (a) and an AA ′ sectional view (b) of the pressure regulator used in the present invention.

【図7】この発明で用いられる他の圧力調整器圧力調整
器部分断面図である。
FIG. 7 is a partial cross-sectional view of another pressure regulator used in the present invention.

【図8】この発明で用いられる他の圧力調整器圧力調整
器部分断面図である。
FIG. 8 is a partial sectional view of another pressure regulator used in the present invention.

【符号の説明】[Explanation of symbols]

1 水電解セル 2 水素高圧容器 5,6 熱交換器 8,17 開放弁 16a、16b 純水配管 28,33 イオン交換樹脂筒 35 比抵抗計 40 純水補給槽 41 高圧純水供給槽 50 水面計 53 差圧検知器 62 酸素高圧容器 70 圧力調整器 1 Water electrolysis cell 2 Hydrogen high-pressure container 5,6 heat exchanger 8,17 Open valve 16a, 16b Pure water piping 28,33 Ion exchange resin cylinder 35 resistivity meter 40 Pure water supply tank 41 High-pressure pure water supply tank 50 water gauge 53 Differential pressure detector 62 oxygen high pressure container 70 Pressure regulator

Claims (25)

【特許請求の範囲】[Claims] 【請求項1】固体高分子電解質膜よりなる水電解セルに
よって、純水を電気分解して水素を発生させるに際し、 発生させた水素を貯留する水素高圧容器と、酸素を貯留
する酸素高圧容器の圧力差を、前記各容器内に存在する
純水を、いずれか一方側に移動させることによって調整
することを特徴とする高圧水素製造方法。
1. When a pure water is electrolyzed by a water electrolysis cell composed of a solid polymer electrolyte membrane to generate hydrogen, a hydrogen high-pressure container for storing the generated hydrogen and an oxygen high-pressure container for storing oxygen are provided. A high-pressure hydrogen production method, characterized in that the pressure difference is adjusted by moving the pure water existing in each container to one side.
【請求項2】固体高分子電解質膜からなる水電解セルに
よって、純水を電気分解して水素を発生させるに際し、 発生させた水素を貯留する水素高圧容器と、酸素を貯留
する酸素高圧容器の圧力差を、前記各容器の水素圧、酸
素圧の調整、及び各容器内に存在する純水を、いずれか
一方側に移動させることによって制御することを特徴と
する高圧水素製造方法。
2. When a pure water is electrolyzed to generate hydrogen by a water electrolysis cell composed of a solid polymer electrolyte membrane, a hydrogen high-pressure container for storing the generated hydrogen and an oxygen high-pressure container for storing oxygen are provided. A high-pressure hydrogen production method, characterized in that the pressure difference is controlled by adjusting the hydrogen pressure and the oxygen pressure in each container, and by moving the pure water existing in each container to either side.
【請求項3】前記圧力差は、 水電解セルの耐圧以下に抑えることを特徴とする請求項
1又は2に記載の高圧水素製造方法。
3. The high-pressure hydrogen production method according to claim 1, wherein the pressure difference is suppressed to be equal to or lower than the pressure resistance of the water electrolysis cell.
【請求項4】前記純水の移動は、 水素高圧容器と酸素高圧容器を結合する純水配管に接続
され、かつ各容器内に設けられた開放弁の操作によって
行われることを特徴とする請求項1又は2に記載の高圧
水素製造方法。
4. The movement of the pure water is performed by operating an open valve connected to a pure water pipe connecting the hydrogen high pressure container and the oxygen high pressure container and provided in each container. Item 3. The method for producing high-pressure hydrogen according to Item 1 or 2.
【請求項5】前記開放弁の操作は、 開放弁を容器内の純水中に浸漬させた状態で行なうこと
を特徴とする請求項4に記載の高圧水素製造方法。
5. The high-pressure hydrogen production method according to claim 4, wherein the operation of the open valve is performed while the open valve is immersed in pure water in a container.
【請求項6】前記純水の移動は、 水素高圧容器と酸素高圧容器を結合する純水配管に設け
られた圧力調整器によって、自動的に行われることを特
徴とする請求項1又は2に記載の高圧水素製造方法。
6. The movement of the pure water is automatically performed by a pressure regulator provided in a pure water pipe connecting the hydrogen high pressure vessel and the oxygen high pressure vessel. The high-pressure hydrogen production method described.
【請求項7】前記純水の移動は、 水素高圧容器と酸素高圧容器を結合する純水配管に設け
られた弁の開閉操作によって行われることを特徴とする
請求項1又は2に記載の高圧水素製造方法。
7. The high pressure according to claim 1, wherein the pure water is moved by opening and closing a valve provided in a pure water pipe connecting the hydrogen high pressure container and the oxygen high pressure container. Hydrogen production method.
【請求項8】請求項1又は2に記載の高圧水素製造方法
において、 前記水素高圧容器内に貯留する純水容積を、酸素高圧容
器内に貯留する酸素容積以上に、また、酸素高圧容器内
に貯留する純水容積を、水素高圧容器内に貯留する水素
容積以上に制御しながら行うことを特徴とする高圧水素
製造方法。
8. The high-pressure hydrogen production method according to claim 1, wherein the pure water volume stored in the hydrogen high-pressure vessel is equal to or larger than the oxygen volume stored in the oxygen high-pressure vessel, and the oxygen high-pressure vessel is also stored. A method for producing high-pressure hydrogen, characterized in that the volume of pure water stored in is controlled to be equal to or larger than the volume of hydrogen stored in a hydrogen high-pressure container.
【請求項9】請求項1又は2に記載の高圧水素製造方法
において、 前記酸素高圧容器内に貯留する酸素量を、水素高圧容器
内に貯留する水素量の4%以内に制御しながら行うこと
を特徴とする高圧水素製造方法。
9. The high-pressure hydrogen production method according to claim 1, wherein the amount of oxygen stored in the oxygen high-pressure container is controlled within 4% of the amount of hydrogen stored in the hydrogen high-pressure container. A method for producing high-pressure hydrogen, characterized by:
【請求項10】固体高分子電解質膜からなる水電解セ
ル、発生する水素と水素に付随する純水を貯留する水素
高圧容器、原料及び戻り純水と発生する酸素を貯留する
酸素高圧容器、水素高圧容器内の純水と酸素高圧容器内
の純水を連通する純水配管、及び水素高圧容器と酸素高
圧容器内の水素と酸素の圧力差を感知し、その圧力差を
制御するための差圧検知器を具備することを特徴とする
高圧水素製造装置。
10. A water electrolysis cell composed of a solid polymer electrolyte membrane, a hydrogen high-pressure container for storing generated hydrogen and pure water accompanying hydrogen, an oxygen high-pressure container for storing raw materials, return pure water and generated oxygen, and hydrogen. Pure water pipe connecting the pure water in the high-pressure vessel and the pure water in the oxygen high-pressure vessel, and the difference for sensing the pressure difference between hydrogen and oxygen in the hydrogen high-pressure vessel and the oxygen high-pressure vessel and controlling the pressure difference. A high-pressure hydrogen production apparatus comprising a pressure detector.
【請求項11】固体高分子電解質膜からなる水電解セ
ル、発生する水素と水素に付随する純水を貯留する水素
高圧容器、原料純水と発生する酸素を貯留する酸素高圧
容器、水素高圧容器内の純水と酸素高圧容器内の純水と
を連通させる純水配管、及び純水配管に設けられ、水素
高圧容器の純水と酸素高圧容器の純水との圧力差に応じ
て摺動する摺動子を内部に有する圧力調整器を具備する
ことを特徴とする高圧水素製造装置。
11. A water electrolysis cell comprising a solid polymer electrolyte membrane, a hydrogen high-pressure container for storing generated hydrogen and pure water accompanying hydrogen, an oxygen high-pressure container for storing raw pure water and generated oxygen, and a hydrogen high-pressure container. The pure water pipe that connects the pure water inside and the pure water inside the oxygen high-pressure container and the pure water pipe are installed, and slide according to the pressure difference between the pure water in the hydrogen high-pressure container and the pure water in the oxygen high-pressure container A high-pressure hydrogen production apparatus comprising a pressure regulator having a sliding member inside.
【請求項12】前記水電解セルは、 水素高圧容器内又は純水酸素高圧容器内に設置されてい
ることを特徴とする請求項10又は11に記載の高圧水
素製造装置。
12. The high-pressure hydrogen production apparatus according to claim 10, wherein the water electrolysis cell is installed in a hydrogen high-pressure container or a pure water oxygen high-pressure container.
【請求項13】請求項10又は11に記載の高圧水素製
造装置において、 前記酸素高圧容器上方に高圧純水供給槽及び純水補給槽
を具備し、それらの底部を接続する送水ポンプと、イオ
ン交換樹脂筒と、フィルタを有する純水循環送り配管、
高圧純水供給槽の上部と純水補給槽上部を接続する純水
循環戻り配管、酸素高圧容器上部と高圧純水供給槽上部
を接続する酸素供給配管、高圧純水供給槽底部と酸素高
圧容器内を接続する純水注入配管が配置されている純水
製造・供給システムを併せ具備することを特徴とする高
圧水素製造装置。
13. The high-pressure hydrogen production apparatus according to claim 10 or 11, further comprising a high-pressure pure water supply tank and a pure water supply tank above the oxygen high-pressure container, and a water pump for connecting the bottoms of the tank and the ion pump. Pure water circulation feed pipe with exchange resin cylinder and filter,
Pure water circulation return pipe connecting the upper part of the high pressure pure water supply tank and the upper part of the pure water supply tank, oxygen supply pipe connecting the upper part of the oxygen high pressure container and the upper part of the high pressure pure water supply tank, the bottom part of the high pressure pure water supply tank and the oxygen high pressure container A high-pressure hydrogen production apparatus comprising a pure water production / supply system in which a pure water injection pipe connecting the inside is arranged.
【請求項14】前記水素高圧容器内の純水と酸素高圧容
器内の純水を連通する純水配管は、 水素高圧容器内に開放弁を設けた配管と、酸素高圧容器
内に開放弁を設けた配管の2本からなることを特徴とす
る請求項10に記載の高圧水素製造装置。
14. The pure water pipe for communicating the pure water in the hydrogen high pressure container with the pure water in the oxygen high pressure container comprises a pipe provided with an open valve in the hydrogen high pressure container and an open valve in the oxygen high pressure container. The high-pressure hydrogen production apparatus according to claim 10, comprising two pipes provided.
【請求項15】前記開放弁は、 正面視が三角形状の放出口を有していることを特徴とす
る請求項14に記載の高圧水素製造装置。
15. The high-pressure hydrogen production apparatus according to claim 14, wherein the release valve has a discharge port having a triangular shape in a front view.
【請求項16】前記差圧検知器は、 水素高圧容器又は酸素高圧容器の圧力で、軸方向に伸縮
するベローズで両端が封止され、内部に非活性流体が充
満された非磁性材料の円筒と、前記円筒の内面に密着し
て移動自在に設けられた内部磁性体と、外面に密着して
移動自在に設けられた外部磁性体からなる装置主体と、
ベローズの伸縮により変化した前記外部磁性体の位置に
基づいて差圧を検知する検出器から構成されるものであ
ることを特徴とする請求項10に記載の高圧水素製造装
置。
16. A cylinder made of a non-magnetic material, the both ends of which are sealed by bellows that expand and contract in the axial direction under the pressure of a hydrogen high pressure container or an oxygen high pressure container, and the inside of which is filled with an inert fluid. And an apparatus main body composed of an inner magnetic body that is movably provided in close contact with the inner surface of the cylinder and an outer magnetic body that is movably provided in close contact with the outer surface,
11. The high-pressure hydrogen production apparatus according to claim 10, wherein the high-pressure hydrogen production apparatus comprises a detector that detects a differential pressure based on the position of the external magnetic body that has changed due to expansion and contraction of a bellows.
【請求項17】前記差圧検出器は、 外部磁性体に連動して動く遮光板と、遮光板で遮光され
る開口部を有する表示板と、開口部を透過した透過光量
を電気信号に変換する光電計から構成されるものである
ことを特徴とする請求項16に記載の高圧水素製造装
置。
17. The differential pressure detector comprises a light-shielding plate that moves in conjunction with an external magnetic body, a display plate having an opening that is shielded by the light-shielding plate, and the amount of light transmitted through the opening to an electric signal. 17. The high-pressure hydrogen production apparatus according to claim 16, which is composed of a photoelectric meter that operates.
【請求項18】前記差圧検出器は、 外部磁性体に連動して電気抵抗体上を摺動する摺動子を
構成要素に有するものであることを特徴とする請求項1
6に記載の高圧水素製造装置。
18. The differential pressure detector has as a component a slider that slides on an electric resistor in conjunction with an external magnetic body.
The high-pressure hydrogen production device according to item 6.
【請求項19】前記圧力調整器は、 一端部が水素高圧容器内純水に連通し、他端部が酸素高
圧容器内純水に連通する非磁性材料で作られた中空円
筒、両純水を遮断すると共に、中空円筒の内面に密着し
て滑動する磁性材料で作られた内部滑動子及び中空円筒
の外面に密着して滑動する磁性材料で作られた外部滑動
子からなる装置主体と、前記外部滑動子の位置を検出す
る位置検出器から構成されるものであることを特徴とす
る請求項11又は13に記載の高圧水素製造装置。
19. The pressure regulator comprises a hollow cylinder made of a non-magnetic material, one end of which communicates with pure water in a hydrogen high pressure container and the other end of which communicates with pure water in an oxygen high pressure container. And a device main body consisting of an inner slider made of a magnetic material that slides in close contact with the inner surface of the hollow cylinder and an outer slider made of a magnetic material that slides in close contact with the outer surface of the hollow cylinder. The high-pressure hydrogen production apparatus according to claim 11 or 13, which comprises a position detector that detects the position of the external slider.
【請求項20】前記中空円筒は、 両端部にスプリングを有すると共に、内部滑動子が、端
部まで滑動したとき、純水を流通させる流路を両端に有
するものであることを特徴とする請求項19に記載の高
圧水素製造装置。
20. The hollow cylinder has springs at both ends, and the internal slider has a flow path at both ends for passing pure water when the internal slider slides to the ends. Item 20. The high-pressure hydrogen production device according to Item 19.
【請求項21】前記中空円筒は、 両端部にスプリングを有すると共に、内部滑動子が、端
部まで滑動したときに作動する、純水を流通させる配管
に設けた遮断弁を開閉するスイッチを両端に有するもの
であることを特徴とする請求項19に記載の高圧水素製
造装置。
21. The hollow cylinder has springs at both ends, and a switch for opening and closing a shut-off valve provided in a pipe for circulating pure water, which operates when the internal slider slides to both ends, is provided at both ends. 20. The high-pressure hydrogen production apparatus according to claim 19, wherein the high-pressure hydrogen production apparatus has the above-mentioned.
【請求項22】前記中空円筒は、 水素高圧容器内に貯留される水素量と、酸素高圧容器内
に貯留される酸素量とのどちらかの少ないほうの容積と
等量、もしくはそれ以下の実質容積を有するものである
ことを特徴とする請求項19に記載の高圧水素製造装
置。
22. The hollow cylinder has a substantial volume equal to or less than the smaller volume of the amount of hydrogen stored in the hydrogen high-pressure container and the amount of oxygen stored in the oxygen high-pressure container. 20. The high-pressure hydrogen production apparatus according to claim 19, which has a volume.
【請求項23】請求項10乃至22のいずれかに記載の
高圧水素製造装置において、 中心電極と、中心電極を中心にした円筒状電極とを構成
要素とする水面計を併せ有することを特徴とする高圧水
素製造装置。
23. The high-pressure hydrogen production apparatus according to claim 10, further comprising a water level gauge including a center electrode and a cylindrical electrode centered on the center electrode. High-pressure hydrogen production equipment.
【請求項24】前記水面計は、 棒状の中心電極の外側に外部電極を同心円上に配置した
メイン電極と、先端部以外を電気絶縁性円筒で覆った棒
状の中心電極の外側に外部電極を同心円上に配置したサ
ブ電極を有することを特徴とする請求項23に記載の高
圧水素製造装置。
24. The water level gauge comprises a main electrode in which an external electrode is concentrically arranged outside a rod-shaped center electrode, and an external electrode in the outside of a rod-shaped center electrode covered with an electrically insulating cylinder except the tip. The high-pressure hydrogen production apparatus according to claim 23, further comprising sub-electrodes arranged on concentric circles.
【請求項25】請求項10乃至23のいずれかに記載の
高圧水素製造装置において、 水素高圧容器に常時開型水素緊急放出弁、純水酸素高圧
容器に常時開型酸素緊急放出弁、水電解セルの電源に緊
急電源遮断スイッチとを併せ設けたことを特徴とする高
圧水素製造装置。
25. The high-pressure hydrogen production apparatus according to claim 10, wherein the hydrogen high-pressure vessel has a normally open hydrogen emergency release valve, the pure water oxygen high-pressure vessel has a normally-open oxygen emergency release valve, and water electrolysis. A high-pressure hydrogen production system characterized in that the cell power supply is also equipped with an emergency power-off switch.
JP2002153961A 2002-01-29 2002-05-28 High pressure hydrogen production method and apparatus Expired - Fee Related JP4010185B2 (en)

Priority Applications (14)

Application Number Priority Date Filing Date Title
JP2002153961A JP4010185B2 (en) 2002-05-28 2002-05-28 High pressure hydrogen production method and apparatus
EP03701743A EP1473386A4 (en) 2002-01-29 2003-01-16 High-pressure hydrogen producing apparatus and producing method
MXPA03010957A MXPA03010957A (en) 2002-01-29 2003-01-16 High-pressure hydrogen producing apparatus and producing method.
BR0302900-0A BR0302900A (en) 2002-01-29 2003-01-16 High pressure hydrogen production apparatus and production method
KR10-2003-7015472A KR20040080332A (en) 2002-01-29 2003-01-16 High-pressure hydrogen producing apparatus and producing method
PCT/JP2003/000319 WO2003064727A1 (en) 2002-01-29 2003-01-16 High-pressure hydrogen producing apparatus and producing method
CA002446563A CA2446563A1 (en) 2002-01-29 2003-01-16 High-pressure hydrogen producing apparatus and producing method
CNB038003473A CN1330792C (en) 2002-01-29 2003-01-16 High pressure hydrogen producing apparatus and producing method
TW092101974A TWI226909B (en) 2002-01-29 2003-01-29 System and method for generating high pressure hydrogen
US10/352,968 US7048839B2 (en) 2002-01-29 2003-01-29 System and method for generating high pressure hydrogen
NO20034366A NO20034366L (en) 2002-01-29 2003-09-29 Apparatus and production method for the production of high pressure hydrogen
IS7045A IS7045A (en) 2002-01-29 2003-11-20 Apparatus and method for producing hypertension
HK04108456A HK1065570A1 (en) 2002-01-29 2004-10-28 High-pressure hydrogen producing apparatus and producing method
US11/297,519 US20060157354A1 (en) 2002-01-29 2005-12-09 System and method for generating high pressure hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002153961A JP4010185B2 (en) 2002-05-28 2002-05-28 High pressure hydrogen production method and apparatus

Publications (2)

Publication Number Publication Date
JP2003342773A true JP2003342773A (en) 2003-12-03
JP4010185B2 JP4010185B2 (en) 2007-11-21

Family

ID=29770869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002153961A Expired - Fee Related JP4010185B2 (en) 2002-01-29 2002-05-28 High pressure hydrogen production method and apparatus

Country Status (1)

Country Link
JP (1) JP4010185B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2456219A (en) * 2007-07-19 2009-07-15 Itm Power An electrolyser with pressure sensing means
JP2011140674A (en) * 2010-01-05 2011-07-21 Takasago Thermal Eng Co Ltd High-pressure hydrogen production system
US8057646B2 (en) 2004-12-07 2011-11-15 Hydrogenics Corporation Electrolyser and components therefor
JP2013060625A (en) * 2011-09-13 2013-04-04 Honda Motor Co Ltd Water electrolysis system and method of stopping operation of the same
WO2018174281A1 (en) * 2017-03-23 2018-09-27 旭化成株式会社 Water electrolysis system, water electrolysis method and method for producing hydrogen
CN112941545A (en) * 2021-03-09 2021-06-11 北京市公用工程设计监理有限公司 Control method for hydrogen production by double closed-loop electrolysis method
JP2021529250A (en) * 2018-03-22 2021-10-28 ハイメット アーペーエス Pressure compensation system and high-pressure electrolyzer system equipped with it
WO2023021678A1 (en) * 2021-08-20 2023-02-23 日揮グローバル株式会社 Oxygen recovery system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2343998B1 (en) * 2009-01-21 2011-06-17 Hydrogenworks, S.L. HYDROGEN GENERATOR.

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8057646B2 (en) 2004-12-07 2011-11-15 Hydrogenics Corporation Electrolyser and components therefor
GB2456219A (en) * 2007-07-19 2009-07-15 Itm Power An electrolyser with pressure sensing means
JP2011140674A (en) * 2010-01-05 2011-07-21 Takasago Thermal Eng Co Ltd High-pressure hydrogen production system
JP2013060625A (en) * 2011-09-13 2013-04-04 Honda Motor Co Ltd Water electrolysis system and method of stopping operation of the same
WO2018174281A1 (en) * 2017-03-23 2018-09-27 旭化成株式会社 Water electrolysis system, water electrolysis method and method for producing hydrogen
JPWO2018174281A1 (en) * 2017-03-23 2019-11-07 旭化成株式会社 Water electrolysis system, water electrolysis method, and hydrogen production method
JP2021529250A (en) * 2018-03-22 2021-10-28 ハイメット アーペーエス Pressure compensation system and high-pressure electrolyzer system equipped with it
JP7342020B2 (en) 2018-03-22 2023-09-11 ハイメット アーペーエス Pressure compensation system and high-pressure electrolyzer system equipped with the same
CN112941545A (en) * 2021-03-09 2021-06-11 北京市公用工程设计监理有限公司 Control method for hydrogen production by double closed-loop electrolysis method
CN112941545B (en) * 2021-03-09 2023-08-04 北京市公用工程设计监理有限公司 Control method for preparing hydrogen by double closed loop electrolysis method
WO2023021678A1 (en) * 2021-08-20 2023-02-23 日揮グローバル株式会社 Oxygen recovery system

Also Published As

Publication number Publication date
JP4010185B2 (en) 2007-11-21

Similar Documents

Publication Publication Date Title
US20060157354A1 (en) System and method for generating high pressure hydrogen
Ju et al. Lab-scale alkaline water electrolyzer for bridging material fundamentals with realistic operation
US6841893B2 (en) Hydrogen production from hydro power
US20080118785A1 (en) Fuel Cell System Including an Ion Filter
JP5827953B2 (en) Hydrogen production apparatus and hydrogen production system
JP2003342773A (en) High-pressure hydrogen manufacturing method and device for the same
AU7249894A (en) System for electrolysis of water
JP2021046575A (en) Carbon dioxide electrolytic device and carbon dioxide electrolytic method
JP7429919B2 (en) Hydrogen generation system, hydrogen generation system control device, and hydrogen generation system control method
Steimke et al. Development and testing of a PEM SO2-depolarized electrolyzer and an operating method that prevents sulfur accumulation
WO1997039164A2 (en) Electrolytic system and cell
JP6802857B2 (en) Chemical control system for power generation facilities
JPH05258760A (en) Operation control method and apparatus for liquid fuel battery
Zhang et al. Review on integrated green hydrogen polygeneration system——Electrolysers, modelling, 4 E analysis and optimization
CN114525532B (en) Water electrolysis bath and electrolytic hydrogen production system
JP2003277963A (en) Apparatus and method for manufacturing high-pressure hydrogen
JP2003221690A (en) Apparatus and process for generating high-pressure hydrogen
CN111156490B (en) Low-voltage electrode boiler
KR20060008249A (en) Hydrogen generaton by electroysis of water
US20070031284A1 (en) Oxygen reduction system for nuclear power plant boiler feedwater and method thereof
WO2008010108A2 (en) Dual voltage electrolysis apparatus and method of using same
JP2004281393A (en) Fuel cell power generation system
Mazumder et al. Development and Performance Analysis of a Low-Cost Hydrogen Generation System Using Locally Available Materials
CN116463678A (en) Water electrolysis hydrogen production equipment testing system and testing method
CN215265597U (en) Dirt deposition test device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070827

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130914

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees