JP3765326B2 - DC reactor - Google Patents

DC reactor Download PDF

Info

Publication number
JP3765326B2
JP3765326B2 JP03869896A JP3869896A JP3765326B2 JP 3765326 B2 JP3765326 B2 JP 3765326B2 JP 03869896 A JP03869896 A JP 03869896A JP 3869896 A JP3869896 A JP 3869896A JP 3765326 B2 JP3765326 B2 JP 3765326B2
Authority
JP
Japan
Prior art keywords
core
magnetic
magnetic core
leg
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03869896A
Other languages
Japanese (ja)
Other versions
JPH09213546A (en
Inventor
竜一郎 富永
憲昭 岩渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP03869896A priority Critical patent/JP3765326B2/en
Publication of JPH09213546A publication Critical patent/JPH09213546A/en
Application granted granted Critical
Publication of JP3765326B2 publication Critical patent/JP3765326B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Coils Or Transformers For Communication (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電源の電流波形を改善するためスイッチング電源やインバータに用いる、バイアス磁石を有する直流リアクトルに関する。
【0002】
【従来の技術】
従来、平滑電流の小さい領域では大きなインダクタンスを、平滑電流の大きい領域では小さいインダクタンスを得るためのバイアス磁石を有する直流リアクトルとして、中央磁脚に巻回した巻線と、中央磁脚と側磁脚を有する第1の磁心と、第1の磁心のおのおのの磁脚に直接接する第1の磁性体と、第1の磁性体に対向する第2の磁心と、第1の磁性体と第2の磁心間にバイアス用の永久磁石を間挿したものがある(例えば、特公昭61−19098号公報)。
【0003】
【発明が解決しようとする課題】
ところが、従来の技術では、巻線の作る磁束が第1の磁性体を飽和状態にし、過大な磁束をバイアス用の永久磁石を経由して、第2の磁心に流すようにしてあるので、瞬時停電や装置の故障などで突発的な大電流が流れた場合、永久磁石が減磁したり、永久磁石に希土類磁石等の高導電率のものを用いた場合、永久磁石内部に鉄損が発生するという問題がある。
【0004】
【課題を解決するための手段】
上記の問題を解決するため、本発明は、巻線の作る磁束が流れる磁路と永久磁石の作る磁束が流れる磁路を永久磁石の手前で分岐させ、巻線の作る磁束φeが永久磁石4内を流れないようにし、バイアス用の永久磁石が減磁しないようにしている。
【0005】
【発明の実施の形態】
脚に巻線を巻回した第1の磁心と、この第1の磁心と組み合わせて閉鎖磁気回路を構成する第2の磁心と、前記巻線の作る磁束と対向するように着磁したバイアス用の永久磁石を備え、この永久磁石を前記第1の磁心と第2の磁心間に間挿した直流リアクトルにおいて、前記第2の磁心が、前記第1の磁心の脚を間挿する開口部と、この開口部の両側に、前記巻線に過大な電流が流れても飽和しない断面積を有するリップ部を備え、前記開口部の側面と前記第1の磁心の脚の側面の間に磁気的空隙を形成し、前記巻線を第2の磁心の内部空間にもうけ、前記永久磁石を前記第2の磁心のリップ部の外側に設け、前記巻線の作る磁束と前記永久磁石の作る磁束が、前記リップ部で分岐するようする。
前記第1および第2の磁心を所定の形状に打ち抜いた電磁鋼板を複数枚積層して形成し、前記第1の磁心をT形磁心とし、前記第2の磁心をC形磁心としたり、
前記第1および第2の磁心を焼結磁心とし、前記第1の磁心を円板部の中央に前記脚となる円柱を直立させて設けたT形磁心とし、前記第2の磁心をディスクコアとポットコアとで構成したり、
前記ディスクコアの中心に前記開口部となる穴を設け、前記ポットコアを前記ディスクコアで覆蓋し、前記永久磁石を前記T形磁心と前記ディスクコア間に間挿したり、
前記ポットコアの底部に前記開口部となる穴を設け、前記T形磁心の円板部を前記ポットコアの開口部に当接させて、前記脚が前記ポットコアの底部から突設するように覆蓋し、前記永久磁石の上面と前記脚の頂面に前記ディスクコアを当接させ、前記永久磁石を前記ポットコアの外底と前記ディスクコア間に間挿したりする。
また、前記脚の途中と前記開口部にテーパ部を設け、前記脚を上下させることにより、おのおののテーパ部間の空隙を変化させて、磁気的空隙の大きさを調整する。
【0006】
【実施例】
以下に、図面に基づき実施例を説明する。
図1は、本発明の第1の実施例を示す斜視図である。
所定の形状に打ち抜いた電磁鋼板を複数枚積層したT形磁心1の脚11には、巻線2を巻回してある。脚11は高さH1で幅Btとしてある。
T形磁心1の頭部の下面には、厚さH2の矩形の一対の永久磁石4を、脚11の側面と比較的大きな間隙を保ち、上下方向の極性を同一にし、左右対称に設けてある。
所定の形状に打ち抜いた電磁鋼板を複数枚積層したC形磁心3の上部には、脚11を挿入したとき、所定の磁気的空隙13を保ように幅Buの溝3Gを設けてあり、巻線2の作る磁束が飽和しない断面積を確保できる厚さH4でリップ部3Lを形成してある。
ここで、C形磁心3の内底と上面との高さをH3としたとき、H1=H2+H3となるようにしてある。
C形磁心3の側面の開口部から内部空間に向けて、巻線2を巻回したT形磁心1を挿入し、脚11と溝3Gの両側に、所定のインダクタンスを得るのに必要な磁気的空隙13と対向面積を保つようにして、C形磁心3の内部空間にT形磁心1を固定する。
【0007】
図2は、本発明の第2の実施例を示す側断面図である。
この例は、第1の実施例の各磁心をフェライト等を焼結し、T形磁心を円形状にし、C形磁心をポットコアとディスクコアに分割してある。
円板部10の中央に直立させて直径Dt、高さH1の円柱状の脚11を設けてT形磁心1を形成する。
円板部10の下面には、リング状の永久磁石4Lを設けてある。永久磁石4Lは、巻線2の作る磁束の流れと対向する方向に磁束を生じるように着磁した、中心に脚11の直径Dtより遙に大きい直径の穴3Hを設けた厚さH2にしてある。
永久磁石4Lの下面には、ディスクコア5を設けてある。ディスクコア5は、脚11と間に所定の磁気的空隙13を保つように直径Duの穴3Hを設け、巻線2Lの作る磁束が飽和しない断面積を確保できる厚さH4としてある。
ディスクコア5の下面には、深さH5のポットコア31を設けてある。
ポットコア31の内底には、リング状に巻回した巻線2Lを、中心に脚11を挿通させて設けてある。
【0008】
図3は、本発明の第3の実施例を示す側断面図である。
この例は、第2の実施例の、ポットコア、ディスクコアと永久磁石の配置を変えたものである。
T形磁心1の円板部10を、底部の中心に直径Duの穴3Hを設けたポットコア31の開口面に直接接してある。
ここで、脚11と穴3H間は、所定のインダクタンスを得るのに必要な磁気的空隙13と対向面積を保つようにしてある。
ポットコア31の内底には、巻線2Lを収納してある。ポットコア31の外底には、永久磁石4Lを設けてある。
永久磁石4Lの下面と脚11の頂部に直接接しさせてディスクコア5を設けてある。
このようにすることにより、ディスクコア5内に巻線の作る脈動する磁束が流れなくなり、ディスクコア5は通常の軟鉄板で構成できるので、第2の実施例よりも安価になる。
【0009】
図4は、本発明の第4の実施例を示す断面図で,(a)側断面図、(b)第1の実施例の場合の(a)のA−A矢視図である。
この例は、第1及び第2の実施例の磁気的空隙を変化させ、インダクタンスを調整可能にしたものである。
高さH6の脚11は、根元の幅をBr、途中から頂部までの幅はBtとし、途中にリップ部1Lの厚さより薄いテーパ部11Tを設けてある。
C形磁心3のリップ部1L(もしくはディスクコア5)には、脚11の途中に設けたテーパ部11Tと対応する位置にテーパ部31Tを設けてある。
C形磁心3の厚さH7の底部(ポットコア31の底部)には、脚11の頂部が僅かな隙間を持って嵌め合う、溝3Ggもしくは穴3Ghを設けてある。
ここで、脚11の高さH6は、溝3Ggもしくは穴3Ghと脚11の対向面積がこの部分で磁気飽和しない範囲で、H6<H1+H7としてある。
なお、第1の実施例においては、溝3GgによりC形磁心3が左右に分離するので、図4(b)に示すように、C形磁心3の積層方向の両側面に側板7を設け、溶接等でC形磁心3と一体化し、C形磁心3の底部に機械加工により溝3Ggを開削する。
組立は、C形磁心3(もしくはポットコア31)の内部空間に巻線2をセットし、C形磁心3(もしくはディスクコア5)の上面にアモルファス等の高透磁率のシム6と永久磁石4をセットし、巻線2の心部の空間、溝3Ggもしくは穴3Ghに脚11を挿通する。
シム6の厚さを変えることにより、脚11を上下させてテーパ部の磁気的空隙を変化させ、インダクタンスを調整する。
【0010】
図5は、本発明の第5の実施例を示す断面図である。
この例は、第3の実施例の磁気的空隙を変化させ、インダクタンスを調整可能にしたものである。
脚11の途中にテーパ部11Tを設け、ポットコア31のリップ部31L対応する位置にテーパ部31Tを設けてある。
ポットコア31とT形磁心1の合わせ面にシム6を挟み込み、脚11を上下させて、対向するテーパ部11Tと31Tの空隙の大きさを調整することにより、インダクタンスを調整する。
なお、脚11と溝もしくは穴3Gb間に磁性流体を介在させてもよい。
第4および第5の実施例においては、図6に示すように、対向するテーパ部の空隙が大きいときはb、小さいときはcのように、インダクタンスを変化させることができる。
【0011】
【発明の効果】
以上述べたように、本発明によれば下記の効果がある。
(1)巻線の作る磁束は永久磁石内を流れないので、永久磁石が減磁することがなく、永久磁石内で鉄損を発生することもない。
(2)巻線の作る磁束と永久磁石の作る磁束は磁心内で対向して流れるので、励磁電流が所定値に達するまでは磁心は飽和せず、小型化できる。
(3)第4および第5の実施例においては、インダクタンスを調整できるので、使用状態に適合したインダクタンスを得ることができる。
【図面の簡単な説明】
【図1】本発明の第1の実施例を示す斜視図。
【図2】本発明の第2の実施例を示す側断面図。
【図3】本発明の第3の実施例を示す側断面図。
【図4】本発明の第4の実施例を示す、(a)側断面図、(b)第1の実施例に適用する場合の(a)のA−A矢視図。
【図5】本発明の第5の実施例を示す側断面図。
【図6】リアクトルの性能を示すグラフ。
【符号の説明】
1 T形磁心
1L、31L リップ部
10 円板部
11 脚
11T、31T テーパ部
2、2L 巻線
3 C形磁心
3G、3Gg 溝
3H、3Gh 穴
31 ポットコア
4、4L 永久磁石
5 ディスクコア
6 シム
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a DC reactor having a bias magnet used for a switching power supply and an inverter in order to improve a current waveform of the power supply.
[0002]
[Prior art]
Conventionally, as a DC reactor having a bias magnet for obtaining a large inductance in a region where the smooth current is small and a small inductance in a region where the smooth current is large, a winding wound around the central magnetic leg, a central magnetic leg and a side magnetic leg A first magnetic core having a first magnetic body, a first magnetic body in direct contact with each magnetic leg of the first magnetic core, a second magnetic core facing the first magnetic body, a first magnetic body, and a second magnetic body There is one in which a permanent magnet for biasing is inserted between magnetic cores (for example, Japanese Patent Publication No. 61-19098).
[0003]
[Problems to be solved by the invention]
However, in the conventional technique, the magnetic flux generated by the winding causes the first magnetic body to be saturated, and an excessive magnetic flux is caused to flow to the second magnetic core via the biasing permanent magnet. When a sudden large current flows due to a power failure or equipment failure, the permanent magnet is demagnetized, or when a permanent magnet with a high conductivity such as a rare earth magnet is used, iron loss occurs inside the permanent magnet. There is a problem of doing.
[0004]
[Means for Solving the Problems]
In order to solve the above problems, the present invention branches the magnetic path through which the magnetic flux generated by the winding flows and the magnetic path through which the magnetic flux generated by the permanent magnet flows before the permanent magnet, and the magnetic flux φe generated by the winding is the permanent magnet 4. This prevents the magnet from flowing through and prevents the permanent magnet for bias from demagnetizing.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
A first magnetic core in which a winding is wound on a leg, a second magnetic core that forms a closed magnetic circuit in combination with the first magnetic core, and a bias magnet that is magnetized so as to face the magnetic flux created by the winding In the direct current reactor in which the permanent magnet is inserted between the first magnetic core and the second magnetic core, the second magnetic core has an opening for inserting the leg of the first magnetic core. And a lip portion having a cross-sectional area that does not saturate even when an excessive current flows through the winding on both sides of the opening, and magnetically between the side of the opening and the side of the leg of the first magnetic core. An air gap is formed, the winding is provided in the internal space of the second magnetic core, the permanent magnet is provided outside the lip portion of the second magnetic core, and the magnetic flux generated by the winding and the magnetic flux generated by the permanent magnet are The lip portion branches off.
A plurality of electromagnetic steel sheets in which the first and second magnetic cores are punched into a predetermined shape are laminated, the first magnetic core is a T-shaped core, and the second magnetic core is a C-shaped magnetic core,
The first and second magnetic cores are sintered magnetic cores, the first magnetic core is a T-shaped magnetic core provided with the column that serves as the leg upright in the center of the disk portion, and the second magnetic core is a disk core. And a pot core,
A hole serving as the opening is provided in the center of the disk core, the pot core is covered with the disk core, and the permanent magnet is inserted between the T-shaped core and the disk core,
A hole serving as the opening is provided at the bottom of the pot core, the disc portion of the T-shaped magnetic core is brought into contact with the opening of the pot core, and the leg is covered so as to protrude from the bottom of the pot core, The disk core is brought into contact with the upper surface of the permanent magnet and the top surface of the leg, and the permanent magnet is inserted between the outer bottom of the pot core and the disk core.
Further, a taper is provided in the middle of the leg and in the opening, and the leg is moved up and down to change the gap between the respective taper to adjust the size of the magnetic gap.
[0006]
【Example】
Embodiments will be described below with reference to the drawings.
FIG. 1 is a perspective view showing a first embodiment of the present invention.
A winding 2 is wound around a leg 11 of a T-shaped magnetic core 1 in which a plurality of electromagnetic steel sheets punched into a predetermined shape are stacked. The leg 11 has a height H1 and a width Bt.
A pair of rectangular permanent magnets 4 having a thickness H2 are provided on the lower surface of the head of the T-shaped magnetic core 1 so as to maintain a relatively large gap from the side surface of the leg 11, have the same vertical polarity, and are symmetrically provided. is there.
A groove 3G having a width Bu is provided above the C-shaped magnetic core 3 in which a plurality of electromagnetic steel sheets punched into a predetermined shape are stacked so as to maintain a predetermined magnetic gap 13 when the legs 11 are inserted. The lip 3L is formed with a thickness H4 that can secure a cross-sectional area in which the magnetic flux produced by the wire 2 is not saturated.
Here, when the height between the inner bottom and the upper surface of the C-shaped magnetic core 3 is H3, H1 = H2 + H3.
The T-shaped magnetic core 1 wound with the winding 2 is inserted from the opening on the side surface of the C-shaped magnetic core 3 toward the internal space, and the magnetism necessary for obtaining a predetermined inductance on both sides of the leg 11 and the groove 3G. The T-shaped magnetic core 1 is fixed in the internal space of the C-shaped magnetic core 3 so as to maintain an area facing the static air gap 13.
[0007]
FIG. 2 is a side sectional view showing a second embodiment of the present invention.
In this example, each magnetic core of the first embodiment is sintered with ferrite or the like, the T-shaped magnetic core is formed into a circular shape, and the C-shaped magnetic core is divided into a pot core and a disk core.
A T-shaped magnetic core 1 is formed by providing a columnar leg 11 having a diameter Dt and a height H1 so as to stand upright in the center of the disc portion 10.
A ring-shaped permanent magnet 4L is provided on the lower surface of the disc portion 10. The permanent magnet 4L has a thickness H2 in which a hole 3H having a diameter much larger than the diameter Dt of the leg 11 is provided at the center, which is magnetized so as to generate a magnetic flux in a direction opposite to the flow of the magnetic flux generated by the winding 2. is there.
A disk core 5 is provided on the lower surface of the permanent magnet 4L. The disk core 5 is provided with a hole 3H having a diameter Du so as to maintain a predetermined magnetic gap 13 between the legs 11, and has a thickness H4 that can secure a cross-sectional area in which the magnetic flux generated by the winding 2L is not saturated.
On the lower surface of the disk core 5, a pot core 31 having a depth H5 is provided.
On the inner bottom of the pot core 31, a winding 2L wound in a ring shape is provided with a leg 11 inserted through the center.
[0008]
FIG. 3 is a side sectional view showing a third embodiment of the present invention.
In this example, the arrangement of the pot core, disk core and permanent magnet in the second embodiment is changed.
The disc portion 10 of the T-shaped magnetic core 1 is in direct contact with the opening surface of the pot core 31 provided with a hole 3H having a diameter Du at the center of the bottom portion.
Here, a space between the leg 11 and the hole 3H is kept opposite to the magnetic gap 13 necessary for obtaining a predetermined inductance.
The winding 2L is housed in the inner bottom of the pot core 31. A permanent magnet 4 </ b> L is provided on the outer bottom of the pot core 31.
The disk core 5 is provided in direct contact with the lower surface of the permanent magnet 4L and the top of the leg 11.
By doing so, the pulsating magnetic flux generated by the windings does not flow in the disk core 5, and the disk core 5 can be formed of a normal soft iron plate, so that it is less expensive than the second embodiment.
[0009]
4A and 4B are cross-sectional views showing a fourth embodiment of the present invention, in which FIG. 4A is a side cross-sectional view, and FIG. 4B is a cross-sectional view taken along line AA in FIG.
In this example, the magnetic air gap of the first and second embodiments is changed to make the inductance adjustable.
The leg 11 having a height H6 has a base width Br, a width from the middle to the top Bt, and a tapered portion 11T thinner than the lip portion 1L.
The lip portion 1L (or the disk core 5) of the C-shaped magnetic core 3 is provided with a tapered portion 31T at a position corresponding to the tapered portion 11T provided in the middle of the leg 11.
At the bottom of the C-shaped magnetic core 3 having a thickness H7 (bottom of the pot core 31), a groove 3Gg or a hole 3Gh is provided in which the top of the leg 11 fits with a slight gap.
Here, the height H6 of the leg 11 is such that H6 <H1 + H7 in a range where the facing area of the groove 3Gg or the hole 3Gh and the leg 11 is not magnetically saturated in this portion.
In the first embodiment, the C-shaped magnetic core 3 is separated into right and left by the groove 3Gg. Therefore, as shown in FIG. 4B, side plates 7 are provided on both side surfaces in the stacking direction of the C-shaped magnetic core 3, It integrates with the C-shaped magnetic core 3 by welding or the like, and the groove 3Gg is cut by machining at the bottom of the C-shaped magnetic core 3.
For the assembly, the winding 2 is set in the internal space of the C-shaped magnetic core 3 (or pot core 31), and a high-permeability shim 6 such as amorphous and the permanent magnet 4 are placed on the upper surface of the C-shaped magnetic core 3 (or disk core 5). The leg 11 is inserted into the space in the center of the winding 2, the groove 3Gg, or the hole 3Gh.
By changing the thickness of the shim 6, the leg 11 is moved up and down to change the magnetic gap of the tapered portion, thereby adjusting the inductance.
[0010]
FIG. 5 is a sectional view showing a fifth embodiment of the present invention.
In this example, the magnetic air gap of the third embodiment is changed so that the inductance can be adjusted.
A tapered portion 11T is provided in the middle of the leg 11, and a tapered portion 31T is provided at a position corresponding to the lip portion 31L of the pot core 31.
The shim 6 is sandwiched between the mating surfaces of the pot core 31 and the T-shaped magnetic core 1, the legs 11 are moved up and down, and the size of the gap between the opposing tapered portions 11T and 31T is adjusted to adjust the inductance.
A magnetic fluid may be interposed between the leg 11 and the groove or hole 3Gb.
In the fourth and fifth embodiments, as shown in FIG. 6, the inductance can be changed as b when the gap between the opposing tapered portions is large and as c when the gap is small.
[0011]
【The invention's effect】
As described above, the present invention has the following effects.
(1) Since the magnetic flux generated by the winding does not flow in the permanent magnet, the permanent magnet is not demagnetized and iron loss does not occur in the permanent magnet.
(2) Since the magnetic flux generated by the winding and the magnetic flux generated by the permanent magnet flow in opposition in the magnetic core, the magnetic core does not saturate until the exciting current reaches a predetermined value, and the size can be reduced.
(3) In the fourth and fifth embodiments, since the inductance can be adjusted, it is possible to obtain an inductance suitable for the state of use.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a first embodiment of the present invention.
FIG. 2 is a side sectional view showing a second embodiment of the present invention.
FIG. 3 is a side sectional view showing a third embodiment of the present invention.
4A is a side cross-sectional view showing a fourth embodiment of the present invention, and FIG. 4B is a view taken along the line AA in FIG. 4A when applied to the first embodiment.
FIG. 5 is a side sectional view showing a fifth embodiment of the present invention.
FIG. 6 is a graph showing the performance of a reactor.
[Explanation of symbols]
1 T-shaped magnetic core 1L, 31L Lip portion 10 Disc portion 11 Leg 11T, 31T Tapered portion 2, 2L Winding 3 C-shaped magnetic core 3G, 3Gg Groove 3H, 3Gh Hole 31 Pot core 4, 4L Permanent magnet 5 Disc core 6 Shim

Claims (6)

脚に巻線を巻回した第1の磁心と、この第1の磁心と組み合わせて閉鎖磁気回路を構成する第2の磁心と、前記巻線の作る磁束と対向するように着磁したバイアス用の永久磁石を備え、この永久磁石を前記第1の磁心と第2の磁心間に間挿した直流リアクトルにおいて、
前記第2の磁心が、前記第1の磁心の脚を間挿する開口部と、この開口部の両側に、前記巻線に過大な電流が流れても飽和しない断面積を有するリップ部を備え、
前記開口部の側面と前記第1の磁心の脚の側面の間に磁気的空隙を形成し、
前記巻線を第2の磁心の内部空間に設け、前記永久磁石を前記第2の磁心のリップ部の外側に設け、
前記巻線の作る磁束と前記永久磁石の作る磁束が、前記リップ部で分岐するようにしたことを特徴とする直流リアクトル。
A first magnetic core in which a winding is wound on a leg, a second magnetic core that forms a closed magnetic circuit in combination with the first magnetic core, and a bias magnet that is magnetized so as to face the magnetic flux created by the winding A direct current reactor in which the permanent magnet is interposed between the first magnetic core and the second magnetic core,
The second magnetic core includes an opening for interposing the leg of the first magnetic core, and lip portions on both sides of the opening that have a cross-sectional area that does not saturate even if an excessive current flows through the winding. ,
Forming a magnetic gap between a side surface of the opening and a side surface of the leg of the first magnetic core;
Providing the winding in the internal space of the second magnetic core, and providing the permanent magnet outside the lip portion of the second magnetic core;
A DC reactor, wherein a magnetic flux generated by the winding and a magnetic flux generated by the permanent magnet are branched at the lip portion.
前記第1および第2の磁心を所定の形状に打ち抜いた電磁鋼板を複数枚積層して形成し、前記第1の磁心をT形磁心とし、前記第2の磁心をC形磁心とした請求項1に記載の直流リアクトル。A plurality of electromagnetic steel sheets obtained by punching the first and second magnetic cores into a predetermined shape are laminated, the first magnetic core is a T-shaped magnetic core, and the second magnetic core is a C-shaped magnetic core. The direct current reactor according to 1. 前記第1および第2の磁心を焼結磁心とし、
前記第1の磁心を円板部の中央に前記脚となる円柱を直立させて設けたT形磁心とし、前記第2の磁心をディスクコアとポットコアとで構成した請求項1に記載の直流リアクトル。
The first and second magnetic cores are sintered magnetic cores,
2. The DC reactor according to claim 1, wherein the first magnetic core is a T-shaped magnetic core in which a columnar column is provided upright in the center of a disc portion, and the second magnetic core is constituted by a disk core and a pot core. .
前記ディスクコアの中心に前記開口部となる穴を設け、前記ポットコアを前記ディスクコアで覆蓋し、前記永久磁石を前記T形磁心と前記ディスクコア間に間挿した請求項3に記載の直流リアクトル。4. The direct current reactor according to claim 3, wherein a hole serving as the opening is provided in the center of the disk core, the pot core is covered with the disk core, and the permanent magnet is interposed between the T-shaped magnetic core and the disk core. . 脚に巻線を巻回した第1の磁心と、この第1の磁心と組み合わせて閉鎖磁気回路を構成する第2の磁心と、前記巻線の作る磁束と対向するように着磁したバイアス用の永久磁石を備えた直流リアクトルにおいて、A first magnetic core in which a winding is wound around a leg, a second magnetic core that forms a closed magnetic circuit in combination with the first magnetic core, and a bias magnetized so as to oppose the magnetic flux created by the winding In a DC reactor equipped with a permanent magnet of
前記第1の磁心を円板部の中央に前記脚となる円柱を直立させて設けたT形磁心とし、The first magnetic core is a T-shaped magnetic core provided with the column that serves as the leg standing upright in the center of the disc part,
前記第2の磁心をディスクコアとポットコアとで構成し、The second magnetic core is composed of a disk core and a pot core,
前記ポットコアは底部に前記開口部となる穴を設け、The pot core is provided with a hole to be the opening at the bottom,
前記T形磁心の円板部を前記ポットコアの開口部に当接させて、前記脚が前記ポットコアの底部から突設するように覆蓋し、Covering the disc part of the T-shaped magnetic core with the opening of the pot core so that the legs protrude from the bottom of the pot core;
前記ディスクコアは前記脚の頂部に当接させ、The disc core is in contact with the top of the leg;
前記永久磁石を前記ポットコアの外底と前記ディスクコア間に間挿したThe permanent magnet was inserted between the outer bottom of the pot core and the disk core.
ことを特徴とする直流リアクトル。DC reactor characterized by that.
前記脚の途中と前記開口部にテーパ部を設け、前記脚を上下させることにより、おのおののテーパ部間の空隙を変化させて、磁気的空隙の大きさを調整する請求項2ないし5のいずれか1項に記載の直流リアクトル。6. A taper portion is provided in the middle of the leg and in the opening, and the size of the magnetic gap is adjusted by changing the gap between the tapered portions by moving the leg up and down. The direct current reactor according to claim 1.
JP03869896A 1996-01-31 1996-01-31 DC reactor Expired - Fee Related JP3765326B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03869896A JP3765326B2 (en) 1996-01-31 1996-01-31 DC reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03869896A JP3765326B2 (en) 1996-01-31 1996-01-31 DC reactor

Publications (2)

Publication Number Publication Date
JPH09213546A JPH09213546A (en) 1997-08-15
JP3765326B2 true JP3765326B2 (en) 2006-04-12

Family

ID=12532539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03869896A Expired - Fee Related JP3765326B2 (en) 1996-01-31 1996-01-31 DC reactor

Country Status (1)

Country Link
JP (1) JP3765326B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002164217A (en) * 2000-11-29 2002-06-07 Tokin Corp Inductance parts
JP2002083724A (en) * 2000-09-08 2002-03-22 Tokin Corp Magnetic core and magnetic element
JP2002158124A (en) * 2000-11-20 2002-05-31 Tokin Corp Inductance component
JP5198363B2 (en) * 2009-06-08 2013-05-15 本田技研工業株式会社 Reactor
CN104505239A (en) * 2015-01-14 2015-04-08 东南大学 Mixed magnetic biasing magnetic saturation controllable electric reactor

Also Published As

Publication number Publication date
JPH09213546A (en) 1997-08-15

Similar Documents

Publication Publication Date Title
JP3230647B2 (en) DC reactor
JP3765326B2 (en) DC reactor
JP3922121B2 (en) DC reactor
US20040213430A1 (en) Laminated motor structure for electromagnetic transducer
JP3534011B2 (en) choke coil
JPS61203605A (en) Magnet having highly uniform magnetic field
JP2007281204A (en) Dc reactor
JPS6325827Y2 (en)
JP2567822Y2 (en) Magnetic circuit for speaker
JP3961960B2 (en) Speaker
JP2004266217A (en) Direct current reactor
JPS5915189Y2 (en) Magnetic circuit for MC type cartridge
JP4197327B2 (en) Inductance parts
JPH1127920A (en) Electromagnetic actuator
JPH0237582U (en)
JP2572299Y2 (en) Two-pole magnetized permanent magnet for flat coil vibration type voice coil motor
JPS59165405A (en) Dc self-holding type electromagnet
JP2601592Y2 (en) Linear actuator
JPH0422637Y2 (en)
JPH04127506A (en) Superconducting deflection magnet
JPH0430877Y2 (en)
JP2568014Y2 (en) Magnetic circuit for speaker
JPH0810943Y2 (en) Electromagnet device
JP2001251841A (en) Linear actuator
JPS6355778U (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060118

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110203

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130203

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140203

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees