JP2003340205A - Flocculation and separation apparatus - Google Patents

Flocculation and separation apparatus

Info

Publication number
JP2003340205A
JP2003340205A JP2002154221A JP2002154221A JP2003340205A JP 2003340205 A JP2003340205 A JP 2003340205A JP 2002154221 A JP2002154221 A JP 2002154221A JP 2002154221 A JP2002154221 A JP 2002154221A JP 2003340205 A JP2003340205 A JP 2003340205A
Authority
JP
Japan
Prior art keywords
additive
separation tank
tank
sludge
separated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002154221A
Other languages
Japanese (ja)
Other versions
JP4004856B2 (en
Inventor
Masami Oura
正美 大浦
Shinichi Nagamatsu
真一 永松
Yoshiyuki Sugawara
良行 菅原
Tsukasa Shinada
司 品田
Hiroko Mase
博子 間瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nishihara Environment Co Ltd
Original Assignee
Nishihara Environmental Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nishihara Environmental Technology Co Ltd filed Critical Nishihara Environmental Technology Co Ltd
Priority to JP2002154221A priority Critical patent/JP4004856B2/en
Publication of JP2003340205A publication Critical patent/JP2003340205A/en
Application granted granted Critical
Publication of JP4004856B2 publication Critical patent/JP4004856B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flocculation and separation apparatus capable of easily and efficiently separating an extraction substance containing an additive into the additive and discharge sludge. <P>SOLUTION: This flocculation and separation apparatus is constituted of a flocculation reaction tank 2 for subjecting a suspended substance, or the like, contained in raw water (liquid to be treated) to flocculation treatment, a solid-liquid separation tank 5 for subjecting the outflow water from the flocculation reaction tank 2 to solid-liquid separation, an additive separation tank 10 for separating the extraction substance into the additive and the sludge, and piping 7 for transferring the extraction substance from the solid-liquid separation tank 5 to the additive separation tank 10. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、水処理分野におい
て、懸濁物質を凝集分離して処理水質の向上を図る凝集
分離装置に関し、特に添加物回収手段を備える凝集分離
装置に関するものである。 【0002】 【従来の技術】粒状添加物を用いた凝集分離は高速凝集
処理が可能なため、下水処理の分野で雨天時に増加する
汚水等の直接処理等での利用が検討されている。図2は
粒状添加物を用いた従来の凝集分離装置を示すフロー図
である。同図において、1は原水導入管、2はその原水
導入管1から汚泥等の懸濁物質を含んだ原水を導入する
凝集反応槽であり、この凝集反応槽2には、無機凝集剤
供給手段3および高分子凝集剤供給手段4から無機凝集
剤および高分子凝集剤が添加されると共に、微粒砂等に
粒状添加物も添加されるようになっている。 【0003】5は前記凝集反応槽2からの流出水を導入
して分離物と処理水とに分離する固液分離槽(沈殿
槽)、6はその固液分離槽5から分離物を引き抜く引抜
手段としてのポンプであり、このポンプ6による引抜物
質は配管7を介して液体サイクロン8に送られるように
なっている。その液体サイクロン8は、前記引抜物質に
含まれる粒状添加物を分離回収し、その回収添加物を凝
集反応槽2に返送すると共に、分離汚泥を系外に排出す
るものである。 【0004】次に上記従来の凝集分離装置の動作につい
て説明する。原水導入管1から凝集反応槽2内に導入さ
れた原水に無機凝集剤と高分子凝集剤および添加物が添
加されることにより、凝集反応槽2では、原水に含まれ
た懸濁物質などが凝集され、これによって凝集フロック
が生成される。その凝集フロックを含んだ流出水は次の
固液分離槽5に移流し、この固液分離槽5で添加物を含
んだ分離物と処理水とに分離され、処理水は系外に排出
され、分離物はポンプ6で引き抜かれた後、配管7を介
して液体サイクロン8に送られる。この液体サイクロン
8では、固液分離槽5からの引抜物質に含まれた添加物
が分離され、その分離添加物は凝集反応槽2内に返送さ
れて再使用に供せられ、添加物が分離された汚泥は系外
に排出される。 【0005】 【発明が解決しようとする課題】従来の凝集分離装置は
以上のように構成されているので、高濃度の粒状添加物
を含んだ凝集汚泥が固液分離槽5の底部に溜まった場
合、その固液分離槽5から液体サイクロン8に送られた
引抜物質中の高濃度粒状添加物によって液体サイクロン
8の吐出口が詰まるか、あるいは液体サイクロン8の分
級効率が変化し、その状況によって液体サイクロン8か
らの排出汚泥に粒状添加物が多量に混入する場合があっ
た。また、液体サイクロン8の分級効率は液体サイクロ
ン8の上下の吐出口径比で変化するため、その吐出口径
比によっても液体サイクロン8の分級効率が低下し、液
体サイクロン8からの分離汚泥中に粒状添加物が多量に
混入する場合があり、その結果、液体サイクロン8の下
から吐出する粒状添加物が減少し、処理工程での粒状添
加物不足により処理水質の悪化を来す場合があった。さ
らに、高い粒状添加物回収率を得るには、小径の液体サ
イクロンを高い圧力で使用しなければならないため、液
体サイクロンの台数は増加し、且つ配管7および液体サ
イクロン8のそれぞれの内部が早期摩耗し、それらの交
換頻度が高くなるなどの課題があった。 【0006】本発明は上記のような課題を解決するため
になされたもので、添加物を含む凝集汚泥を容易且つ効
率的に添加物と分離汚泥とに分離することができる凝集
分離装置を提供することを目的とする。 【0007】 【課題を解決するための手段】本発明に係る凝集分離装
置は、原水に含まれた懸濁物質等を凝集処理する凝集反
応槽と、この凝集反応槽からの流出水を固液分離する固
液分離槽と、引抜物質を添加物と汚泥に分離する添加物
分離槽と、前記固液分離槽から前記添加物分離槽に引抜
物質を移送する配管とから構成される。前記添加物分離
槽で液体サイクロンのように配管などに圧力をかけるこ
となく添加物を分離して、良好な水質を得るものであ
る。 【0008】 【発明の実施の形態】以下、本発明の実施の一形態を説
明する。 実施の形態1.図1は本発明の実施の形態1による凝集
分離装置を示すフロー図であり、図2と同一または相当
部分には同一符号を付して重複説明を省略する。なお、
図1には図2に示す無機凝集剤供給手段3および高分子
凝集剤供給手段4を示していないが、それらの無機凝集
剤供給手段3および高分子凝集剤供給手段4を本発明の
凝集反応槽2は備えているものである。 【0009】図1において、9は凝集反応槽2から混合
物を引き抜く引抜手段としてのポンプ、10はそのポン
プ9と固液分離槽5の汚泥引抜用ポンプ6との共通の配
管7を介して引抜物質を導入する添加物分離槽である。
なお混合物は凝集反応槽の堆積物を、分離物は固液分離
槽での分離堆積物を、引抜物質は配管で移送される物質
を指す。この添加物分離槽10は、引抜物質を導入し、
その引抜物質に含まれた添加物を重力により沈降分離さ
せると共に、分離汚泥を系外に排出するもので、添加物
分離槽10としては、添加物の沈降を促進する円錐形状
のほか四角錐形状などホッパ型や掻寄機型等が挙げられ
る。 【0010】11は添加物分離槽10から添加物を導入
して凝集反応槽2内に供給する添加物供給手段である。
この添加物供給手段11としては、添加物分離槽10か
らの自然流下、ポンプ、ベルトコンベア等が挙げられる
が、添加物分離槽10から凝集反応槽2内に粒状添加物
を移送できるものであれば、如何なるものであってもよ
い。なお、添加物としては、砂または砂に近似する比重
2〜8の範囲である有機系や無機系の物質、または、そ
れらの混合物、例えば微粒砂、酸化ジルコニウムやガー
ネットなどが挙げられる。 【0011】次に動作について説明する。装置運転中に
おいて、固液分離槽5、凝集反応槽2からポンプ6,9
により引抜物質が引き抜かれ、そのポンプ移送中に、引
抜物質中の添加物から汚泥が剥離することもある。引抜
手段(ポンプ6,9)としては、耐摩耗性の渦巻ポンプ
など、添加物による摩耗を防止できるポンプであれば、
如何なるポンプでもよい。その後、引抜物質は添加物分
離槽10内に流入する。この添加物分離槽10では、添
加物が重力で沈降して汚泥と分離され、その分離汚泥は
添加物分離槽10からの溢出により系外に排出される。
ここで、添加物分離槽10内での例えば微粒砂の沈降速
度は140m/h、汚泥の沈降速度は3〜4m/hであ
り、添加物の沈降速度が汚泥の沈降速度に比べ非常に大
きいので、短時間(5分程度)で添加物の沈降が可能で
ある。そして、添加物分離槽10で沈降分離された添加
物は添加物供給手段11によって凝集反応槽2内に供給
される。 【0012】実施例1.次に、上記実施の形態1による
凝集分離装置を実験運転した結果を説明する。 実験条件 原水;下水処理場の最初沈殿池の流入水 原水流量;2880m/日(120m/h) 原水濁度;100NTU 微粒砂;比重2.6、有効径170μm 無機凝集剤;PAC10mg/L(ALとして) 高分子凝集剤;アニオン系有機高分子1.0mg/L 固液分離槽の汚泥引抜手段;ポンプ、循環水量7.2m
/h 添加物分離槽;滞留時間3min 【0013】この実験では、凝集反応槽2に下水処理場
の最初沈殿池の流入水を流入させ、無機凝集剤にPAC
10mg/L(AL)を、高分子凝集剤にアニオ
ン系有機高分子1.0mg/Lを、微粒砂(比重2.
6、有効径170μm)を注入した。引抜手段として
は、微粒砂スラリー用ポンプを使用し、時間当たり7.
2m/hで運転した。添加物分離槽10は滞留時間3
minの円錐型の槽を使用した。添加物供給手段11と
してはベルトコンベアを使用して添加物分離槽10から
の微粒砂を凝集反応槽2内に供給した。 【0014】ここで、循環水量および配管内砂濃度一定
での配管径の違いによる処理性能を表1に示す。 【0015】 【表1】 【0016】表1に示すように、従来装置では循環ライ
ン配管の径が40φから60φになることで配管内流速
が1.6(m/h)から0.7(m/h)となる。この
ことで従来装置のSS除去率は82(%)から65
(%)に減少する。しかし、本発明装置では配管内流速
の変化は従来例と同じように1.6(m/h)から0.
7(m/h)に変化したが、SS除去率は82(%)と
変化はなかった。このことから、従来装置の場合は汚泥
循環ラインの配管7の流速減少により、液体サイクロン
8の分級効率が低下し、その液体サイクロン8からの分
離汚泥中に微粒砂が流出し、その結果、処理性能[SS
(浮遊物質)除去率]は低下した。一方、本発明装置で
は循環ラインの配管7の流速が減少しても処理性能には
影響がなかった。 【0017】次に、循環ラインの配管7内での微粒砂濃
度を変化させて排出汚泥中に含まれる微粒砂濃度を比較
した結果を表2に示す。なお、循環ラインの配管7の配
管径は40φである。 【0018】 【表2】 【0019】表2に示すように、従来装置では配管内微
粒砂濃度が10,000から20,000(mg/L)
に変化すると、分離汚泥中に含まれる微粒砂が5から4
0(mg/L)まで変化するが、本発明装置は配管内微
粒砂濃度が同様に変化しても、分離汚泥中に含まれる微
粒砂は5から20(mg/L)までしか変化しなかっ
た。このことから、従来装置は循環ラインの配管7内の
微粒砂濃度が増加すると、液体サイクロン8からの分離
汚泥中に含まれる微粒砂濃度は増加した。一方、本発明
装置は循環ラインの配管7内の微粒砂濃度が増加しても
添加物分離槽10からの溢出による分離汚泥中の微粒砂
濃度はそれほど増加せず、微粒砂濃度の変動に対しても
十分に対応できることが確認された。 【0020】次に、連続運転による従来装置と本発明装
置の交換頻度の比較を表3に示す。 【0021】 【表3】 【0022】固液分離槽5のポンプ6は、ポンプシール
部、ポンプ本体(インペラ等)、循環ラインの配管7の
交換頻度を比較した結果、表3に示すように、交換頻度
は従来装置と本発明で比較するとポンプシール部が1回
/24月が1回/36月になり、ポンプ本体は1回/3
6月が1回/48月になり、循環ラインの配管は1回/
48月が1回/60月になった。このことから本発明装
置は従来装置と比較したいずれの部位においても寿命を
1年以上に延長することができた。また、従来装置と本
発明装置のイニシャルコストを比較した結果を表4に示
す。 【0023】 【表4】 【0024】表4に示すようにコスト面を比較すると、
従来装置の液体サイクロンで添加物を引抜物質から分離
する場合は、5L用で250,000円であるが、本発
明の装置の添加物分離槽は簡単な構造の槽なので、36
0L用で50,000円で済んだことより、本発明装置
は従来装置の1/5と安価であった。 【0025】以上説明した実施の形態1によれば、凝集
反応槽2、固液分離槽5からの引抜物質を添加物分離槽
10に導入して前記引抜物質に含まれる添加物を重力に
より沈降分離させ、その分離添加物を凝集反応槽2内に
供給すると共に、分離汚泥を前記添加物分離槽10から
の溢出により系外に排出する構成としたので、従来例の
液体サイクロンのように分級効率が変化するようなこと
がなく、添加物分離槽10からの分離汚泥中に粒状添加
物が多量に混入するようなことがない。したがって、添
加物分離槽10の下部から吐出する添加物が大きく減少
するようなことがなく、凝集反応槽2での粒状添加物不
足に起因した処理水質の悪化を防止でき、常に安定した
処理水質を得ることができるという効果がある。 【0026】ここで、従来例の液体サイクロン8の場
合、循環ラインの配管7内の流速が減少して分級効率が
悪くなるため、液体サイクロン8からの分離汚泥中に微
粒砂が流出して添加物が不足することで処理性能が悪化
していたが、本発明の添加物分離槽10によれば、添加
物の沈降速度が汚泥の沈降速度よりも非常に速いことを
利用しているので、添加物分離槽10からの溢出により
系外に排出される分離汚泥中に添加物が多量に混入する
ようなことはない。したがって、循環ラインの配管7の
流速が減少しても処理性能に影響を及ぼすことがないと
いう効果がある。 【0027】また、本発明によれば、循環ラインの配管
7内の流速変動や微粒砂濃度の変動に十分対応でき、循
環ラインの配管7内を低圧力に維持できるため、汚泥引
抜ポンプ6,9のポンプシール部やポンプ本体(インペ
ラ等)、循環ラインの配管7の交換頻度を少なくでき、
イニシャルコストを大幅に縮減できるという効果があ
る。 【0028】 【発明の効果】以上のように本発明によれば、添加物使
用による凝集分離装置において、原水中の懸濁物質を凝
集処理する凝集反応槽と、この凝集反応槽から流出水を
導入して分離物と処理水とに分離する固液分離槽と、こ
の固液分離槽、前記凝集反応槽から引抜物質を引き抜く
引抜手段と、この引抜手段で引き抜いた引抜物質を導入
し、その引抜物質中の添加物を分離する添加物分離槽と
を備え、その添加物分離槽で分離された添加物を凝集反
応槽内に供給するように構成したので、従来例の液体サ
イクロンのように分級効率が変化せず、添加物分離槽か
らの分離汚泥中に粒状添加物が多量に混入するようなこ
とがなくなる。このため、添加物分離槽の下部から吐出
する添加物が大きく減少するようなことがなく、凝集反
応槽での粒状添加物不足に起因した処理水質の悪化を防
止でき、常に安定した処理水質を得ることができるとい
う効果がある。 【0029】また、従来例の場合、循環ラインの配管の
流速減少により、液体サイクロンの分級効率が悪くな
り、液体サイクロンからの分離排出汚泥中に微粒砂が流
出し、処理性能が低下していたが、本発明装置は循環ラ
インの配管の流速が減少しても処理性能には影響がな
い。これは、添加物分離槽が添加物の沈降速度が汚泥の
沈降速度よりも非常に早いことを利用していることによ
る。したがって、添加物を含む引抜物質を容易かつ効率
的に添加物と分離汚泥とに分離できるという効果があ
る。 【0030】また、循環ラインの配管内の圧力を低圧で
運転しても、分離汚泥中に含まれる添加物濃度に大きな
変化はないので、摩耗によるポンプ本体、ポンプの部
品、その他配管などの交換にかかるランニングコストを
小さくできるという効果がある。また、従来装置のよう
に高価な液体サイクロンを用いなくても同等以上の処理
性能が得られるだけでなく、分離汚泥中の添加物濃度を
低濃度に保持できる簡単な添加物分離槽でよいのでイニ
シャルコストも安価で従来の1/5ですむという効果が
ある。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a coagulation / separation apparatus for improving the quality of treated water by coagulating / separating suspended substances in the field of water treatment. And a coagulation / separation device comprising: 2. Description of the Related Art Since coagulation separation using a particulate additive enables high-speed coagulation treatment, its use in the field of sewage treatment for direct treatment of sewage and the like that increases in rainy weather is being studied. FIG. 2 is a flowchart showing a conventional coagulation / separation apparatus using a particulate additive. In FIG. 1, reference numeral 1 denotes a raw water introduction pipe, and 2 denotes a coagulation reaction tank for introducing raw water containing suspended substances such as sludge from the raw water introduction pipe 1. The inorganic flocculant and the polymer flocculant are added from the polymer flocculant 3 and the polymer flocculant supplying means 4, and at the same time, granular additives are added to the fine sand or the like. [0005] 5 is a solid-liquid separation tank (sedimentation tank) for introducing the effluent from the agglutination reaction tank 2 to separate the separated substance and treated water, and 6 is a pull-out for extracting the separated substance from the solid-liquid separation tank 5. This is a pump as a means, and a substance to be withdrawn by the pump 6 is sent to a liquid cyclone 8 via a pipe 7. The liquid cyclone 8 separates and collects the particulate additive contained in the extracted material, returns the collected additive to the coagulation reaction tank 2, and discharges the separated sludge to the outside of the system. Next, the operation of the above-mentioned conventional coagulation / separation apparatus will be described. By adding an inorganic coagulant, a polymer coagulant, and additives to raw water introduced into the coagulation reaction tank 2 from the raw water introduction pipe 1, suspended substances contained in the raw water are added to the coagulation reaction tank 2. Agglomerated, thereby producing agglomerated flocs. The effluent containing the flocculent flocks is transferred to the next solid-liquid separation tank 5, where it is separated into a separated product containing additives and treated water, and the treated water is discharged out of the system. After being separated by a pump 6, the separated material is sent to a liquid cyclone 8 via a pipe 7. In this liquid cyclone 8, additives contained in the substance to be withdrawn from the solid-liquid separation tank 5 are separated, and the separated additives are returned to the coagulation reaction tank 2 for reuse, and the additives are separated. The sludge is discharged out of the system. [0005] Since the conventional coagulation / separation apparatus is configured as described above, coagulated sludge containing a high concentration of particulate additives accumulates at the bottom of the solid-liquid separation tank 5. In this case, the discharge outlet of the liquid cyclone 8 is clogged by the high-concentration particulate additive in the withdrawn material sent from the solid-liquid separation tank 5 to the liquid cyclone 8, or the classification efficiency of the liquid cyclone 8 changes. In some cases, a large amount of the particulate additive was mixed in the sludge discharged from the liquid cyclone 8. In addition, since the classification efficiency of the hydrocyclone 8 changes depending on the upper and lower discharge port diameter ratios of the liquid cyclone 8, the classification efficiency of the liquid cyclone 8 is also reduced by the discharge port diameter ratio, and granular addition into the sludge separated from the liquid cyclone 8 is performed. In some cases, a large amount of substances may be mixed in, and as a result, the amount of the particulate additive discharged from below the liquid cyclone 8 may decrease, and the quality of the treated water may deteriorate due to the lack of the particulate additive in the treatment process. Furthermore, in order to obtain a high particulate additive recovery rate, a small-diameter hydrocyclone must be used at a high pressure, so that the number of hydrocyclones increases, and the inside of each of the pipe 7 and the hydrocyclone 8 is rapidly worn. However, there has been a problem that the frequency of exchanging them increases. SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and provides a coagulation / separation apparatus capable of easily and efficiently separating coagulated sludge containing additives into additives and separated sludge. The purpose is to do. A coagulation / separation apparatus according to the present invention comprises a coagulation reaction tank for coagulating a suspended substance or the like contained in raw water, and a solid-liquid effluent from the coagulation reaction tank. It comprises a solid-liquid separation tank for separation, an additive separation tank for separating the extracted substance into additives and sludge, and a pipe for transferring the extracted substance from the solid-liquid separation tank to the additive separation tank. In the additive separation tank, additives are separated without applying pressure to pipes or the like as in a liquid cyclone, and good water quality is obtained. An embodiment of the present invention will be described below. Embodiment 1 FIG. FIG. 1 is a flowchart showing a coagulation / separation apparatus according to Embodiment 1 of the present invention. The same or corresponding parts as those in FIG. In addition,
FIG. 1 does not show the inorganic flocculant supply means 3 and the polymer flocculant supply means 4 shown in FIG. The tank 2 is provided. In FIG. 1, reference numeral 9 denotes a pump as a drawing means for pulling out a mixture from the flocculation reaction tank 2, and reference numeral 10 denotes a drawing through a common pipe 7 between the pump 9 and a sludge drawing pump 6 of the solid-liquid separation tank 5. An additive separation tank for introducing a substance.
Note that the mixture refers to the sediment in the agglutination reaction tank, the separated substance refers to the separated sediment in the solid-liquid separation tank, and the withdrawn substance refers to the substance transferred by piping. This additive separation tank 10 introduces a withdrawn substance,
The additive contained in the extracted material is settled and separated by gravity, and the separated sludge is discharged out of the system. The additive separation tank 10 has a conical shape for promoting the sedimentation of the additive, and a quadrangular pyramid shape. Hopper type and scraper type. Reference numeral 11 denotes an additive supply means for introducing an additive from the additive separation tank 10 and supplying the additive into the coagulation reaction tank 2.
Examples of the additive supply means 11 include a natural flow from the additive separation tank 10, a pump, a belt conveyor, and the like. Any means capable of transferring the particulate additive from the additive separation tank 10 into the agglutination reaction tank 2 may be used. Any type may be used. Examples of the additive include sand or an organic or inorganic substance having a specific gravity in the range of 2 to 8, which is close to that of sand, or a mixture thereof, for example, fine sand, zirconium oxide, garnet, and the like. Next, the operation will be described. During the operation of the apparatus, pumps 6 and 9 are supplied from the solid-liquid separation tank 5 and the coagulation reaction tank 2.
As a result, the extracted material is withdrawn, and during the pumping, the sludge may be separated from the additives in the withdrawn material. As a drawing means (pumps 6 and 9), if the pump can prevent wear by additives, such as a wear-resistant centrifugal pump,
Any pump may be used. Thereafter, the withdrawn material flows into the additive separation tank 10. In the additive separating tank 10, the additive settles by gravity and is separated from sludge, and the separated sludge is discharged out of the system by overflow from the additive separating tank 10.
Here, for example, the sedimentation speed of the fine sand in the additive separation tank 10 is 140 m / h, the sedimentation speed of the sludge is 3 to 4 m / h, and the sedimentation speed of the additive is much higher than the sedimentation speed of the sludge. Therefore, it is possible to settle the additive in a short time (about 5 minutes). The additive separated and settled in the additive separation tank 10 is supplied into the agglutination reaction tank 2 by the additive supply means 11. Embodiment 1 FIG. Next, the results of the experimental operation of the coagulation / separation apparatus according to the first embodiment will be described. Influent raw water flow rate of the primary sedimentation of sewage treatment plant; experimental conditions raw 2880m 3 / day (120m 3 / h) raw turbidity; 100 NTU fine sand; specific gravity 2.6, the effective diameter 170μm inorganic coagulant; PAC10mg / L (As AL 2 O 3 ) Polymer flocculant; anionic organic polymer 1.0 mg / L Sludge extraction means for solid-liquid separation tank; pump, circulating water amount 7.2 m
3 / h Additive separation tank; residence time 3 min In this experiment, the inflow water of the first sedimentation basin of the sewage treatment plant was flowed into the coagulation reaction tank 2 and the PAC was added to the inorganic coagulant.
10 mg / L (AL 2 O 3 ), an anionic organic polymer 1.0 mg / L as a polymer flocculant, and fine sand (specific gravity 2.
6, effective diameter 170 μm). As a drawing means, a pump for fine sand slurry is used, and 7.
The operation was performed at 2 m 3 / h. The additive separation tank 10 has a residence time of 3
A min-shaped conical tank was used. As the additive supply means 11, a fine-grained sand from the additive separation tank 10 was supplied into the coagulation reaction tank 2 using a belt conveyor. Table 1 shows the treatment performance depending on the pipe diameter when the amount of circulating water and the sand concentration in the pipe are constant. [Table 1] As shown in Table 1, in the conventional apparatus, the flow rate in the pipe is changed from 1.6 (m / h) to 0.7 (m / h) by changing the diameter of the circulation line pipe from 40 φ to 60 φ. As a result, the SS removal rate of the conventional device is 82 (%) to 65
(%). However, in the apparatus of the present invention, the change of the flow velocity in the pipe is changed from 1.6 (m / h) to 0.1 as in the conventional example.
Although it changed to 7 (m / h), the SS removal rate did not change to 82 (%). From this, in the case of the conventional apparatus, the classification efficiency of the liquid cyclone 8 is reduced due to the decrease in the flow velocity of the pipe 7 of the sludge circulation line, and the fine sand flows out into the separated sludge from the liquid cyclone 8, and as a result, Performance [SS
(Suspended matter) removal rate]. On the other hand, in the apparatus of the present invention, the processing performance was not affected even if the flow velocity in the circulation line pipe 7 was reduced. Next, Table 2 shows the results of comparison of the concentration of the fine sand contained in the discharged sludge by changing the concentration of the fine sand in the piping 7 of the circulation line. In addition, the piping diameter of the piping 7 of the circulation line is 40φ. [Table 2] As shown in Table 2, in the conventional apparatus, the fine sand concentration in the pipe was 10,000 to 20,000 (mg / L).
The fine sand contained in the separated sludge changes from 5 to 4
Although it changes to 0 (mg / L), even if the fine sand concentration in the pipe similarly changes, the fine sand contained in the separated sludge changes only from 5 to 20 (mg / L). Was. For this reason, in the conventional apparatus, when the concentration of the fine sand in the pipe 7 of the circulation line increased, the concentration of the fine sand contained in the sludge separated from the liquid cyclone 8 increased. On the other hand, in the apparatus of the present invention, even if the fine sand concentration in the circulation line pipe 7 increases, the fine sand concentration in the separated sludge due to the overflow from the additive separation tank 10 does not increase so much. It was confirmed that they could be adequately dealt with. Next, Table 3 shows a comparison of the frequency of replacement between the conventional apparatus and the apparatus of the present invention in continuous operation. [Table 3] As a result of comparing the replacement frequency of the pump seal portion, the pump body (impeller and the like), and the piping 7 of the circulation line, as shown in Table 3, the replacement frequency of the pump 6 of the solid-liquid separation tank 5 is the same as that of the conventional device. In comparison with the present invention, the pump seal portion is once / 24 months is once / 36 months, and the pump body is once / 3 times.
June is once / 48 months, and circulation line piping is once /
48 months was once / 60 months. From this, the device of the present invention was able to extend the service life to one year or more at any part as compared with the conventional device. Table 4 shows the results of comparing the initial costs of the conventional apparatus and the apparatus of the present invention. [Table 4] As shown in Table 4, the costs are compared.
When the additive is separated from the withdrawn material by the liquid cyclone of the conventional apparatus, the price is 250,000 yen for 5 L. However, since the additive separation tank of the apparatus of the present invention has a simple structure, it is 36 yen.
The device of the present invention was as inexpensive as 1/5 that of the conventional device, because the cost for 0L was 50,000 yen. According to the first embodiment described above, the substances extracted from the coagulation reaction tank 2 and the solid-liquid separation tank 5 are introduced into the additive separation tank 10, and the additives contained in the extracted substances are settled by gravity. Separation is performed, the separated additive is supplied into the coagulation reaction tank 2, and the separated sludge is discharged out of the system by overflow from the additive separation tank 10. Therefore, classification is performed as in the conventional liquid cyclone. Efficiency does not change, and a large amount of particulate additive is not mixed into the separated sludge from the additive separation tank 10. Therefore, the additive discharged from the lower part of the additive separation tank 10 does not greatly decrease, and it is possible to prevent the deterioration of the treatment water quality due to the shortage of the particulate additive in the agglutination reaction tank 2 and to always maintain the stable treatment water quality. Is obtained. Here, in the case of the conventional liquid cyclone 8, since the flow velocity in the circulation line pipe 7 is reduced and the classification efficiency is deteriorated, fine sand flows out into the sludge separated from the liquid cyclone 8 and is added. Although the treatment performance deteriorated due to the shortage of the material, the additive separation tank 10 of the present invention utilizes that the sedimentation speed of the additive is much faster than the sedimentation speed of the sludge. A large amount of additive is not mixed into the separated sludge discharged out of the system due to overflow from the additive separation tank 10. Therefore, there is an effect that the processing performance is not affected even if the flow velocity of the circulation line piping 7 decreases. Further, according to the present invention, it is possible to sufficiently cope with fluctuations in flow velocity and fine sand concentration in the circulation line piping 7 and to maintain the inside of the circulation line piping 7 at a low pressure. 9, the frequency of replacing the pump seal part, the pump body (impeller, etc.) and the circulation line piping 7 can be reduced.
There is an effect that the initial cost can be significantly reduced. As described above, according to the present invention, in an aggregating / separating apparatus using an additive, an agglutination reaction tank for aggregating a suspended substance in raw water, and an effluent from the agglutination reaction tank are removed. A solid-liquid separation tank to be introduced and separated into a separated product and treated water, and the solid-liquid separation tank, extraction means for extracting the extracted substance from the agglutination reaction tank, and the extracted substance extracted by the extraction means are introduced. An additive separation tank that separates the additives in the extracted material is provided, and the additives separated in the additive separation tank are configured to be supplied into the agglutination reaction tank. The classification efficiency does not change, and a large amount of the particulate additive is not mixed into the sludge separated from the additive separation tank. For this reason, the additive discharged from the lower part of the additive separation tank does not significantly decrease, and it is possible to prevent the deterioration of the treatment water quality due to the shortage of the particulate additive in the flocculation reaction tank, and to always maintain the stable treatment water quality. There is an effect that it can be obtained. Further, in the case of the conventional example, the classification efficiency of the hydrocyclone is deteriorated due to the decrease in the flow velocity of the piping of the circulation line, and fine sand flows out into the separated and discharged sludge from the hydrocyclone, and the treatment performance is reduced. However, the apparatus of the present invention does not affect the processing performance even if the flow velocity of the circulation line piping is reduced. This is due to the fact that the additive separation tank utilizes that the sedimentation speed of the additive is much faster than the sedimentation speed of the sludge. Therefore, there is an effect that the extracted material containing the additive can be easily and efficiently separated into the additive and the separated sludge. Further, even if the pressure in the circulation line pipe is operated at a low pressure, there is no significant change in the concentration of additives contained in the separated sludge, so that the pump body, pump parts, and other pipes are replaced due to wear. Has the effect of reducing the running cost of In addition, not only the same or higher processing performance can be obtained without using expensive liquid cyclone as in the conventional apparatus, but also a simple additive separation tank that can maintain the additive concentration in the separated sludge at a low concentration is sufficient. The effect is that the initial cost is low and only 1/5 of the conventional one is required.

【図面の簡単な説明】 【図1】本発明の実施の形態1による凝集分離装置を示
すフロー図である。 【図2】従来の凝集沈殿処理装置を概略的に示すフロー
図である。 【符号の説明】 1 原水導入管 2 凝集反応槽 3 無機凝集剤供給手段 4 高分子凝集剤供給手段 5 固液分離槽 6 ポンプ(引抜手段) 7 配管(汚泥循環ライン配管) 9 ポンプ(引抜手段) 10 添加物分離槽 11 添加物供給手段
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a flowchart showing a coagulation / separation apparatus according to Embodiment 1 of the present invention. FIG. 2 is a flowchart schematically showing a conventional coagulation / sedimentation treatment apparatus. [Description of Signs] 1 Raw water introduction pipe 2 Coagulation reaction tank 3 Inorganic coagulant supply means 4 Polymer coagulant supply means 5 Solid-liquid separation tank 6 Pump (pull-out means) 7 Pipe (sludge circulation line pipe) 9 Pump (pull-out means) 10) Additive separation tank 11 Additive supply means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 菅原 良行 東京都港区芝浦三丁目六番18号 株式会社 西原環境衛生研究所内 (72)発明者 品田 司 東京都港区芝浦三丁目六番18号 株式会社 西原環境衛生研究所内 (72)発明者 間瀬 博子 東京都港区芝浦三丁目六番18号 株式会社 西原環境衛生研究所内   ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Yoshiyuki Sugawara             3-6-18 Shibaura, Minato-ku, Tokyo Co., Ltd.             Nishihara Environmental Health Research Institute (72) Inventor Tsukasa Shinada             3-6-18 Shibaura, Minato-ku, Tokyo Co., Ltd.             Nishihara Environmental Health Research Institute (72) Inventor Hiroko Mase             3-6-18 Shibaura, Minato-ku, Tokyo Co., Ltd.             Nishihara Environmental Health Research Institute

Claims (1)

【特許請求の範囲】 【請求項1】 懸濁物質等を凝集処理する凝集反応槽
と、この凝集反応槽からの流出水を固液分離する固液分
離槽と、引抜物質を添加物と汚泥に分離する添加物分離
槽と、前記固液分離槽から前記添加物分離槽に引抜物質
を移送する配管とを備えたことを特徴とする凝集分離装
置。
Claims: 1. An agglutination reaction tank for aggregating a suspended substance or the like, a solid-liquid separation tank for solid-liquid separation of effluent from the agglutination reaction tank, and an extraction agent containing sludge and an additive. An agglomeration separation device, comprising: an additive separation tank for separating the extracted material; and a pipe for transferring a withdrawn substance from the solid-liquid separation tank to the additive separation tank.
JP2002154221A 2002-05-28 2002-05-28 Coagulation separation device Expired - Fee Related JP4004856B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002154221A JP4004856B2 (en) 2002-05-28 2002-05-28 Coagulation separation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002154221A JP4004856B2 (en) 2002-05-28 2002-05-28 Coagulation separation device

Publications (2)

Publication Number Publication Date
JP2003340205A true JP2003340205A (en) 2003-12-02
JP4004856B2 JP4004856B2 (en) 2007-11-07

Family

ID=29771072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002154221A Expired - Fee Related JP4004856B2 (en) 2002-05-28 2002-05-28 Coagulation separation device

Country Status (1)

Country Link
JP (1) JP4004856B2 (en)

Also Published As

Publication number Publication date
JP4004856B2 (en) 2007-11-07

Similar Documents

Publication Publication Date Title
US6919031B2 (en) Method of treating water and wastewater with a ballasted flocculation process and a chemical precipitation process
TWI532683B (en) Platform technology for industrial separations
JP5017281B2 (en) Sewage treatment using activated sludge and ballast aggregation.
CN107108289B (en) Improved ballasted purge system
TWI300006B (en) Coagulating and separating apparatus
DK2632859T3 (en) A process for the separation of liquid and suspended material in a slurry, and device for its use
AU2002220093A1 (en) Method and apparatus for treatment of water and wastewater
JP2009113036A (en) Dynamic processing system for water purification and method for dynamic processing in water purification
JP4707752B2 (en) Water treatment method and water treatment system
KR20120125323A (en) Ballast flocculation and sedimentation water treatment system with simplified sludge recirculation, and process therefor
CN106458669B (en) Method for clarifying waste water
KR101658044B1 (en) Advanced treatment apparatus
CN1166569C (en) Oil field visous crude sewage silicone-removing and cleaning process
CN103030229A (en) Oily wastewater treatment device and treatment method in steel industry
JP2002355507A (en) Flocculating and settling equipment and its controlling method
JP4004856B2 (en) Coagulation separation device
RU2570459C1 (en) Water treatment apparatus
CN206955866U (en) RO pre-treatment system
KR101045878B1 (en) High-efficiency hybrid sedimentation basin for processing water elevation
CN213652089U (en) Building site effluent disposal system
US20150360989A1 (en) Dispersant Enhanced Ballast Recovery
JP2002113472A (en) High-speed coagulating sedimentation method for suspended water and its device
JP3901392B2 (en) Coagulation sedimentation equipment
JP2003326107A (en) Concentration and flocculation apparatus
JP2001259653A (en) Water treating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070814

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070822

R150 Certificate of patent or registration of utility model

Ref document number: 4004856

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140831

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees