JP2003342588A - Biomass gasification equipment - Google Patents

Biomass gasification equipment

Info

Publication number
JP2003342588A
JP2003342588A JP2002191254A JP2002191254A JP2003342588A JP 2003342588 A JP2003342588 A JP 2003342588A JP 2002191254 A JP2002191254 A JP 2002191254A JP 2002191254 A JP2002191254 A JP 2002191254A JP 2003342588 A JP2003342588 A JP 2003342588A
Authority
JP
Japan
Prior art keywords
gasification
heating furnace
catalyst
gasification reaction
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002191254A
Other languages
Japanese (ja)
Inventor
Masayuki Horio
正靱 堀尾
Hiroshi Seto
弘 瀬戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SETEC KK
Original Assignee
SETEC KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SETEC KK filed Critical SETEC KK
Priority to JP2002191254A priority Critical patent/JP2003342588A/en
Publication of JP2003342588A publication Critical patent/JP2003342588A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To solve problems that, a conventional method has a low rate of gas conversion at low temperatures and generation of a large amount of tar components and is inefficient in gasifying biomass and there are many cases that catalysts are expensive, when the catalyst is used in the gasification. <P>SOLUTION: The cost of catalyst is lowered by using natural white clay, natural zeolite, bentonite and the like which are inexpensive as a catalyst and easily available in Japan. The raw biomass material for gasification is mixed with a chip-like crushed material having ca. 30×30×3 mm size and a catalyst and fed to a gasification reaction unit. The gasification reaction unit comprises a rotary kiln on a shaft passing through a heating furnace or a screw conveyor and feeds a nongasified unreacted residue discharged from the gasification reaction unit as a main fuel to the heating furnace. The gasification reaction unit proceeds the gasification reaction of the biomass at 500-750°C by feeding the raw biomass material, the catalyst and steam with insulating from outside air. The catalyst is reheated in the heating furnace and used by recycling, therefore, discharge of waste outside the system is reduced as far as possible. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】木質系、及び植物質繊維系などの
未利用資源をガス化して電気・熱供給用分散型電源の燃
料などの高度利用をはかるためのバイオマスガス化装置
である。 【0002】 【従来の技術】木質系、及び植物質繊維系などを乾溜し
て、ガス化利用する場合、ガス転換率を大きくするに
は、ガス化温度を900〜1000℃程度に高温を要
し、また400〜600℃程度では、タール、有機酸の
発生が多く、ガス転換率が少ない。ガス化温度を900
〜1000℃とするとき、乾溜のための外部加熱は実用
機としては高温耐熱性で問題があった。そのため、木質
系バイオマスで活性炭などを製造するための炭化炉は普
及しているが、ガス利用は付随的なものとして取り扱わ
れてきた。ガス化炉内部に燃焼ガスを吹き込む、内部加
熱方式では高温化は容易であるが、生成ガスの単位熱量
が低いため、バイオガスの多目的利用は不適であった。 【0003】 【発明が解決しようとする課題】バイオマスのガス化に
当っては、次の課題の解決が実用化への必須となる。 低温下でのガス化転換率が大きいこと。 タール分の生成が少ないこと。 バイオマスガス化において、触媒を使用するとき、そ
の触媒がローコストであること。 以上の課題の解決が求められる。 【0004】 【課題を解決するための手段】上記目的、及び課題を解
決するため、本発明は以下のようになるものである。バ
イオマスのガス化において、触媒として安価で、我が国
で容易に入手できる、天然の白色粘土、天然ゼオライ
ト、硅砂を用いて、バイオマス原料の等価試料として、
セルロースのガス化特性を次記に示す。(引用文献「流
動層によるバイオマス接触分解ガス化」流動層シンポジ
ウム2001.12 淡路、「粘土触媒を用いたバイオ
マスの流動層接触分解ガス化」化学工学会 2002.
3 福岡) 試料は、セルロース製のカプセルにセルロース微結晶粉
末を充填したものを試料Aとし、セルロース製カプセル
にセルロース微結晶粉末と鋼球(2mmφ)を充填し
て、カプセルの見掛け比重を大きくしたものを試料Bと
した。 【0005】バイオマスガス化反応の実験装置は、内径
43mmφ、高さ250mmの流動層反応器を管状電気
炉で加熱し、粒状化した触媒の粒径を90〜120μm
に調整して、触媒を流動層媒体として、水蒸気とN
流動層下部より流通させて、所定の温度を保持した状態
において、試料を流動層内に上部より投入して、流動層
接触分解ガス化特性を測定評価した。その試験結果を、
図−1に、ガス化温度とガス、チャー(液成分)、及び
残渣物への転化率を示す。温度条件として、550℃、
650℃、750℃とした場合、ガス転化率は、触媒機
能としては粘土、硅砂とも差異はなく、ガス転化率は温
度依存性が顕著であった。液成分(Tar)転化率は硅
砂では上記の温度領域において、550℃のとき30%
(wt)程度に低温になると増加するが、粘土において
は上記の温度領域では2%(wt)以下であった。残渣
率については、550℃において粘土では40%(w
t)、硅砂では20%(wt)であり、750℃におい
てはいずれも10%(wt)程度であり差異は生じな
い。試料A、Bを比較すると、層内滞留時間を長くさせ
るため、試料Bの見掛け比重を大きくしたものがガス化
転化率が大きくなる。650℃における生成ガスの成分
を図−2に示す。 【0006】以上の、バイオマスガス反応試験より、次
の結果を得た。 バイオマス原料を微粉砕することは、経済性が得られ
ないことより、30×30×3m/m程度のチップ状の
破砕品とする。 原料を破砕物とした場合、ガス化炉内滞留時間は0.
2〜1.0時間程度となる。 触媒としては、天然白色粘土、または天然ゼオライト
が適する。以上の結果より、本発明のバイオマスガス化
装置は以下のようなものである。 【0007】円筒形状の加熱炉には、流動層燃焼部を有
し、その加熱炉の同心円軸上に加熱炉内を貫通するロー
タリーキルン、またはスクリューコンベヤをガス化反応
部として、内部は密閉構造とし、加熱炉内で加熱する、
ガス化反応部は外部加熱により乾溜するバイオマスガス
化方式である。ガス化反応部の端部は加熱炉の外部にあ
って、その一端は原料投入口とし、他端はガス吐出口、
及びガス化未反応残渣排出口として、各々は外気との遮
断構造とする。 【0008】原料投入口より、被ガス化原料として木質
系、植物系繊維、廃棄物硬化燃料(RDF)などをチッ
プ状(30×30×3mm)に破砕した原料と、酸化ア
ルミニウム(Al)、及び酸化硅素(SiO
を供給し得る天然ゼオライト、粘土、カオリン、ベント
ナイト、ポーキサイトなどの天然鉱物をガス化触媒とし
て、混合してガス化反応部へ供給する。 【0009】ガス化反応部は加熱炉で外部加熱される
が、加熱炉には流動層燃焼部を有していて、燃料には起
動時以外は、ガス化反応炉より排出するガス化未反応残
渣、及びチャー(液状残渣)と触媒との混合物を供給
し、流動層燃焼する。その燃焼ガスにより、ガス化反応
部は500〜750℃に加熱され、また、焼成された触
媒及び灰分は、燃焼ガスに随伴して加熱炉より排出し、
集塵装置に捕集され、焼成された触媒、及び灰分はガス
化反応部に再循環使用し、また一部は系外へ排出する。
その排出量に見合う量の触媒を補充する。 【0010】以上をまとめて整理すると、本発明はバイ
オ資源をチップ状の破砕物と天然ゼオライト、白色粘
土、ベントナイトなどの天然鉱物を触媒にして混合し、
ガス化反応部に供給し、ガス反応部を外部加熱する加熱
炉の燃料には、ガス化未反応残渣を利用し、また加熱炉
の排熱回収による蒸気を、ガス化反応用に使用する、バ
イオマスガス化装置である。 【0011】 【実施例】以下、実施例により本発明を更に具体的に説
明するが、本発明の範囲は以下の実施例に限定されるも
のではない。実施例を図−3、図−4により説明する。
図−3は、ガス化反応部にロータリーキルンを適用した
場合であり、また図−4はスクリューコンベヤを適用
し、タテ型構造としたものである。図−3において、加
熱炉1の同心円軸上に配置した、ガス化反応用ロータリ
ーキルン2−1は加熱炉1の内部を貫通した構造となっ
ていて、ガス化反応部を構成し、加熱炉1にはガス化未
反応の残渣燃焼部1aを有しており、起動時には灯油供
給部1bより、灯油燃焼によるものとし、起動完了後、
通常の運転時はガス化反応用ロータリーキルン2より排
出する、ガス化未反応の残渣燃焼によるものとし、また
必要に応じてガス化炉生成ガスを補給する。 【0012】ガス化反応用ロータリーキルン2−1は駆
動モーター3a、及びキルン回転駆動部3bにより回転
し、バイオ原料ホッパー4よりバイオ原料の供給を受
け、原料供給用スクリューコンベヤ5により、バイオ原
料はガス化反応用ロータリーキルン2−1に供給し、ま
た排熱回収ボイラー8で発生する飽和水蒸気(100
℃)は、バイオガス改質用に蒸気供給部8aよりガス化
反応用ロータリーキルンに供給される。バイオ原料及び
水蒸気は、ガス化反応用キルン2−1内で500℃〜7
50℃に加熱され、バイオガス化が進行し、生成したバ
イオガスはガス吐出弁10aより外部へ送出し、バイオ
ガスの一部は、加熱炉燃料として、ガス吐出弁10bよ
り供給され、ガス化未反応の残渣はロータリーバルブ6
より排出し、加熱部燃焼部1aに供給され、加熱炉燃焼
用送風機1cより燃焼空気が給気され、流動層燃焼す
る。ガス化反応部ロータリーキルン1の燃焼排気ガス
は、熱回収ボイラー8、集塵装置9を経て大気へ排出
し、集塵装置9で捕集された、灰、及び触媒の一部はガ
ス化反応部へ触媒・灰循環用ロータリーバルブ9aより
再循環使用し、また一部は触媒・灰排出用ロータリーバ
ルブ9bより系外へ排出し、触媒補給分は触媒供給ホッ
パー11より触媒供給用ロータリーバルブ11aを経て
供給される。 【0013】図−4はガス化反応部にスクリューコンベ
ヤ2−2を適用し、ガス化反応部をタテ型に配置し、そ
の下部よりバイオ原料、及び蒸気を供給し、上部よりバ
イオガス、及びガス化未反応残渣を排出する構造であ
り、図−4に使用されている符号は図−3と共通であ
る。 【0014】 【発明の効果】本発明は上述の通り構成されていて、次
の記載する効果を有する。従来の技術では、ガス化炉内
部に燃焼ガスを吹き込む、内部加熱方式では、生成ガス
の単位熱量が低いため、バイオマスガスの多目的利用に
は不適であった。本発明においては、外気を遮断した乾
溜方式の外部加熱によるバイオガス化装置であり、生成
ガスの主成分はH、CH、COであり、単位熱量が
高く、また燃料電池などのH燃料への改質にも適して
いる。一方、ガス化反応部を外部加熱とするとき、ガス
化反応部容器は高温耐熱性が問題となる。本発明におい
ては、ガス化反応温度を750℃程度以下にして、ガス
転換率を向上させるため、触媒を用いることにした。そ
の触媒は容易に入手し得る白色粘土、天然ゼオライト、
ベントナイト、カオリンなどの天然鉱物を適用して、ロ
ーコスト化をはかっている。また、ガス化反応の加熱熱
源としては、ガス化反応部より排出するガス化未反応残
渣を使用し、また、加熱炉内で触媒を加熱再生し、循環
使用するものとして、系外への廃棄物排出を極力低減し
たものとしている。
Description: BACKGROUND OF THE INVENTION [0001] Unused resources such as wood and plant fiber are gasified to achieve advanced utilization of fuel for a distributed power source for electric and heat supply. For biomass gasification. 2. Description of the Related Art In the case where wood and vegetable fiber are distilled and used for gasification, a high gas conversion temperature of about 900 to 1000 ° C. is required to increase the gas conversion rate. At about 400 to 600 ° C., tar and organic acids are generated frequently, and the gas conversion rate is low. Gasification temperature 900
When the temperature is up to 1000 ° C., external heating for dry distillation has a problem in terms of high-temperature heat resistance as a practical machine. For this reason, carbonization furnaces for producing activated carbon and the like from woody biomass have become widespread, but gas utilization has been treated as an incidental one. The internal heating method, in which combustion gas is blown into the gasification furnace, makes it easy to raise the temperature, but the multi-purpose use of biogas was unsuitable because the unit heat of the generated gas was low. [0003] In the gasification of biomass, the following problems must be solved for practical use. High gasification conversion rate at low temperature. Low tar content. When using a catalyst in biomass gasification, the catalyst must be low cost. Solutions to the above issues are required. [0004] In order to solve the above objects and problems, the present invention is as follows. In the gasification of biomass, using natural white clay, natural zeolite, silica sand, which is inexpensive as a catalyst and easily available in Japan, as an equivalent sample of biomass raw material,
The gasification characteristics of cellulose are shown below. (Cited document "Biomass catalytic cracking gasification by fluidized bed" Fluidized bed symposium 2001.12 Awaji, "Fluidized bed catalytic cracking gasification of biomass using clay catalyst" Chemical Society of Japan 2002.
3 Fukuoka) The sample was a sample A in which a cellulose capsule was filled with cellulose microcrystal powder, and the cellulose capsule was filled with cellulose microcrystal powder and a steel ball (2 mmφ) to increase the apparent specific gravity of the capsule. This was designated as Sample B. [0005] The experimental apparatus for the biomass gasification reaction is as follows. A fluidized bed reactor having an inner diameter of 43 mm and a height of 250 mm is heated in a tubular electric furnace to reduce the particle size of the granulated catalyst to 90 to 120 µm.
With the catalyst used as a fluidized bed medium, steam and N 2 are circulated from the lower part of the fluidized bed, and while maintaining a predetermined temperature, a sample is put into the fluidized bed from the upper part, and the fluidized bed catalytic cracking is performed. The gasification characteristics were measured and evaluated. The test results
Figure 1 shows the gasification temperature and the conversion to gas, char (liquid component), and residue. 550 ° C as the temperature condition,
In the case of 650 ° C. and 750 ° C., the gas conversion rate was not different from that of clay or silica sand as a catalyst function, and the gas conversion rate was remarkably temperature-dependent. The liquid component (Tar) conversion is 30% at 550 ° C in the above temperature range for silica sand.
(Wt), it increases when the temperature is as low as about (wt), but it is 2% (wt) or less in clay in the above temperature range. Regarding the residue ratio, at 550 ° C., 40% (w
t), which is 20% (wt) for silica sand and about 10% (wt) at 750 ° C., and no difference occurs. When the samples A and B are compared, the gasification conversion rate increases when the apparent specific gravity of the sample B is increased in order to increase the residence time in the bed. Fig. 2 shows the components of the generated gas at 650 ° C. The following results were obtained from the above biomass gas reaction test. Finely pulverizing the biomass raw material does not provide economical efficiency, so that a chip-shaped crushed product of about 30 × 30 × 3 m / m is used. When the raw material is a crushed material, the residence time in the gasifier is 0.
It takes about 2 to 1.0 hour. Natural white clay or natural zeolites are suitable as catalysts. From the above results, the biomass gasifier of the present invention is as follows. The cylindrical heating furnace has a fluidized bed combustion section, and a rotary kiln or a screw conveyor penetrating the heating furnace on a concentric axis of the heating furnace is used as a gasification reaction section, and the inside has a closed structure. Heating in a heating furnace,
The gasification reaction section is of a biomass gasification type in which dry distillation is performed by external heating. The end of the gasification reaction section is outside the heating furnace, one end is a raw material input port, the other end is a gas discharge port,
Each of the gasification unreacted residue discharge ports has a structure to shut off the outside air. A raw material obtained by crushing wood-based, vegetable-based fiber, waste hardened fuel (RDF), or the like into chips (30 × 30 × 3 mm) as raw materials to be gasified, and aluminum oxide (Al 2 O). 3 ) and silicon oxide (SiO 2 )
Is mixed with natural minerals such as natural zeolite, clay, kaolin, bentonite, and poxite which can be supplied as a gasification catalyst and supplied to the gasification reaction section. The gasification reaction section is externally heated by a heating furnace. The heating furnace has a fluidized bed combustion section, and the fuel has a gasification unreacted gas discharged from the gasification reaction furnace except during startup. A residue and a mixture of a char (liquid residue) and a catalyst are supplied, and fluidized bed combustion is performed. The gasification reaction section is heated to 500 to 750 ° C. by the combustion gas, and the calcined catalyst and ash are discharged from the heating furnace along with the combustion gas,
The catalyst and the ash collected and calcined by the dust collector are recycled to the gasification reaction section, and a part is discharged outside the system.
Replenish the catalyst in an amount corresponding to the emission amount. In summary, the present invention provides a method of mixing bioresources with crushed chips and natural minerals such as natural zeolite, white clay and bentonite as catalysts.
Utilization of unreacted gasification residue as fuel for the heating furnace that supplies the gas to the gasification reaction section and externally heats the gas reaction section, and uses steam from the exhaust heat recovery of the heating furnace for gasification reaction, It is a biomass gasifier. The present invention will be described more specifically with reference to the following examples, but the scope of the present invention is not limited to the following examples. An embodiment will be described with reference to FIGS.
FIG. 3 shows a case where a rotary kiln is applied to the gasification reaction section, and FIG. 4 shows a case where a screw conveyor is used to form a vertical structure. In FIG. 3, the gasification reaction rotary kiln 2-1 disposed on the concentric axis of the heating furnace 1 has a structure penetrating through the inside of the heating furnace 1 and constitutes a gasification reaction section. Has a gasification unreacted residue combustion section 1a, which is started by kerosene combustion from a kerosene supply section 1b at the time of startup.
At the time of normal operation, it is based on the combustion of the unreacted residue discharged from the gasification reaction rotary kiln 2, and the gas generated by the gasification furnace is replenished as necessary. The gasification reaction rotary kiln 2-1 is rotated by the drive motor 3a and the kiln rotation drive unit 3b, receives the supply of the biomaterial from the biomaterial hopper 4, and converts the biomaterial into a gas by the material supply screw conveyor 5. To the rotary kiln 2-1 for the gasification reaction, and the saturated steam (100
° C) is supplied to the gasification reaction rotary kiln from the steam supply section 8a for biogas reforming. The bio-raw material and steam are supplied to the gasification reaction kiln 2-1 at 500C to 7C.
Heated to 50 ° C., biogasification proceeds, and the generated biogas is sent to the outside from the gas discharge valve 10a, and a part of the biogas is supplied from the gas discharge valve 10b as a heating furnace fuel, and gasification is performed. Unreacted residue is from rotary valve 6
It is supplied to the heating section combustion section 1a, and combustion air is supplied from the heating furnace combustion blower 1c to perform fluidized bed combustion. Gasification reaction section The combustion exhaust gas of the rotary kiln 1 is discharged to the atmosphere through a heat recovery boiler 8 and a dust collection device 9, and the ash and a part of the catalyst collected by the dust collection device 9 are converted into a gasification reaction portion. The catalyst and ash are recirculated from the rotary valve 9a for circulation, and a part is discharged out of the system from the catalyst and ash discharge rotary valve 9b. Supplied via FIG. 4 shows a case in which the screw conveyor 2-2 is applied to the gasification reaction section, the gasification reaction section is arranged in a vertical shape, biomaterial and steam are supplied from the lower portion, and biogas and steam are supplied from the upper portion. This is a structure for discharging gasification unreacted residues, and the reference numerals used in FIG. 4 are the same as those in FIG. The present invention is configured as described above and has the following effects. In the related art, in the internal heating method in which combustion gas is blown into the gasification furnace, the unit heat amount of the generated gas is low, so that it is not suitable for multipurpose use of biomass gas. In the present invention, a biogasification apparatus by external heating of a dry-distillation system in which the outside air is shut off, wherein the main components of the produced gas are H 2 , CH 4 , and CO, the unit heat is high, and the H 2 gas of a fuel cell is used Also suitable for reforming into fuel. On the other hand, when the gasification reaction section is externally heated, the gasification reaction section container has a problem of high-temperature heat resistance. In the present invention, a catalyst is used to reduce the gasification reaction temperature to about 750 ° C. or lower and to improve the gas conversion rate. The catalyst is a readily available white clay, natural zeolite,
By applying natural minerals such as bentonite and kaolin, the cost is reduced. In addition, as a heating heat source for the gasification reaction, use the gasification unreacted residue discharged from the gasification reaction section, and heat and regenerate the catalyst in a heating furnace, and dispose of it outside the system as a circulating use. It is assumed that material discharge is reduced as much as possible.

【図面の簡単な説明】 【図1】 バイオガス化生成物と温度の関係 【図2】 バイオマスガス化の生成ガスの成分 【図3】 ロータリーキルン使用バイオマスガス化炉装
置系統図と断面図 【図4】 スクリューコンベヤ使用バイオマスガス化炉
装置系統図と断面図 【符号の説明】 1 ガス化加熱炉 1a 加熱炉燃焼部 1b 灯油供給部 1c 加熱炉燃焼用送風機 2−1 ガス化反応用ロータリーキルン 2−2 ガス化反応用スクリューコンベヤ 3a 駆動モーター 3b キルン回転駆動部 4 バイオ原料ホッパー 4a 原料供給ロータリーバルブ 5 原料供給スクリューコンベヤ 6 残渣排出ロータリーバルブ 7 加熱炉、燃料供給口 8 排熱回収ボイラー 8a 蒸気供給部 9 集塵装置 9a 触媒・灰循環用ロータリーバルブ 9b 触媒・灰排出用ロータリーバルブ 10a ガス吐出弁 10b 〃 11 触媒供給ホッパー 11a 触媒供給用ロータリーバルブ
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 Relationship between biogasification products and temperature FIG. 2 Components of biogas gasification product gas FIG. 3 System diagram and cross-sectional view of biomass gasifier using rotary kiln 4 System diagram and cross-sectional view of biomass gasifier using screw conveyor [Description of symbols] 1 Gasification heating furnace 1a Heating furnace combustion unit 1b Kerosene supply unit 1c Blower for heating furnace combustion 2-1 Rotary kiln for gasification reaction 2- 2 Gas Conveyor Screw Conveyor 3a Drive Motor 3b Kiln Rotary Drive 4 Biomaterial Hopper 4a Material Supply Rotary Valve 5 Material Supply Screw Conveyor 6 Residue Discharge Rotary Valve 7 Heating Furnace, Fuel Supply Port 8 Exhaust Heat Recovery Boiler 8a Steam Supply Unit 9 Dust collector 9a Rotary valve for catalyst / ash circulation 9b Rotary valve for catalyst / ash discharge 10 Gas discharge valves 10b 〃 11 catalyst feed hopper 11a catalyst supply rotary valve

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C10J 3/00 C10J 3/00 H J 3/02 3/02 A B E F K L M 3/22 3/22 3/30 3/30 3/44 3/44 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C10J 3/00 C10J 3/00 H J 3/02 3/02 ABEF KLM 3/22 3 / 22 3/30 3/30 3/44 3/44

Claims (1)

【特許請求の範囲】 円筒形状の加熱炉内の同一軸心上に、加熱炉内を貫通す
る搬送機をガス化反応炉とし、加熱炉が水平または傾斜
している場合は、その搬送機はロータリーキルン、また
はスクリューコンベヤとし、加熱炉が垂直の場合は、そ
の搬送機はスクリューコンベヤとする。その搬送機をガ
ス化反応部として内部は密閉構造とし加熱炉内にて加熱
され、搬送機の端部は加熱炉の外部にあって、その一端
を原料投入口、他端を生成ガス吐出口、及び残渣排出口
として、各々は外気との遮断構造とする。被ガス化原料
には木質系、植物系繊維、廃棄物硬化燃料(RDF)な
どの破砕物と、酸化アルミニウム(Al)、及び
酸化硅素(SiO)を供給し得る天然ゼオライト、粘
土、カオリン、ベントナイト、ポーキサイトなどの天然
鉱物をガス化触媒として混合し、原料供給端より 10
0℃における飽和蒸気とともに供給する。加熱炉には流
動層燃焼部を有していて、燃料は起動時以外はガス化反
応炉より発生するガス(CH、H、CO)、または
ガス化炉より排出するガス化未反応残渣を主なる燃料と
して流動層燃焼部に供給し、その燃焼ガスにより、ガス
化反応部を外部加熱し、500〜750℃に温度制御す
る。以上の天然に産するゼオライト、粘土などを触媒と
してバイオ系原料のガス化、及びガス化未反応残渣物を
ガス化反応部の加熱熱源に利用することを特徴とする、
バイオマスガス化装置。
Claims: A carrier which penetrates through a heating furnace on the same axis in a cylindrical heating furnace is a gasification reactor, and when the heating furnace is horizontal or inclined, the carrier is If a rotary kiln or a screw conveyor is used, and the heating furnace is vertical, the conveyor will be a screw conveyor. The carrier is used as a gasification reaction section and the inside is sealed and heated in a heating furnace. The end of the carrier is outside the heating furnace, one end of which is a material input port and the other end is a product gas discharge port. , And a residue discharge port, each having a structure to shut off the outside air. The raw materials to be gasified include wood-based, plant-based fibers, crushed materials such as waste hardened fuel (RDF), and natural zeolites and clays that can supply aluminum oxide (Al 2 O 3 ) and silicon oxide (SiO 2 ). , Kaolin, bentonite, porkite, and other natural minerals are mixed as a gasification catalyst, and 10
Feed with saturated steam at 0 ° C. The heating furnace has a fluidized bed combustion section, and the fuel is a gas (CH 4 , H 2 , CO) generated from the gasification reactor except during startup, or a gasification unreacted residue discharged from the gasification furnace. Is supplied to the fluidized bed combustion section as a main fuel, and the gasification reaction section is externally heated by the combustion gas to control the temperature to 500 to 750 ° C. Gasification of bio-based raw materials using the above-mentioned naturally occurring zeolite, clay, etc. as a catalyst, and gasification unreacted residue is used as a heating heat source in the gasification reaction section,
Biomass gasifier.
JP2002191254A 2002-05-27 2002-05-27 Biomass gasification equipment Pending JP2003342588A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002191254A JP2003342588A (en) 2002-05-27 2002-05-27 Biomass gasification equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002191254A JP2003342588A (en) 2002-05-27 2002-05-27 Biomass gasification equipment

Publications (1)

Publication Number Publication Date
JP2003342588A true JP2003342588A (en) 2003-12-03

Family

ID=29774381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002191254A Pending JP2003342588A (en) 2002-05-27 2002-05-27 Biomass gasification equipment

Country Status (1)

Country Link
JP (1) JP2003342588A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005085397A1 (en) * 2004-03-03 2005-09-15 Chugai Ro Co., Ltd. System for gasification of biomass and method for operation thereof
WO2006031011A1 (en) * 2004-08-05 2006-03-23 Korea Institute Of Energy Research Apparatus of catalytic gasification for refined biomass fuel at low temperature and the method thereof
JP2006299675A (en) * 2005-04-21 2006-11-02 Nikko Co Ltd Asphalt plant using combustible gas generated from biomass
JP2008507595A (en) * 2004-07-01 2008-03-13 グレンウッド バレー ティンバー Wood gasifier
JP2008539285A (en) * 2005-04-29 2008-11-13 エスセーエフ テクノロジーズ アクティーゼルスカブ Method and apparatus for conversion of organic substances
EP2007674A2 (en) * 2006-03-31 2008-12-31 The Trustees of Columbia University in the City of New York Methods and systems for gasifying a process stream
JPWO2010021123A1 (en) * 2008-08-22 2012-01-26 株式会社マイクロ・エナジー Gasification apparatus, fuel generation system, gasification method, and fuel generation method
CN102703128A (en) * 2012-05-23 2012-10-03 彭博 System for changing carbonaceous material into standard environment-friendly fuel gas through hydrogen and oxygen gas heat source
CN107652992A (en) * 2017-10-11 2018-02-02 河南理工大学 A kind of novel biomass reaction unit for integrating grinding and pyrolysis
JP2019001928A (en) * 2017-06-16 2019-01-10 国立大学法人東北大学 Hydrogen generation method by recycling solid residue
JP7437679B2 (en) 2020-01-09 2024-02-26 国立大学法人東京工業大学 gasifier

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101156884B1 (en) 2004-03-03 2012-06-20 쥬가이로 고교 가부시키가이샤 System for gasification of biomass and method for operation thereof
WO2005085397A1 (en) * 2004-03-03 2005-09-15 Chugai Ro Co., Ltd. System for gasification of biomass and method for operation thereof
JP2008507595A (en) * 2004-07-01 2008-03-13 グレンウッド バレー ティンバー Wood gasifier
WO2006031011A1 (en) * 2004-08-05 2006-03-23 Korea Institute Of Energy Research Apparatus of catalytic gasification for refined biomass fuel at low temperature and the method thereof
JP2006299675A (en) * 2005-04-21 2006-11-02 Nikko Co Ltd Asphalt plant using combustible gas generated from biomass
US8771601B2 (en) 2005-04-29 2014-07-08 Altaca Insaat Ve Dis Ticaret A.S. Method and apparatus for converting organic material
JP2008539285A (en) * 2005-04-29 2008-11-13 エスセーエフ テクノロジーズ アクティーゼルスカブ Method and apparatus for conversion of organic substances
EP2007674A2 (en) * 2006-03-31 2008-12-31 The Trustees of Columbia University in the City of New York Methods and systems for gasifying a process stream
EP2007674A4 (en) * 2006-03-31 2014-03-19 Univ Columbia Methods and systems for gasifying a process stream
JPWO2010021123A1 (en) * 2008-08-22 2012-01-26 株式会社マイクロ・エナジー Gasification apparatus, fuel generation system, gasification method, and fuel generation method
CN102703128A (en) * 2012-05-23 2012-10-03 彭博 System for changing carbonaceous material into standard environment-friendly fuel gas through hydrogen and oxygen gas heat source
CN102703128B (en) * 2012-05-23 2014-06-04 彭博 System for changing carbonaceous material into standard environment-friendly fuel gas through hydrogen and oxygen gas heat source
JP2019001928A (en) * 2017-06-16 2019-01-10 国立大学法人東北大学 Hydrogen generation method by recycling solid residue
CN107652992A (en) * 2017-10-11 2018-02-02 河南理工大学 A kind of novel biomass reaction unit for integrating grinding and pyrolysis
CN107652992B (en) * 2017-10-11 2020-02-18 河南理工大学 Novel biomass reaction device integrating grinding and pyrolysis
JP7437679B2 (en) 2020-01-09 2024-02-26 国立大学法人東京工業大学 gasifier

Similar Documents

Publication Publication Date Title
JP5925195B2 (en) Method and system for crushing pyrolysis of particulate carbonaceous feedstock
CN100338177C (en) Method and device for pyrolyzing and gasifying organic substances or substance mixtures
CN102010728B (en) Method for preparing semicoke, empyreumatic oil and coal gas by pyrolyzing coal
Vamvuka Bio‐oil, solid and gaseous biofuels from biomass pyrolysis processes—an overview
CN101020576B (en) Active carbon making apparatus and process with self-igniting directly heating rotary furnace
CN100594228C (en) Integral process for oil shale retorting oil refining and coal-char combustion power generation
US20060280669A1 (en) Waste conversion process
JP2006282914A (en) Method of manufacturing biomass coke
WO2015010448A1 (en) Method for preparing hydrogen-rich gas by gasification of solid organic substance and steam
JP5683575B2 (en) A novel method for pyrolysis gasification of organic waste
CN108314040A (en) A kind of method of wood substance grain gasifying electricity generation co-producing active carbon
RU2544669C1 (en) Method for processing combustible carbon- and/or hydrocarbon-containing products, and reactor for implementing it
JP2003342588A (en) Biomass gasification equipment
CN105602628B (en) Biomass/coal carbonization gas metaplasia production high heating value synthesis gas device and method
CN104560071A (en) Pyrolysis system and pyrolyzing method
CN104073276A (en) Drying, carbonizing and activating integrated method and equipment for solid carbon-containing substances
WO2005049530A2 (en) Waste conversion process
CN102175074A (en) Lignitic coal modifying processing system and technology
CN1900241A (en) Process for making combustable gas by external high temperature CO2 and biomass reducing reaction
CN1446881A (en) Method for making hydrocarbon oil from household garbage and equipment therefor
CN1916123A (en) Bottom feed type gas method and equipment for preparing gas with no tar products through oxygendeficient fluid bed combustion
JP2004204106A (en) Gasifier of organic material
CN2895390Y (en) Internal-thermal active carbon preparing apparatus for spontaneous ignition direct heating rotary furnace
CN105925282A (en) Biomass thermal conversion device and method based on carbon cycle
BRPI0903587A2 (en) pyrolysis process of multistage biomass and solid waste

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060308

A131 Notification of reasons for refusal

Effective date: 20060425

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060905