JP2003338414A - Reactor - Google Patents

Reactor

Info

Publication number
JP2003338414A
JP2003338414A JP2002144871A JP2002144871A JP2003338414A JP 2003338414 A JP2003338414 A JP 2003338414A JP 2002144871 A JP2002144871 A JP 2002144871A JP 2002144871 A JP2002144871 A JP 2002144871A JP 2003338414 A JP2003338414 A JP 2003338414A
Authority
JP
Japan
Prior art keywords
permanent magnet
core
magnetic
reactor
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002144871A
Other languages
Japanese (ja)
Other versions
JP3910488B2 (en
Inventor
Akira Imanaka
晶 今中
Akinori Nishihiro
昭徳 西広
Masakatsu Ogami
正勝 大上
Masanori Kato
昌則 加藤
Yuji Nakahara
裕治 中原
Hiroyuki Akita
裕之 秋田
Yoshihiro Tani
良浩 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002144871A priority Critical patent/JP3910488B2/en
Publication of JP2003338414A publication Critical patent/JP2003338414A/en
Application granted granted Critical
Publication of JP3910488B2 publication Critical patent/JP3910488B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • H01F3/14Constrictions; Gaps, e.g. air-gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/38Auxiliary core members; Auxiliary coils or windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • H01F2003/103Magnetic circuits with permanent magnets

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a reactor that can prevent deterioration in characteristics caused by a temperature rise even when a permanent magnet having an inferior temperature characteristic is used by effectively preventing the temperature rise of the magnet caused by the heat from a core. <P>SOLUTION: In the reactor to which a magnetic bias is applied by the permanent magnet 9 provided on a core 15 with a coil 3, a magnetic gap 10 is provided between the magnet 9 and core 15 and a heat insulating insulator sheet 11 which hardly transfers heat is disposed in the gap 10. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、永久磁石を用い
て磁気バイアスを与えるリアクトルに関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reactor for applying a magnetic bias using a permanent magnet.

【0002】[0002]

【従来の技術】永久磁石を用いて磁気バイアスを与える
リアクトルとして、特開平8−316049号公報に示
されているリアクトルがあり、図3にその構成を示す。
この従来のリアクトルは、T型コア121とC型コア1
11によってコア110を構成している。T型コア12
1の両底部121bとC型コア111の両側面脚111
eとの間に磁気的空隙105を形成しており、T型コア
121の脚121cにコイル103を巻回している。T
型コア121の両側面に、永久磁石104を設け、永久
磁石104の背面に、永久磁石104の外側面とT型コ
ア121の外側面をブリッジするL形のバックヨーク1
06を設けている。永久磁石104の作る磁束φmはバ
ックヨーク106から永久磁石104を通り、コイル1
03の作る磁束φeと磁気的空隙105でバイアスす
る。
2. Description of the Related Art As a reactor for applying a magnetic bias using a permanent magnet, there is a reactor disclosed in Japanese Patent Laid-Open No. 8-316049, and its configuration is shown in FIG.
This conventional reactor has a T-shaped core 121 and a C-shaped core 1
The core 110 is composed of 11. T-shaped core 12
1. Both bottom parts 121b and both side legs 111 of the C-shaped core 111
A magnetic air gap 105 is formed between the coil 103 and e, and the coil 103 is wound around the leg 121c of the T-shaped core 121. T
The L-shaped back yoke 1 is provided with permanent magnets 104 on both side surfaces of the die core 121, and the back surface of the permanent magnet 104 bridges the outer surface of the permanent magnet 104 and the outer surface of the T-shaped core 121.
06 is provided. The magnetic flux φm created by the permanent magnet 104 passes from the back yoke 106 through the permanent magnet 104, and
Bias is made by the magnetic flux φe created by 03 and the magnetic gap 105.

【0003】このようにこの従来技術においては、コア
の磁気的空隙105の側面に磁気バイアス用の永久磁石
104とバックヨーク106とが磁気的に直列に密着し
て設けられており、コアに巻かれたコイル103の作る
磁束φeと永久磁石104の作る磁束φmが互いに逆方
向になるように永久磁石104が着磁されている。
As described above, in this prior art, the permanent magnet 104 for magnetic bias and the back yoke 106 are magnetically and closely attached in series on the side surface of the magnetic gap 105 of the core and wound around the core. The permanent magnet 104 is magnetized so that the magnetic flux φe generated by the coil 103 and the magnetic flux φm generated by the permanent magnet 104 are in opposite directions.

【0004】この従来の技術においては、永久磁石10
4の作るバイアス磁束φmとコイル103の作る磁束φ
eが打ち消し合うため、コア内部の磁束が減少し、コア
の磁気飽和を抑制することができる。また、コイル10
3の作る磁束が永久磁石104内を流れにくいので、渦
電流損も減少し、永久磁石104も減磁しにくいという
特徴がある。
In this conventional technique, the permanent magnet 10 is used.
Bias magnetic flux φm created by 4 and magnetic flux φ created by coil 103
Since e cancel each other, the magnetic flux inside the core decreases, and the magnetic saturation of the core can be suppressed. Also, the coil 10
Since the magnetic flux generated by 3 does not easily flow in the permanent magnet 104, the eddy current loss is also reduced, and the permanent magnet 104 is also difficult to demagnetize.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の永久磁石付きリアクトルにあっては、永久磁
石104がコア110に密着して設けられているため、
鉄損等により生じたコア110の発熱や、銅損等により
生じたコイル103の発熱が永久磁石104に伝わり、
永久磁石104の温度も上昇する。
However, in such a conventional reactor with a permanent magnet, since the permanent magnet 104 is provided in close contact with the core 110,
Heat generation of the core 110 caused by iron loss or the like, and heat generation of the coil 103 caused by copper loss or the like are transmitted to the permanent magnet 104,
The temperature of the permanent magnet 104 also rises.

【0006】一般的に永久磁石は代表的な磁気特性であ
る減磁曲線が温度特性を有しており、特に、フェライト
磁石や希土類磁石は負の温度係数を有している。図4
に、参考として、NEOMAX−37H(住友特殊金属(株)製
のNd磁石の商品名)の減磁曲線の温度変化を示す。NE
OMAX−37Hのようにエネルギー密度および発生磁束密度
が高い永久磁石にあっては、温度上昇による性能劣化が
極端であり、図4の減磁曲線に示すように、磁化力(発
生磁力)が温度上昇に応じて急激に減少するという性質
がある。
Generally, a permanent magnet has a temperature characteristic as a demagnetization curve which is a typical magnetic characteristic, and in particular, a ferrite magnet and a rare earth magnet have a negative temperature coefficient. Figure 4
For reference, the temperature change of the demagnetization curve of NEOMAX-37H (trade name of Nd magnet manufactured by Sumitomo Special Metals Co., Ltd.) is shown. NE
In the case of permanent magnets with high energy density and generated magnetic flux density such as OMAX-37H, the performance deterioration due to temperature rise is extreme, and as shown by the demagnetization curve in Fig. 4, the magnetizing force (generated magnetic force) changes with temperature. It has the property of rapidly decreasing as it rises.

【0007】通常、リアクトルにおいては180°Cの
H種絶縁まで用いられるため、永久磁石がコアに密着し
て設けられている場合には、永久磁石の表面も熱伝導に
より100°C以上になる。
Normally, up to 180 ° C. class H insulation is used in the reactor, so when the permanent magnet is provided in close contact with the core, the surface of the permanent magnet also becomes 100 ° C. or higher due to heat conduction. .

【0008】このように、上記従来のリアクトルにおい
ては、永久磁石の温度上昇による発生磁力の減少によ
り、永久磁石による磁気バイアス量が減少し、コアの磁
気飽和が良好に抑制できなくなって所望のL−I特性を
得られなくなるという問題があった。
As described above, in the conventional reactor described above, the magnetic bias generated by the permanent magnet decreases due to the decrease in the magnetic force generated by the temperature rise of the permanent magnet, and the magnetic saturation of the core cannot be suppressed well, so that the desired L There is a problem that the -I characteristic cannot be obtained.

【0009】さらに、永久磁石の作る磁束を調節できる
ような磁気空隙が設けられていないため、コイルの作る
磁束を最適に打ち消すように永久磁石の作るバイアス磁
束を調節できず、結果としてリアクトルのL−I特性を
所望の値にすることができないという問題があった。
Further, since the magnetic gap for adjusting the magnetic flux produced by the permanent magnet is not provided, the bias magnetic flux produced by the permanent magnet cannot be adjusted so as to optimally cancel the magnetic flux produced by the coil, resulting in the reactor L There is a problem that the −I characteristic cannot be set to a desired value.

【0010】この発明は上記に鑑みてなされたもので、
コアからの熱に起因した永久磁石の温度上昇を効果的に
防止でき、永久磁石として温度特性が悪いものが使用さ
れるような状況下であっても温度上昇による特性劣化を
防止できるリアクトルを得ることを目的とする。
The present invention has been made in view of the above,
To obtain a reactor that can effectively prevent the temperature rise of the permanent magnet due to the heat from the core, and can prevent the characteristic deterioration due to the temperature rise even in the situation where a permanent magnet having bad temperature characteristics is used. The purpose is to

【0011】[0011]

【課題を解決するための手段】上記目的を達成するた
め、この発明にかかるリアクトルは、コイルが巻回され
たコアに永久磁石を配設し、この永久磁石を用いて磁気
バイアスを与えるリアクトルにおいて、永久磁石とコア
の間に磁気的空隙を設け、この磁気的空隙に熱が伝達し
にくい断熱絶縁体シートを介在させることを特徴とす
る。
In order to achieve the above object, a reactor according to the present invention is a reactor in which a permanent magnet is arranged in a core around which a coil is wound and a magnetic bias is given by using this permanent magnet. A magnetic gap is provided between the permanent magnet and the core, and a heat insulating insulator sheet through which heat is hard to be transmitted is interposed in the magnetic gap.

【0012】この発明によれば、永久磁石とコアの間に
磁気的空隙を設け、この磁気的空隙に断熱絶縁体シート
を設けるようにしており、永久磁石の温度上昇を抑制し
て特性劣化を少なくすることができる。
According to the present invention, the magnetic gap is provided between the permanent magnet and the core, and the heat insulating insulator sheet is provided in the magnetic gap. Can be reduced.

【0013】つぎの発明にかかるリアクトルは、上記の
発明において、前記断熱絶縁体シートの厚みを可変する
ことによりバイアス磁束を調節することを特徴とする。
The reactor according to the next invention is characterized in that, in the above invention, the bias magnetic flux is adjusted by varying the thickness of the heat insulating insulator sheet.

【0014】この発明によれば、磁気的空隙に配設され
る断熱シートの厚みを変えることにより、バイアス磁束
を調節するようにしており、これによりコイルの作る磁
束を殆ど変えずに永久磁石の作るバイアス磁束だけを調
節することができる。
According to the present invention, the bias magnetic flux is adjusted by changing the thickness of the heat insulating sheet arranged in the magnetic air gap, whereby the magnetic flux produced by the coil is hardly changed. Only the bias magnetic flux that is created can be adjusted.

【0015】[0015]

【発明の実施の形態】以下に添付図面を参照して、この
発明にかかるリアクトルの好適な実施の形態を詳細に説
明する。
BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments of a reactor according to the present invention will be described in detail below with reference to the accompanying drawings.

【0016】図1はこの発明にかかるリアクトルの実施
の形態を示すものである。このリアクトルは、T形コア
1およびC形コア5によってTC形のコア15を構成し
ている。
FIG. 1 shows an embodiment of a reactor according to the present invention. In this reactor, a T-shaped core 1 and a C-shaped core 5 constitute a TC-shaped core 15.

【0017】T形コア1の脚部2にはコイル3を巻回し
ている。T形コア1の底部4とC形コア5の両脚6の間
に磁気的空隙7を形成し、この磁気的空隙7に絶縁体8
を介在させている。
A coil 3 is wound around the leg portion 2 of the T-shaped core 1. A magnetic gap 7 is formed between the bottom portion 4 of the T-shaped core 1 and both legs 6 of the C-shaped core 5, and an insulator 8 is formed in the magnetic gap 7.
Is intervening.

【0018】T形コア1およびC形コア5の両脚6との
間の磁気的空隙7の付近の両外側面には、磁気的空隙1
0を介してバイアス磁束を発生する板状の一対の永久磁
石9を配設している。これら一対の永久磁石9は、板の
長手方向および板厚方向の各々に片側2極となるように
着磁し、対向するもの同士が同極性となるようにしてい
る。磁気的空隙10には、断熱性の良い絶縁体である断
熱絶縁体シート11を介在させている。永久磁石9の背
面には、磁性体材料から成る一対の平板状のバックヨー
ク12を貼付してある。
The magnetic gap 1 is formed on both outer side surfaces near the magnetic gap 7 between the legs 6 of the T-shaped core 1 and the C-shaped core 5.
A pair of plate-shaped permanent magnets 9 that generate a bias magnetic flux via 0 are arranged. The pair of permanent magnets 9 are magnetized so as to have two poles on one side in each of the longitudinal direction and the thickness direction of the plate, and the opposing magnets have the same polarity. A heat insulating insulator sheet 11 which is an insulator having a good heat insulating property is interposed in the magnetic gap 10. On the back surface of the permanent magnet 9, a pair of flat plate-shaped back yokes 12 made of a magnetic material are attached.

【0019】この実施の形態においては、磁気的空隙1
0およびこの磁気的空隙10に挿入した断熱絶縁体シー
ト11により、鉄損等により生じたT形コア1およびC
形コア5の発熱や、銅損等により生じたコイル3の発熱
が永久磁石9に伝わることを防いでおり、先の図4に示
したような温度特性を有した減磁特性を持つ永久磁石9
が温度上昇により性能劣化することを抑制し、リアクト
ルを所望のL−I特性に維持することができる。
In this embodiment, the magnetic gap 1
0 and the heat insulating insulator sheet 11 inserted in the magnetic gap 10 cause T-shaped cores 1 and C generated by iron loss or the like.
The heat generated by the core 5 and the heat generated by the coil 3 caused by copper loss, etc. are prevented from being transmitted to the permanent magnet 9, and the permanent magnet has the demagnetization characteristic having the temperature characteristic as shown in FIG. 9
It is possible to suppress the performance deterioration due to the temperature rise and maintain the reactor with a desired L-I characteristic.

【0020】さらに、この実施の形態の構造によれば、
磁気的空隙10の間隔を調整することにより、すなわち
断熱絶縁体シート11の厚み変えることにより、コイル
3の作る磁束13を殆ど変えずに永久磁石9の作るバイ
アス磁束14だけを支配的に調節することができる。
Further, according to the structure of this embodiment,
By adjusting the spacing of the magnetic gaps 10, that is, by changing the thickness of the heat insulating insulator sheet 11, the magnetic flux 13 produced by the coil 3 is hardly changed and only the bias magnetic flux 14 produced by the permanent magnet 9 is predominantly adjusted. be able to.

【0021】従って、コイル3の作るコイル磁束13を
最適に打ち消すようにリアクトルのL−I特性を容易に
調整することができる。図2は、磁気的空隙10の間隔
を変えたときのリアクトルのL−I特性を示すものであ
り、磁気的空隙10を広くすればAの方向にL−I曲線
をシフトさせることができ、また磁気的空隙10を狭く
すればCの方向にL−I曲線をシフトできることが示さ
れている。
Therefore, the L-I characteristic of the reactor can be easily adjusted so as to optimally cancel the coil magnetic flux 13 created by the coil 3. FIG. 2 shows the L-I characteristics of the reactor when the spacing of the magnetic gap 10 is changed. If the magnetic gap 10 is widened, the L-I curve can be shifted in the A direction. It is also shown that the LI curve can be shifted in the C direction by narrowing the magnetic gap 10.

【0022】ここで、磁気的空隙10を狭くすると、電
流大の領域でのL値を大きく保つことができるが、余り
狭くしすぎると電流が小さい領域でのL値が減少する状
態に至ることがある。従って、磁気的空隙10を調整し
て、所望のL−I特性に設定すればよい。
Here, if the magnetic gap 10 is narrowed, the L value in the large current region can be kept large, but if it is made too narrow, the L value will decrease in the small current region. There is. Therefore, the magnetic gap 10 may be adjusted to set the desired L-I characteristic.

【0023】このように本実施の形態によれば、永久磁
石9とコア15の間に磁気的空隙10を設け、この磁気
的空隙10に断熱絶縁体シート11を設けるようにして
いるので、永久磁石9の温度上昇が抑制されて特性が劣
化し難くなる。つまり、コア15に発生した熱が永久磁
石9へ伝わることを断熱部材としての断熱絶縁体シート
11により抑制されるから、コア15からの熱に起因し
た永久磁石9の温度上昇を効果的に防止でき、特に、永
久磁石9として温度特性が悪いものが使用されるような
状況下であっても温度上昇による特性劣化を防止でき
る。
As described above, according to the present embodiment, the magnetic gap 10 is provided between the permanent magnet 9 and the core 15, and the heat insulating insulator sheet 11 is provided in the magnetic gap 10. The temperature rise of the magnet 9 is suppressed, and the characteristics are less likely to deteriorate. That is, the heat generated in the core 15 is suppressed from being transmitted to the permanent magnet 9 by the heat insulating insulator sheet 11 as a heat insulating member, so that the temperature rise of the permanent magnet 9 caused by the heat from the core 15 is effectively prevented. In particular, it is possible to prevent the characteristic deterioration due to the temperature rise even under the situation where the permanent magnet 9 having bad temperature characteristics is used.

【0024】また、磁気的空隙10に配設される断熱シ
ートの厚みを変えることにより、バイアス磁束を調節す
ることができ、コイル3の作る磁束を殆ど変えずに永久
磁石9の作るバイアス磁束だけを支配的に調節できる。
従って、コイル3の作る磁束を最適に打ち消すように永
久磁石9の作るバイアス磁束を調節でき、結果としてリ
アクトルのL−I特性を所望の値に設定することができ
る。
The bias magnetic flux can be adjusted by changing the thickness of the heat insulating sheet arranged in the magnetic gap 10, and the magnetic flux generated by the coil 3 is hardly changed, and only the bias magnetic flux generated by the permanent magnet 9 is changed. Can be controlled dominantly.
Therefore, the bias magnetic flux generated by the permanent magnet 9 can be adjusted to optimally cancel the magnetic flux generated by the coil 3, and as a result, the L-I characteristic of the reactor can be set to a desired value.

【0025】なお、上記した各実施例は、T形コアとC
形コアより成るリアクトルを対象とした例で説明した
が、本発明は、E形コアとI形コアまたは一対のC形コ
アより成るリアクトルの場合についても適用することが
できる。
In each of the above embodiments, the T-shaped core and C
Although the description has been given of the example of the reactor including the shape core, the present invention can be applied to the case of the reactor including the E-shaped core and the I-shaped core or the pair of C-shaped cores.

【0026】さらに、永久磁石については、板の長手方
向および板厚方向おのおのに片側2極となるように着磁
した場合について示したが、板厚方向に2極となるよう
に着磁し、それを2枚組み合わせても良いし、1枚だけ
用いてもう片方はバックヨークで構成しても良い。
Further, regarding the permanent magnet, the case where it is magnetized so as to have two poles on one side in each of the longitudinal direction and the thickness direction of the plate is shown, but it is magnetized so as to have two poles in the plate thickness direction, Two of them may be combined, or only one may be used and the other may be a back yoke.

【0027】[0027]

【発明の効果】以上説明したように、この発明によれ
ば、永久磁石とコアの間に磁気的空隙を設け、この磁気
的空隙に断熱絶縁体シートを設けるようにしているの
で、永久磁石の温度上昇が抑制されて特性が劣化し難く
なる。つまり、コアに発生した熱が永久磁石へ伝わるこ
とを断熱部材としての断熱絶縁体シートにより抑制され
るから、コアからの熱に起因した永久磁石9の温度上昇
を効果的に防止でき、特に、永久磁石として温度特性が
悪いものが使用されるような状況下であっても温度上昇
による特性劣化を防止できる。
As described above, according to the present invention, the magnetic gap is provided between the permanent magnet and the core, and the heat insulating insulator sheet is provided in the magnetic gap. The temperature rise is suppressed and the characteristics are less likely to deteriorate. That is, the heat generated in the core is suppressed from being transferred to the permanent magnet by the heat insulating insulator sheet as the heat insulating member, so that the temperature rise of the permanent magnet 9 due to the heat from the core can be effectively prevented, and in particular, It is possible to prevent characteristic deterioration due to temperature rise even in a situation where a permanent magnet having bad temperature characteristics is used.

【0028】つぎの発明によれば、磁気的空隙に配設さ
れる断熱シートの厚みを変えることにより、バイアス磁
束を調節することができ、コイルの作る磁束を殆ど変え
ずに永久磁石の作るバイアス磁束だけを調節できる。従
って、コイルの作る磁束を最適に打ち消すように永久磁
石の作るバイアス磁束を調節でき、結果としてリアクト
ルのL−I特性を所望の値に設定することができる。
According to the next invention, the bias magnetic flux can be adjusted by changing the thickness of the heat insulating sheet disposed in the magnetic gap, and the bias generated by the permanent magnet can be hardly changed by the magnetic flux generated by the coil. Only the magnetic flux can be adjusted. Therefore, the bias magnetic flux generated by the permanent magnet can be adjusted to optimally cancel the magnetic flux generated by the coil, and as a result, the L-I characteristic of the reactor can be set to a desired value.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明の実施の形態によるリアクトルを示
す断面図である。
FIG. 1 is a sectional view showing a reactor according to an embodiment of the present invention.

【図2】 コアと永久磁石の間の磁気的空隙の広さを変
えたときのL−I特性の変化を示す図である。
FIG. 2 is a diagram showing changes in the L-I characteristics when the width of the magnetic gap between the core and the permanent magnet is changed.

【図3】 従来技術を示す図である。FIG. 3 is a diagram showing a conventional technique.

【図4】 永久磁石の温度と減磁特性の関係を示す図で
ある。
FIG. 4 is a diagram showing a relationship between a temperature of a permanent magnet and a demagnetization characteristic.

【符号の説明】[Explanation of symbols]

1 T形コア、2 脚部、3 コイル、4 底部、5
C形コア、6 両脚、7 磁気的空隙、8 絶縁体、9
永久磁石、10 磁気的空隙、11 断熱絶縁体シー
ト、12 バックヨーク、13 コイル磁束、14 バ
イアス磁束、15 コア。
1 T-shaped core, 2 legs, 3 coils, 4 bottom, 5
C-shaped core, 6 legs, 7 magnetic air gap, 8 insulator, 9
Permanent magnets, 10 magnetic air gaps, 11 heat insulating insulator sheets, 12 back yokes, 13 coil magnetic fluxes, 14 bias magnetic fluxes, 15 cores.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大上 正勝 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 加藤 昌則 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 中原 裕治 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 秋田 裕之 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 谷 良浩 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Masakatsu Oue             2-3 2-3 Marunouchi, Chiyoda-ku, Tokyo             Inside Ryo Electric Co., Ltd. (72) Inventor Masanori Kato             2-3 2-3 Marunouchi, Chiyoda-ku, Tokyo             Inside Ryo Electric Co., Ltd. (72) Inventor Yuji Nakahara             2-3 2-3 Marunouchi, Chiyoda-ku, Tokyo             Inside Ryo Electric Co., Ltd. (72) Inventor Hiroyuki Akita             2-3 2-3 Marunouchi, Chiyoda-ku, Tokyo             Inside Ryo Electric Co., Ltd. (72) Inventor Yoshihiro Tani             2-3 2-3 Marunouchi, Chiyoda-ku, Tokyo             Inside Ryo Electric Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 コイルが巻回されたコアに永久磁石を配
設し、この永久磁石を用いて磁気バイアスを与えるリア
クトルにおいて、 永久磁石とコアの間に磁気的空隙を設け、この磁気的空
隙に熱が伝達しにくい断熱絶縁体シートを介在させるこ
とを特徴とするリアクトル。
1. A reactor in which a permanent magnet is disposed on a core around which a coil is wound, and a magnetic bias is provided by using the permanent magnet, a magnetic air gap is provided between the permanent magnet and the core, and the magnetic air gap is provided. A reactor characterized by interposing a heat insulating insulator sheet that does not easily transfer heat to the reactor.
【請求項2】 前記断熱絶縁体シートの厚みを可変する
ことによりバイアス磁束を調節することを特徴とする請
求項1に記載のリアクトル。
2. The reactor according to claim 1, wherein the bias magnetic flux is adjusted by changing the thickness of the heat insulating insulator sheet.
JP2002144871A 2002-05-20 2002-05-20 Reactor Expired - Fee Related JP3910488B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002144871A JP3910488B2 (en) 2002-05-20 2002-05-20 Reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002144871A JP3910488B2 (en) 2002-05-20 2002-05-20 Reactor

Publications (2)

Publication Number Publication Date
JP2003338414A true JP2003338414A (en) 2003-11-28
JP3910488B2 JP3910488B2 (en) 2007-04-25

Family

ID=29704430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002144871A Expired - Fee Related JP3910488B2 (en) 2002-05-20 2002-05-20 Reactor

Country Status (1)

Country Link
JP (1) JP3910488B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011065001A1 (en) 2009-11-25 2011-06-03 ダイキン工業株式会社 Cooling structure for magnet-fitted reactor
CN106057395A (en) * 2016-08-16 2016-10-26 福州大学 Permanent magnet biased magnetic element assembly and method for implementing same
WO2017103077A1 (en) * 2015-12-17 2017-06-22 Commissariat A L'energie Atomique Et Aux Energies Alternatives Inductive core exhibiting low magnetic losses

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107068348A (en) * 2016-12-29 2017-08-18 江苏越达电力设备有限公司 A kind of frequency converter direct current reactor based on flat ripple control module

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011065001A1 (en) 2009-11-25 2011-06-03 ダイキン工業株式会社 Cooling structure for magnet-fitted reactor
US8928444B2 (en) 2009-11-25 2015-01-06 Daikin Industries, Ltd. Cooling structure for magnet-equipped reactor
WO2017103077A1 (en) * 2015-12-17 2017-06-22 Commissariat A L'energie Atomique Et Aux Energies Alternatives Inductive core exhibiting low magnetic losses
FR3045924A1 (en) * 2015-12-17 2017-06-23 Commissariat Energie Atomique INDUCTANCE CORE WITH REDUCED MAGNETIC LOSSES
US11309109B2 (en) 2015-12-17 2022-04-19 Commissariat A L'energie Atomique Et Aux Energies Alternatives Inductive core exhibiting low magnetic losses
CN106057395A (en) * 2016-08-16 2016-10-26 福州大学 Permanent magnet biased magnetic element assembly and method for implementing same

Also Published As

Publication number Publication date
JP3910488B2 (en) 2007-04-25

Similar Documents

Publication Publication Date Title
EP0744757B1 (en) D.c. reactor
JP5370912B2 (en) Magnetic field generator
JP2003338414A (en) Reactor
JP3922121B2 (en) DC reactor
JP4343448B2 (en) Transformer manufacturing method
JP4001505B2 (en) DC reactor
JP2007281204A (en) Dc reactor
JP2001160513A (en) Amorphous wound core transformer
JPS61203605A (en) Magnet having highly uniform magnetic field
JP2001238349A (en) Current limiter
JP2004253538A (en) Reactor
JPWO2016181518A1 (en) Ignition coil
US20120248898A1 (en) Moving Magnet Actuator Magnet Carrier
US11621115B2 (en) Method for assembling a magnetic core for a transformer
JP2000316271A (en) Linear motor
JPH10340821A (en) Ignition coil
JP2004055787A (en) Dc reactor
JP2830367B2 (en) Ignition coil for internal combustion engine
JP3127239B2 (en) Method and apparatus for magnetizing a metal magnet
JPH04271103A (en) Electromagnetic device equipped with permanent magnet
JP3961960B2 (en) Speaker
JP2013125843A (en) Dc reactor
JP2004266217A (en) Direct current reactor
JPS6311898Y2 (en)
JP2000030932A (en) Opposing permanent magnet type magnetic circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070124

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100202

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110202

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120202

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130202

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130202

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140202

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees