JP2004266217A - Direct current reactor - Google Patents

Direct current reactor Download PDF

Info

Publication number
JP2004266217A
JP2004266217A JP2003057349A JP2003057349A JP2004266217A JP 2004266217 A JP2004266217 A JP 2004266217A JP 2003057349 A JP2003057349 A JP 2003057349A JP 2003057349 A JP2003057349 A JP 2003057349A JP 2004266217 A JP2004266217 A JP 2004266217A
Authority
JP
Japan
Prior art keywords
core
permanent magnet
shaped core
winding
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003057349A
Other languages
Japanese (ja)
Inventor
Tomonori Mizutani
友徳 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003057349A priority Critical patent/JP2004266217A/en
Publication of JP2004266217A publication Critical patent/JP2004266217A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a direct current reactor having a structure in which it is easy to assemble permanent magnets, further the whole fixing can be made including the permanent magnets without varying the performance or dimensions, and further it is easy to fix to an external unit. <P>SOLUTION: A "square frame"-shaped core 3 is constituted of an upper side 3a, both-side legs 3b, 3b and a lower side 3c, and a recess 3d is provided at the center of the lower side 3c so that, when an I core 1 with a wound a coil 2 is inserted thereinto, the coil 2 of the I core 1 keeps a predetermined magnetic air gap 4 relative to an unwound side. Further, a groove 3e is provided at the center of the recess 3d so as to fix a biasing permanent magnet 5 with a magnet width Lm1. An upper surface of the I core 1 comes into contact with an abutment surface 6 of the upper side 3a of the "square frame"-shaped core 3, and further the permanent magnet 5 is provided so as to directly come into contact with a lower surface of the I core 1 and the groove 3e of the "square frame"-shaped core 3, respectively. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、電源の電流波形を改善するためスイッチング電源やインバータに用いる、磁気バイアスを有する直流リアクトルに関する。
【0002】
【従来の技術】
永久磁石を用いて磁気バイアスを与える直流リアクトルとして、特許文献1(特公昭46−37128号公報)に開示されたものがある。
特許文献1では、E形コアの中央脚にコイルを巻回し、中央脚の高さを側面脚より低くし、E形コアの側面脚をI形コアによりブリッジし、E形コアの中央脚とI形コア間の空隙に磁気バイアスを与える永久磁石を挟んだものである。
【0003】
また、永久磁石が減磁せず、かつ磁束がコア内で飽和し難い直流リアクトルを提供することを目的としたものとして、特許文献2(特開平8−316049号公報)に開示されたものがある。
特許文献2では、軟磁性体からなるE形コアと軟磁性体からなるI形コアを合わせ面で組み合わせてEI形コア構体を構成するもので、所定のインダクタンスが得られるよう、E形コアの中央脚を側面脚より短くし、磁気的空隙を作る。また、中央脚の磁気的空隙部の両側面には、所定のバイアス磁束を発生する幅の2枚の矩形の永久磁石を接する辺同士が異極となる極異性に着磁し、I形コアと平行させ、同極が中央脚を挟んで同極性同士が対向するように配置する。
【0004】
また、E形コアをC形コアに、I形コアをT形コアに変えてCT形コア構体を構成する。T形コアの脚部には、コイルを巻回してある。T形コアの脚とC形コアの中央部の間に磁気的空隙を形成してある。磁気的空隙の両側面には、バイアス磁束を発生する一対の永久磁石を対向するもの同士が同極性になるように設けてある。このように構成することにより、巻線がしやすくなる。
【0005】
【発明が解決しようとする課題】
特許文献1では、空隙に磁石を挿入するため、コイルの作る磁束により減磁を受けない磁石材料にする必要があり、また直流リアクトルのインダクタンスは空隙長さが小さいほど大となるが、空隙長さを小さくすると必然的に磁石が薄くなり、加工し難くなるとともに減磁しやすくなる。したがって、わずかでも大電流を流す可能性があれば磁石を厚くすることが不可欠となりこのため空隙長さが長くなるので、コアの断面積も大きくする必要が生じて結果としてリアクトルが大きくなってしまうという問題点があった。
【0006】
また、特許文献2では、巻線の作る磁束は永久磁石内を流れないので、永久磁石が減磁することがなく、かつ磁束がコア内で飽和し難い直流リアクトルを得られるが、バイアス用の一対の永久磁石を使用する構成であり、直流リアクトルの製造における2個の永久磁石の組立が困難であるという問題点があった。
【0007】
また、従来の直流リアクトルは上述のように、E形コアとI形コアとを組み合わせてEI形コア構体を、またはC形コアとT形コアとを組み合わせてCT形コア構体を構成する構造のため、永久磁石をも含め一体となるように固定するには、大きな留め具が必要となり、リアクトルの形状が大きくなるという問題点があった。
【0008】
この発明は上述のような課題を解決するためになされたもので、第1の目的は直流リアクトルの製造において、直流リアクトルを構成する永久磁石の組立が容易な構造の直流リアクトルを得るものである。
【0009】
また、第2の目的は、リアクトルの性能や大きさを変えることなく、永久磁石をも含め一体に固定することができ、また外部機器等への固定が容易な構造の直流リアクトルを得るものである。
【0010】
【課題を解決するための手段】
この発明の直流リアクトルは、巻線を巻回するI形状の第1のコアと、この第1のコアと組み合わせて閉磁路を形成する□形状の第2のコアと、巻線の作る磁束と対向するように着磁したバイアス用の永久磁石と、を有する直流リアクトルにおいて、
第2のコアの□形状の下辺部中央に、第1のコアの前記巻線を巻回しない側面側および永久磁石の側面側との間に所定の磁気的空隙を形成するための凹部を設け、第1のコアの上面部を第2のコアの□形状の上辺部中央の下面部と接触させ、また第1のコアの下面部を永久磁石の上面部と接触させ、さらに永久磁石の下面部を第2のコアの□形状の下辺部中央の凹部に接触させることにより、巻線の作る磁束の経路を第1のコアの巻線を巻回しない側面側と第2のコアの□形状の下辺部中央に設けた凹部の間に形成した磁気的空隙を通る経路とし、永久磁石の作る磁束の経路を第2のコアの□形状の下辺部中央に設けた凹部の溝を経由し、磁気的空隙を通らない経路としたものである。
【0011】
また、第1のコアの巻線を巻回しない側面部の寸法を、巻線を巻回する側面部の寸法よりも大きくしたものである。
【0012】
さらに、第2のコアの□形状の下辺部中央に設けた凹部の中央に、永久磁石を挿入するための溝を設けたものである。
【0013】
さらにまた、第1のコアの上面部と第2のコアの□形状の上辺部中央の下面部とを、凹凸形状とし、はめ合わせるようにしたものである。
【0014】
また、第2のコアの□形状の下辺部にこのコアを固定するための貫通穴を設けたものである。
【0015】
【発明の実施の形態】
実施の形態1.
図1はこの発明の実施の形態1に係る直流リアクトルの正断面図である。図において、第1のコアとしてのI形状コア1は、所定の形状に打ち抜き加工した電磁鋼板を複数枚積層して形成され、巻線2が巻回される。また、所定の形状に打ち抜き加工した電磁鋼板を複数枚積層して形成される第2のコアとしての□形状コア3は、上辺部3a、両側脚部3b,3bおよび下辺部3cから構成され、下辺部3c中央には、巻線2を巻回したI形状コア1を挿入したとき、I形状コア1の巻線2が巻回されていない側面との間に所定の磁気的空隙4を保つように凹部3dを設けてある。また、凹部3dの中央には磁石幅Lm1のバイアス用の永久磁石5を固定するための溝3eが設けられている。また、下辺部3cには、巻線2の作る磁束φeおよび永久磁石5の作るバイアス磁束φmの経路を妨げない位置に貫通穴3f、3fを設ける。
【0016】
I形状コア1の上面部は□形状コア3の上辺部3aの合わせ面6で接触し、また、永久磁石5はI形状コア1の下面部と□形状コア3の溝3eとにそれぞれ直に接触して設けるようにしたので、I形状コア1と□形状コア3と永久磁石5とがそれぞれ上下に分離するのを防ぐための留め具は不要である。
【0017】
実施の形態1に係る直流リアクトルの磁束の流れについて説明する。
巻線2の作る磁束φeは図中に実線で示すように、I形状コア1を通り、I形状コア1の上面部→合わせ面6→□形状コア3の上辺部3a→□形状コア3の側脚部3b→□形状コア3の下辺部3c(□形状コア3の凹部3d)→磁気的空隙4を通ってI形状コア1に帰還する。
また、永久磁石5の作るバイアス磁束φmは図中に破線で示すように、永久磁石5から、□形状コア3の溝3e→□形状コア3の下辺部3c→□形状コア3の側脚部3b→□形状コア3の上辺部3a→合わせ面6→I形状コア1の上面部→I形状コア1→I形状コア1の下面部を通って永久磁石5に帰還する経路となり、磁気的空隙4を通らない。
【0018】
また、図に示すように、I形状コア1内および□形状コア3内では、巻線2の作る磁束φeと永久磁石5の作るバイアス磁束φmは対向して流れるので、I形状コア1および□形状コア3の磁気的飽和が緩和され、巻線2の作る磁束φeは永久磁石5内を通らないので、永久磁石5が減磁することもない。
【0019】
図2はこの発明の実施の形態1に係る直流リアクトルの組立例を示す斜視図である。図において、1〜3、3a、3b、3c、3d、3e、3f、5は図1と同様であり、その説明を省略する。
所定の形状に打ち抜き加工した電磁鋼板を複数枚積層して形成されたI形状コア1に巻線2を巻回した後、バイアス用の永久磁石5とともに、所定の形状に打ち抜き加工した電磁鋼板を複数枚積層して形成された□形状コア3に挿入することにより、巻線2を巻回したI形状コア1とバイアス用の永久磁石5とが、□形状コア3の上辺部3aと下辺部3cとの間に支持される。
【0020】
実施の形態1の直流リアクトルは、バイアス用の永久磁石は1個で構成するようにしたので、直流リアクトルの製造における永久磁石の組立が容易となり、またバイアス用の永久磁石を1個としたことにより、コストを下げることができる。
また、□形状コア3の下辺部3c中央の凹部3dの中央には、永久磁石5を挿入するための溝3eを設けたので、直流リアクトルの製造において永久磁石5を□形状コア3の下辺部3c中央への設置作業が容易となる。
【0021】
実施の形態2.
図3はこの発明の実施の形態2に係る直流リアクトルの正断面図である。図において、巻線を巻回しない側面部の寸法を、巻線を巻回する側面部の寸法よりも大きくした第1のコアである凸形状コア11は、所定の形状に打ち抜き加工した電磁鋼板を複数枚積層して形成され、巻線12が巻回される。また、所定の形状に打ち抜き加工した電磁鋼板を複数枚積層して形成される□形状コア13は、上辺部13a、両側脚部13b,13bおよび下辺部13cから構成され、下辺部13c中央には、巻線12を巻回した凸形状コア11を挿入したとき、凸形状コア11の巻線12が巻回されていない凸形状の下部側面との間に所定の磁気的空隙14を保つように凹部13dを設けてある。また、凹部13d中央には磁石幅Lm11のバイアス用の永久磁石15を固定するための溝13eが設けられている。また、下辺部13cには、巻線12の作る磁束φeおよび永久磁石15の作るバイアス磁束φmの経路を妨げない位置に貫通穴13f、13fを設ける。
【0022】
凸形状コア11の上面部は□形状コア13の上辺部13aの合わせ面16で接触し、また、永久磁石15は凸形状コア11の下面部と□形状コア13の溝13eとにそれぞれ直に接触して設けるようにしたので、凸形状コア11と□形コア13と永久磁石15とがそれぞれ上下に分離するのを防ぐための留め具は不要である。
【0023】
実施の形態2に係る直流リアクトルの磁束の流れについて説明する。
巻線12の作る磁束φeは図中に実線で示すように、凸形状コア11を通り、凸形状コア11の上面部→合わせ面16→□形状コア13の上辺部13a→□形状コア13の側脚部13b→□形状コア13の下辺部13c(□形状コア13の凹部13d)→磁気的空隙14を通って凸形状コア11に帰還する。
また、永久磁石15の作るバイアス磁束φmは図中に破線で示すように、永久磁石15から、□形状コア13の溝13e→□形状コア13の下辺部13c→□形状コア13の側脚部13b→□形状コア13の上辺部13a→合わせ面16→凸形状コア11の上面部→凸形状コア11→凸形状コア11の下面部を通って永久磁石15に帰還する。
【0024】
実施の形態2に係る直流リアクトルは、実施の形態1に係る直流リアクトルのI形状コア1の巻線2が巻回されていない側面の部分の寸法を大きくし、凸形状コア11(逆T字形状コア)としたもので、実施の形態1における永久磁石5の磁石幅をLm1とし、実施の形態2における永久磁石15の磁石幅をLm11とした場合に、 Lm11 > Lm1 と磁石幅を大きく取ることができる。したがって、実施の形態1に係る直流リアクトルの永久磁石5の作るバイアス磁束φmと比べ、実施の形態2に係る直流リアクトルの永久磁石15の作るバイアス磁束φmが増大する。
すなわち、I形状コアを使用した実施の形態1と比較して、さらに大きな励磁電流に対しても、凸形状コア11内および□形状コア13内は磁気的飽和が生じることなく、使用状態に適合したインダクタンスが得られる。
【0025】
実施の形態3.
図4はこの発明の実施の形態3に係る直流リアクトルの正断面図である。図において、2、4、5は図1と同様であり、その説明を省略する。I形状コア21は□形状コア23との合わせ面26を凸形状とし、□形状コア23はI形状コア21との合わせ面26を凹形状とし、I形状コアと□形状コアとをすきまばめ、またはしまりばめにより結合する。
【0026】
実施の形態3では、直流リアクトルを構成する、I形状コアと□形状コアとの合わせ面を凹凸形状とし、I形状コアと□形状コアとをすきまばめ、またはしまりばめにより結合するようにしたので、
I形状コアの位置が固定され、I形状コアの両側に形成する2ヶ所の磁気的空隙溝の幅を容易に均等とすることができ、またリアクトルの特性が安定する。
【0027】
ところで、上記説明では、I形状コア21は□形状コア23との合わせ面26を凸形状とし、□形状コア23はI形状コア21との合わせ面26を凹形状とした例について述べたが、I形状コアの□形状コアとの合わせ面を凹形状とし、□形状コアのI形状コアとの合わせ面を凸形状としても同様の効果が得られる。
【0028】
また、上記説明では、第1のコアとしてI形状コアの上面部と、第2のコアの□形状の上辺部中央の下面部とを、凹凸形状とし、はめ合わせるようにした例について述べたが、第1のコアとして凸形状コアの上面部と、第2のコアの□形状の上辺部中央の下面部とを、凹凸形状とし、はめ合わせるようにしても同様の効果が得られる。
【0029】
実施の形態4.
図5はこの発明の実施の形態4に係る直流リアクトルの正面図で、直流リアクトルを構成するI形状コアと永久磁石とを□形状コアに固定した例である。図において、1〜3は図1と同様であり、その説明を省略する。また、側板7は非磁性体で作られ、I形状コア1の永久磁石と接する側および永久磁石とを覆う大きさとする。I形状コア1および永久磁石5とが□形状コア3の内部から飛び出すことがないよう、□形状コア3の下辺部に設けられた貫通穴(3f、図示せず)を利用し、2枚の側板7、7を使用して□形状コア3の両側から、ボルト、ナット等の締付具8により固定する。
【0030】
上述の実施の形態1〜3における直流リアクトルでは、□形状コアの内部空間に、巻線が巻回されたI形状コアまたは凸形状コアと永久磁石を配置するようにしたので、従来の2個のコアと永久磁石がそれぞれ上下に分離するのを防ぐための留め具が不要となり、リアクトルの小型化ならびに低コスト化が可能となる。
また、□形状コア3の下辺部3cは、□形状コア3の側脚部3bと比べ、磁路断面積が広いため、リアクトルの特性を損なわない程度の貫通穴3fを開けることができ、リアクトルの性能や大きさを変えることなく、永久磁石をも含め一体に固定することが容易となる。
【0031】
ところで、上記説明では、□形状コア3の下辺部3cに設けられた2箇所の貫通穴3fを利用し、2枚の側板7を使用して、直流リアクトルの両側から、I形コア1の永久磁石と接する側および永久磁石とを□形コア3に固定した例について述べたが、□形状コア3の下辺部3cに設ける貫通穴3fを1箇所とし、2枚の側板7の代りにU字形の板を使用し、直流リアクトルを挟み込んで固定する様にしてもよい。
【0032】
実施の形態5.
図6はこの発明の実施の形態5に係る直流リアクトルの正面図で、直流リアクトルを固定した例である。図において、1〜3、5は図1と同様であり、その説明を省略する。□形状コア3の下辺部に設けられた貫通穴(3f、図示せず)を利用してL形金具9等により、外部機器10等にボルト、ナット等の締付具8により固定する。
【0033】
上述の実施の形態1〜3における直流リアクトルでは、□形状コア3の下辺部3cは、□形状コア3の側脚部3bと比べ、磁路断面積が広いため、リアクトルの特性を損なわない程度の貫通穴3fを開けることができ、リアクトルの性能や大きさを変えることなく、リアクトルの外部機器10等への固定が容易にできる。
【0034】
ところで、上記説明では、図4において、□形状コア3の下辺部3cに設けられた貫通穴3fを利用して、直流リアクトルの両側から、I形状コア1の永久磁石と接する側および永久磁石とを□形状コア3に固定する例を説明し、図5において、□形状コア3の下辺部3cに設けられた貫通穴3fを利用してL形金具9等により、外部機器10等に固定する例を説明したが、I形状コア1の永久磁石と接する側および永久磁石の□形状コア3への固定と、直流リアクトルの外部機器10等への固定とを、同時に行っても良い。
【0035】
【発明の効果】
この発明は、以上説明したように構成されているので、以下に示すような効果を奏する。
【0036】
この発明の直流リアクトルは、巻線を巻回するI形状の第1のコアと、この第1のコアと組み合わせて閉磁路を形成する□形状の第2のコアと、巻線の作る磁束と対向するように着磁したバイアス用の永久磁石と、を有する直流リアクトルにおいて、第2のコアの□形状の下辺部中央に、第1のコアの前記巻線を巻回しない側面側および永久磁石の側面側との間に所定の磁気的空隙を形成するための凹部を設け、第1のコアの上面部を第2のコアの□形状の上辺部中央の下面部と接触させ、また第1のコアの下面部を永久磁石の上面部と接触させ、さらに永久磁石の下面部を第2のコアの□形状の下辺部中央の凹部に接触させることにより、巻線の作る磁束の経路を第1のコアの巻線を巻回しない側面側と第2のコアの□形状の下辺部中央に設けた凹部の間に形成した磁気的空隙を通る経路とし、永久磁石の作る磁束の経路を第2のコアの□形状の下辺部中央に設けた凹部の溝を経由し、磁気的空隙を通らない経路としたので、
直流リアクトルを構成するバイアス用の永久磁石が1個となり、直流リアクトルの製造における永久磁石の組立が容易となるとともに、コストを下げることができる。
【0037】
また、第1のコアの巻線を巻回しない側面部の寸法を、巻線を巻回する側面部の寸法よりも大きくしたので、永久磁石の磁石幅を大きく取ることができ、永久磁石の作るバイアス磁束を増大することができる。
【0038】
さらに、第2のコアの□形状の下辺中央部に設けた凹部の中央に、永久磁石を挿入するための溝を設けたので、直流リアクトルの製造において第2のコアの下辺部中央位置への永久磁石の設置が容易となる。
【0039】
さらにまた、第1のコアの上面部と第2のコアの□形状の上辺部中央の下面部とを、凹凸形状とし、はめ合わせるようにしたので、
第1のコアの位置が固定され、第1のコアの両側に形成する2ヶ所の磁気的空隙溝の幅を容易に均等とすることができ、またリアクトルの特性が安定する。
【0040】
また、第2のコアの□形状の下辺部にこのコアを固定するための貫通穴を設けたので、永久磁石をも含め一体に固定することが容易となるとともにリアクトルの外部機器等への固定が容易にできる。
【図面の簡単な説明】
【図1】この発明の実施の形態1に係る直流リアクトルの正断面図である。
【図2】この発明の実施の形態1に係る直流リアクトルの組立例を示す斜視図である。
【図3】この発明の実施の形態2に係る直流リアクトルの正断面図である。
【図4】この発明の実施の形態3に係る直流リアクトルの正断面図である。
【図5】この発明の実施の形態4に係る直流リアクトルの正面図で、直流リアクトルを構成するI形状コアと永久磁石とを□形状コアに固定した例である。
【図6】この発明の実施の形態5に係る直流リアクトルの正面図である。
【符号の説明】
1 I形状コア、 2 巻線、 3 □形状コア、 3a □形状コア3の上辺部、 3b □形状コア3の側脚部、 3c □形状コア3の下辺部、 3d 下辺部3c中央に設けた凹部、 3e 凹部3d中央に設けた溝、 3f 貫通穴、 4 磁気的空隙、 5 バイアス用の永久磁石、 6 I形状コア1と□形状コア3の上辺部3aとの合わせ面、 7 側板、 8 締付具、 9 L形金具、 10 外部機器、 11 凸形状コア、 12 巻線、 13 □形状コア、 13a □形状コア3の上辺部、 13b □形状コア13の側脚部、13c □形状コア13の下辺部、 13d 下辺部13c中央に設けた凹部、 13e 凹部13d中央に設けた溝、 13f 貫通穴、 14 磁気的空隙、 15 バイアス用の永久磁石、 16 凸形状コア11と□形状コア13の上辺部13aとの合わせ面、 21 I形状コア、 23 □形状コア、 26 I形状コア21と□形状コア23との合わせ面、 Lm1、Lm11 磁石幅、 φe 巻線2の作る磁束、 φm 永久磁石5の作るバイアス磁束。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a DC reactor having a magnetic bias and used for a switching power supply and an inverter to improve a current waveform of a power supply.
[0002]
[Prior art]
As a DC reactor that applies a magnetic bias using a permanent magnet, there is one disclosed in Patent Document 1 (Japanese Patent Publication No. 46-37128).
In Patent Literature 1, a coil is wound around a central leg of an E-shaped core, the height of the central leg is made lower than that of a side leg, and the side leg of the E-shaped core is bridged by an I-shaped core. A permanent magnet that applies a magnetic bias to the gap between the I-shaped cores is sandwiched.
[0003]
Patent Document 2 (Japanese Patent Application Laid-Open No. H8-316049) discloses a DC reactor in which a permanent magnet is not demagnetized and a magnetic flux is hardly saturated in a core. is there.
In Patent Literature 2, an E-shaped core structure is formed by combining an E-shaped core made of a soft magnetic material and an I-shaped core made of a soft magnetic material on a mating surface. The center leg is shorter than the side legs, creating a magnetic gap. On both sides of the magnetic gap of the center leg, two sides of two rectangular permanent magnets having a width for generating a predetermined bias magnetic flux are magnetized in opposite polarities so that the sides contacting each other have different polarities. And the same polarity is arranged so that the same polarity faces each other with the center leg interposed therebetween.
[0004]
Further, the E-shaped core is changed to a C-shaped core, and the I-shaped core is changed to a T-shaped core to form a CT-shaped core structure. A coil is wound around the leg of the T-shaped core. A magnetic gap is formed between the legs of the T-shaped core and the center of the C-shaped core. On both sides of the magnetic air gap, a pair of permanent magnets that generate a bias magnetic flux are provided so as to have the same polarity. This configuration facilitates winding.
[0005]
[Problems to be solved by the invention]
In Patent Document 1, since a magnet is inserted into the gap, it is necessary to use a magnet material that is not demagnetized by the magnetic flux generated by the coil. The inductance of the DC reactor increases as the gap length decreases, but the gap length increases. When the size is reduced, the magnet is inevitably thinned, which makes it difficult to process and demagnetizes easily. Therefore, if there is a possibility that a large amount of current may flow, it is indispensable to increase the thickness of the magnet. For this reason, the length of the air gap becomes longer, and the cross-sectional area of the core needs to be increased. As a result, the reactor becomes larger. There was a problem.
[0006]
Further, in Patent Document 2, since the magnetic flux generated by the winding does not flow through the permanent magnet, a DC reactor can be obtained in which the permanent magnet does not demagnetize and the magnetic flux hardly saturates in the core. This is a configuration using a pair of permanent magnets, and there is a problem that it is difficult to assemble two permanent magnets in manufacturing a DC reactor.
[0007]
As described above, the conventional DC reactor has a structure in which an E-type core and an I-type core are combined to form an EI-type core structure, or a C-type core and a T-type core are combined to form a CT-type core structure. For this reason, in order to fix them together including the permanent magnet, a large fastener is required, and there is a problem that the shape of the reactor becomes large.
[0008]
The present invention has been made to solve the above-described problems, and a first object of the present invention is to obtain a DC reactor having a structure in which a permanent magnet constituting the DC reactor can be easily assembled in the production of the DC reactor. .
[0009]
A second object is to obtain a DC reactor having a structure that can be integrally fixed including a permanent magnet without changing the performance and size of the reactor and that can be easily fixed to an external device or the like. is there.
[0010]
[Means for Solving the Problems]
A DC reactor according to the present invention includes an I-shaped first core for winding a winding, a □ -shaped second core that forms a closed magnetic circuit in combination with the first core, and a magnetic flux generated by the winding. And a permanent magnet for bias magnetized so as to face each other,
At the center of the lower side of the square shape of the second core, a concave portion for forming a predetermined magnetic gap is provided between the side surface of the first core where the winding is not wound and the side surface of the permanent magnet. Contacting the upper surface of the first core with the lower surface of the center of the upper side of the second core, contacting the lower surface of the first core with the upper surface of the permanent magnet, By contacting the part with the central concave portion of the lower side of the second core, the path of the magnetic flux generated by the winding is changed to the side surface of the first core where the winding is not wound and the square of the second core. A path through a magnetic gap formed between the concave portions provided in the center of the lower side, and a magnetic flux path created by the permanent magnet via a groove of the concave portion provided in the center of the lower side of the □ shape of the second core; The path does not pass through the magnetic gap.
[0011]
Further, the size of the side surface of the first core where the winding is not wound is larger than the size of the side surface where the winding is wound.
[0012]
Further, a groove for inserting a permanent magnet is provided at the center of a concave portion provided at the center of the lower side of the square shape of the second core.
[0013]
Furthermore, the upper surface of the first core and the lower surface at the center of the □ -shaped upper side of the second core have an uneven shape and are fitted together.
[0014]
Further, a through hole for fixing the core is provided in the lower side of the square shape of the second core.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiment 1 FIG.
FIG. 1 is a front sectional view of the DC reactor according to Embodiment 1 of the present invention. In the figure, an I-shaped core 1 as a first core is formed by laminating a plurality of electromagnetic steel sheets punched into a predetermined shape, and a winding 2 is wound. The □ -shaped core 3 as a second core formed by laminating a plurality of electromagnetic steel sheets punched into a predetermined shape is composed of an upper side 3a, both side legs 3b, 3b, and a lower side 3c, When the I-shaped core 1 on which the winding 2 is wound is inserted into the center of the lower side portion 3c, a predetermined magnetic gap 4 is maintained between the I-shaped core 1 and the side surface on which the winding 2 is not wound. Recess 3d is provided as described above. A groove 3e for fixing the biasing permanent magnet 5 having the magnet width Lm1 is provided at the center of the recess 3d. In the lower side 3c, through holes 3f, 3f are provided at positions not obstructing the path of the magnetic flux φe generated by the winding 2 and the bias magnetic flux φm generated by the permanent magnet 5.
[0016]
The upper surface of the I-shaped core 1 is in contact with the mating surface 6 of the upper side 3a of the □ -shaped core 3, and the permanent magnet 5 is directly in contact with the lower surface of the I-shaped core 1 and the groove 3e of the □ -shaped core 3, respectively. Since they are provided in contact with each other, a fastener for preventing the I-shaped core 1, the □ -shaped core 3, and the permanent magnet 5 from being vertically separated from each other is unnecessary.
[0017]
The flow of the magnetic flux of the DC reactor according to the first embodiment will be described.
The magnetic flux φe generated by the winding 2 passes through the I-shaped core 1 as shown by a solid line in the figure, and the upper surface of the I-shaped core 1 → the mating surface 6 → the upper side 3a of the □ -shaped core 3 → the □ -shaped core 3 Side leg 3b → bottom side 3c of □ -shaped core 3 (recess 3d of □ -shaped core 3) → returns to I-shaped core 1 through magnetic gap 4.
Further, the bias magnetic flux φm generated by the permanent magnet 5 is, as shown by a broken line in the figure, from the permanent magnet 5, the groove 3 e of the □ -shaped core 3 → the lower side 3 c of the □ -shaped core 3 → the side leg of the □ -shaped core 3. 3b → the upper side 3a of the □ -shaped core 3 → the mating surface 6 → the upper surface of the I-shaped core 1 → the I-shaped core 1 → the path to return to the permanent magnet 5 through the lower surface of the I-shaped core 1; Do not pass 4.
[0018]
Further, as shown in the figure, in the I-shaped core 1 and the □ -shaped core 3, the magnetic flux φe generated by the winding 2 and the bias magnetic flux φm generated by the permanent magnet 5 flow in opposition, so that the I-shaped core 1 and the □ Since the magnetic saturation of the shape core 3 is relaxed and the magnetic flux φe generated by the winding 2 does not pass through the permanent magnet 5, the permanent magnet 5 is not demagnetized.
[0019]
FIG. 2 is a perspective view showing an example of assembling the DC reactor according to Embodiment 1 of the present invention. In the figure, 1 to 3, 3a, 3b, 3c, 3d, 3e, 3f, and 5 are the same as those in FIG.
After winding the winding 2 around an I-shaped core 1 formed by laminating a plurality of electromagnetic steel sheets punched into a predetermined shape, the electromagnetic steel sheet punched into a predetermined shape is formed together with a permanent magnet 5 for bias. By inserting into the □ -shaped core 3 formed by laminating a plurality of pieces, the I-shaped core 1 on which the winding 2 is wound and the biasing permanent magnet 5 are connected to the upper side 3 a and the lower side of the □ -shaped core 3. 3c.
[0020]
Since the DC reactor according to the first embodiment has a single permanent magnet for bias, assembly of the permanent magnet in the production of the DC reactor is easy, and one permanent magnet for bias is used. Thereby, costs can be reduced.
Further, since a groove 3e for inserting the permanent magnet 5 is provided at the center of the concave portion 3d at the center of the lower side 3c of the square core 3, the permanent magnet 5 is used for manufacturing the DC reactor. Installation work in the center of 3c becomes easy.
[0021]
Embodiment 2 FIG.
FIG. 3 is a front sectional view of the DC reactor according to Embodiment 2 of the present invention. In the figure, a convex core 11 which is a first core in which the size of a side surface portion on which a winding is not wound is larger than the size of a side surface portion on which a winding is wound is an electromagnetic steel sheet punched into a predetermined shape. Are laminated, and the winding 12 is wound. The □ -shaped core 13 formed by laminating a plurality of electromagnetic steel sheets punched into a predetermined shape is composed of an upper side portion 13a, both side legs 13b, 13b, and a lower side portion 13c. When the convex core 11 around which the winding 12 is wound is inserted, a predetermined magnetic gap 14 is maintained between the convex core 11 and the lower side surface of the convex shape where the winding 12 is not wound. A recess 13d is provided. A groove 13e for fixing the biasing permanent magnet 15 having the magnet width Lm11 is provided at the center of the recess 13d. Further, through holes 13f, 13f are provided in the lower side portion 13c at positions not obstructing the path of the magnetic flux φe generated by the winding 12 and the bias magnetic flux φm generated by the permanent magnet 15.
[0022]
The upper surface of the convex core 11 contacts the mating surface 16 of the upper side 13a of the square core 13, and the permanent magnet 15 directly contacts the lower surface of the convex core 11 and the groove 13e of the square core 13, respectively. Since they are provided in contact with each other, a fastener for preventing the convex core 11, the square core 13, and the permanent magnet 15 from being vertically separated from each other is unnecessary.
[0023]
The flow of the magnetic flux of the DC reactor according to the second embodiment will be described.
The magnetic flux φe generated by the winding 12 passes through the convex core 11 as shown by a solid line in the figure, and the upper surface portion of the convex core 11 → the mating surface 16 → the upper side portion 13a of the □ -shaped core 13 → the □ -shaped core 13 Side leg 13b → bottom side 13c of □ -shaped core 13 (recess 13d of □ -shaped core 13) → returns to convex core 11 through magnetic gap 14.
Further, the bias magnetic flux φm generated by the permanent magnet 15 is, as shown by the broken line in the figure, from the permanent magnet 15 to the groove 13e of the square core 13 → the lower side 13c of the square core 13 → the side leg of the square core 13. 13b → the upper side 13a of the □ -shaped core 13 → the mating surface 16 → the upper surface of the convex core 11 → the convex core 11 → the return to the permanent magnet 15 through the lower surface of the convex core 11.
[0024]
The DC reactor according to the second embodiment increases the dimension of the side of the DC reactor according to the first embodiment where the winding 2 of the I-shaped core 1 is not wound, and increases the convex core 11 (inverted T-shape). When the magnet width of the permanent magnet 5 in the first embodiment is Lm1 and the magnet width of the permanent magnet 15 in the second embodiment is Lm11, the magnet width is large as Lm11> Lm1. be able to. Therefore, the bias magnetic flux φm generated by the permanent magnet 15 of the DC reactor according to the second embodiment is larger than the bias magnetic flux φm generated by the permanent magnet 5 of the DC reactor according to the first embodiment.
That is, as compared with the first embodiment using the I-shaped core, even in the case of an even larger exciting current, the inside of the convex core 11 and the inside of the □ -shaped core 13 do not cause magnetic saturation and conform to the use state. The obtained inductance is obtained.
[0025]
Embodiment 3 FIG.
FIG. 4 is a front sectional view of a DC reactor according to Embodiment 3 of the present invention. In the figure, reference numerals 2, 4, and 5 are the same as those in FIG. 1, and a description thereof will be omitted. The I-shaped core 21 has a convex shape at the mating surface 26 with the □ -shaped core 23, the □ -shaped core 23 has a concave shape at the mating surface 26 with the I-shaped core 21, and a loose fit between the I-shaped core and the □ -shaped core. Or by an interference fit.
[0026]
In the third embodiment, the mating surface of the I-shaped core and the □ -shaped core constituting the DC reactor is made to have an uneven shape, and the I-shaped core and the □ -shaped core are joined together by loose fit or tight fit. Because
The position of the I-shaped core is fixed, the width of two magnetic gap grooves formed on both sides of the I-shaped core can be easily made uniform, and the characteristics of the reactor are stabilized.
[0027]
By the way, in the above description, the example is described in which the I-shaped core 21 has a mating surface 26 with the □ -shaped core 23 and the □ -shaped core 23 has a mating surface 26 with the I-shaped core 21. Similar effects can be obtained by making the mating surface of the I-shaped core with the □ -shaped core concave, and making the mating surface of the □ -shaped core with the I-shaped core convex.
[0028]
In the above description, an example was described in which the upper surface of the I-shaped core as the first core and the lower surface of the center of the upper side of the □ -shaped second core were formed into an uneven shape and fitted. The same effect can be obtained by fitting the upper surface of the convex core as the first core and the lower surface of the center of the □ -shaped upper side of the second core into an uneven shape and fitting them.
[0029]
Embodiment 4 FIG.
FIG. 5 is a front view of a DC reactor according to Embodiment 4 of the present invention, in which an I-shaped core and a permanent magnet constituting the DC reactor are fixed to a □ -shaped core. In the figure, 1 to 3 are the same as in FIG. 1 and the description thereof is omitted. The side plate 7 is made of a non-magnetic material and has a size that covers the side of the I-shaped core 1 that contacts the permanent magnet and the permanent magnet. In order to prevent the I-shaped core 1 and the permanent magnet 5 from protruding from the inside of the □ -shaped core 3, two through-holes (3f, not shown) provided on the lower side of the □ -shaped core 3 are used. Using the side plates 7, 7, fix from both sides of the □ -shaped core 3 with fasteners 8 such as bolts and nuts.
[0030]
In the DC reactors according to the first to third embodiments, the I-shaped core or the convex-shaped core having the winding wound thereon and the permanent magnet are arranged in the internal space of the □ -shaped core. A fastener for preventing the core and the permanent magnet from being vertically separated from each other is not required, and the size and cost of the reactor can be reduced.
Further, since the lower side 3c of the □ -shaped core 3 has a larger magnetic path cross-sectional area than the side leg 3b of the □ -shaped core 3, a through hole 3f that does not impair the characteristics of the reactor can be formed. It is easy to integrally fix them including the permanent magnets without changing the performance and size.
[0031]
By the way, in the above description, the permanent magnets of the I-shaped core 1 are used from both sides of the DC reactor by using two side plates 7 using two through holes 3f provided in the lower side 3c of the □ -shaped core 3. Although the example in which the side in contact with the magnet and the permanent magnet are fixed to the □ -shaped core 3 has been described, the through hole 3 f provided in the lower side 3 c of the □ -shaped core 3 is made one, and a U-shape is used instead of the two side plates 7. The DC reactor may be sandwiched and fixed by using the above plate.
[0032]
Embodiment 5 FIG.
FIG. 6 is a front view of a DC reactor according to Embodiment 5 of the present invention, in which the DC reactor is fixed. In the figure, 1 to 3 and 5 are the same as those in FIG. Using a through hole (3f, not shown) provided in the lower side of the shaped core 3, the core 3 is fixed to an external device 10 or the like by a fastener 8 such as a bolt or a nut using an L-shaped bracket 9 or the like.
[0033]
In the DC reactor according to the first to third embodiments, the lower side 3c of the □ -shaped core 3 has a wider magnetic path cross-sectional area than the side leg 3b of the □ -shaped core 3, so that the characteristics of the reactor are not impaired. 3f can be opened, and the reactor can be easily fixed to the external device 10 or the like without changing the performance and size of the reactor.
[0034]
By the way, in the above description, in FIG. 4, the side in contact with the permanent magnet of the I-shaped core 1 and the permanent magnet are used from both sides of the DC reactor using the through holes 3 f provided in the lower side 3 c of the □ -shaped core 3. 5 is fixed to the □ -shaped core 3 and, in FIG. 5, the □ -shaped core 3 is fixed to the external device 10 or the like by the L-shaped fitting 9 or the like using the through hole 3 f provided in the lower side portion 3 c. Although the example has been described, the fixing of the side of the I-shaped core 1 in contact with the permanent magnet and the permanent magnet to the □ -shaped core 3 and the fixing of the DC reactor to the external device 10 or the like may be performed simultaneously.
[0035]
【The invention's effect】
Since the present invention is configured as described above, it has the following effects.
[0036]
A DC reactor according to the present invention includes an I-shaped first core for winding a winding, a □ -shaped second core that forms a closed magnetic circuit in combination with the first core, and a magnetic flux generated by the winding. And a permanent magnet for bias, which is magnetized so as to face each other, in the center of the □ -shaped lower side of the second core, the side surface and the permanent magnet on which the winding of the first core is not wound. A concave portion for forming a predetermined magnetic gap between the first core and the side surface of the second core, the upper surface of the first core is brought into contact with the lower surface of the center of the upper side of the second core; The lower surface of the core is brought into contact with the upper surface of the permanent magnet, and the lower surface of the permanent magnet is brought into contact with the central concave portion of the lower side of the second core, so that the path of the magnetic flux generated by the windings becomes At the side of the first core where the winding of the core is not wound and at the center of the □ -shaped lower side of the second core The path of the magnetic flux created by the permanent magnet passes through the groove of the recess provided at the center of the lower side of the square shape of the second core and does not pass through the magnetic gap. Because it was a route,
Since the number of permanent magnets for bias constituting the DC reactor is one, assembling of the permanent magnets in the production of the DC reactor becomes easy, and the cost can be reduced.
[0037]
In addition, since the size of the side portion of the first core where the winding is not wound is made larger than the size of the side portion where the winding is wound, the magnet width of the permanent magnet can be increased, and The generated bias magnetic flux can be increased.
[0038]
Furthermore, since a groove for inserting a permanent magnet is provided at the center of the concave portion provided at the center of the lower side of the □ -shape of the second core, the center of the lower side of the second core is located at the center of the lower side of the second core in manufacturing a DC reactor. Installation of the permanent magnet is facilitated.
[0039]
Furthermore, the upper surface of the first core and the lower surface of the center of the upper side of the □ -shape of the second core were formed into a concave-convex shape and fitted together.
The position of the first core is fixed, the width of the two magnetic gap grooves formed on both sides of the first core can be easily made uniform, and the characteristics of the reactor are stabilized.
[0040]
In addition, since a through hole for fixing this core is provided in the lower side of the □ -shape of the second core, it is easy to integrally fix it including the permanent magnet, and the reactor is fixed to an external device or the like. Can be easily done.
[Brief description of the drawings]
FIG. 1 is a front sectional view of a DC reactor according to Embodiment 1 of the present invention.
FIG. 2 is a perspective view showing an example of assembling the DC reactor according to Embodiment 1 of the present invention.
FIG. 3 is a front sectional view of a DC reactor according to Embodiment 2 of the present invention.
FIG. 4 is a front sectional view of a DC reactor according to Embodiment 3 of the present invention.
FIG. 5 is a front view of a DC reactor according to Embodiment 4 of the present invention, showing an example in which an I-shaped core and a permanent magnet constituting the DC reactor are fixed to a □ -shaped core.
FIG. 6 is a front view of a DC reactor according to Embodiment 5 of the present invention.
[Explanation of symbols]
1 I-shaped core, 2 winding, 3 □ -shaped core, 3a □ -shaped core 3 upper side, 3b □ -shaped core 3 side leg, 3c □ shaped core 3 lower side, 3d provided at center of lower side 3c Concave portion 3e groove provided in the center of concave portion 3d 3f through hole 4 magnetic gap 5 permanent magnet for bias 6 mating surface of I-shaped core 1 and upper side 3a of □ -shaped core 3 7 side plate 8 Fastener, 9 L-shaped bracket, 10 external equipment, 11 convex core, 12 winding, 13 □ shaped core, 13 a □ Upper side of 3 shaped core 3, 13 b □ Side leg of 13 shaped core 13, 13 c □ shaped core 13 lower side portion, 13d concave portion provided in the center of lower side portion 13c, 13e groove provided in the center of concave portion 13d, 13f through hole, 14 magnetic gap, 15 permanent magnet for bias, 16 convex core 11 and □ -shaped core 13 With the upper side 13a Surface, 21 I-shaped core, 23 □ -shaped core, 26 Mating surface of I-shaped core 21 and □ -shaped core 23, Lm1, Lm11 Magnet width, φe Magnetic flux generated by winding 2, φm Bias magnetic flux generated by permanent magnet 5 .

Claims (5)

巻線を巻回するI形状の第1のコアと、
この第1のコアと組み合わせて閉磁路を形成する□形状の第2のコアと、
前記巻線の作る磁束と対向するように着磁したバイアス用の永久磁石と、
を有する直流リアクトルにおいて、
前記第2のコアの□形状の下辺部中央に、前記第1のコアの前記巻線を巻回しない側面側および前記永久磁石の側面側との間に所定の磁気的空隙を形成するための凹部を設け、
前記第1のコアの上面部を前記第2のコアの□形状の上辺部中央の下面部と接触させ、また前記第1のコアの下面部を前記永久磁石の上面部と接触させ、さらに前記永久磁石の下面部を前記第2のコアの□形状の下辺部中央の凹部に接触させることにより、
前記巻線の作る磁束の経路を前記第1のコアの前記巻線を巻回しない側面側と前記第2のコアの□形状の下辺部中央に設けた凹部の間に形成した磁気的空隙を通る経路とし、前記永久磁石の作る磁束の経路を前記第2のコアの□形状の下辺部中央に設けた凹部の溝を経由し、前記磁気的空隙を通らない経路としたことを特徴とする直流リアクトル。
An I-shaped first core for winding a winding;
A □ -shaped second core that forms a closed magnetic circuit in combination with the first core;
A permanent magnet for bias, which is magnetized so as to face the magnetic flux generated by the winding,
In a DC reactor having
In order to form a predetermined magnetic gap between the side of the first core where the winding is not wound and the side of the permanent magnet, in the center of the lower side of the square shape of the second core. Provide a recess,
Bringing the upper surface of the first core into contact with the lower surface at the center of the □ -shaped upper side of the second core; and bringing the lower surface of the first core into contact with the upper surface of the permanent magnet; By bringing the lower surface of the permanent magnet into contact with the central concave portion of the lower side of the □ -shape of the second core,
A magnetic air gap formed between a side surface of the first core, on which the winding is not wound, and a concave portion provided at the center of the lower side of the square of the second core has a magnetic flux path formed by the winding. The path of the magnetic flux created by the permanent magnet may be a path that does not pass through the magnetic gap through a groove of a concave portion provided at the center of the lower side of the □ shape of the second core. DC reactor.
前記第1のコアの前記巻線を巻回しない側面部の寸法を、前記巻線を巻回する側面部の寸法よりも大きくしたことを特徴とする請求項1記載の直流リアクトル。2. The DC reactor according to claim 1, wherein a size of a side surface of the first core where the winding is not wound is larger than a size of a side surface of the first core around which the winding is wound. 3. 前記第2のコアの□形状の下辺部中央に設けた凹部の中央に、前記永久磁石を挿入するための溝を設けたことを特徴とする請求項1または請求項2記載の直流リアクトル。3. The DC reactor according to claim 1, wherein a groove for inserting the permanent magnet is provided at a center of a concave portion provided at a center of a lower side of the square shape of the second core. 前記第1のコアの上面部と前記第2のコアの□形状の上辺部中央の下面部とを、凹凸形状とし、はめ合わせるようにしたことを特徴とする請求項1ないし請求項3のいずれかに記載の直流リアクトル。4. The method according to claim 1, wherein an upper surface of the first core and a lower surface of a center of an upper side of the second core have a concave-convex shape and are fitted to each other. DC reactor described in Crab. 前記第2のコアの□形状の下辺部にこのコアを固定するための貫通穴を設けたことを特徴とする請求項1ないし請求項4のいずれかに記載の直流リアクトル。The direct current reactor according to any one of claims 1 to 4, wherein a through hole for fixing the core is provided in a lower side of the square shape of the second core.
JP2003057349A 2003-03-04 2003-03-04 Direct current reactor Pending JP2004266217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003057349A JP2004266217A (en) 2003-03-04 2003-03-04 Direct current reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003057349A JP2004266217A (en) 2003-03-04 2003-03-04 Direct current reactor

Publications (1)

Publication Number Publication Date
JP2004266217A true JP2004266217A (en) 2004-09-24

Family

ID=33120801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003057349A Pending JP2004266217A (en) 2003-03-04 2003-03-04 Direct current reactor

Country Status (1)

Country Link
JP (1) JP2004266217A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102543377A (en) * 2012-02-22 2012-07-04 临沂中瑞电子有限公司 High-frequency choking coil magnetic core for LEDs
US8700941B2 (en) 2009-05-15 2014-04-15 Panasonic Corporation Selecting a modulation technique to conserve power when power supplied to an entire power line communication system falls below a threshold power
US9613741B2 (en) 2014-04-07 2017-04-04 Samsung Electronics Co., Ltd. Electromagnetic actuator
WO2021258352A1 (en) * 2020-06-24 2021-12-30 华为技术有限公司 Electrical component, circuit board, and switching power supply

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8700941B2 (en) 2009-05-15 2014-04-15 Panasonic Corporation Selecting a modulation technique to conserve power when power supplied to an entire power line communication system falls below a threshold power
CN102543377A (en) * 2012-02-22 2012-07-04 临沂中瑞电子有限公司 High-frequency choking coil magnetic core for LEDs
US9613741B2 (en) 2014-04-07 2017-04-04 Samsung Electronics Co., Ltd. Electromagnetic actuator
WO2021258352A1 (en) * 2020-06-24 2021-12-30 华为技术有限公司 Electrical component, circuit board, and switching power supply

Similar Documents

Publication Publication Date Title
JP3230647B2 (en) DC reactor
US7646281B2 (en) Snap-together choke and transformer assembly for an electric arc welder
JP3282183B2 (en) choke coil
JP2007123928A (en) Magnetic assembly such as transformer
JP2004266217A (en) Direct current reactor
JP4001505B2 (en) DC reactor
JPH1074644A (en) Electromagnetic device
JPH0325370Y2 (en)
JP4106993B2 (en) Reactor
JP5261080B2 (en) Linear motor
JP3314908B2 (en) DC reactor
JP3765326B2 (en) DC reactor
JP2007281204A (en) Dc reactor
JP2008171964A (en) Ignition coil for internal combustion engine
JP2000316271A (en) Linear motor
JP2018113404A (en) Transformer
JP3784367B2 (en) Iron core-coil assembly of ignition coil for internal combustion engine
JP2013125843A (en) Dc reactor
JP2004349617A (en) Dust core for reactor
JP2000294436A (en) Ignition coil for internal combustion engine and manufacture thereof
JPH07230926A (en) Iron core-type reactor with magnetic gap
JP2003347127A (en) Shell type insulating transformer
JP2004363357A (en) Ignition coil for internal combustion engine
JP2000124047A (en) Choke coil
JPH07120586B2 (en) Iron core with gap for transformer

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Effective date: 20040712

Free format text: JAPANESE INTERMEDIATE CODE: A7421