JP2003332818A - Surface mount antenna and antenna device mounted with the same - Google Patents
Surface mount antenna and antenna device mounted with the sameInfo
- Publication number
- JP2003332818A JP2003332818A JP2002268047A JP2002268047A JP2003332818A JP 2003332818 A JP2003332818 A JP 2003332818A JP 2002268047 A JP2002268047 A JP 2002268047A JP 2002268047 A JP2002268047 A JP 2002268047A JP 2003332818 A JP2003332818 A JP 2003332818A
- Authority
- JP
- Japan
- Prior art keywords
- antenna
- electrode
- sub
- substrate
- radiation electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Waveguide Aerials (AREA)
- Details Of Aerials (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、誘電体もしくは磁
性体の基体に放射電極を配設したアンテナとそれを搭載
するアンテナ装置又は無線通信装置に係り、特にブルー
トゥース(Bluetooth)や無線LAN(Local Area Netwo
rk)に好適な表面実装型アンテナ及びこれを搭載したア
ンテナ装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an antenna in which a radiation electrode is arranged on a dielectric or magnetic substrate and an antenna device or a wireless communication device equipped with the antenna, and more particularly to a Bluetooth or a wireless LAN (Local). Area Netwo
The present invention relates to a surface mount antenna suitable for rk) and an antenna device equipped with the same.
【0002】[0002]
【従来の技術】誘電体もしくは磁性体からなる基体上に
放射電極等を配置し、直接回路基板に搭載可能とした表
面実装型のチップアンテナが、携帯電話などの無線通信
装置に幅広く使用されている。一方、携帯電話やパソコ
ン間を無線で結合する近距離無線規格のブルートゥース
が本格的に稼動を開始した。ブルートゥースは周知のよ
うに、略2.44GHz±40MHzの周波数帯域が使
われ、半径10m程度の至近距離をカバーすればよいと
されている。また、屋内用LANについては略5.2G
Hz±50MHzの周波数帯域が使われており、最近で
は屋外用をカバーするように4.9〜5.091GHz
の帯域が開放されるに至っている。パソコン等に組み込
まれるアンテナは、指向性および帯域幅等の特性面ばか
りか、実装性に優れていることが要求される。従来、無
線LANあるいはブルートゥース用アンテナとして、マ
イクロストリップアンテナや逆F型アンテナが使用され
てきた。2. Description of the Related Art A surface mount type chip antenna, in which a radiation electrode or the like is arranged on a substrate made of a dielectric or a magnetic material and can be directly mounted on a circuit board, is widely used in wireless communication devices such as mobile phones. There is. Meanwhile, Bluetooth, a short-range wireless standard that wirelessly connects mobile phones and PCs, has started full-scale operation. As is well known, Bluetooth uses a frequency band of approximately 2.44 GHz ± 40 MHz, and is said to cover a close range of a radius of about 10 m. Also, about 5.2G for indoor LAN
The frequency band of Hz ± 50 MHz is used, and recently, to cover the outdoor use, it is 4.9 to 5.091 GHz.
The band has been released. An antenna incorporated in a personal computer or the like is required to have excellent mountability as well as characteristics such as directivity and bandwidth. Conventionally, a microstrip antenna or an inverted F-type antenna has been used as a wireless LAN or Bluetooth antenna.
【0003】図16はマイクロストリップアンテナの基
本構成を示す平面図、およびそのA−A断面図である。
図16において、101は放射導体、102は誘電基
体、103は接地導体である。接地導体103上に誘電
基体102が載置され、さらに誘電基体102上に放射
導体101がエッチング等により形成される。そして、
放射導体101上の入力インピーダンスが給電点系のイ
ンピーダンスと等しくなる位置に、給電点104として
設けられる。FIG. 16 is a plan view showing the basic structure of a microstrip antenna, and a sectional view taken along the line AA.
In FIG. 16, 101 is a radiation conductor, 102 is a dielectric substrate, and 103 is a ground conductor. The dielectric substrate 102 is placed on the ground conductor 103, and the radiation conductor 101 is formed on the dielectric substrate 102 by etching or the like. And
A feeding point 104 is provided at a position where the input impedance on the radiation conductor 101 becomes equal to the impedance of the feeding point system.
【0004】また、図17は片側短絡マイクロストリッ
プアンテナの構成を示す平面図と、そのB−B断面図で
ある。片側短絡マイクロストリップアンテナは、上述の
マイクロストリップアンテナにおける放射導体101の
零電位面を、短絡導体105により、接地導体103と
短絡させるようにしたものである。このようにすると、
同一共振周波数で作動するにも拘わらず、その放射導体
長さの1/2とすることができる。FIG. 17 is a plan view showing the structure of a one-sided short-circuited microstrip antenna and a BB sectional view thereof. The one-side short-circuited microstrip antenna is such that the zero potential surface of the radiation conductor 101 in the above-described microstrip antenna is short-circuited to the ground conductor 103 by the short-circuit conductor 105. This way,
Despite operating at the same resonant frequency, it can be half the length of the radiating conductor.
【0005】次に、図18は板状逆Fアンテナの構成を
示す平面図と、そのC−C断面図である。板状逆Fアン
テナは、短絡導体105の幅Wsを放射導体101の幅
Wbより小さくすることにより、共振周波数が低下する
ため小型化が可能である。また、短絡導体105の中心
の放射導体中心線からのオフセット量については、放射
導体端部の端に設定した方が共振周波数を下げ、小型化
に有利である。Next, FIG. 18 is a plan view showing the structure of a plate-shaped inverted F antenna and a sectional view taken along the line CC. Since the width Ws of the short-circuit conductor 105 is made smaller than the width Wb of the radiation conductor 101, the plate-shaped inverted F antenna can be downsized because the resonance frequency is lowered. Regarding the offset amount of the center of the short-circuit conductor 105 from the center line of the radiation conductor, it is advantageous to set the offset frequency at the end of the radiation conductor to lower the resonance frequency and reduce the size.
【0006】[0006]
【発明が解決しようとする課題】さて、従来使用されて
きた無線LANシステムあるいはブルートゥース用アン
テナには、実装上の問題と指向特性や帯域幅等に関する
特性上の課題がある。図16〜図18に示すように従来
のアンテナは、給電点104が放射導体101の内側に
位置する。これはインピーダンスの整合が図示の位置で
しか得られず、この点以外ではインピーダンスが不整合
となるため、とられる措置である。図には示していない
が、給電には同軸ケーブルが使用され、接地導体103
の背面から同軸ケーブルの中心導体が挿入される。この
ため、実装時にはアンテナの固定、同軸ケーブルの挿入
および放射導体との接続固定など組立作業工程が多くな
り、且つ作業に習熟する必要があった。一方、同軸ケー
ブルを使用しない実装方法もあるが、この場合は給電点
に整合回路等を挿入するため比較的大型で複雑なアンテ
ナ装置となり、無線LANシステムには適合できない。The wireless LAN system or the Bluetooth antenna which has been used conventionally has a problem in mounting and a problem in characteristics such as directivity and bandwidth. As shown in FIGS. 16 to 18, in the conventional antenna, the feeding point 104 is located inside the radiation conductor 101. This is a measure to be taken because impedance matching can be obtained only at the position shown in the figure, and impedance is mismatched at other points. Although not shown in the figure, a coaxial cable is used for power feeding, and the ground conductor 103
The center conductor of the coaxial cable is inserted from the back surface of the. Therefore, at the time of mounting, the number of assembly work steps such as fixing the antenna, inserting the coaxial cable, and fixing the connection with the radiation conductor is increased, and it is necessary to become familiar with the work. On the other hand, there is also a mounting method that does not use a coaxial cable, but in this case, a matching circuit or the like is inserted at the feeding point, resulting in a relatively large and complicated antenna device, which cannot be adapted to a wireless LAN system.
【0007】指向性に関しては、従来、無指向性を持っ
たアンテナあるいは単指向性を持ったアンテナ等が提案
されている。例えば後者については、特開平11−34
0726号公報には基板上の配置によらず基板裏側への
放射を抑えて単指向性を維持したアンテナが開示されて
いる。しかし、携帯電話等のモバイル機器間では、機器
間の相対姿勢に依存しない無指向性なアンテナが望まし
い。また、オフィス内などで天井基地局を介してOA機
器間の交信を行うシステムでは、各OA機器の机上にお
ける方向が制限されないように、水平面内(X−Y面)
に無指向性をもつアンテナが適している。一方、各OA
機器と基地局間で安定な通信を行うためには、水平面に
対して天井方向(+Z方向)に指向性をもつアンテナが
好適である。さらに、各OA機器が金属製の机上に設置
されることを考慮すると、水平面内において鉛直方向偏
波に対する指向性を持つことが望ましい。すなわち、水
平面内(X−Y面)に無指向性を有し、鉛直方向偏波
(V方向偏波)に対して利得が優れていること。さらに
床下方向よりも天井方向に高い指向性をもつアンテナで
あることがニーズに好適と考えられる。しかしながら、
上述した従来のマイクロストリップアンテナや逆Fアン
テナを含めて、基板に対して水平面内に無指向性をも
ち、さらにこの床下方向よりも天井方向に高い指向性を
もつことについては何ら配慮されていないか、不充分な
特性しか備わっていなかった。Regarding the directivity, an omnidirectional antenna, a unidirectional antenna, or the like has been conventionally proposed. For example, regarding the latter, JP-A-11-34
Japanese Patent No. 0726 discloses an antenna that maintains unidirectionality by suppressing radiation toward the back side of the substrate regardless of the arrangement on the substrate. However, between mobile devices such as mobile phones, an omnidirectional antenna that does not depend on the relative posture between the devices is desirable. In a system that communicates between OA devices via a ceiling base station in an office or the like, in a horizontal plane (XY plane) so that the direction of each OA device on the desk is not restricted.
An omnidirectional antenna is suitable for. On the other hand, each OA
An antenna having directivity in the ceiling direction (+ Z direction) with respect to the horizontal plane is suitable for stable communication between the device and the base station. Further, considering that each OA device is installed on a desk made of metal, it is desirable that the OA device has directivity for vertical polarization in a horizontal plane. That is, it has omnidirectionality in the horizontal plane (XY plane) and has excellent gain with respect to vertically polarized waves (V direction polarized waves). Furthermore, it is considered that the antenna having the directivity higher in the ceiling direction than in the underfloor direction is suitable for the needs. However,
No consideration is given to the fact that the above-described conventional microstrip antenna and inverted F antenna have omnidirectionality in the horizontal plane with respect to the substrate and further have higher directivity in the ceiling direction than in the underfloor direction. Or, it had insufficient characteristics.
【0008】さらに、高周波化により帯域幅が狭まると
いう問題がある。従来のアンテナでは給電点における入
力インピーダンスが低くなるため、その対策として容量
結合による給電方式がとられてきた。しかし、この給電
方式は直列の静電容量分が、周波数の増加と共に増加す
るため帯域幅が狭くなる。特に、5GHz以上の高周波
域では、必要とされる帯域幅の確保が難しくなることが
予測される。Further, there is a problem that the bandwidth is narrowed due to the high frequency. Since the input impedance of the conventional antenna is low at the feeding point, the feeding method by capacitive coupling has been adopted as a countermeasure. However, in this power feeding system, the capacitance in series increases as the frequency increases, so the bandwidth becomes narrow. In particular, it is expected that it will be difficult to secure the required bandwidth in a high frequency region of 5 GHz or higher.
【0009】そこで、本発明は、基板に対して水平面
(X−Y面)に無指向性を有し、垂直方向偏波に対する
利得が優れており、且つ天井方向(+Z方向半球)が床
下方向(−Z方向半球)よりも高い指向性を持ち、小型
で帯域幅の広い高性能な表面実装型アンテナと、それを
搭載するのに適切なアンテナ装置を提供することを目的
とする。In view of the above, the present invention has omnidirectionality in the horizontal plane (XY plane) with respect to the substrate, has an excellent gain for vertically polarized waves, and has a ceiling direction (+ Z direction hemisphere) in the underfloor direction. (EN) It is an object to provide a high-performance surface mount antenna having a directivity higher than that of (-Z direction hemisphere), a small size, and a wide bandwidth, and an antenna device suitable for mounting the same.
【0010】[0010]
【課題を解決するための手段】本発明は、誘電体もしく
は磁性体からなる基体の表面に放射電極を配置する表面
実装型アンテナにおいて、前記基体の上面に設けた主放
射電極と、下面に設けた副放射電極と、前記主放射電極
と副放射電極を接合するように側面に設けた接続電極と
を有し、前記接続電極は側面上に左右非対称に設けた表
面実装型アンテナである。The present invention relates to a surface mount antenna in which a radiation electrode is arranged on the surface of a substrate made of a dielectric or magnetic material, and a main radiation electrode provided on the upper surface of the substrate and a main radiation electrode provided on the lower surface of the substrate. The sub-radiation electrode and the connection electrode provided on the side surface so as to join the main radiation electrode and the sub-radiation electrode, and the connection electrode is a surface-mounted antenna that is provided on the side surface asymmetrically.
【0011】本発明において、前記接続電極は基体の側
面を横切るように配置されるものが望ましく、この接続
電極として基体側面の下端と上端を対角線状に結んだ形
状等がある。また、前記主放射電極及び/又は副放射電
極についても基体の中央縦断面に対し左右非対称に形成
することが望ましい。本発明における接続電極は、副放
射電極との接合部に給電点を有している。In the present invention, the connection electrode is preferably arranged so as to cross the side surface of the base body, and this connection electrode has a shape in which the lower end and the upper end of the side surface of the base body are connected diagonally. Further, it is desirable that the main radiation electrode and / or the sub-radiation electrode is also formed asymmetrically with respect to the central longitudinal section of the substrate. The connection electrode in the present invention has a feeding point at the joint with the sub-radiation electrode.
【0012】本発明は、上記した表面実装形アンテナを
両面に地導体を有する回路基板に搭載してなるアンテナ
装置であって、一面側の地導体を削除した露出部に前記
アンテナの副放射電極を載置することにより基板の他面
側の地導体から所要の距離をもって当該アンテナを所要
位置に配置せしめ、前記基板の一面側には給電用ストリ
ップラインと一面側の地導体と連続した接地端を設け、
前記給電用ストリップラインを前記アンテナの副放射電
極と接続電極との接続部分に、また接地端を副放射電極
にそれぞれ接続したアンテナ装置である。ここで前記基
板の他面側にも地導体を削除した露出部を形成し、当該
露出部上に表面実装型アンテナの副放射電極が形成され
ていない領域を載置した構成は帯域幅を広げるのに望ま
しい。The present invention is an antenna device comprising the above-mentioned surface-mounted antenna mounted on a circuit board having ground conductors on both sides, wherein the sub-radiation electrode of the antenna is provided on the exposed portion where the ground conductor on one side is removed. By placing the antenna at a required position with a required distance from the ground conductor on the other surface side of the substrate, and on one surface side of the substrate, a feeding stripline and a ground end continuous with the ground conductor on the one surface side. Is provided
In the antenna device, the feeding stripline is connected to a connection portion between the sub-radiation electrode and the connection electrode of the antenna, and the ground end is connected to the sub-radiation electrode. Here, the exposed portion in which the ground conductor is removed is formed on the other surface side of the substrate, and the area in which the sub-radiation electrode of the surface-mounted antenna is not formed is placed on the exposed portion to widen the bandwidth. Desirable for.
【0013】[0013]
【発明の実施の形態】先ず、本発明のアンテナ及びアン
テナ装置の基本構成(接続電極構造を除く)の特徴につ
いて説明する。本願発明者らは、図15に示すアンテナ
を先に提案している(特願2001−294444
号)。このアンテナは、基体の上面に主放射電極を、下
面に副放射電極を設け、両者を接続導体によって、望ま
しくは台形状の接続電極によって接合し、当該接続電極
と副放射電極の接合部を給電点となすものであった。ま
た、アンテナ装置としては、両面に地導体を有する基板
に実装する際、アンテナを搭載する部位の地導体を取り
除いた露出部を形成し、ここでインピーダンス整合が取
れる位置関係に調整してアンテナを載置し、基板上に設
けた給電用ストリップラインと接地端を適宜接続すると
言うものであった。このアンテナによれば、当初目的と
した放射電極に水平なX−Y面における無指向性と利得
向上および放射電極に垂直なZ方向(天井方向)半球が−
Z方向(床下方向)半球よりも高い指向性を持つという、
2点をほぼ満足することができた。BEST MODE FOR CARRYING OUT THE INVENTION First, the features of the basic configuration (excluding the connection electrode structure) of an antenna and an antenna device of the present invention will be described. The present inventors have previously proposed the antenna shown in FIG. 15 (Japanese Patent Application No. 2001-294444).
issue). In this antenna, a main radiation electrode is provided on the upper surface of a base body, and a sub radiation electrode is provided on the lower surface. The two are joined by a connection conductor, preferably a trapezoidal connection electrode, and the junction between the connection electrode and the sub radiation electrode is fed. It was a point. In addition, as an antenna device, when mounting on a substrate having ground conductors on both sides, an exposed portion is formed by removing the ground conductor at the portion on which the antenna is mounted, and the antenna is adjusted by adjusting the positional relationship so that impedance matching can be obtained. It is said that the power supply strip line provided on the substrate is connected to the ground end as appropriate. According to this antenna, the omnidirectionality and the gain improvement in the XY plane horizontal to the radiation electrode and the Z-direction (ceiling direction) hemisphere perpendicular to the radiation electrode, which is originally intended, are-
It has a higher directivity than the Z direction (underfloor direction) hemisphere,
I was almost satisfied with the two points.
【0014】電界および磁流の分布パターンは放射電極
と地導体の位置あるいは形状で決まり、アンテナの構成
でほぼ固定される。例えば、図15は先の出願で示した
アンテナの構成と磁流を示す図である。本発明とは接続
電極の構成が異なるだけで基本構成による作用効果は同
じなのでこれを利用して説明を加える。表面実装型アン
テナ10は回路基板18の上面側の地導体17aを取り
除いた露出部27上に配置され、裏面の地導体17bと
の間に所要の間隙をもって配置される。ここで放射電極
は主放射電極11と副放射電極13とからなり、両放射
電極は側面に配置された接続電極15によって接合され
導通を得ている。共振電流iの大部分は図中の矢印で示
すように接続電極15を通過して主放射電極11と副放
射電極13に流れる。ここで、従来のアンテナは放射電
極と地導体間の静電容量を利用したものであったから、
共振電流は放射電極と地導体間を往復する。これに対し
本発明のアンテナの共振回路は主放射電極11と副放射
電極13間で形成される。このことは効率の良い共振回
路が得られていることを意味し、指向特性および帯域幅
の改善を図ることが出来る。なお、主および副放射電極
の幅の和であるa+bが、波長(λ)/4の関係を持つ
ことになる。一方、放射電極長さcはa+bに近い値が
好ましい。また、aおよびbを等しいか近い値とすれ
ば、アンテナをほぼ半分の大きさにすることができる。The distribution pattern of the electric field and the magnetic current is determined by the positions or shapes of the radiation electrode and the ground conductor, and is almost fixed by the configuration of the antenna. For example, FIG. 15 is a diagram showing the configuration and magnetic current of the antenna shown in the previous application. The operation and effect of the basic configuration are the same as those of the present invention except that the configuration of the connecting electrode is different. The surface mount antenna 10 is arranged on the exposed portion 27 of the circuit board 18 from which the ground conductor 17a is removed, and is arranged with a required gap between the ground conductor 17b on the back surface. Here, the radiation electrode is composed of a main radiation electrode 11 and a sub-radiation electrode 13, and both radiation electrodes are joined by a connection electrode 15 arranged on the side surface to obtain conduction. Most of the resonance current i passes through the connection electrode 15 and flows into the main radiation electrode 11 and the sub-radiation electrode 13 as shown by the arrow in the figure. Here, since the conventional antenna uses the capacitance between the radiation electrode and the ground conductor,
The resonance current reciprocates between the radiation electrode and the ground conductor. On the other hand, the resonant circuit of the antenna of the present invention is formed between the main radiation electrode 11 and the sub-radiation electrode 13. This means that an efficient resonant circuit is obtained, and the directional characteristics and bandwidth can be improved. Note that a + b, which is the sum of the widths of the primary and secondary radiation electrodes, has a relationship of wavelength (λ) / 4. On the other hand, the radiation electrode length c is preferably close to a + b. Further, if a and b are equal or close to each other, the size of the antenna can be reduced to almost half.
【0015】さらに、接続電極と副放射電極との接合部
12を給電点とし、基板上に設けた給電用ストリップラ
インを用いてアンテナに給電するようにしている。この
給電点は必ずしもインピーダンス整合する場所ではな
く、本発明では基板上に形成されたストリップラインと
地導体との相対位置関係によってインピーダンス整合を
得るように、副放射電極13は地導体17aから所要の
ギャップ間隔D2、W4及び基板端からの間隔D1を調整
して置くようにしている。この配置によって同軸ケーブ
ルを使用しなくても給電することを可能とし、かつイン
ピーダンス整合作用が容易に得られるため整合回路を省
略できる。従来の表面実装型アンテナは、インピーダン
スが整合する位置に給電するか、整合回路を挿入する方
法であったので、これらに比べれば簡単な構成で実用的
な表面実装型アンテナが得られる。Further, the joint portion 12 of the connection electrode and the sub-radiation electrode is used as a feeding point, and the antenna is fed by using the feeding strip line provided on the substrate. This feeding point is not necessarily a place where impedance matching is performed, but in the present invention, the sub-radiating electrode 13 is provided from the ground conductor 17a so that impedance matching can be obtained by the relative positional relationship between the strip line formed on the substrate and the ground conductor. The gap distances D2, W4 and the distance D1 from the substrate end are adjusted and set. With this arrangement, power can be supplied without using a coaxial cable, and an impedance matching action can be easily obtained, so that a matching circuit can be omitted. Since the conventional surface mount antenna is a method of feeding power to a position where impedance is matched or inserting a matching circuit, a practical surface mount antenna can be obtained with a simpler configuration than these.
【0016】本発明は、以上のような基本構成を持った
アンテナであって、主放射電極と副放射電極を接合する
接続電極の構成に改良を加えたものである。つまり、図
15に示した構造の場合、特にX−Z面上、即ち放射電
極に対して垂直方向の頭上に指向性のヌル点が存在する
ことが分かってきた。ここで言うヌル点とは指向性が急
激に落ち込む特異点と言うことが出来、このヌル点があ
ると、このX−Z面方向の通信が不安定となるので望ま
しくない。そこで、本発明では、先の出願の接続電極が
基体の中央縦断面に対し左右対称の電極構成、例えば図
15の例では台形状であったのに対し、本願発明では非
対称としたことを特徴とするものである。非対称の形状
は特に規定するものではなく、非対称とすることにより
X―Z面のバランスが崩れ、一点に集中していた指向性
の急激な落ち込み(ヌル)を緩和する効果を引き出すも
のと考えられる。これはX−Y面上にヌル点が現われた
場合も同様に効果があると考える。これによって、結果
的に放射電極に対して垂直な天井方向(+Z方向半球)
の利得のヌルを低減できる。なお、接続電極は中央縦断
面に対し左右非対称を特定するものではなく、少なくと
も接続電極が側面の中央線に対し左右非対称であれば良
い。The present invention is an antenna having the above-described basic structure, in which the structure of the connection electrode for joining the main radiation electrode and the sub radiation electrode is improved. That is, in the case of the structure shown in FIG. 15, it has been found that there is a directional null point particularly on the XZ plane, that is, on the head in the direction perpendicular to the radiation electrode. The null point here can be said to be a singular point at which the directivity sharply drops, and if there is this null point, communication in the XZ plane direction becomes unstable, which is not desirable. Therefore, in the present invention, the connecting electrode of the previous application has a symmetrical electrode configuration with respect to the central longitudinal cross section of the substrate, for example, the trapezoidal shape in the example of FIG. It is what The asymmetrical shape is not particularly specified, and it is considered that the asymmetrical shape will bring about the effect of alleviating the sudden dip (null) in the directivity that is concentrated at one point because the balance of the XZ plane is lost. . It is considered that this is also effective when a null point appears on the XY plane. This results in a ceiling direction (+ Z direction hemisphere) perpendicular to the radiation electrode.
The gain null can be reduced. It should be noted that the connection electrode does not specify left-right asymmetry with respect to the central longitudinal section, and at least the connection electrode may be left-right asymmetric with respect to the center line of the side surface.
【0017】以下、本発明の一実施例を図面を参照して
説明する。図1は本発明による表面実装型アンテナの概
要を示す斜視図である。基体10aの上面に主放射電極
11aを、下面に副放射電極13aを形成し、側面に接
合部(給電点)12aから前記副放射電極13aと主放
射電極11aを結ぶように下端中央から上端右隅に掛け
て傾斜した接続電極15aを設けたものである。19は
信号給電源、23は地導体への接続端である。図2は他
の実施例を示す表面実装型アンテナの斜視図である。こ
の例では接続電極15bは側面の対角線に設けたもので
ある。図2の方が図1よりもX−Z面のヌルが低減し
た。これは、図2の接続電極の方が基体の中央縦断面に
対する左右非対称性が顕著になったため、と考えられ
る。このように本発明の接続電極は、基体正面の側面を
横切るように配置したものであり、細かな形状までは規
定するものではなく、結果的に中央に対し左右非対称に
形成してあれば良い。例えば、図1、2のように接続部
が基体の前後側面に位置する場合もあるし、基体の左右
端面に位置する場合もある。少なくとも接続電極を設け
る面上において中央線に対し非対称になっておればよ
い。また形状の他の例としては図3〜図6に示すような
形状も考えられる。また、上述したが接合部あるいは接
地部は、実施例では基体の手前側面に設けているが、必
ずしもこの側面でなくても良く、左右の端面側の面に接
合部と接続電極を設けた例をとることが出来る。An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view showing an outline of a surface mount antenna according to the present invention. The main radiation electrode 11a is formed on the upper surface of the substrate 10a, the sub-radiation electrode 13a is formed on the lower surface, and the lower end center to the upper end right are formed so as to connect the sub-radiation electrode 13a and the main radiation electrode 11a from the joint portion (feeding point) 12a to the side surface. The connection electrode 15a is provided so as to be hung in a corner and inclined. Reference numeral 19 is a signal power supply, and 23 is a connection end to the ground conductor. FIG. 2 is a perspective view of a surface mount antenna showing another embodiment. In this example, the connection electrode 15b is provided on a diagonal line on the side surface. The null in the XZ plane was smaller in FIG. 2 than in FIG. It is considered that this is because the connection electrode in FIG. 2 has more remarkable left-right asymmetry with respect to the central longitudinal cross section of the substrate. As described above, the connection electrode of the present invention is arranged so as to cross the side surface of the front surface of the base body, and the fine shape is not specified. As a result, it may be formed asymmetrically with respect to the center. . For example, the connecting portions may be located on the front and rear side surfaces of the base as shown in FIGS. 1 and 2, or may be located on the left and right end surfaces of the base. At least the surface on which the connection electrode is provided may be asymmetric with respect to the center line. Further, as another example of the shape, shapes shown in FIGS. 3 to 6 are also conceivable. Further, as described above, the joint portion or the ground portion is provided on the front side surface of the base body in the embodiment, but it is not always necessary to provide this side surface, and an example in which the joint portion and the connection electrode are provided on the left and right end surface sides Can be taken.
【0018】また、主放射電極11は必ずしも上面の全
部に設ける必要はなく、例えば、図3のように主放射電
極を半面だけに設けた例や、図4のようにL字状、図5
のように円弧状、図6のように面の一部に設けた例でも
実施できる。同様に副放射電極13も図4〜図6のよう
に底面の一部に設けた例でも良い。図3や図4の方が図
2よりもX−Z面のヌルはさらに低減した。これは、主
放射電極や副放射電極についても中央縦断面に対する左
右非対称性が顕著になったため、と考えられる。さら
に、図7に主放射電極と副放射電極の他のパターン(符
号省略)について例示しているが、この様に色々なパタ
ーンとその組み合わせが考えられる。Further, the main radiation electrode 11 does not necessarily have to be provided on the entire upper surface. For example, an example in which the main radiation electrode is provided on only one half surface as shown in FIG. 3, an L shape as shown in FIG.
It can also be implemented in an example in which it is arcuate as shown in FIG. Similarly, the sub-radiation electrode 13 may be provided on a part of the bottom surface as shown in FIGS. The nulls on the XZ plane were further reduced in FIGS. 3 and 4 than in FIG. It is considered that this is because the main radiation electrode and the sub-radiation electrode also have remarkable left-right asymmetry with respect to the central longitudinal section. Furthermore, FIG. 7 exemplifies another pattern (reference numeral omitted) of the main radiation electrode and the sub radiation electrode, but various patterns and combinations thereof can be considered.
【0019】次に、これら本発明の表面実装型アンテナ
を回路基板に表面実装したアンテナ装置について説明す
る。図8(a)は、両面に地導体を配した回路基板上に
アンテナを搭載した平面図、(b)はこの基板を裏から
見た下面図である。図示するようにアンテナ10は、基
板の一面側で地導体17aを除去して絶縁層を露出させ
た露出部27内に搭載されている。この露出部27はア
ンテナ10より広く、搭載位置の電極のフットパターン
や地導体との間の寸法関係によりインピーダンスを整合
するように配置される。他方、アンテナ10の裏面側は
地導体17bが残されたままであり、これによって副放
射電極13は裏面の地導体17と所要のギャップ間隔
(基板の絶縁層厚さ)を介して設けたことになる。Next, an antenna device in which these surface-mounted antennas of the present invention are surface-mounted on a circuit board will be described. FIG. 8A is a plan view in which an antenna is mounted on a circuit board having ground conductors on both sides, and FIG. 8B is a bottom view of this board viewed from the back. As illustrated, the antenna 10 is mounted in the exposed portion 27 where the ground conductor 17a is removed on one surface side of the substrate to expose the insulating layer. The exposed portion 27 is wider than the antenna 10 and is arranged so as to match the impedance according to the dimensional relationship between the foot pattern of the electrode at the mounting position and the ground conductor. On the other hand, the ground conductor 17b remains on the back surface side of the antenna 10, which allows the sub-radiation electrode 13 to be provided via the ground conductor 17 on the back surface with a required gap distance (thickness of the insulating layer of the substrate). Become.
【0020】表面実装型アンテナへの給電は、基板の略
中央に設けた給電用ストリップライン23を使用する。
基板上の電極フットパターンとしては、図9に示すよう
に露出部27内にストリップライン23、地導体と連続
した接地端24を設け、さらに固定用の浮島電極(補強
電極)26を形成している。これらと地導体の位置、寸
法によってインピーダンス整合を図り、ストリップライ
ン23を副放射電極13と接続導体15の接合部(給電
点12)に接続し、はんだ付けで実装固着した後、導通
をとれば給電回路を構成できる。以上により、迅速にイ
ンピーダンス整合を図り、確実にアンテナを基板に搭載
することができ、更に強固な接続が可能となる。因み
に、図中に示す寸法はD1=0.5mm、D2=1mm、D3
=2mm、D4=1mm及びW0、W1、W2、W4=1m
m、W3=3mmである。地導体基板は厚さが0.6mm
で、両面の地導体用の銅板は数10μmである。For feeding power to the surface-mounted antenna, a feeding stripline 23 provided in the substantial center of the substrate is used.
As an electrode foot pattern on the substrate, as shown in FIG. 9, a strip line 23, a ground end 24 continuous with a ground conductor are provided in an exposed portion 27, and a floating island electrode (reinforcing electrode) 26 for fixing is further formed. There is. Impedance matching is aimed at by the position and dimensions of these and the ground conductor, and the strip line 23 is connected to the joint portion (feeding point 12) of the sub-radiation electrode 13 and the connection conductor 15, and after mounting and fixing by soldering, conduction is achieved. A power supply circuit can be configured. As described above, impedance matching can be achieved quickly, the antenna can be surely mounted on the substrate, and a stronger connection can be achieved. By the way, the dimensions shown in the figure are D1 = 0.5mm, D2 = 1mm, D3
= 2mm, D4 = 1mm and W0, W1, W2, W4 = 1m
m and W3 = 3 mm. The ground conductor board has a thickness of 0.6 mm.
The copper plate for ground conductors on both sides is several tens of μm.
【0021】次に、本発明による表面実装型アンテナを
実装したアンテナ装置について特性評価試験を行った。
試作したアンテナ試料は5GHz帯無線LAN用を目的
に開発したものであり、米国、欧州、日本などで使用可
能となる場合を想定して試作したものである。試料とし
ては、長さ5mm、幅5mm、厚さ3mmのアンテナ基
体に対し、(イ)比較例として図15の電極構造を持つ
アンテナA、(ロ)実施例1として図1に示した電極構
造を持つアンテナB、(ハ)実施例2として図3に示し
た電極構造を持つアンテナCを用いた。これらアンテナ
A、B、Cを縦85mm、横55mm、厚さ0.6mm
のプリント基板に図9の電極フットパターンを参照して
インピーダンス整合を取って実装し、基板上辺部のアン
テナ試料と下辺部の同軸コネクタ間を、ストリップライ
ンで結合する構造とした。アンテナ装置としては、ちょ
うど図10に示す形態となる。Next, a characteristic evaluation test was conducted on the antenna device mounted with the surface mount antenna according to the present invention.
The prototype antenna sample was developed for the purpose of 5 GHz band wireless LAN, and is intended for use in the United States, Europe, Japan and the like. As a sample, an antenna base having a length of 5 mm, a width of 5 mm, and a thickness of 3 mm was used, (a) an antenna A having the electrode structure shown in FIG. 15 as a comparative example, and (b) an electrode structure shown in FIG. And the antenna C having the electrode structure shown in FIG. 3 as the second embodiment. These antennas A, B, and C are 85 mm long, 55 mm wide, and 0.6 mm thick.
The printed circuit board was mounted with impedance matching with reference to the electrode foot pattern of FIG. 9, and the antenna sample on the upper side of the board and the coaxial connector on the lower side were connected by strip lines. The antenna device has exactly the form shown in FIG.
【0022】評価は、前記アンテナ装置の試料につい
て、同軸ケーブルの他端にネットワークアナライザ等の
測定機を接続し、シールドルーム内壁に電波吸収体が隙
間なく敷設された電波暗室を利用しVSWRと利得(放
射指向性)をそれぞれ測定した。測定にあたってはター
ンテーブル上で回転するアンテナ試料から電波を送信
し、このうち直接波のみホーンアンテナで受信する構成
となし、得られた受信電力をもとに利得および放射指向
性を求めた(図10参照)。尚、VSWR(Voltage St
anding Wave Ratio:電圧定在波比)とは、入射波と反
射波が同相と逆位相にある場合の定在波電圧の比Vmax/
Vminで定義される値で、インピーダンス整合状態の指標
として用いられる。For the evaluation, with respect to the sample of the antenna device, a measuring instrument such as a network analyzer is connected to the other end of the coaxial cable, and an anechoic chamber in which a radio wave absorber is laid on the inner wall of the shield room without a gap is used to obtain VSWR and gain. (Radiation directivity) was measured. For the measurement, the radio wave was transmitted from the rotating antenna sample on the turntable, and only the direct wave was received by the horn antenna, and the gain and radiation directivity were obtained based on the received power (Fig. 10). In addition, VSWR (Voltage St
anding Wave Ratio) is the ratio of the standing wave voltage when the incident wave and the reflected wave are in phase and opposite phase Vmax /
A value defined by Vmin, which is used as an index of the impedance matching state.
【0023】図11は指向特性の測定結果である。同図
(イ)(ロ)(ハ)はそれぞれアンテナA、B、Cにお
けるX−Z面における指向性のうち水平方向(H方向偏
波)の特性を示している。図示するように、(イ)では
放射電極に対して垂直なZ方向(天井方向)にヌル点が
存在しているが、(ロ)ではそれが軽減され、(ハ)に
おいてはさらに軽減されて、ほとんど無指向性を示す特
性が得られている。また、Z方向(天井方向)半球に対
応する右半円において、床下方向半球に対応する左半円
よりも高い指向性が得られた。尚、床下方向の指向性に
ついては図11の程度であっても実用上の問題は生じな
い。同様にY−Z面の指向性も測定したが、これについ
ては(イ)(ロ)(ハ)共にヌル点もなくH方向偏波と
V方向偏波共に同等の無指向性が得られた。また、放射
電極に対して水平なX−Y面についても(イ)(ロ)
(ハ)共にほぼ完全な円に見える程度の無指向特性が得
られた。また、X−Y面において鉛直方向偏波に対する
指向性も優れており、V方向偏波の利得は良好であっ
た。また、試作アンテナCについてVSWRの周波数特
性を測定した。共振周波数5.2GHzを中心にVSW
R=2での帯域幅123MHzが得られ、実用に十分耐
える特性を得ることが出来ている。以上によりヌル点の
低減及び帯域幅の改善効果が確認された。FIG. 11 shows the measurement results of the directional characteristics. (A), (B), and (C) in the same figure show the characteristics in the horizontal direction (H-direction polarization) of the directivity in the XZ plane of the antennas A, B, and C, respectively. As shown in the figure, in (a) there is a null point in the Z direction (ceiling direction) perpendicular to the radiation electrode, but in (b) it is reduced and in (c) it is further reduced. , A characteristic showing almost omnidirectionality is obtained. Further, in the right hemisphere corresponding to the Z direction (ceiling direction) hemisphere, higher directivity was obtained than in the left hemisphere corresponding to the underfloor direction hemisphere. It should be noted that even if the directivity in the underfloor direction is as shown in FIG. 11, there is no practical problem. Similarly, the directivity of the YZ plane was also measured. Regarding this, both (a), (b), and (c) had no null point, and the same omnidirectionality was obtained for both the H-direction polarization and the V-direction polarization. . Also, regarding the XY plane horizontal to the radiation electrode, (a) (b)
(C) In both cases, the omnidirectional characteristic was obtained such that it looked like a perfect circle. Further, the directivity with respect to the vertically polarized wave was excellent in the XY plane, and the gain of the V direction polarized wave was good. Further, the VSWR frequency characteristics of the prototype antenna C were measured. Resonance frequency around 5.2 GHz VSW
A bandwidth of 123 MHz at R = 2 is obtained, and the characteristics that can withstand practical use can be obtained. From the above, the effect of reducing the null points and improving the bandwidth was confirmed.
【0024】図12は、回路基板上へのアンテナ実装位
置の一例を示している。(a)はアンテナ10を基板の
上端右隅に配置し、ストリップライン23の給電点をア
ンテナ10の側面隅に設けたものである。(b)は
(a)に対しストリップライン23(符号省略、以下同
様)の給電点をアンテナ10(符号省略、以下同様)の
左端面に設けた例である。(c)は(a)に対しアンテ
ナを基板の上端左隅に配置したものである。これの変形
として(b)と同様にアンテナの右端面に給電点を設け
た配置も出来る。(d)はアンテナを傾斜させて配置し
た例である。これらの例で示す実装位置によっても指向
性特性やVSWRの周波数特性は若干変化することが認
められた。また、アンテナを基板端部に実装すると帯域
は広がるがX−Z面の指向性は多少落ちる。逆にアンテ
ナを略中央部に実装するとX−Z面の指向性は良好であ
るが帯域は同じく基板端部に実装する場合よりも落ち
る。以上のことより、実際に用いる通信機の実装位置、
状況に対応しアンテナの給電点位置や実装位置を多少調
整する必要がある。FIG. 12 shows an example of the antenna mounting position on the circuit board. In (a), the antenna 10 is arranged at the upper right corner of the substrate, and the feeding point of the strip line 23 is provided at the side corner of the antenna 10. (B) is an example in which the feeding point of the strip line 23 (reference numeral omitted, hereinafter the same) is provided on the left end face of the antenna 10 (reference numeral omitted, the same hereinafter) with respect to (a). In (c), the antenna is arranged at the upper left corner of the substrate in contrast to (a). As a modification of this, as in (b), an arrangement in which a feeding point is provided on the right end face of the antenna can also be provided. (D) is an example in which the antenna is arranged so as to be inclined. It was confirmed that the directivity characteristics and the VSWR frequency characteristics also slightly change depending on the mounting positions shown in these examples. Further, if the antenna is mounted on the end portion of the board, the band is widened, but the directivity on the XZ plane is somewhat lowered. On the contrary, when the antenna is mounted in the substantially central portion, the directivity on the XZ plane is good, but the band is lower than that when it is mounted on the end portion of the board. From the above, the mounting position of the communication device actually used,
Depending on the situation, it is necessary to slightly adjust the feeding point position and mounting position of the antenna.
【0025】上記したように最近、屋内用無線LANに
新たに屋外用の4.9〜5.091GHz帯が無線LA
N用として加えられた。これによって4.9〜5.25
GHz帯をカバーできる広帯域なアンテナが必要となっ
てきている。本発明の表面実装型アンテナ及びアンテナ
装置によればこれに対応した広帯域化も可能である。例
えば図13はそのアンテナの一例を示す斜視図である。
基体10gの上面の一部に主放射電極11gを、下面の
手前側のみに副放射電極13gを形成し、側面の中央に
は接合部(給電点)12gから前記副放射電極13gと
主放射電極11gを結ぶ接続電極15gを設けている。
基体裏側の電極26gは補強用の電極である。また、こ
の実施例のアンテナ基体は、上記した実施例に比べ若干
大きくなっている。これは比誘電率の小さい材料を用い
たことによるもので形状による特性変化は無い。従っ
て、上述の実施例でも基体の比誘電率や形状寸法を変更
しても実施することができる。As described above, recently, in the indoor wireless LAN, the outdoor 4.9 to 5.091 GHz band is newly added to the wireless LA.
Added for N. This gives 4.9 to 5.25
There is a need for a broadband antenna that can cover the GHz band. According to the surface mount antenna and the antenna device of the present invention, it is possible to broaden the band corresponding to this. For example, FIG. 13 is a perspective view showing an example of the antenna.
The main radiation electrode 11g is formed on a part of the upper surface of the base body 10g, and the sub-radiation electrode 13g is formed only on the front side of the lower surface. The sub-radiation electrode 13g and the main radiation electrode are formed in the center of the side surface from the junction (feed point) 12g. A connection electrode 15g connecting 11g is provided.
The electrode 26g on the back side of the substrate is a reinforcing electrode. Further, the antenna substrate of this embodiment is slightly larger than that of the above-mentioned embodiments. This is due to the use of a material having a small relative permittivity, and there is no characteristic change due to the shape. Therefore, even in the above-mentioned embodiment, it can be carried out even if the relative permittivity or the shape and size of the substrate is changed.
【0026】図14(A)は基板18のアンテナ搭載面
側のフットパターンを示し、地導体17aを除去した露
出部27内にストリップライン23と、地導体と連続し
た接地端24と、補強電極26を形成し点線で示す位置
にアンテナを搭載する。図14(B)は基板の裏面(他
面)側を示し、他面側においても地導体17bを取り除
いた露出部27を形成し、点線で示す位置にアンテナ1
0gが搭載される。このように表裏面に露出部27を形
成し、この上に副放射電極が無い領域14gが配置され
る。この構成が上記してきた実施例と異なる主な点であ
り、これによって、副放射電極と地導体間の容量結合が
抑制され帯域幅が広がる。しかし、この傾向をあまり強
くすると垂直偏波の利得や指向性が劣化するので、基体
の比誘電率を下げることによって広帯域化を図る手段と
のバランスが必要である。また、本例では基板裏面にス
リット28gを設けたことも特徴である。このスリット
28gの切り込み量D5を調整することでインピーダン
ス整合が取り易いことが分かった。例えば、基板厚みが
厚い場合や基板の誘電率が低い場合にはD5を大きく
し、基板厚みが薄い場合や基板の誘電率が高い場合には
D5を小さくするとインピーダンス整合がとりやすい。FIG. 14A shows a foot pattern on the antenna mounting surface side of the substrate 18, in which the strip line 23 is formed in the exposed portion 27 from which the ground conductor 17a is removed, the ground end 24 continuous with the ground conductor, and the reinforcing electrode. 26 is formed and the antenna is mounted at the position indicated by the dotted line. FIG. 14B shows the back surface (other surface) side of the substrate, and the exposed portion 27 from which the ground conductor 17b is removed is formed also on the other surface side, and the antenna 1 is provided at the position indicated by the dotted line.
0g is installed. In this way, the exposed portion 27 is formed on the front and back surfaces, and the region 14g having no sub-radiation electrode is arranged thereon. This configuration is a main point different from the above-described embodiments, and by this, the capacitive coupling between the sub-radiation electrode and the ground conductor is suppressed and the bandwidth is widened. However, if this tendency is made too strong, the gain and directivity of vertically polarized waves are deteriorated. Therefore, it is necessary to balance with a means for widening the band by lowering the relative permittivity of the substrate. Further, the present example is also characterized in that a slit 28g is provided on the back surface of the substrate. It was found that impedance matching can be easily achieved by adjusting the cut amount D5 of the slit 28g. For example, if the substrate thickness is large or the dielectric constant of the substrate is low, D5 is increased, and if D5 is small when the substrate thickness is thin or the dielectric constant of the substrate is high, impedance matching is easily achieved.
【0027】この実施例のVSWRと放射指向性の評価
を行った。プリント基板や試験装置、方法は上記実施例
の評価と同様とし、図13のアンテナを図14(A)
(B)の電極フットパターン上に搭載し、スリット28
の切りこみ量を調整しながらインピーダンス整合を図っ
て接合した。評価の結果、共振周波数5.040GHz
を中心にVSWR=2での帯域幅が255MHz、同じ
くVSWR=3での帯域幅437MHzが得られ広帯域
化が確認できた。また、Z方向におけるヌル点も無く実
用に十分耐える特性を得ることが出来ていた。水平面
(X−Y面)の垂直偏波についても良好な利得が得られ
た。以上により帯域幅の改善効果が確認された。The VSWR and radiation directivity of this example were evaluated. The printed circuit board, the test apparatus, and the method are the same as those used in the evaluation of the above-described embodiment, and the antenna of FIG.
The slit 28 is mounted on the electrode foot pattern of (B).
Bonding was performed while adjusting impedance while adjusting the cut amount. As a result of evaluation, resonance frequency 5.040 GHz
A band width of VSWR = 2 around 255 MHz and a band width of 437 MHz around VSWR = 3 were obtained, confirming widening of the band. Further, there was no null point in the Z direction, and it was possible to obtain a characteristic that was sufficiently durable for practical use. Good gain was also obtained for vertically polarized waves in the horizontal plane (XY plane). From the above, the effect of improving the bandwidth was confirmed.
【0028】[0028]
【発明の効果】以上のように、本発明の表面実装型アン
テナによれば+Z方向でのヌル点を低減することがで
き、同時に水平方向の無指向性と天井方向(+Z方向)
半球での高い指向性が得られた。また、帯域幅を広げ小
型でインピーダンス整合が取り易いアンテナ装置とな
り、これを搭載した場合小型で高性能な通信機器を提供
することができる。As described above, according to the surface mount antenna of the present invention, the null points in the + Z direction can be reduced, and at the same time, the omnidirectionality in the horizontal direction and the ceiling direction (+ Z direction).
High directivity in the hemisphere was obtained. Further, the antenna device has a wide band width and is small in size, and impedance matching is easily achieved. When this antenna device is mounted, a small and high performance communication device can be provided.
【図1】本発明による表面実装型アンテナの一実施例を
示す斜視図である。FIG. 1 is a perspective view showing an embodiment of a surface mount antenna according to the present invention.
【図2】本発明による表面実装型アンテナの他の実施例
を示す斜視図である。FIG. 2 is a perspective view showing another embodiment of the surface mount antenna according to the present invention.
【図3】本発明による表面実装型アンテナの他の実施例
を示す斜視図である。FIG. 3 is a perspective view showing another embodiment of the surface mount antenna according to the present invention.
【図4】本発明による表面実装型アンテナの他の実施例
を示す斜視図である。FIG. 4 is a perspective view showing another embodiment of the surface mount antenna according to the present invention.
【図5】本発明による表面実装型アンテナの他の実施例
を示す斜視図である。FIG. 5 is a perspective view showing another embodiment of the surface mount antenna according to the present invention.
【図6】本発明による表面実装型アンテナの他の実施例
を示す斜視図である。FIG. 6 is a perspective view showing another embodiment of the surface mount antenna according to the present invention.
【図7】主放射電極及び副放射電極の他の例を示す平面
図である。FIG. 7 is a plan view showing another example of the main radiation electrode and the sub-radiation electrode.
【図8】本発明の表面実装型アンテナを回路基板に実装
した様子を示す(a)平面図、(b)下面図である。8A and 8B are a plan view and a bottom view, respectively, showing a state in which the surface mount antenna of the present invention is mounted on a circuit board.
【図9】回路基板の露出部及びフットパターンの一例を
示す概略図である。FIG. 9 is a schematic view showing an example of an exposed portion and a foot pattern of a circuit board.
【図10】特性評価のためのアンテナ装置試料の外観を
示す斜視図及び指向性の測定を示す概略図である。10A and 10B are a perspective view showing an appearance of an antenna device sample for characteristic evaluation and a schematic diagram showing measurement of directivity.
【図11】(イ)比較例(ロ)図1のアンテナによる実
施例1(ハ)図3のアンテナによる実施例2の指向性の
測定結果である。11 is a measurement result of directivity of (A) Comparative example (B) Example 1 using the antenna of FIG. 1 and (C) Example 2 of the antenna of FIG.
【図12】本発明の表面実装型アンテナの回路基板への
実装位置の実施例を示す概略図である。FIG. 12 is a schematic view showing an example of a mounting position of a surface mount antenna of the present invention on a circuit board.
【図13】本発明の他の実施例による表面実装型アンテ
ナを示す斜視図である。FIG. 13 is a perspective view showing a surface mount antenna according to another embodiment of the present invention.
【図14】(A)回路基板のアンテナ実装面の露出部及
びフットパターンを示し、(B)回路基板の裏面の露出
部及びフットパターンを示す図である。FIG. 14A is a diagram showing an exposed portion and a foot pattern on the antenna mounting surface of the circuit board, and FIG. 14B is a diagram showing an exposed portion and a foot pattern on the back surface of the circuit board.
【図15】本発明の基本構成(接続電極構造を除く)に
よる作用効果を説明するアンテナの斜視図である。FIG. 15 is a perspective view of an antenna for explaining the function and effect of the basic configuration (excluding the connection electrode structure) of the present invention.
【図16】従来のストリップラインアンテナの平面図で
ある。FIG. 16 is a plan view of a conventional stripline antenna.
【図17】従来の片側短絡マイクロストリップアンテナ
の平面図である。FIG. 17 is a plan view of a conventional one-sided short-circuited microstrip antenna.
【図18】従来の板状逆Fアンテナの平面図である。FIG. 18 is a plan view of a conventional plate-shaped inverted F antenna.
10:表面実装型アンテナ
11、11a、11b、11c、11d、11e、11
f、11g:主放射電極
12、12a、12b、12c、12d、12e、12
f、12g:接合部(給電点)
13、13a、13b、13c、13d、13e、13
f、13g:副放射電極
14、14d、14e、14f、14g:副放射電極の
無い領域
15、15a、15b、15c、15d、15e、15
f、15g:接続導体
17、17a、17b:地導体
18:回路基板
19:信号電源
21:アンテナ基体
23:給電用ストリップライン
24:接地端
26:浮島(補強)電極
27:基板の地導体を取り除いた露出部
28、28g:地導体の切り欠き部
31:同軸コネクタ
33:スルーホール
40:ヌル点
101:放射導体
102:誘電基体
103:接地導体
104:給電点
105:短絡導体10: Surface mount antennas 11, 11a, 11b, 11c, 11d, 11e, 11
f, 11g: Main radiation electrodes 12, 12a, 12b, 12c, 12d, 12e, 12
f, 12g: junction (feed point) 13, 13a, 13b, 13c, 13d, 13e, 13
f, 13g: sub-radiation electrodes 14, 14d, 14e, 14f, 14g: regions 15, 15a, 15b, 15c, 15d, 15e, 15 without sub-radiation electrodes
f, 15g: Connection conductors 17, 17a, 17b: Ground conductor 18: Circuit board 19: Signal power source 21: Antenna base 23: Feeding strip line 24: Grounding end 26: Floating island (reinforcing) electrode 27: Ground conductor of board Exposed portions 28 and 28g removed: ground conductor notch 31: coaxial connector 33: through hole 40: null point 101: radiating conductor 102: dielectric substrate 103: grounding conductor 104: feeding point 105: short-circuiting conductor
───────────────────────────────────────────────────── フロントページの続き (72)発明者 萩原 英俊 鳥取県鳥取市南栄町70番地2号 日立金属 株式会社鳥取工場内 Fターム(参考) 5J045 AA01 AA02 AA05 AA21 DA09 EA07 HA03 MA04 NA01 5J046 AA01 AA02 AA04 AA07 AA12 AB13 PA07 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Hidetoshi Hagiwara Hitachi Metals, 70-2 Minamieicho, Tottori City, Tottori Prefecture Tottori Factory Co., Ltd. F term (reference) 5J045 AA01 AA02 AA05 AA21 DA09 EA07 HA03 MA04 NA01 5J046 AA01 AA02 AA04 AA07 AA12 AB13 PA07
Claims (6)
面に放射電極を配置した表面実装型アンテナにおいて、
前記基体の上面に設けた主放射電極と、下面に設けた副
放射電極と、前記主放射電極と副放射電極を接合するよ
うに側面に設けた接続電極とを有し、前記接続電極は側
面上に左右非対称に設けたことを特徴とする表面実装型
アンテナ。1. A surface mount antenna in which a radiation electrode is arranged on the surface of a substrate made of a dielectric or magnetic material,
It has a main radiation electrode provided on the upper surface of the base body, a sub-radiation electrode provided on the lower surface, and a connection electrode provided on a side surface so as to join the main radiation electrode and the sub-radiation electrode, and the connection electrode is a side surface. A surface-mounted antenna characterized by being asymmetrically provided on the top.
うに配置されることを特徴とする請求項1記載の表面実
装型アンテナ。2. The surface mount antenna according to claim 1, wherein the connection electrode is arranged so as to cross a side surface of the base body.
を対角線状に結んだことを特徴とする請求項2記載の表
面実装型アンテナ。3. The surface mount antenna according to claim 2, wherein the connection electrode has a lower end and an upper end of a side surface of the base body connected diagonally.
基体の中央縦断面に対し左右非対称であることを特徴と
する請求項1乃至3の何れかに記載の表面実装型アンテ
ナ。4. The surface mount antenna according to claim 1, wherein the main radiating electrode and / or the sub radiating electrode is asymmetrical with respect to a central longitudinal cross section of the substrate.
装型アンテナを両面に地導体を有する回路基板に搭載し
てなるアンテナ装置であって、一面側の地導体を削除し
た露出部に前記アンテナの副放射電極を載置することに
より基板の他面側の地導体から所要の距離をもって当該
アンテナを所要位置に配置せしめ、前記基板の一面側に
は給電用ストリップラインと一面側の地導体と連続した
接地端を設け、前記給電用ストリップラインを前記アン
テナの副放射電極と接続電極との接続部分に、また接地
端を副放射電極にそれぞれ接続したことを特徴とするア
ンテナ装置。5. An antenna device in which the surface-mounted antenna according to claim 1 is mounted on a circuit board having ground conductors on both surfaces, and an exposed portion in which the ground conductor on one surface side is removed. By placing the sub-radiation electrode of the antenna on the antenna, the antenna is arranged at a required position with a required distance from the ground conductor on the other surface side of the substrate, and one surface side of the substrate is provided with a feeding strip line and one surface side. An antenna device, wherein a grounding end continuous with a ground conductor is provided, the feeding stripline is connected to a connecting portion between a sub-radiating electrode and a connecting electrode of the antenna, and the ground end is connected to a sub-radiating electrode.
露出部を形成し、当該露出部上に表面実装型アンテナの
副放射電極が形成されていない領域を載置したことを特
徴とする請求項5記載のアンテナ装置。6. An exposed portion from which the ground conductor is removed is formed on the other surface side of the substrate, and a region where the sub-radiation electrode of the surface mount antenna is not formed is placed on the exposed portion. The antenna device according to claim 5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002268047A JP2003332818A (en) | 2002-03-04 | 2002-09-13 | Surface mount antenna and antenna device mounted with the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002057738 | 2002-03-04 | ||
JP2002-57738 | 2002-03-04 | ||
JP2002268047A JP2003332818A (en) | 2002-03-04 | 2002-09-13 | Surface mount antenna and antenna device mounted with the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003332818A true JP2003332818A (en) | 2003-11-21 |
Family
ID=29713710
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002268047A Pending JP2003332818A (en) | 2002-03-04 | 2002-09-13 | Surface mount antenna and antenna device mounted with the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003332818A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1145907A (en) * | 1997-07-28 | 1999-02-16 | Kyocera Corp | Semiconductor device and manufacture thereof |
JP2003347835A (en) * | 2002-05-24 | 2003-12-05 | Murata Mfg Co Ltd | Antenna structure and communication device provided with the same |
JP2005203873A (en) * | 2004-01-13 | 2005-07-28 | Alps Electric Co Ltd | Patch antenna |
JP2005223929A (en) * | 2004-02-06 | 2005-08-18 | Samsung Electronics Co Ltd | Antenna device for portable wireless terminal |
WO2005078860A1 (en) * | 2004-02-18 | 2005-08-25 | Fdk Corporation | Antenna |
JP2005269301A (en) * | 2004-03-19 | 2005-09-29 | Nec Corp | Built-in antenna and electronic equipment having the same |
JP2009525010A (en) * | 2006-01-27 | 2009-07-02 | クゥアルコム・インコーポレイテッド | Diversity spectrum antenna for handset and other devices |
JP2016523491A (en) * | 2013-06-28 | 2016-08-08 | 華為技術有限公司Huawei Technologies Co.,Ltd. | Multiple antenna system and mobile terminal |
EP3232507B1 (en) * | 2014-12-08 | 2021-02-03 | Panasonic Intellectual Property Management Co., Ltd. | Electric device |
-
2002
- 2002-09-13 JP JP2002268047A patent/JP2003332818A/en active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1145907A (en) * | 1997-07-28 | 1999-02-16 | Kyocera Corp | Semiconductor device and manufacture thereof |
JP2003347835A (en) * | 2002-05-24 | 2003-12-05 | Murata Mfg Co Ltd | Antenna structure and communication device provided with the same |
JP2005203873A (en) * | 2004-01-13 | 2005-07-28 | Alps Electric Co Ltd | Patch antenna |
JP2005223929A (en) * | 2004-02-06 | 2005-08-18 | Samsung Electronics Co Ltd | Antenna device for portable wireless terminal |
WO2005078860A1 (en) * | 2004-02-18 | 2005-08-25 | Fdk Corporation | Antenna |
JP2005269301A (en) * | 2004-03-19 | 2005-09-29 | Nec Corp | Built-in antenna and electronic equipment having the same |
JP2009525010A (en) * | 2006-01-27 | 2009-07-02 | クゥアルコム・インコーポレイテッド | Diversity spectrum antenna for handset and other devices |
US7872607B2 (en) | 2006-01-27 | 2011-01-18 | Qualcomm, Incorporated | Diverse spectrum antenna for handsets and other devices |
JP2016523491A (en) * | 2013-06-28 | 2016-08-08 | 華為技術有限公司Huawei Technologies Co.,Ltd. | Multiple antenna system and mobile terminal |
US9853364B2 (en) | 2013-06-28 | 2017-12-26 | Huawei Technologies Co., Ltd | Multiple-antenna system and mobile terminal |
EP3232507B1 (en) * | 2014-12-08 | 2021-02-03 | Panasonic Intellectual Property Management Co., Ltd. | Electric device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2003110344A (en) | Surface-mounting type antenna and antenna device mounting the same | |
JP4305282B2 (en) | Antenna device | |
US7423591B2 (en) | Antenna system | |
CN111954956B (en) | Antenna and electronic device | |
JP2001521311A (en) | Small antenna structure including balun | |
TW200400665A (en) | Single piece twin folded dipole antenna | |
CN113346231B (en) | Antenna and wearable equipment | |
US20020047803A1 (en) | Microstrip antenna | |
JP3980172B2 (en) | Broadband antenna | |
JP2012156993A (en) | Folded dipole antenna with 450 mhz | |
JPH05259724A (en) | Print antenna | |
KR20210028709A (en) | Sum and difference mode antennas and communication products | |
JP4263972B2 (en) | Surface mount antenna, antenna device, and wireless communication device | |
JP2002524953A (en) | antenna | |
JPH0522018A (en) | Reverse f antenna | |
JP2003332818A (en) | Surface mount antenna and antenna device mounted with the same | |
JPH0590828A (en) | Antenna device | |
JP2011130411A (en) | Deformed folded dipole antenna, method of controlling impedance of the same, and antenna device | |
JP4053144B2 (en) | Dual-polarized antenna | |
US6765537B1 (en) | Dual uncoupled mode box antenna | |
JP2005286915A (en) | Multi-frequency antenna | |
US20060152428A1 (en) | Dipole antenna | |
JP2005203971A (en) | Antenna device and system | |
KR20180123804A (en) | Ultra wideband planar antenna | |
JP3378513B2 (en) | Planar directional antenna |