JP2003337194A - Waste liquid treatment method and apparatus - Google Patents

Waste liquid treatment method and apparatus

Info

Publication number
JP2003337194A
JP2003337194A JP2002144053A JP2002144053A JP2003337194A JP 2003337194 A JP2003337194 A JP 2003337194A JP 2002144053 A JP2002144053 A JP 2002144053A JP 2002144053 A JP2002144053 A JP 2002144053A JP 2003337194 A JP2003337194 A JP 2003337194A
Authority
JP
Japan
Prior art keywords
waste liquid
resin
degree
crosslinking
liquid treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002144053A
Other languages
Japanese (ja)
Inventor
Takeshi Izumi
丈志 出水
Takao Ino
隆夫 猪野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2002144053A priority Critical patent/JP2003337194A/en
Publication of JP2003337194A publication Critical patent/JP2003337194A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a waste liquid treatment method capable of being employed for a nuclear power plant, wherein treated water having a high purity can be obtain economically by using a cation resin with a high degree of crosslinking, and provide a waste liquid treatment apparatus. <P>SOLUTION: In the waste liquid treatment method for cleaning waste liquid, the waste liquid is made to pass through a mixed bed consisting of a strong acid gel cation resin having a degree of crosslinking of 12-16% and a strong basic anion resin for cleaning, and one or both of the cation resin and the anion resin have a uniform particle size distribution. Preferably, the cation resin has a degree of crosslinking of 14%, and the waste liquid may be filtered before being made to pass through the mixed bed of the ion exchange resins. The waste liquid may be filtered by employing a hollow fiber membrane filter, a precoat filter device or a pleat filter. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、廃液処理に係り、
特に原子力発電プラントにおいて発生する廃液を浄化処
理する廃液処理方法と装置に関する。
TECHNICAL FIELD The present invention relates to waste liquid treatment,
Particularly, the present invention relates to a waste liquid treatment method and device for purifying waste liquid generated in a nuclear power plant.

【0002】[0002]

【従来の技術】原子力発電プラントでは、発生した廃液
を浄化して再利用するため、その浄化設備として、イオ
ン交換樹脂を使用している廃液脱塩装置や、中空糸膜フ
ィルタなどのろ過装置及び濃縮器が通常設置されてい
る。原子力発電プラント内で発生した廃液には、放射性
核種が含まれている可能性があり、全ての廃液がタンク
に回収され浄化処理を行っている。タンクに回収される
廃液は、原子炉水や回転機器シール水などの機器ドレン
水、床清掃廃液などの床ドレン水、イオン交換樹脂の逆
洗や通薬にて発生する再生廃液など、様々な性状の廃液
がある。それら廃液の性状により処理方法が異なってお
り、懸濁性物質が多い廃液ではろ過処理が、またイオン
濃度の高い廃液では濃縮処理が行われ、最終的には廃液
脱塩装置で処理されて回収、再利用される。
2. Description of the Related Art In a nuclear power plant, in order to purify and reuse generated waste liquid, waste liquid desalination equipment using an ion exchange resin, filtration equipment such as a hollow fiber membrane filter, etc. Concentrators are usually installed. The waste liquid generated in the nuclear power plant may contain radionuclides, and all the waste liquid is collected in the tank for purification treatment. There are various types of waste liquid collected in the tank, such as equipment drain water such as reactor water and rotating equipment seal water, floor drain water such as floor cleaning waste liquid, and recycle waste liquid generated by backwashing ion exchange resin or passing a chemical. There is a waste liquid of the nature. The treatment method differs depending on the properties of these waste liquids.For waste liquids containing a large amount of suspending substances, filtration treatment is performed, and for waste liquids with high ion concentration, concentration treatment is performed, and finally treatment is performed with a waste liquid desalting device for recovery. , Reused.

【0003】廃液脱塩装置で使用しているイオン交換樹
脂は、架橋度が8%から10%の強酸性ゲル型カチオン
樹脂と強塩基性ゲル型アニオン樹脂を混床で使用してい
る。最近の原子力発電プラントの廃液脱塩装置では、強
酸性カチオン樹脂から溶出する有機性不純物が、アニオ
ン樹脂の反応速度を低下させる要因となっていた。即
ち、強酸性カチオン樹脂より溶出する有機性不純物に
は、官能基としてスルホン基が含まれており、これは負
に帯電しているため、アニオン樹脂に吸着されることと
なる。しかし、カチオン樹脂より溶出した有機性不純物
の分子量が大きい場合、吸着した有機性不純物がアニオ
ン樹脂の表面に留まり、反応速度を低下させ、水質の低
下を来すと共に、樹脂寿命を短縮させる要因となってい
る。
The ion exchange resin used in the waste water desalting apparatus uses a strongly acidic gel type cation resin and a strongly basic gel type anion resin having a crosslinking degree of 8% to 10% in a mixed bed. In a recent waste liquid desalination apparatus for a nuclear power plant, organic impurities eluted from a strongly acidic cation resin have been a factor of reducing the reaction rate of anion resin. That is, the organic impurities eluted from the strongly acidic cation resin include a sulfone group as a functional group, which is negatively charged, and therefore is adsorbed by the anion resin. However, when the molecular weight of the organic impurities eluted from the cation resin is large, the adsorbed organic impurities remain on the surface of the anion resin, which lowers the reaction rate, lowers the water quality, and shortens the resin life. Has become.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記従来技
術に鑑み、架橋度の高いカチオン樹脂を用いることによ
り、経済的で且つ高純度な処理水を得ることができ、原
子力発電プラントに使用できる廃液処理方法と装置を提
供することを課題とする。
SUMMARY OF THE INVENTION In view of the above-mentioned prior art, the present invention makes it possible to obtain economical and highly pure treated water by using a cationic resin having a high degree of crosslinking, and to use it in a nuclear power plant. It is an object of the present invention to provide a waste liquid treatment method and apparatus that can be used.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、本発明では、廃液を浄化処理する廃液の処理方法に
おいて、該廃液を、架橋度12〜16%の強酸性ゲル型
カチオン樹脂と強塩基性アニオン樹脂の混床に通水して
浄化処理する廃液処理方法としたものである。前記廃液
処理方法において、カチオン樹脂とアニオン樹脂は、該
イオン交換樹脂のいずれかもしくは両方の粒径分布が均
一であり、前記カチオン樹脂は、架橋度が14%である
のがよく、前記廃液のイオン交換樹脂混床への通水は、
廃液をろ過処理してから通水することができ、また、前
記ろ過処理は、中空糸膜フィルタ、プリコート型ろ過器
もしくはプリーツフィルタで行うことができる。また、
本発明では、廃液を浄化処理する廃液の処理装置におい
て、前記廃液の処理流路に、架橋度12〜16%の強酸
性ゲル型カチオン樹脂と強塩基性アニオン樹脂の混床か
らなる充填層を設けたことを特徴とする廃液処理装置と
したものである。
In order to solve the above problems, in the present invention, in a method for treating a waste liquid for purifying the waste liquid, the waste liquid is a strong acidic gel type cation resin having a cross-linking degree of 12 to 16%. This is a waste liquid treatment method in which water is passed through a mixed bed of a strongly basic anion resin for purification treatment. In the waste liquid treatment method, it is preferable that the cation resin and the anion resin have a uniform particle size distribution of one or both of the ion exchange resins, and the cation resin has a cross-linking degree of 14%. Water flow to the ion exchange resin mixed bed,
The waste liquid can be filtered before passing water, and the filtering treatment can be performed by a hollow fiber membrane filter, a precoat type filter or a pleated filter. Also,
According to the present invention, in a waste liquid treatment apparatus for purifying waste liquid, a packing layer composed of a mixed bed of a strongly acidic gel type cation resin and a strong basic anion resin having a degree of crosslinking of 12 to 16% is provided in a processing channel of the waste liquid. The waste liquid treatment device is characterized by being provided.

【0006】[0006]

【発明の実施の形態】本発明では、脱塩処理に使用して
きた従来のイオン交換樹脂より架橋度の高いイオン交換
樹脂を使用する。架橋度の高いカチオン樹脂は、化学的
安定性が高いため耐酸化性が高く、有機性不純物の溶出
は架橋度が低い樹脂に比べ少ない。また、溶出する有機
性不純物の分子量も小さい。このため、架橋度の高いカ
チオン交換樹脂を使用することにより、良好な処理水質
が得られると共に、樹脂寿命の延長が出来るため経済的
である。特に原子力発電プラントでは、使用済みのイオ
ン交換樹脂は、放射性固体廃棄物となるため処理、処分
が難しく、発生量をより少なくする必要があり、本発明
は有効である。加えて、イオン交換樹脂の架橋度と交換
容量には一定の相関があり、架橋度の高い樹脂ほど大き
い交換容量を有しており、架橋度の高い樹脂を使用する
と、通薬再生頻度を低減することが可能となる。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, an ion exchange resin having a higher degree of crosslinking than conventional ion exchange resins used for desalting treatment is used. A cationic resin having a high degree of cross-linking has high chemical stability and thus has high oxidation resistance, and elution of organic impurities is less than that of a resin having a low degree of cross-linking. Also, the molecular weight of the organic impurities to be eluted is small. Therefore, by using a cation exchange resin having a high degree of crosslinking, good treated water quality can be obtained, and the life of the resin can be extended, which is economical. Particularly in a nuclear power plant, the used ion-exchange resin becomes a radioactive solid waste, which makes it difficult to process and dispose of it, and it is necessary to reduce the amount generated, and the present invention is effective. In addition, there is a certain correlation between the degree of cross-linking and the exchange capacity of the ion-exchange resin, and the resin with higher degree of cross-linking has a larger exchange capacity, and the use of resin with higher degree of cross-linking reduces the frequency of drug regeneration. It becomes possible to do.

【0007】一方、架橋度の高いイオン交換樹脂は、樹
脂内部構造が密であるため、反応速度の面で、従来使用
されているイオン交換樹脂に比べ僅かに劣る特性を有し
ている。この欠点を補うために、均一粒径樹脂を使用す
る方法がある。即ち、粒径分布を均一にし平均粒径を小
さくすることにより、樹脂層の持つ表面積を増やすこと
が可能となり、反応速度を高めることが可能となる。ま
た、カチオン樹脂からの有機性不純物の溶出は、樹脂マ
トリックスの酸化反応により進行することが知られてい
る。従って、処理する廃液中に含まれる鉄などの金属酸
化物が、イオン交換樹脂に捕捉されると酸化反応の触媒
として作用する。そこで、イオン交換樹脂にて処理する
廃液を、予め中空糸膜フィルタ、プリコート型ろ過器も
しくはプリーツフィルタなどのろ過装置で処理し、廃液
中に含まれる金属酸化物を除去することで、イオン交換
樹脂への負荷を軽減し、有機性不純物の溶出を低減する
ことが可能となる。
On the other hand, the ion-exchange resin having a high degree of cross-linking has a characteristic that the internal structure of the resin is dense, and thus the reaction rate is slightly inferior to the conventionally used ion-exchange resins. In order to make up for this drawback, there is a method of using a resin having a uniform particle size. That is, by making the particle size distribution uniform and reducing the average particle size, the surface area of the resin layer can be increased and the reaction rate can be increased. Further, it is known that the elution of organic impurities from the cationic resin proceeds due to the oxidation reaction of the resin matrix. Therefore, when the metal oxide such as iron contained in the waste liquid to be treated is captured by the ion exchange resin, it acts as a catalyst for the oxidation reaction. Therefore, the waste liquid to be treated with the ion exchange resin is treated in advance with a filtering device such as a hollow fiber membrane filter, a precoat type filter or a pleated filter to remove the metal oxide contained in the waste liquid, thereby removing the ion exchange resin. It is possible to reduce the load on the substrate and reduce the elution of organic impurities.

【0008】以下、本発明を詳細に説明する。本発明の
廃液処理方法では、カチオン交換樹脂とアニオン交換樹
脂とを混合する混床を使用する。使用するイオン交換樹
脂は、スチレンとジビニルベンゼンの共重合体を母体と
する。カチオン交換樹脂は、官能基として例えば強酸性
のスルホン酸基などを有しており、アニオン交換樹脂
は、官能基として例えば強塩基性の第4アンモニウム基
などを有している。本発明で使用するカチオン交換樹脂
は、ジビニルベンゼンの含有率すなわち架橋度が12〜
16%、より好ましくは14%である。架橋度が12%
未満であると、有機性不純物の溶出が大きくなり好まし
くない。16%を超えると、反応速度が低下すると共
に、通薬再生を実施してイオン交換容量を回復させる
際、再生特性が低く好ましくない。逆に、架橋度が12
〜16%の範囲にある限り、有機性不純物の溶出が少な
く、アニオン樹脂の反応速度への影響は少なく好まし
い。
The present invention will be described in detail below. The waste liquid treatment method of the present invention uses a mixed bed in which a cation exchange resin and an anion exchange resin are mixed. The ion exchange resin used has a copolymer of styrene and divinylbenzene as a base material. The cation exchange resin has, for example, a strongly acidic sulfonic acid group as a functional group, and the anion exchange resin has, for example, a strongly basic quaternary ammonium group as a functional group. The cation exchange resin used in the present invention has a divinylbenzene content, that is, a degree of crosslinking of 12 to.
It is 16%, more preferably 14%. Crosslinking degree is 12%
If it is less than the above range, the elution of organic impurities becomes large, which is not preferable. If it exceeds 16%, not only is the reaction rate slow, but also the regeneration characteristics are low when conducting regenerant regeneration to restore the ion exchange capacity, which is not preferable. Conversely, the degree of crosslinking is 12
As long as it is in the range of ˜16%, the elution of organic impurities is small and the influence on the reaction rate of the anion resin is small, which is preferable.

【0009】また、使用するイオン交換樹脂の粒径分布
としては、350〜1200μmで、好ましくは550
〜750μmの、実質的に均一の、いわゆる均一粒径品
を使用すると良い。このようなイオン交換樹脂には、入
口側に設置されたろ過装置に通水した処理水を通水する
と良い。ろ過装置としては、中空糸膜フィルタ、プリコ
ート型ろ過器もしくはプリーツフィルタなどを使用する
と良い。
The particle size distribution of the ion exchange resin used is 350 to 1200 μm, preferably 550.
It is preferable to use a substantially uniform so-called uniform particle size product having a particle size of up to 750 μm. It is advisable to pass treated water, which has been passed through a filtering device installed on the inlet side, to the ion exchange resin. As the filtration device, a hollow fiber membrane filter, a precoat type filter or a pleated filter may be used.

【0010】[0010]

【実施例】以下、実施例により本発明を具体的に説明す
る。 実施例1 本実施例では、カチオン樹脂の架橋度と有機性不純物
(TOC)の溶出速度との関係を調べた。内径25mm
のガラスカラムを有する図1に示す試験装置を用い、カ
チオン樹脂とアニオン樹脂を、体積比で2/1にて混合
して50mLを充填し、40℃の純水を循環通水し、T
OC溶出速度を求めた。結果を図2に示す。図2から明
らかなように、架橋度が高い樹脂ほど溶出が少ないこと
がわかる。
EXAMPLES The present invention will be specifically described below with reference to examples. Example 1 In this example, the relationship between the degree of crosslinking of the cationic resin and the elution rate of organic impurities (TOC) was investigated. Inner diameter 25 mm
Using the test apparatus shown in FIG. 1 having a glass column of No. 1, a cation resin and an anion resin were mixed at a volume ratio of 2/1 to fill 50 mL, and pure water at 40 ° C. was circulated to pass the water.
The OC elution rate was determined. The results are shown in Figure 2. As is clear from FIG. 2, the higher the degree of crosslinking, the less the elution.

【0011】実施例2 実施例2では、カチオン樹脂から溶出する有機性不純物
(TOC)の分子量分布を調べた。カチオン樹脂と純水
を体積比で1/2で浸漬し、60℃にて2週間処理して
溶出したTOCの分子量分布を、ゲル浸透クロマトグラ
フ分析装置にて測定した。結果を図3に示す。図3から
明らかなように、架橋度の高い樹脂ほど溶出したTOC
の分子量分布は小さいことがわかる。
Example 2 In Example 2, the molecular weight distribution of organic impurities (TOC) eluted from the cationic resin was examined. The cationic resin and pure water were dipped in a volume ratio of 1/2, treated at 60 ° C. for 2 weeks, and the molecular weight distribution of TOC eluted was measured with a gel permeation chromatograph analyzer. The results are shown in Fig. 3. As is clear from FIG. 3, TOC eluted with resin having a higher degree of cross-linking
It can be seen that the molecular weight distribution of is small.

【0012】実施例3 実施例3では、有機物の分子量とアニオン樹脂反応速度
への影響を調べた。カチオン樹脂より溶出した有機性不
純物の模擬物質としてポリスチレンスルホン酸を使用
し、既知分子量のポリスチレンスルホン酸をアニオン樹
脂に吸着させ、アニオン樹脂の反応速度を測定した。反
応速度は、シャローベッド法による脱塩率として測定し
た。結果を図4に示す。図4から明らかなように、低分
子量のポリスチレンスルホン酸ではアニオン樹脂脱塩率
への影響はほとんどないが、高分子量のポリスチレンス
ルホン酸ではアニオン樹脂脱塩率への影響は大きいこと
がわかる。
Example 3 In Example 3, the influence of the organic matter on the molecular weight and anion resin reaction rate was examined. Polystyrene sulfonic acid was used as a substance simulating organic impurities eluted from the cation resin, and polystyrene sulfonic acid of known molecular weight was adsorbed on the anion resin, and the reaction rate of the anion resin was measured. The reaction rate was measured as a desalting rate by the shallow bed method. The results are shown in Fig. 4. As is clear from FIG. 4, the polystyrene sulfonic acid having a low molecular weight has almost no effect on the desalination rate of the anion resin, but the polystyrene sulfonic acid having a high molecular weight has a large effect on the anion resin desalination rate.

【0013】実施例4 内径25mmのガラスカラムにイオン交換樹脂20mL
を充填し、Co、Mn、Feなどの放射性核種を含む、
放射能濃度4Bq/mLの廃液をSV(空間速度)=2
5にて通水し、2時間後における放射性核種の除去率を
測定した。イオン交換樹脂として、従来技術である架橋
度8%の強酸性ゲル型カチオン交換樹脂と本発明である
架橋度14%の強酸性ゲル型カチオン樹脂を、始めに
0.5%過酸化水素水中で60℃にて6時間処理した上
で、アニオン樹脂と体積比2/1にて混合して通水試験
を実施した。表1にその結果を示す。表1から明らかな
ように、本発明の樹脂は従来より使用されているイオン
交換樹脂に比べ除去率が高いことがわかる
Example 4 20 mL of ion exchange resin was added to a glass column having an inner diameter of 25 mm.
Containing radionuclides such as Co, Mn, and Fe.
Waste liquid with a radioactivity concentration of 4 Bq / mL is SV (space velocity) = 2
Water was passed through at 5, and the removal rate of the radionuclide after 2 hours was measured. As an ion exchange resin, a strong acid gel type cation exchange resin having a cross-linking degree of 8%, which is a conventional technique, and a strong acid gel type cation resin having a cross-linking degree of 14%, which is the present invention, are firstly added in 0.5% hydrogen peroxide After treating at 60 ° C. for 6 hours, it was mixed with an anion resin in a volume ratio of 2/1 to carry out a water flow test. The results are shown in Table 1. As is clear from Table 1, the resin of the present invention has a higher removal rate than the ion exchange resins conventionally used.

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【発明の効果】本発明によれば、原子力発電プラントの
廃液処理方法に関し、架橋度12〜16%の強酸性ゲル
型カチオン樹脂と強塩基性アニオン樹脂の混床を使用す
ることで、経済的で且つ処理水質を高度化することが可
能となる。
EFFECTS OF THE INVENTION According to the present invention, a method for treating waste liquid in a nuclear power plant is economically advantageous by using a mixed bed of a strongly acidic gel type cation resin and a strongly basic anion resin having a crosslinking degree of 12 to 16%. It is also possible to improve the quality of treated water.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1に用いた試験装置のフロー工程図。FIG. 1 is a flow process diagram of a test apparatus used in Example 1.

【図2】カチオン樹脂の架橋度とTOC溶出速度の関係
を示すグラフ。
FIG. 2 is a graph showing the relationship between the degree of crosslinking of a cationic resin and the TOC elution rate.

【図3】カチオン樹脂の架橋度と溶出有機物の分子量分
布の関係を示すグラフ。
FIG. 3 is a graph showing the relationship between the degree of crosslinking of a cation resin and the molecular weight distribution of eluted organic matter.

【図4】有機物の分子量とアニオン樹脂脱塩率の関係を
示すグラフ。
FIG. 4 is a graph showing the relationship between the molecular weight of organic substances and the anion resin desalination rate.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 廃液を浄化処理する廃液の処理方法にお
いて、該廃液を、架橋度12〜16%の強酸性ゲル型カ
チオン樹脂と強塩基性アニオン樹脂の混床に通水して浄
化処理することを特徴とする廃液処理方法。
1. A method of treating a waste liquid for purifying the waste liquid, wherein the waste liquid is passed through a mixed bed of a strongly acidic gel type cation resin and a strongly basic anion resin having a degree of crosslinking of 12 to 16% for purification treatment. A waste liquid treatment method characterized by the above.
【請求項2】 前記カチオン樹脂とアニオン樹脂は、該
イオン交換樹脂のいずれかもしくは両方の粒径分布が均
一であることを特徴とする請求項1記載の廃液処理方
法。
2. The waste liquid treatment method according to claim 1, wherein the cation resin and the anion resin have a uniform particle size distribution of one or both of the ion exchange resins.
【請求項3】 前記カチオン樹脂は、架橋度が14%で
あることを特徴とする請求項1又は2記載の廃液処理方
法。
3. The waste liquid treatment method according to claim 1, wherein the cationic resin has a degree of crosslinking of 14%.
【請求項4】 前記廃液のイオン交換樹脂混床への通水
は、廃液をろ過処理してから通水することを特徴とする
請求項1、2又は3記載の廃液処理方法。
4. The waste liquid treatment method according to claim 1, wherein the waste liquid is passed through the ion-exchange resin mixed bed by filtering the waste liquid and then passing the water.
【請求項5】 廃液を浄化処理する廃液の処理装置にお
いて、前記廃液の処理流路に、架橋度12〜16%の強
酸性ゲル型カチオン樹脂と強塩基性アニオン樹脂の混床
からなる充填層を設けたことを特徴とする廃液処理装
置。
5. A waste liquid treatment apparatus for purifying waste liquid, wherein a packing layer comprising a mixed bed of a strongly acidic gel type cation resin and a strongly basic anion resin having a cross-linking degree of 12 to 16% in the waste liquid processing channel. A waste liquid treatment device provided with.
JP2002144053A 2002-05-20 2002-05-20 Waste liquid treatment method and apparatus Pending JP2003337194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002144053A JP2003337194A (en) 2002-05-20 2002-05-20 Waste liquid treatment method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002144053A JP2003337194A (en) 2002-05-20 2002-05-20 Waste liquid treatment method and apparatus

Publications (1)

Publication Number Publication Date
JP2003337194A true JP2003337194A (en) 2003-11-28

Family

ID=29703819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002144053A Pending JP2003337194A (en) 2002-05-20 2002-05-20 Waste liquid treatment method and apparatus

Country Status (1)

Country Link
JP (1) JP2003337194A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009281874A (en) * 2008-05-22 2009-12-03 Ebara Corp Method and device for condensate demineralization

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009281874A (en) * 2008-05-22 2009-12-03 Ebara Corp Method and device for condensate demineralization

Similar Documents

Publication Publication Date Title
US4430226A (en) Method and apparatus for producing ultrapure water
JP5026648B2 (en) Method and equipment for removal of metal cations from liquids by polyazacycloalkane resins grafted on a support
JP4943378B2 (en) Condensate demineralization method and condensate demineralization apparatus
KR20190085936A (en) Ultrapure water production system and ultrapure water production method
JP4943377B2 (en) Condensate demineralization method and condensate demineralization apparatus
JP3687829B2 (en) Condensate treatment method and condensate demineralizer
JPH10216721A (en) Ultrapure water producing device
JP2004045371A (en) Processing method and device for liquid including radionuclide
JP2012016673A (en) Device and method of treating iodine/boron-containing solution
JP2000046992A (en) Condensate demineralization device
JP5572785B2 (en) Efficient removal of harmful components in contaminated water
JP2003337194A (en) Waste liquid treatment method and apparatus
JPS63273093A (en) Condensate purifier
US5387348A (en) Method of mixed-bed filtration and demineralization with ion-exchange resins
JP4383091B2 (en) Condensate desalination method and apparatus
JP3256647B2 (en) Method for removing hydrogen peroxide in water to be treated and water treatment apparatus
JP2009279519A (en) Condensate demineralization method and condensate demineralizer
CN110642437A (en) Method for removing total nitrogen and ammonia nitrogen in blast furnace gas washing water
FI103501B (en) Mixed bed filtration and demineralisation process to remove impurities from power plant cooling water
RU2273066C1 (en) Method for recovering liquid radioactive wastes
JPH01245893A (en) Method for making ultrapure water
JP4356987B2 (en) Condensate demineralization treatment method and apparatus and method for forming packed bed thereof
JP2892811B2 (en) Ion exchange resin, condensate desalination tower and condensate purification device using this resin
JP2008064482A (en) Radioactive effluent treatment method and treatment apparatus
JPH0569480B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040528

A977 Report on retrieval

Effective date: 20060124

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070319

A02 Decision of refusal

Effective date: 20070710

Free format text: JAPANESE INTERMEDIATE CODE: A02