JP2003337015A - Measuring method for shape of pile - Google Patents

Measuring method for shape of pile

Info

Publication number
JP2003337015A
JP2003337015A JP2002146472A JP2002146472A JP2003337015A JP 2003337015 A JP2003337015 A JP 2003337015A JP 2002146472 A JP2002146472 A JP 2002146472A JP 2002146472 A JP2002146472 A JP 2002146472A JP 2003337015 A JP2003337015 A JP 2003337015A
Authority
JP
Japan
Prior art keywords
pile
receiver
oscillator
hole
electromagnetic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002146472A
Other languages
Japanese (ja)
Other versions
JP4113378B2 (en
Inventor
Yoshiaki Nagataki
慶明 長瀧
Hiroshi Imai
博 今井
Masato Mashima
正人 真島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2002146472A priority Critical patent/JP4113378B2/en
Publication of JP2003337015A publication Critical patent/JP2003337015A/en
Application granted granted Critical
Publication of JP4113378B2 publication Critical patent/JP4113378B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Piles And Underground Anchors (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To measure the diameter of a pile without exposing the pile from an underground part or without cutting the pile, to detect the position of a reinforcing bar inside the pile and to observe a cross-sectional shape in the radial direction of the pile in a form of a pattern. <P>SOLUTION: First, a measuring hole 5 is formed near the center in the radial direction of a cast-in-place pile 1 and in its length direction. Then, a transmitter- receiver 17 composed of an electromagnetic oscillator 11 and an electromagnetic receiver 12 is inserted into the hole 5. The transmitter-receiver 17 is turned inside the hole 5. In a state that the transmitter-receiver 17 is turned, electromagnetic waves are discharged toward the radial direction of the pile 1 from the electromagnetic oscillator 11, and their reflected waves are received by the electromagnetic receiver 12. The time until their reception from their discharge is measured. On the basis of the measured time, the radius of the pile 1 is measured, the position of the reinforcing bar 3 inside the pile 1 is detected, and the pattern of the cross-sectional shape in the radial direction of the pile is detected. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、既製コンクリート
杭、場所打ちコンクリート杭などの各種の杭について、
杭の径の測定、杭内の鉄筋の位置の検出、杭の径方向の
断面形状のパターンによる観察ができるようにした杭形
状の測定方法に関するものである。
TECHNICAL FIELD The present invention relates to various types of piles such as ready-made concrete piles and cast-in-place concrete piles.
The present invention relates to a pile shape measuring method capable of measuring the diameter of a pile, detecting the position of a reinforcing bar in the pile, and observing the cross-sectional shape pattern in the radial direction of the pile.

【0002】[0002]

【従来の技術】従来、例えば、地中に構築された既存の
杭の長さは、以下のようにして測定していた。すなわ
ち、杭の頭部に打撃を与えてその振動が杭の頭から地中
部内の杭先端に到達させ、その振動波が杭先端から反射
して杭の頭に到達するまでの時間を計測し、この計測時
間に基づいて杭の長さを求めていた。
2. Description of the Related Art Conventionally, for example, the length of an existing pile constructed in the ground has been measured as follows. That is, the time it takes for the vibration to reach the pile tip in the underground from the pile head by hitting the pile head and the vibration wave to reflect from the pile tip and reach the pile head is measured. , The pile length was calculated based on this measurement time.

【0003】[0003]

【発明が解決しようとする課題】このため、従来、地中
に設けられた既存杭について、その形状を特定するパラ
メータとして杭の長さしか測定することができなかっ
た。このため、杭の直径について、その杭の頭から先端
部まで調査するためには、土を掘削して杭を地中から取
り出して観察する以外にその方法がないという不都合が
あった。
For this reason, conventionally, only the length of the existing pile provided in the ground could be measured as a parameter for specifying its shape. Therefore, in order to investigate the diameter of the pile from the head to the tip of the pile, there is a disadvantage that there is no other method than excavating the soil, taking out the pile from the ground, and observing it.

【0004】従って、地中に埋められた既存杭などにつ
いて、既存杭を地中から取り出すことなく、杭の径を測
定できることが望まれる。さらに、その杭の径の測定の
みならず、その杭の径方向の断面形状や杭内における鉄
筋の位置などを観察できることが望まれる。そこで、本
発明の目的は、杭を地中から露出または杭を切断するこ
となく、杭の径の測定ができ、杭内の鉄筋位置の検出が
でき、さらに杭の径方向の断面形状などを観察できるよ
うにした杭形状の測定方法を提供することにある。
Therefore, for existing piles buried in the ground, it is desired that the diameter of the piles can be measured without taking out the existing piles from the ground. Furthermore, it is desirable to be able to observe not only the diameter of the pile but also the radial cross-sectional shape of the pile and the position of the reinforcing bar in the pile. Therefore, the purpose of the present invention, without exposing the pile from the ground or cutting the pile, the diameter of the pile can be measured, the position of the reinforcing bar in the pile can be detected, and the cross-sectional shape of the pile in the radial direction, etc. An object of the present invention is to provide a method for measuring a pile shape that can be observed.

【0005】[0005]

【課題を解決するための手段】上記課題を解決し、本発
明の目的を達成するために、請求項1〜請求項7に記載
の各発明は、以下のように構成した。請求項1に記載の
発明は、杭の径方向の中央付近であってその長さ方向に
形成される孔に、電磁波または超音波の発振器および受
信器をそれぞれ挿入し、前記発振器から前記杭の長さ方
向と交差する方向に向けて電磁波または超音波を発射
し、その反射波を前記受信器で受信して発射から受信ま
での時間を計測し、その計測時間に基づいて、前記杭の
径および前記杭内の鉄筋位置のうちの少なくとも一方を
検出するようにしたことを特徴とするものである。
In order to solve the above problems and achieve the object of the present invention, each of the inventions described in claims 1 to 7 is configured as follows. In the invention according to claim 1, an electromagnetic wave or ultrasonic wave oscillator and a receiver are respectively inserted into holes formed in the longitudinal direction of the pile near the center in the radial direction, and the oscillator is used to insert the electromagnetic wave or ultrasonic wave into the pile. Electromagnetic waves or ultrasonic waves are emitted in a direction intersecting the length direction, the reflected wave is received by the receiver, the time from emission to reception is measured, and based on the measured time, the diameter of the pile Also, at least one of the positions of the reinforcing bars in the pile is detected.

【0006】請求項2に記載の発明は、請求項1に記載
の杭形状の測定方法において、前記検出の際には、前記
発振器および受信器を回転させるようにしたことを特徴
とするものである。請求項3に記載の発明は、請求項1
または請求項2に記載の杭形状の測定方法において、前
記検出の際には、前記発振器および受信器を前記孔内の
長さ方向に移動させるようにしたことを特徴とするもの
である。
According to a second aspect of the present invention, in the pile shape measuring method according to the first aspect, the oscillator and the receiver are rotated during the detection. is there. The invention according to claim 3 is the claim 1
Alternatively, in the pile shape measuring method according to the second aspect, the oscillator and the receiver are moved in the longitudinal direction in the hole during the detection.

【0007】請求項4に記載の発明は、請求項1乃至請
求項3のいずれかに記載の杭形状の測定方法において、
前記杭が場所打ち杭で杭全体がコンクリートで充填され
ている場合、または前記杭が既製杭でその径方向の中央
付近であってその長さ方向に孔がない場合には、前記場
所打ち杭または前記既製杭の径方向の中央付近であって
その長さ方向に測定用の孔を予め形成し、この形成した
孔に前記発振器および前記受信器をそれぞれ挿入するよ
うにしたことを特徴とするものである。
According to a fourth aspect of the present invention, in the pile shape measuring method according to any one of the first to third aspects,
If the pile is a cast-in-place pile and the entire pile is filled with concrete, or if the pile is a ready-made pile near the radial center and there is no hole in the length direction, the cast-in-place pile Alternatively, it is characterized in that a hole for measurement is formed in the length direction in the vicinity of the radial center of the ready-made pile in advance, and the oscillator and the receiver are respectively inserted into the formed holes. It is a thing.

【0008】請求項5に記載の発明は、杭の径方向の中
央付近であってその長さ方向に形成される孔に、電磁波
または超音波の発振器および受信器をそれぞれ挿入し、
前記発振器および前記受信器を前記杭の孔内において円
周方向に回転させ、この回転に応じて前記発振器から前
記杭の半径方向に向けて電磁波または超音波を順次発射
し、その反射波を前記受信器で順次受信して発射から受
信までの時間を順次計測し、その計測時間に基づいて、
前記杭の径方向の断面形状および前記鉄筋位置をパター
ンの形態で表すようにしたことを特徴とするものであ
る。
According to a fifth aspect of the present invention, an electromagnetic wave or ultrasonic wave oscillator and a receiver are inserted into holes formed near the radial center of the pile and in the lengthwise direction thereof, respectively.
The oscillator and the receiver are rotated in the circumferential direction in the hole of the pile, and in accordance with this rotation, electromagnetic waves or ultrasonic waves are sequentially emitted from the oscillator in the radial direction of the pile, and the reflected wave is The receiver sequentially receives and sequentially measures the time from launch to reception, and based on the measured time,
The cross-sectional shape of the pile in the radial direction and the position of the reinforcing bar are represented in the form of a pattern.

【0009】請求項6に記載の発明は、請求項5に記載
の杭形状の測定方法において、前記検出の際に、前記発
振器および受信器を前記孔内の長さ方向に移動させるよ
うにしたことを特徴とするものである。請求項7に記載
の発明は、請求項5または請求項6に記載の杭形状の測
定方法において、前記杭が場所打ち杭で杭全体がコンク
リートで充填されている場合、または前記杭が既製杭で
その径方向の中央付近であってその長さ方向に孔がない
場合には、前記場所打ち杭または前記既製杭の径方向の
中央付近であってその長さ方向に測定用の孔を予め形成
し、この形成した孔に前記発振器および前記受信器をそ
れぞれ挿入するようにしたことを特徴とするものであ
る。
According to a sixth aspect of the present invention, in the pile shape measuring method according to the fifth aspect, the oscillator and the receiver are moved in the longitudinal direction in the hole during the detection. It is characterized by that. The invention according to claim 7 is the pile shape measuring method according to claim 5 or 6, wherein the pile is a cast-in-place pile and the entire pile is filled with concrete, or the pile is a ready-made pile. In the case where there is no hole in the lengthwise direction near the center in the radial direction, a hole for measurement is previously provided in the lengthwise direction near the center in the radial direction of the cast-in-place pile or the ready-made pile. It is characterized in that the oscillator and the receiver are respectively inserted into the formed holes.

【0010】このような方法からなる本発明によれば、
杭を地中から露出または杭を切断することなく、杭の径
の測定ができ、杭内の鉄筋位置の検出ができ、および杭
の径方向の断面形状および鉄筋位置をパターンの形態で
観察ができる。
According to the present invention comprising such a method,
The diameter of the pile can be measured, the position of the reinforcing bar in the pile can be detected, and the radial cross-sectional shape and the reinforcing bar position of the pile can be observed in the form of a pattern without exposing the pile from the ground or cutting the pile. it can.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照して説明する。この実施形態では、測定対象にな
る杭として、図1に示すような場所打ち杭の場合につい
て説明する。この場所打ち杭1は、図1に示すように地
中2に構築されており、既存の杭であっても良く、新設
の杭であっても良い。また、この場所打ち杭1は、例え
ば図示のように、鉄筋3とコンクリート4などから構成
される場所打ちコンクリート杭である。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. In this embodiment, as a pile to be measured, a case of a cast-in-place pile as shown in FIG. 1 will be described. The cast-in-place pile 1 is constructed in the ground 2 as shown in FIG. 1, and may be an existing pile or a newly constructed pile. The cast-in-place pile 1 is, for example, a cast-in-place concrete pile composed of reinforcing bars 3 and concrete 4 as shown in the figure.

【0012】このような構成からなる場所打ち杭1で
は、コンクリート4が全体に充填されているので、場所
打ち杭1の径方向の中央付近であってその長さ方向に、
杭形状の測定に先立って、後述のように測定用の孔5を
形成する。次に、図1に示す場所打ち杭1の径の測定、
その杭1内の鉄筋3の位置の検出、およびその杭1の断
面形状などの観察を行う形状測定装置の一例について、
図2を参照して説明する。
In the cast-in-place pile 1 having such a structure, since the concrete 4 is entirely filled, in the lengthwise direction of the cast-in-place pile 1 near the center in the radial direction,
Prior to measuring the pile shape, holes 5 for measurement are formed as described later. Next, measurement of the diameter of the cast-in-place pile 1 shown in FIG.
Regarding an example of a shape measuring device that detects the position of the reinforcing bar 3 in the pile 1 and observes the cross-sectional shape of the pile 1
This will be described with reference to FIG.

【0013】この形状測定装置は、場所打ち杭1の測定
用の孔5内において、杭1の径方向に向けて電磁波また
は超音波を放射してその反射波を受信し、その放射から
反射までの電磁波または超音波の伝搬時間を測定し、こ
の測定時間に基づいて杭1の径の測定、杭1内の鉄筋3
の位置の検出、および杭1の断面形状などの観察を行う
ものである。このように、この形状測定装置では、電磁
波または超音波のいずれも利用できるが、以下では電磁
波を利用した場合について説明する。
This shape measuring apparatus radiates an electromagnetic wave or an ultrasonic wave in the radial direction of the pile 1 in the hole 5 for measurement of the cast-in-place pile 1, receives the reflected wave, and from the radiation to the reflection. The propagation time of electromagnetic waves or ultrasonic waves, and the diameter of the pile 1 is measured based on this measurement time, and the reinforcing bar 3 in the pile 1 is measured.
The position of the pile 1 is detected and the cross-sectional shape of the pile 1 is observed. As described above, in this shape measuring apparatus, either electromagnetic waves or ultrasonic waves can be used, but the case of using electromagnetic waves will be described below.

【0014】このために、この形状測定装置は、図2に
示すように、電磁波発振器11と、電磁波受信器12
と、深さ位置・方向検出器13と、演算処理部14と、
表示部15と、回転・上下移動装置16とを、少なくと
も備えている。電磁波発振器11と電磁波受信器12
は、例えば送受信器17として一体に構成され、場所打
ち杭1に設けた測定用の孔5内に挿入されるようになっ
ている。そして、電磁波発振器11は、電磁波を発生
(発振)するようになっており、場所打ち杭1の孔5内
において、その電磁波を杭1の半径方向に向けて放射で
きるようになっている。電磁波受信器12は、電磁波発
振器11から発射される電磁波の反射波を受信し、この
受信に応じた電気信号を出力するようになっている。
Therefore, as shown in FIG. 2, this shape measuring apparatus is provided with an electromagnetic wave oscillator 11 and an electromagnetic wave receiver 12.
A depth position / direction detector 13, an arithmetic processing unit 14,
At least a display unit 15 and a rotation / vertical movement device 16 are provided. Electromagnetic wave oscillator 11 and electromagnetic wave receiver 12
Is integrally formed, for example, as a transmitter / receiver 17, and is inserted into a measurement hole 5 provided in the cast-in-place pile 1. The electromagnetic wave oscillator 11 is adapted to generate (oscillate) an electromagnetic wave, and in the hole 5 of the cast-in-place pile 1, the electromagnetic wave can be emitted in the radial direction of the pile 1. The electromagnetic wave receiver 12 receives the reflected wave of the electromagnetic wave emitted from the electromagnetic wave oscillator 11, and outputs an electric signal according to this reception.

【0015】電磁波発振器11と電磁波受信器12、す
なわち送受信器17は、回転・上下移動装置16によ
り、測定用の孔5内において周方向に一定速度で360
度回転できるとともに、その孔5の長さ方向(図1
(A)の上下方向)に一定速度で移動できるようになっ
ている。深さ位置・方向検出器13は、送受信器17の
測定用の孔5内における測定位置(深さ)と、電磁波発
振器11から発射される電磁波の発射方向(発射角度)
とを検出し、その検出に応じた位置・方向信号S3を生
成して出力するようになっている。
The electromagnetic wave oscillator 11 and the electromagnetic wave receiver 12, that is, the transmitter / receiver 17 are rotated and moved vertically by the rotating / moving device 16 in the measuring hole 360 at a constant speed in the circumferential direction.
It can be rotated by a degree, and the length direction of the hole 5 (Fig.
It can move at a constant speed in the vertical direction (A). The depth position / direction detector 13 includes a measurement position (depth) in the measurement hole 5 of the transceiver 17 and a radiation direction (radiation angle) of the electromagnetic wave emitted from the electromagnetic wave oscillator 11.
Is detected, and the position / direction signal S3 corresponding to the detection is generated and output.

【0016】演算処理部14は、コンピュータなどから
構成され、電磁波発振器11の電磁波の発射のタイミン
グを示す発射タイミング信号S1と、電磁波受信器12
が受信した反射波に応じた電気信号S2とに基づき、電
磁波の発射から受信までの時間を測定し、この測定時間
に基づいて杭1の半径(または杭1の直径)の算出、鉄
筋3の位置の検出などを行うようになっている。
The arithmetic processing unit 14 is composed of a computer and the like, and emits a timing signal S1 indicating the timing of emission of the electromagnetic wave of the electromagnetic wave oscillator 11 and the electromagnetic wave receiver 12.
Based on the electric signal S2 corresponding to the received reflected wave, the time from the emission of the electromagnetic wave to the reception is measured, and the radius of the pile 1 (or the diameter of the pile 1) is calculated based on this measurement time. The position is detected.

【0017】また、演算処理部14は、深さ位置・方向
検出器13からの位置・方向信号S3を取得することに
より、送受信器17の孔5内での測定位置と電磁波の発
射方向を認識できるので、上記で算出する杭1の半径、
および上記で検出する鉄筋3の位置は、その測定位置と
電磁波の発射方向に対応するものとなる。さらに、演算
処理部14は、その各測定位置および電磁波の発射方向
に対応して測定された杭1の半径のデータ、鉄筋3の位
置の検出データに基づいて、その測定位置における杭1
の径方向の断面形状(断面の輪郭)および鉄筋3の位置
をパターンの形態で表示部15に表示するための表示デ
ータを作成するようになっている。
Further, the arithmetic processing section 14 recognizes the measurement position in the hole 5 of the transceiver 17 and the emission direction of the electromagnetic wave by acquiring the position / direction signal S3 from the depth position / direction detector 13. Because it is possible, the radius of the pile 1 calculated above,
The position of the reinforcing bar 3 detected above corresponds to the measurement position and the emission direction of the electromagnetic wave. Further, the arithmetic processing unit 14 determines the pile 1 at the measurement position based on the data of the radius of the pile 1 measured corresponding to each measurement position and the emission direction of the electromagnetic wave and the detection data of the position of the reinforcing bar 3.
The display data for displaying the cross-sectional shape (outline contour) in the radial direction and the position of the reinforcing bar 3 in the form of a pattern on the display unit 15 is created.

【0018】表示部15は、演算処理部14で求められ
た杭1の半径(または杭の直径)、鉄筋3の位置を数値
でそれぞれ表示するとともに、杭の径方向の断面形状お
よび鉄筋3の位置をパターンの形態で白黒表示またはカ
ラー表示し、その表示の際に例えば色別表示などにより
わかり易く表示するようになっている。次に、図1に示
す場所打ち杭1について、図2に示す形状測定装置を用
いて測定する方法の一例について、図1および図2を参
照して説明する。
The display unit 15 numerically displays the radius of the pile 1 (or the diameter of the pile) and the position of the reinforcing bar 3 obtained by the arithmetic processing unit 14, and also displays the radial cross-sectional shape of the pile and the reinforcing bar 3. The position is displayed in black and white or color in the form of a pattern, and at the time of the display, it is displayed in an easy-to-understand manner by, for example, color display. Next, an example of a method for measuring the cast-in-place pile 1 shown in FIG. 1 using the shape measuring device shown in FIG. 2 will be described with reference to FIGS. 1 and 2.

【0019】まず、場所打ち杭1の径方向の中央付近で
あってその長さ方向に、測定用の孔5を形成する。次
に、その孔5内に、電磁波発振器11と電磁波受信器1
2からなる送受信器17を挿入する。次いで、電磁波発
振器11により電磁波を発生させると、この電磁波は杭
1の半径方向に向けて放射される。このため、その電磁
波は、杭1内を半径方向に向けて伝搬し、杭1の外壁面
(外端面)で反射される。この反射波は、電磁波受信器
12で受信され、その受信に応じた電気信号S2が出力
される。
First, a hole 5 for measurement is formed near the radial center of the cast-in-place pile 1 and in the lengthwise direction thereof. Next, in the hole 5, the electromagnetic wave oscillator 11 and the electromagnetic wave receiver 1
A transceiver 17 consisting of 2 is inserted. Next, when an electromagnetic wave is generated by the electromagnetic wave oscillator 11, this electromagnetic wave is radiated in the radial direction of the pile 1. Therefore, the electromagnetic wave propagates in the pile 1 in the radial direction and is reflected by the outer wall surface (outer end surface) of the pile 1. The reflected wave is received by the electromagnetic wave receiver 12, and the electric signal S2 corresponding to the reception is output.

【0020】なお、その電磁波が鉄筋3で反射される場
合にも、その反射波は電磁波受信器12で受信される
が、杭1の外壁面で反射される場合の反射波とは、タイ
ミングや強度が違うのでその違いにより区別できる。送
受信器17は、回転・上下移動装置16により、測定用
の孔5内において、周方向に一定速度で360度回転す
る。そして、この1回転中は、電磁波発振器11は所定
の間隔で電磁波を順次半径方向に向けて放射し、その反
射波を電磁波受信器12が順次受信する。
Even when the electromagnetic wave is reflected by the reinforcing bar 3, the reflected wave is received by the electromagnetic wave receiver 12, but the reflected wave when reflected by the outer wall surface of the pile 1 is the timing or Since the strength is different, it can be distinguished by the difference. The transmitter / receiver 17 is rotated 360 degrees at a constant speed in the circumferential direction in the measurement hole 5 by the rotation / vertical movement device 16. Then, during this one rotation, the electromagnetic wave oscillator 11 sequentially radiates electromagnetic waves in the radial direction at predetermined intervals, and the electromagnetic wave receiver 12 sequentially receives the reflected waves.

【0021】このとき、深さ位置・方向検出器13によ
り、送受信器17の上下方向の測定位置(深さ)と電磁
波の発射方向とがそれぞれ検出され、その検出に応じた
位置・方向信号S3が演算処理部14に出力される。演
算処理部14は、電磁波発振器11の電磁波の発射のタ
イミングを示す発射タイミング信号S1と、電磁波受信
器12が受信した反射波に応じた電気信号S2とに基づ
き、電磁波の発射から受信までの時間を測定する。そし
て、この測定時間に基づくとともに、位置・方向信号S
3を参照し、送受信器17の測定位置および電磁波の発
射方向に対応する、杭1の半径(または杭1の直径)の
算出と、鉄筋3の位置の検出をそれぞれ行う。
At this time, the depth position / direction detector 13 detects the vertical measurement position (depth) of the transceiver 17 and the electromagnetic wave emission direction, and the position / direction signal S3 corresponding to the detection is detected. Is output to the arithmetic processing unit 14. The arithmetic processing unit 14 calculates the time from the emission of the electromagnetic wave to the reception based on the emission timing signal S1 indicating the emission timing of the electromagnetic wave of the electromagnetic wave oscillator 11 and the electric signal S2 corresponding to the reflected wave received by the electromagnetic wave receiver 12. To measure. Based on this measurement time, the position / direction signal S
3, the radius of the pile 1 (or the diameter of the pile 1) corresponding to the measurement position of the transceiver 17 and the emission direction of the electromagnetic wave is calculated, and the position of the reinforcing bar 3 is detected.

【0022】さらに、演算処理部14は、その各測定位
置および電磁波の発射方向に対応して算出された杭1の
半径のデータ、鉄筋3の位置の検出データに基づいて、
杭1の径方向の断面形状および鉄筋3の位置をパターン
の形態で表示部15の表示画面に表示するための表示デ
ータを作成する。送受信器17の1回転が終了すると、
表示部15の表示画面には、演算処理部14で求められ
た杭1の半径(または杭の直径)、鉄筋3の位置が数値
で表示され、併せて杭の径方法の断面形状および鉄筋3
の位置がパターンの形態で表示される。
Further, the arithmetic processing unit 14 calculates, based on the data of the radius of the pile 1 and the detection data of the position of the reinforcing bar 3 calculated corresponding to the respective measurement positions and the emission direction of the electromagnetic wave,
Display data for displaying the radial cross-sectional shape of the pile 1 and the position of the reinforcing bar 3 in the form of a pattern on the display screen of the display unit 15 is created. When one turn of the transceiver 17 is completed,
On the display screen of the display unit 15, the radius of the pile 1 (or the diameter of the pile) and the position of the reinforcing bar 3 calculated by the arithmetic processing unit 14 are displayed numerically, and the cross-sectional shape of the pile diameter method and the reinforcing bar 3 are also displayed.
The position of is displayed in the form of a pattern.

【0023】さらに、送受信器17は1回転が終了する
と、上記の電磁波の発生とその受信の動作をいったん停
止し、孔5の下方に向けて一定速度で所定距離だけ移動
する。この移動が終了すると、送受信器17は再び1回
転を開始し、この回転中は上記の電磁波の発生とその受
信の動作を行う。以後、測定が終了するまで、上記の各
動作を交互に繰り返す。
When the transmitter / receiver 17 completes one rotation, the operation of generating and receiving the electromagnetic wave is temporarily stopped, and the transmitter / receiver 17 moves downwardly of the hole 5 at a constant speed for a predetermined distance. When this movement is completed, the transmitter / receiver 17 starts one rotation again, and during this rotation, the above-described electromagnetic wave generation and reception operations are performed. After that, the above operations are alternately repeated until the measurement is completed.

【0024】以上説明したように、この実施形態によれ
ば、杭を地中から露出または杭を切断することなく、杭
全体の径の測定、杭内の鉄筋位置の検出を、数値データ
で把握できるとともに、杭全体の径方向の断面形状およ
び鉄筋3の位置をパターンの形態で観察できる。なお、
上記の実施形態では、電磁波を利用することにより、杭
の各部の径の測定、杭内の鉄筋位置の検出などを行うよ
うにした。しかし、本発明は、電磁波に代えて、超音波
を利用することにより、杭の各部の径の測定、杭内の鉄
筋位置の検出などを行うようにしても良い。
As described above, according to this embodiment, the diameter of the entire pile is measured and the position of the reinforcing bar in the pile is detected by numerical data without exposing the pile from the ground or cutting the pile. In addition, the cross-sectional shape of the entire pile in the radial direction and the position of the reinforcing bar 3 can be observed in the form of a pattern. In addition,
In the above embodiment, the diameter of each part of the pile is measured and the position of the reinforcing bar in the pile is detected by using the electromagnetic wave. However, in the present invention, ultrasonic waves may be used instead of electromagnetic waves to measure the diameter of each part of the pile, detect the position of the reinforcing bar in the pile, and the like.

【0025】この場合には、図2に示す形状測定装置
は、電磁波発振器11と電磁波受信器12とを超音波を
発生する超音波発振器とその反射波を受信する超音波受
信器に置き換えるようにすれば良く、他の部分の信号処
理は、上記と基本的に同様である。このため、超音波に
より電磁波と同様の測定やパターンの作成ができる。ま
た、上記の実施形態では、測定対象になる杭として図1
に示すような場所打ち杭1とした。しかし、本発明の測
定対象となる杭は、上記の場所打ち杭1の他に、既製コ
ンクリート杭のような既製杭であって、地中に埋められ
たものであっても良い。
In this case, in the shape measuring apparatus shown in FIG. 2, the electromagnetic wave oscillator 11 and the electromagnetic wave receiver 12 are replaced with an ultrasonic wave oscillator for generating an ultrasonic wave and an ultrasonic wave receiver for receiving a reflected wave thereof. The signal processing of other parts is basically the same as the above. Therefore, ultrasonic waves can be used for the same measurements and patterns as electromagnetic waves. In addition, in the above-described embodiment, as the pile to be measured, as shown in FIG.
The cast-in-place pile 1 as shown in FIG. However, in addition to the cast-in-place pile 1 described above, the pile to be measured according to the present invention may be a ready-made pile such as a ready-made concrete pile and buried in the ground.

【0026】この場合に、その既製杭の径方向の中央部
に土やソイルセメント等が充填されており、その長さ方
向に孔が無いような場合には、測定に先立って、その長
さ方向に測定用の孔を設ける必要がある。なお、既存の
孔がある場合には、その既存の孔を利用すれば良い。さ
らに、上記の実施形態では、電磁波発振器11の電磁波
の発射方法は、杭1の半径方向、すなわち、杭1の長さ
方向と直交する方向とした。しかし、電磁波の発射方向
は、必ずしも杭の長さ方向と直交する方向でなくても良
く、その長さ方向と交差する方向であれば良い。さらに
また、上記の実施形態では、送受信器17を回転させな
がら電磁波を発射しこれを受信するようにしたが、その
送受信器17の回転は連続回転または間欠回転のいずれ
でも良い。送受信器17が間欠回転の場合には、回転が
停止するたびに測定を行うのが好ましい。
In this case, when the ready-made pile is filled with soil or soil cement in the radial center and there is no hole in the longitudinal direction, the length of the ready-made pile is measured prior to the measurement. It is necessary to provide a hole for measurement in the direction. If there is an existing hole, the existing hole may be used. Further, in the above-described embodiment, the electromagnetic wave emission method of the electromagnetic wave oscillator 11 is the radial direction of the pile 1, that is, the direction orthogonal to the length direction of the pile 1. However, the emission direction of the electromagnetic wave does not necessarily have to be the direction orthogonal to the length direction of the pile, and may be the direction intersecting the length direction. Furthermore, in the above-described embodiment, the electromagnetic wave is emitted and received while rotating the transceiver 17, but the rotation of the transceiver 17 may be continuous rotation or intermittent rotation. When the transceiver 17 is intermittently rotated, it is preferable to perform the measurement each time the rotation is stopped.

【0027】[0027]

【発明の効果】以上述べたように、本発明によれば、杭
を地中から露出または杭を切断することなく、杭の径の
測定ができ、杭内の鉄筋位置の検出ができ、さらに杭の
径方向の断面形状および鉄筋位置をパターンの形態で観
察できる。
As described above, according to the present invention, the diameter of the pile can be measured and the position of the reinforcing bar in the pile can be detected without exposing the pile from the ground or cutting the pile. It is possible to observe the radial cross-sectional shape and the reinforcing bar position of the pile in the form of a pattern.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施形態の測定方法の一例を説明する
説明図であり、(A)は測定の概要を説明する断面図、
(B)は(A)に示す杭の横断面図である。
FIG. 1 is an explanatory diagram illustrating an example of a measurement method according to an embodiment of the present invention, in which (A) is a cross-sectional view illustrating an outline of measurement,
(B) is a cross-sectional view of the pile shown in (A).

【図2】本発明の実施形態の測定方法に使用される形状
測定装置の構成の一例を示すブロック図である。
FIG. 2 is a block diagram showing an example of a configuration of a shape measuring apparatus used in the measuring method according to the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 場所打ち杭 2 地中 3 鉄筋 4 コンクリート 5 測定用の孔 11 電磁波発振器 12 電磁波受信器 13 深さ位置・方向検出器 14 演算処理部 15 表示部 16 回転・上下移動装置 17 送受信器 1 cast-in-place 2 underground 3 rebar 4 concrete 5 holes for measurement 11 Electromagnetic wave oscillator 12 Electromagnetic wave receiver 13 Depth position / direction detector 14 Arithmetic processing unit 15 Display 16 rotation and vertical movement device 17 transceiver

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G01S 15/10 G01S 15/10 (72)発明者 真島 正人 東京都新宿区西新宿一丁目25番1号 大成 建設株式会社内 Fターム(参考) 2D041 AA01 AA02 CB05 DA03 DB03 2F067 AA04 AA22 AA52 CC00 CC03 HH01 JJ01 KK08 NN08 NN10 2F068 AA01 AA25 BB12 BB23 BB26 CC11 CC13 FF25 JJ14 5J070 AB01 AC01 AC02 AE07 AK39 5J083 AA02 AB20 AC29 AD01 AD04 AE06 BD11 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) G01S 15/10 G01S 15/10 (72) Inventor Masato Majima 1-25-1 Nishishinjuku, Shinjuku-ku, Tokyo Taisei Corporation's F-term (reference) 2D041 AA01 AA02 CB05 DA03 DB03 2F067 AA04 AA22 AA52 CC00 CC03 HH01 JJ01 KK08 NN08 NN10 2F068 AA01 AA25 BB12 BB23 AD23 AC29 A02 AD29 AC02 AJ02 5A07A01 A01 BD11

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 杭の径方向の中央付近であってその長さ
方向に形成される孔に、電磁波または超音波の発振器お
よび受信器をそれぞれ挿入し、前記発振器から前記杭の
長さ方向と交差する方向に向けて電磁波または超音波を
発射し、その反射波を前記受信器で受信して発射から受
信までの時間を計測し、その計測時間に基づいて、前記
杭の径および前記杭内の鉄筋位置のうちの少なくとも一
方を検出するようにしたことを特徴とする杭形状の測定
方法。
1. An electromagnetic wave or ultrasonic wave oscillator and a receiver are respectively inserted into holes formed in the longitudinal direction of the pile near the center in the radial direction, and the oscillator is connected to the longitudinal direction of the pile from the oscillator. Electromagnetic waves or ultrasonic waves are emitted toward the intersecting direction, the reflected wave is received by the receiver, the time from emission to reception is measured, and based on the measured time, the diameter of the pile and the inside of the pile At least one of the reinforcing bar positions is detected.
【請求項2】 前記検出の際には、前記発振器および受
信器を回転させるようにしたことを特徴とする請求項1
に記載の杭形状の測定方法。
2. The oscillator and the receiver are rotated during the detection.
The method for measuring the pile shape described in.
【請求項3】 前記検出の際には、前記発振器および受
信器を前記孔内の長さ方向に移動させるようにしたこと
を特徴とする請求項1または請求項2に記載の杭形状の
測定方法。
3. The pile-shaped measurement according to claim 1, wherein the oscillator and the receiver are moved in a longitudinal direction in the hole during the detection. Method.
【請求項4】 前記杭が場所打ち杭で杭全体がコンクリ
ートで充填されている場合、または前記杭が既製杭でそ
の径方向の中央付近であってその長さ方向に孔がない場
合には、前記場所打ち杭または前記既製杭の径方向の中
央付近であってその長さ方向に測定用の孔を予め形成
し、この形成した孔に前記発振器および前記受信器をそ
れぞれ挿入するようにしたことを特徴とする請求項1乃
至請求項3のいずれかに記載の杭形状の測定方法。
4. When the pile is a cast-in-place pile and the whole pile is filled with concrete, or when the pile is a ready-made pile near the radial center and there is no hole in the length direction. , A hole for measurement is preformed in the lengthwise direction near the radial center of the cast-in-place pile or the ready-made pile, and the oscillator and the receiver are inserted into the formed holes, respectively. The method for measuring a pile shape according to any one of claims 1 to 3, wherein:
【請求項5】 杭の径方向の中央付近であってその長さ
方向に形成される孔に、電磁波または超音波の発振器お
よび受信器をそれぞれ挿入し、前記発振器および前記受
信器を前記杭の孔内において円周方向に回転させ、この
回転に応じて前記発振器から前記杭の半径方向に向けて
電磁波または超音波を順次発射し、その反射波を前記受
信器で順次受信して発射から受信までの時間を順次計測
し、その計測時間に基づいて、前記杭の径方向の断面形
状および前記鉄筋位置をパターンの形態で表すようにし
たことを特徴とする杭形状の測定方法。
5. An electromagnetic wave or ultrasonic wave oscillator and a receiver are respectively inserted into holes formed in the longitudinal direction of the pile near the center in the radial direction, and the oscillator and the receiver are attached to the pile. It rotates in the hole in the circumferential direction, and in response to this rotation, electromagnetic waves or ultrasonic waves are sequentially emitted from the oscillator in the radial direction of the pile, and the reflected waves are sequentially received by the receiver and received from the emission. The method for measuring the pile shape is characterized in that: the time until is sequentially measured, and the radial cross-sectional shape of the pile and the reinforcing bar position are expressed in the form of a pattern based on the measured time.
【請求項6】 前記検出の際に、前記発振器および受信
器を前記孔内の長さ方向に移動させるようにしたことを
特徴とする請求項5に記載の杭形状の測定方法。
6. The pile shape measuring method according to claim 5, wherein the oscillator and the receiver are moved in a longitudinal direction in the hole during the detection.
【請求項7】 前記杭が場所打ち杭で杭全体がコンクリ
ートで充填されている場合、または前記杭が既製杭でそ
の径方向の中央付近であってその長さ方向に孔がない場
合には、前記場所打ち杭または前記既製杭の径方向の中
央付近であってその長さ方向に測定用の孔を予め形成
し、この形成した孔に前記発振器および前記受信器をそ
れぞれ挿入するようにしたことを特徴とする請求項5ま
たは請求項6に記載の杭形状の測定方法。
7. If the pile is a cast-in-place pile and the whole pile is filled with concrete, or if the pile is a ready-made pile near its radial center and has no holes in its length direction. , A hole for measurement is preformed in the lengthwise direction near the radial center of the cast-in-place pile or the ready-made pile, and the oscillator and the receiver are inserted into the formed holes, respectively. The method for measuring a pile shape according to claim 5 or 6, characterized in that.
JP2002146472A 2002-05-21 2002-05-21 Rebar position measurement method Expired - Fee Related JP4113378B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002146472A JP4113378B2 (en) 2002-05-21 2002-05-21 Rebar position measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002146472A JP4113378B2 (en) 2002-05-21 2002-05-21 Rebar position measurement method

Publications (2)

Publication Number Publication Date
JP2003337015A true JP2003337015A (en) 2003-11-28
JP4113378B2 JP4113378B2 (en) 2008-07-09

Family

ID=29705446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002146472A Expired - Fee Related JP4113378B2 (en) 2002-05-21 2002-05-21 Rebar position measurement method

Country Status (1)

Country Link
JP (1) JP4113378B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009092444A (en) * 2007-10-05 2009-04-30 Tokyo Soil Research Co Ltd Method and device for measuring pile shape
JP2010117143A (en) * 2008-11-11 2010-05-27 Tokyo Soil Research Co Ltd Method and device for measuring shape of drilling hole
JP2011149858A (en) * 2010-01-22 2011-08-04 Toyo Asano Foundation Co Ltd Non-destructive measurement fixture, device for measuring concrete covering thickness using the same, and method for measuring concrete covering thickness in sc pile
CN106767583A (en) * 2016-12-30 2017-05-31 华中科技大学 For the longitudinal profile Equivalent Pile footpath computational methods of pile detection sound wave transmission method
CN109056851A (en) * 2018-07-16 2018-12-21 中国建筑股份有限公司 The superfilled monitoring system and method for concrete based on acoustic-electric coupled resonance system
JP2019015084A (en) * 2017-07-06 2019-01-31 株式会社大林組 Concrete filling confirming method
CN112255314A (en) * 2020-11-02 2021-01-22 西南交通大学 Concrete conveying guide pipe position measuring device
RU2757473C1 (en) * 2021-02-19 2021-10-18 Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук Device for measuring the diameter of the wire

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009092444A (en) * 2007-10-05 2009-04-30 Tokyo Soil Research Co Ltd Method and device for measuring pile shape
JP2010117143A (en) * 2008-11-11 2010-05-27 Tokyo Soil Research Co Ltd Method and device for measuring shape of drilling hole
JP2011149858A (en) * 2010-01-22 2011-08-04 Toyo Asano Foundation Co Ltd Non-destructive measurement fixture, device for measuring concrete covering thickness using the same, and method for measuring concrete covering thickness in sc pile
CN106767583A (en) * 2016-12-30 2017-05-31 华中科技大学 For the longitudinal profile Equivalent Pile footpath computational methods of pile detection sound wave transmission method
JP2019015084A (en) * 2017-07-06 2019-01-31 株式会社大林組 Concrete filling confirming method
CN109056851A (en) * 2018-07-16 2018-12-21 中国建筑股份有限公司 The superfilled monitoring system and method for concrete based on acoustic-electric coupled resonance system
CN109056851B (en) * 2018-07-16 2023-09-29 中国建筑股份有限公司 Concrete overcharging monitoring system and method based on acoustic-electric coupling resonance system
CN112255314A (en) * 2020-11-02 2021-01-22 西南交通大学 Concrete conveying guide pipe position measuring device
CN112255314B (en) * 2020-11-02 2022-02-22 西南交通大学 Concrete conveying guide pipe position measuring device
RU2757473C1 (en) * 2021-02-19 2021-10-18 Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук Device for measuring the diameter of the wire

Also Published As

Publication number Publication date
JP4113378B2 (en) 2008-07-09

Similar Documents

Publication Publication Date Title
JP3768101B2 (en) Landmine detection device and inspection device
JP4050172B2 (en) Evaluation method for soundness of concrete piles
JP2003337015A (en) Measuring method for shape of pile
JPH03260295A (en) Calculator of backfilling grouting quantity in shield method and calculation method thereof
CN102102371A (en) Excavator control using ranging radios
JP2001153638A (en) Cross section measuring method and measuring device for underground structure
JP4427331B2 (en) Position detecting apparatus and belonging method
JP5730743B2 (en) Underground displacement measuring device
JP2017040547A (en) Buried object prospecting method and buried object prospecting apparatus
JP3405207B2 (en) Judgment method of ground supported by excavator
JP6960371B2 (en) Ground improvement method
JPH1184020A (en) Method and device for measuring dielectric constant or depth of buried object
JP2019094711A (en) Shape evaluation method of underground object and underground object measurement device
JP2006153783A (en) Buried object survey method and its device
JPS59106624A (en) Underground excavator
JP2005030802A (en) Foundation pile evaluation method
JP2012036590A (en) Drilling hole measuring apparatus and program
JP3272261B2 (en) Hole bending measurement method during drilling
JP2638734B2 (en) Method and apparatus for detecting air gap around shield excavator
JPH0228586A (en) Front and sideward monitoring device by shield drilling method
JP2021001737A (en) Underwater detection device and underwater detection method
CN201845084U (en) Device utilizing inter-hole sound pressure imaging to detect cavern
JP2007120959A (en) Apparatus and method for subterranean survey
JP2736990B2 (en) Measuring method of chemical injection range in ground improvement
JP2003344310A (en) Method and system for searching concealed object

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080307

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080411

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees