JP2003332078A - Solid planar light source - Google Patents

Solid planar light source

Info

Publication number
JP2003332078A
JP2003332078A JP2002141396A JP2002141396A JP2003332078A JP 2003332078 A JP2003332078 A JP 2003332078A JP 2002141396 A JP2002141396 A JP 2002141396A JP 2002141396 A JP2002141396 A JP 2002141396A JP 2003332078 A JP2003332078 A JP 2003332078A
Authority
JP
Japan
Prior art keywords
light emitting
emitting layer
light source
layer
planar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002141396A
Other languages
Japanese (ja)
Inventor
Akira Kawakatsu
晃 川勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Lighting and Technology Corp
Original Assignee
Toshiba Lighting and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Lighting and Technology Corp filed Critical Toshiba Lighting and Technology Corp
Priority to JP2002141396A priority Critical patent/JP2003332078A/en
Publication of JP2003332078A publication Critical patent/JP2003332078A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid planar light source with improved luminance and a service life. <P>SOLUTION: The solid planar light source 1A comprises a planar electrode 6 having conductive material, a ferroelectric layer 5 laminated on the planar electrode 6, a light emitting layer 4 laminated on the ferroelectric layer 5, and a transparent planar electrode 3 having transparent conductive material laminated on the light emitting layer 4. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】 本発明は、無機系の固体面
状光源に関する。
TECHNICAL FIELD The present invention relates to an inorganic solid-state planar light source.

【0002】[0002]

【従来の技術】 EL(エレクトロルミネセンス)など
の固体面状光源は、LCD(液晶デイスプレイ)、LE
D(発光ダイオード)やPDP(プラズマディスプレイ
パネル)などに比べ最も薄形、軽量化がはかれるととも
にその表示面積が比較的大きく、良質な画像を得るのに
必要な輝度、コントラスト、視野、ちらつきなどの特性
が総合的に優れていて、将来有望な表示素子(装置)と
して期待されている。
2. Description of the Related Art Solid-state planar light sources such as EL (electroluminescence) are LCD (liquid crystal display), LE
Compared to D (Light Emitting Diode) and PDP (Plasma Display Panel), it is the thinnest and lightest, and its display area is comparatively large, so that the brightness, contrast, field of view, and flicker necessary for obtaining good quality images The characteristics are comprehensively excellent and expected as a promising display element (device) in the future.

【0003】このELの構造は、基板の上に順次、In
2 3 などの導電性物質からなる透明電極、誘電体層、
ZnS:Cuなどの蛍光体からなる発光層、BaTiO
3 などからなる誘電体層、Al箔などの導電性物質から
なる背面電極などが蒸着、スパッタリング、スクリーン
印刷や貼付などにより積層されている。
The structure of this EL is such that In
Transparent electrode, dielectric layer, made of conductive material such as 2 O 3
A light emitting layer made of a phosphor such as ZnS: Cu, BaTiO 3.
A dielectric layer made of 3 or the like, a back electrode made of a conductive material such as Al foil, and the like are laminated by vapor deposition, sputtering, screen printing, sticking, or the like.

【0004】そして、発光は電極間に交流電圧を印加す
ると発光層内にわずかに存在する自由電子が高電界で加
速され、発光中心に励起し、発光させるほか自由電子も
増加させる。電界がなくなると移動できる端に溜った自
由電子は反対方向に移動して、再結合により発光する。
When an AC voltage is applied between the electrodes, free electrons slightly existing in the light emitting layer are accelerated by a high electric field to be excited to the emission center to emit light, and also increase free electrons. When the electric field disappears, the free electrons accumulated at the movable end move in the opposite direction and emit light by recombination.

【0005】[0005]

【発明が解決しようとする課題】 このようなELによ
ると、上記印加電圧が高いほど発光輝度が増大するが飽
和し、印加交流電圧の周波数も高くすると発光輝度が増
大するが、やはり飽和する傾向にある。
According to such an EL, the higher the applied voltage is, the higher the emission brightness is, but the saturation is, and the higher the frequency of the applied AC voltage is, the higher the emission brightness is. However, the tendency is also saturated. It is in.

【0006】また、上記輝度と寿命とは相反する関係に
あり、高輝度、長寿命化のために発光層を形成する蛍光
体について材料、最適粒径化、付活剤やバインダなどの
研究が行われているが、なかなかよいものが得られてい
ないのが現状である。
[0006] Further, the above-mentioned brightness and life are in a contradictory relationship, and research on materials, optimum particle size, activators, binders, etc. for phosphors forming a light emitting layer for high brightness and long life has been conducted. Although it is being done, the current situation is that nothing good has been obtained.

【0007】なお、現在のBaTiO3 やY2 3 など
で厚膜の誘電体層を形成したELは、製造コストが比較
的安価であるとともに大面積化が可能で、寿命も予測値
のものが得られている。しかし、発光効率がPDPと同
程度の1〜3Lm/W程度で低すぎるという問題があ
る。また、特に輝度を高くすると効率が低下する不具合
がある。
An EL having a thick dielectric layer formed of BaTiO 3 , Y 2 O 3 or the like at present has a relatively low manufacturing cost, a large area, and a life expectancy. Has been obtained. However, there is a problem that the luminous efficiency is about 1 to 3 Lm / W, which is the same level as PDP, and is too low. Further, there is a problem that the efficiency is lowered particularly when the brightness is increased.

【0008】そこで、本発明は、輝度および寿命を向上
させることのできる固体面状光源を提供することを目的
とする。
[0008] Therefore, an object of the present invention is to provide a solid surface light source capable of improving the brightness and the life.

【0009】[0009]

【課題を解決するための手段】 本発明の請求項1に記
載の固体面状光源は、導電性物質を有する面状電極と、
この面状電極上に積層された強誘電体層と、この強誘電
体層上に積層された発光層と、この発光層上に積層され
た透明導電性物質を有してなる透明面状電極とを備えて
いることを特徴とする。
A solid-state planar light source according to claim 1 of the present invention includes a planar electrode having a conductive substance,
A transparent planar electrode including a ferroelectric layer laminated on the planar electrode, a light emitting layer laminated on the ferroelectric layer, and a transparent conductive substance laminated on the light emitting layer. It is characterized by having and.

【0010】そのメカニズムは十分に知られていない
が、強誘電体層は表面に残留分極をもち、この電荷が交
流電圧印加時に外部電圧に重畳されるように加わり、発
光層への相対的印加電圧が高くなるためか、あるいは、
強誘電体層の表面が残留電荷の影響により高電界となっ
て、発光層へ直接に電荷を送り込み発光に寄与するなど
のことが推察される。
Although the mechanism is not sufficiently known, the ferroelectric layer has remanent polarization on the surface, and this charge is added so as to be superposed on an external voltage when an AC voltage is applied, and the relative application to the light emitting layer. Because the voltage is high, or
It is presumed that the surface of the ferroelectric layer becomes a high electric field due to the influence of the residual charges, and the charges are directly sent to the light emitting layer to contribute to the light emission.

【0011】本発明の強誘電体層を形成する強誘電体
は、自発的な電気分極をもち、その自発分極が電場によ
って方向を反転する物質である。この場合、強誘電体層
としては、絶縁破壊電圧が高く、発光層にかかる電圧が
高くなるように誘電率の比較的大きな材料を選ぶことが
必要で、輝度が高まる作用を奏する。
The ferroelectric material forming the ferroelectric layer of the present invention is a substance having spontaneous electric polarization, and the spontaneous polarization has its direction reversed by an electric field. In this case, it is necessary to select, as the ferroelectric layer, a material having a relatively high dielectric constant so that the dielectric breakdown voltage is high and the voltage applied to the light emitting layer is high, which has the effect of increasing the brightness.

【0012】強誘電体層を形成する具体的名材料として
は、PZT(PbZrO3 とPbTiO3 の固溶体…チ
タン酸ジルコン酸鉛)、PLZT(PZTにLaを添加
した金属酸化物)、SBT(SrBi2 Ta2 9 )や
BIT(Bi4 Ti3 12)などから選ばれた少なくと
も一種で膜状あるいは板状に形成され、その膜厚または
板厚が0.03〜1.0mmである。
Specific materials for forming the ferroelectric layer include PZT (solid solution of PbZrO 3 and PbTiO 3 ... Lead zirconate titanate), PLZT (metal oxide obtained by adding La to PZT), SBT (SrBi). 2 Ta 2 O 9 ) or BIT (Bi 4 Ti 3 O 12 ) or the like, and is formed into a film or plate, and the film thickness or plate thickness is 0.03 to 1.0 mm.

【0013】この形成厚さの最適値は材料の誘電特性で
決まるが、0.03mm以下であると絶縁破壊し易く、
また、厚さが1.0mmを超えると発光効率の低下が大
きくなる不具合がある。
The optimum value of the formed thickness is determined by the dielectric characteristics of the material, but if it is 0.03 mm or less, dielectric breakdown easily occurs,
Further, if the thickness exceeds 1.0 mm, there is a problem that the reduction of the luminous efficiency becomes large.

【0014】また、本発明の固体面状光源では、誘電体
層が、分極されていてもよい。
In the solid-state planar light source of the present invention, the dielectric layer may be polarized.

【0015】さらに、本発明の固体面状光源では、発光
層と面状電極との間に誘電体層が形成されていてもよ
い。この場合、発光層の上下両面を誘電体層で、しかも
一方を他方より強い誘電体層としたので、さらに輝度を
高める作用を奏する。
Further, in the solid surface light source of the present invention, a dielectric layer may be formed between the light emitting layer and the surface electrode. In this case, since the upper and lower surfaces of the light emitting layer are made of dielectric layers and one of them is made stronger than the other, it is possible to further enhance the brightness.

【0016】導電性物質からなる面状電極は、Pt、A
gやAuなどの材料で薄膜状に形成されたものである。
The planar electrodes made of a conductive material are Pt, A
It is formed into a thin film with a material such as g or Au.

【0017】透明導電性物質からなる面状電極は、Sn
2 :Sbやインジウム・スズ酸化物(ITO)などの
材料で透明薄膜状に形成されたもので、光が取り出せる
ように光放射面側に形成される。
The planar electrode made of a transparent conductive material is Sn
O 2 : Sb, indium tin oxide (ITO), or other material formed in a transparent thin film shape, which is formed on the light emitting surface side so that light can be extracted.

【0018】発光層は、ZnS:Mn(黄橙色)、Zn
S:SmF3 (橙赤色)、CaS:Eu(赤色)、Zn
S:TbF3 (緑色)、SrS:Ce(青色)、Sr
S:Ce,K(青色)などの硫化物あるいはZn2 Si
4 :Mnなどの金属酸化物の微粒子の表面にTbOX
などを部分的に多数結合したものを主体とする発光物質
などを用いることができる。
The light emitting layer is made of ZnS: Mn (yellow orange), Zn
S: SmF 3 (orange red), CaS: Eu (red), Zn
S: TbF 3 (green), SrS: Ce (blue), Sr
S: Sulfide such as Ce, K (blue) or Zn 2 Si
O 4 : TbO x on the surface of fine particles of metal oxide such as Mn
It is possible to use a light-emitting substance mainly composed of a large number of such compounds partially bonded.

【0019】また、基体を用いるものでは、基体がガラ
ス板やセラミックなどの透明な板状やフィルム状のもの
からなり光放射面をなす。
Further, in the case of using the substrate, the substrate is made of a transparent plate or film such as a glass plate or ceramic and forms a light emitting surface.

【0020】また、本発明での各層の形成は、基板側か
らでも背面側の電極側からでも差支えなく、完成したE
Lなどにおいて積層順序が正しければよい。
The formation of each layer in the present invention can be completed from the substrate side or the back side electrode side without any problem.
It suffices that the stacking order is correct in L and the like.

【0021】本発明の請求項2に記載の固体面状光源
は、発光層が、10nm以下の金属酸化物主体の超微粒
子を一種以上分散してなり、0.5〜5.0μmの膜厚
で形成されていること特徴とする。
In the solid surface light source according to the second aspect of the present invention, the light emitting layer comprises one or more ultrafine particles mainly composed of a metal oxide and having a thickness of 10 nm or less, and has a film thickness of 0.5 to 5.0 μm. It is characterized by being formed by.

【0022】発光層が、Zn2 SiO4 などの多孔質金
属酸化物の微粒子の表面にTbOXなどの無機発光物を
多数結合したものを主体とする発光物質からなり、微粒
子径が10nm以下で、10nmを超えると発光効率の
低下が大きなるなどの不具合がある。
The light emitting layer is composed of a light emitting substance mainly composed of a large number of inorganic light emitting substances such as TbO x bonded to the surface of fine particles of porous metal oxide such as Zn 2 SiO 4 , and the fine particle diameter is 10 nm or less. If it exceeds 10 nm, there are problems such as a large decrease in luminous efficiency.

【0023】また、発光層中に分散される金属酸化物と
しては、一種に限らずY2 O3 :EuやZnS:Mnな
どを複数種用いることができる。また、膜厚さは形成の
ばらつきなどを考慮すると1〜4μm程度が好ましい。
Further, the metal oxide dispersed in the light emitting layer is not limited to one kind, and a plurality of kinds such as Y 2 O 3 : Eu and ZnS: Mn can be used. Further, the film thickness is preferably about 1 to 4 μm in consideration of variations in formation.

【0024】なお、金属酸化物の微粒子径の測定は、A
FMやSTMなど走査トンネル顕微鏡や原子間力顕微鏡
などにより行い、その平均粒子径をいう。
The particle diameter of the metal oxide is measured by A
The average particle diameter is measured by a scanning tunneling microscope such as FM or STM or an atomic force microscope.

【0025】[0025]

【発明の実施の形態】 以下,本発明の実施の形態を固
体面状発光源としてEL(エレクトロルミネセンス)を
用い図1〜3を参照して説明する。図1はELの正面
図、図2は図1中のa−a線に沿って切断した部分の断
面図である。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to FIGS. 1 to 3 using EL (electroluminescence) as a solid-state light emitting source. FIG. 1 is a front view of the EL, and FIG. 2 is a sectional view of a portion cut along the line aa in FIG.

【0026】図において3はインジウム・スズ酸化物
(ITO)からなる透明な面状電極(アノード)、4は
この透明面状電極3上に積層して形成されたZnS:M
n(黄橙色)からなる発光層、5はこの発光層4上に積
層して形成されたPZT(PbZrO3 とPbTiO3
の固溶体)からなる強誘電体層、6はこの強誘電体層5
上に積層して形成されたPtやAgなどからなる反射性
を有する面状電極(カソード)で、これら積層物でもっ
てEL1Aを構成している。
In the figure, 3 is a transparent planar electrode (anode) made of indium tin oxide (ITO), and 4 is a ZnS: M layer formed on the transparent planar electrode 3.
The light emitting layer 5 made of n (yellow orange) is PZT (PbZrO 3 and PbTiO 3 formed by stacking on the light emitting layer 4).
Solid solution), 6 is the ferroelectric layer 5
EL1A is composed of a reflective planar electrode (cathode) made of Pt, Ag, or the like, which is formed by stacking layers on top of each other.

【0027】このEL1Aは、給電部(図示しない。)
から上記面状電極3,6に通電すると、強誘電体層5を
介し発光層4に電圧が印加され、発光層4が上記作用に
より発光して高輝度を呈するとともに高い発光効率(5
〜10Lm/W(従来1〜3Lm/W))が得られるな
ど発光特性が向上できた。
This EL1A has a power feeding section (not shown).
When the planar electrodes 3 and 6 are energized from above, a voltage is applied to the light emitting layer 4 through the ferroelectric layer 5, and the light emitting layer 4 emits light by the above action to exhibit high brightness and high luminous efficiency (5
The emission characteristics could be improved, such as -10 Lm / W (conventional 1-3 Lm / W).

【0028】この発光特性向上のメカニズムは分からな
いが、誘電体層をPZTからなる強誘電体層5とするこ
とによるものと考えられる。すなわち、強誘電体層5は
表面に残留分極をもち、この電荷が交流電圧印加時に外
部電圧に重畳されるように加わり、発光層4への相対的
印加電圧が高くなるためか、あるいは、強誘電体層5の
表面が残留電荷の影響により高電界となって、発光層4
へ直接に電荷を送り込み発光に寄与するなどのことが考
えられる。
Although the mechanism for improving the emission characteristics is not known, it is considered that the dielectric layer is the ferroelectric layer 5 made of PZT. That is, the ferroelectric layer 5 has a remanent polarization on the surface, and this charge is added so as to be superimposed on the external voltage when an AC voltage is applied, and the relative voltage applied to the light emitting layer 4 becomes high. The surface of the dielectric layer 5 becomes a high electric field due to the influence of the residual charge, and the light emitting layer 4
It is conceivable that the electric charge is directly sent to and contributes to light emission.

【0029】なお、発光層4の形成材料としては、Zn
S:Mn(黄橙色)のほかZnS:SmF3 (橙赤
色)、CaS:Eu(赤色)、ZnS:TbF3 (緑
色)、SrS:Ce(青色)、SrS:Ce,K(青
色)などの既知の硫化物からなるものを用いることがで
きる。
As a material for forming the light emitting layer 4, Zn was used.
In addition to S: Mn (yellow-orange), ZnS: SmF 3 (orange red), CaS: Eu (red), ZnS: TbF 3 (green), SrS: Ce (blue), SrS: Ce, K (blue), etc. It is possible to use those made of known sulfides.

【0030】なお、上記EL1Aにおいて、透明面状電
極3は図中一点鎖線で示すようにガラスなどからなる透
明な基板2上に積層形成されていてもよい。
In the EL 1A, the transparent planar electrode 3 may be laminated and formed on the transparent substrate 2 made of glass or the like as shown by the chain line in the figure.

【0031】また、図3は発光層4の構成が上記とは異
なる、他の実施例を示す発光層の一部を取り出した拡大
断面図である。この発光層4は、たとえば粒径が約7n
mのZn2 SiO4 :Mnの微粒子の三次元的な結合体
である薄膜状の多孔質金属酸化物41,…の表面に外部
エネルギーを受けて励起し励起状態から基底状態へ戻る
際に発光するように無機発光物42,…たとえばTbO
X を多数結合した発光物質からなる。
FIG. 3 is an enlarged sectional view showing a part of a light emitting layer showing another embodiment in which the structure of the light emitting layer 4 is different from the above. The light emitting layer 4 has, for example, a particle size of about 7n.
Light is emitted when the surface of the thin-film porous metal oxide 41, which is a three-dimensional combination of Zn 2 SiO 4 : Mn fine particles of m, is excited by external energy and returns from the excited state to the ground state. Inorganic luminescent material 42, ...
It consists of a luminescent material with a large number of bonded Xs .

【0032】この図3に示すような微細構造の発光層4
であっても、上記実施例と同様に高い発光特性が得られ
た。
The light emitting layer 4 having a fine structure as shown in FIG.
Even in this case, high light emission characteristics were obtained as in the above-mentioned examples.

【0033】そして、そのELの製造は、たとえばPZ
Tからなる縦30mm×横30mm×厚さ0.15mm
の板状体の背面に、Pt電極を形成し、Pt電極と表面
との間に数kVの直流の高電圧を印加して分極処理を行
う。
The EL is manufactured by, for example, PZ.
30mm in length x 30mm in width x 0.15mm in thickness made of T
A Pt electrode is formed on the back surface of the plate-shaped body and the polarization treatment is performed by applying a high DC voltage of several kV between the Pt electrode and the surface.

【0034】また、PZTにZn2 SiO4 :Mn約
0.5wt%をスパッタリングなどにより厚さ約1μm形
成後、さらに、同様に厚さ約2μmのITO膜を形成す
る。なお、発光層4側の残留分極は負(−)で、上記両
電極3,6間に交流の正弦波電圧を印加する。
Further, about 0.5 wt% Zn 2 SiO 4 : Mn is formed on PZT by sputtering or the like to have a thickness of about 1 μm, and then an ITO film having a thickness of about 2 μm is formed in the same manner. The remanent polarization on the side of the light emitting layer 4 is negative (-), and an alternating sine wave voltage is applied between the electrodes 3 and 6.

【0035】上記のように強誘電体層5に残留分極が有
る場合は、無い場合に比べ低い電圧から高い輝度で発光
し、また、電圧を高くした場合の輝度の飽和傾向が小さ
くなる良好な結果が得られた。
As described above, when the ferroelectric layer 5 has remanent polarization, it emits light with a high luminance from a low voltage as compared with the case where it does not, and the saturation tendency of the luminance becomes small when the voltage is increased. Results were obtained.

【0036】また、図4は本発明のELの他の実施の形
態を示す縦断面図で、図中、図2と同一部分には同一の
符号を付してその説明は省略する。図2のEL1Aと異
なる点は、図4のEL1Bにおいては、発光層4と上記
ITO膜からなる透明な面状電極(アノード)3との間
には誘電体層7が形成してある。また、図中8はAl 2
3 などのセラミックスなどからなる基板である。
FIG. 4 shows another embodiment of the EL of the present invention.
FIG. 2 is a vertical cross-sectional view showing a state in which the same parts as those in FIG.
The reference numerals are given and the description thereof is omitted. Different from EL1A in Figure 2
The point is that in the EL1B of FIG.
Between the transparent planar electrode (anode) 3 made of ITO film
A dielectric layer 7 is formed on the. Also, in the figure, 8 is Al 2
O3It is a substrate made of ceramics, etc.

【0037】このように、発光層4の上下両面を誘電体
層5,7で、しかも一方を他方より強い誘電体層5とし
たので、絶縁破壊電圧が高く、発光層4にかかる電圧が
高くなるように誘電率の比較的大きな材料を選定したこ
とによりさらに改善傾向がみられた。
As described above, since the upper and lower surfaces of the light emitting layer 4 are the dielectric layers 5 and 7 and one of them is the stronger dielectric layer 5, the dielectric breakdown voltage is high and the voltage applied to the light emitting layer 4 is high. A further improvement trend was observed by selecting a material with a relatively large dielectric constant so that

【0038】なお、上記実施の形態では強誘電体層をP
ZTで形成したが、本発明はこのPZTに限らず、PL
ZT、SBT、BITなどの中から選ばれた少なくとも
一種で形成されたものであってもよい。
In the above embodiment, the ferroelectric layer is P
Although it is formed of ZT, the present invention is not limited to this PZT, but PL
It may be formed of at least one selected from ZT, SBT, BIT and the like.

【0039】[0039]

【発明の効果】 請求項1の発明によれば、強誘電体層
から発光層への供給エネルギーが大きくなって発光に寄
与させることができ、輝度および効率などの発光特性の
向上がはかれる。
According to the invention of claim 1, the energy supplied from the ferroelectric layer to the light emitting layer can be increased to contribute to light emission, and the light emitting characteristics such as brightness and efficiency can be improved.

【0040】請求項2の発明によれば、表面積の大きい
薄膜状の多孔質金属酸化物の表面に、外部エネルギーを
受けて励起し励起状態から基底状態へ戻る際に発光する
ように無機発光物が多数結合しているので、高効率の発
光が得られる。
According to the second aspect of the present invention, the surface of the thin film-like porous metal oxide having a large surface area is excited by external energy to be excited to emit light when returning from the excited state to the ground state. Since a large number of are bonded, highly efficient light emission can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に係る固体面状光源としてEL(エレ
クトロルミネセンス)の実施の形態を示す正面図であ
る。
FIG. 1 is a front view showing an embodiment of EL (electroluminescence) as a solid-state planar light source according to the present invention.

【図2】 図1中のa−a線に沿って切断した部分の断
面図である。
FIG. 2 is a cross-sectional view of a portion cut along line aa in FIG.

【図3】 発光層の一部を取り出して示す拡大断面図で
ある。
FIG. 3 is an enlarged sectional view showing a part of a light emitting layer.

【図4】 本発明に係るEL(エレクトロルミネセン
ス)の他の実施の形態を示す断面図である。
FIG. 4 is a sectional view showing another embodiment of an EL (electroluminescence) according to the present invention.

【符号の説明】[Explanation of symbols]

1A,1B:固体面状光源(EL(エレクトロルミネセ
ンス))、 3:透明面状電極、 4:発光層、 5:
強誘電体層、 6:面状電極、 7:誘電体層
1A, 1B: solid-state planar light source (EL (electroluminescence)), 3: transparent planar electrode, 4: light emitting layer, 5:
Ferroelectric layer, 6: planar electrode, 7: dielectric layer

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C09K 11/78 CPB C09K 11/78 CPB ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C09K 11/78 CPB C09K 11/78 CPB

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 導電性物質を有する面状電極と;この面
状電極上に積層された強誘電体層と;この強誘電体層上
に積層された発光層と;この発光層上に積層された透明
導電性物質を有してなる透明面状電極と;を備えている
ことを特徴とする固体面状光源。
1. A planar electrode having a conductive substance; a ferroelectric layer laminated on the planar electrode; a light emitting layer laminated on the ferroelectric layer; laminated on the light emitting layer. And a transparent planar electrode comprising the transparent conductive material described above.
【請求項2】 発光層は、10nm以下の金属酸化物主
体の超微粒子を一種以上分散してなり、0.5〜5.0
μmの膜厚で形成されていること特徴とする上記請求項
1に記載の固体面状光源。
2. The light-emitting layer is made by dispersing one or more kinds of ultrafine particles mainly composed of a metal oxide and having a size of 10 nm or less, and is 0.5 to 5.0.
The solid-state planar light source according to claim 1, wherein the solid-state planar light source is formed to have a film thickness of μm.
JP2002141396A 2002-05-16 2002-05-16 Solid planar light source Pending JP2003332078A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002141396A JP2003332078A (en) 2002-05-16 2002-05-16 Solid planar light source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002141396A JP2003332078A (en) 2002-05-16 2002-05-16 Solid planar light source

Publications (1)

Publication Number Publication Date
JP2003332078A true JP2003332078A (en) 2003-11-21

Family

ID=29701992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002141396A Pending JP2003332078A (en) 2002-05-16 2002-05-16 Solid planar light source

Country Status (1)

Country Link
JP (1) JP2003332078A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170136166A (en) * 2016-06-01 2017-12-11 연세대학교 산학협력단 Luminous member, method for driving of luminous member, non-volatile memory device, sensor, method for driving of sensor, and display apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170136166A (en) * 2016-06-01 2017-12-11 연세대학교 산학협력단 Luminous member, method for driving of luminous member, non-volatile memory device, sensor, method for driving of sensor, and display apparatus
KR101958058B1 (en) * 2016-06-01 2019-07-04 연세대학교 산학협력단 Luminous member, method for driving of luminous member, non-volatile memory device, sensor, method for driving of sensor, and display apparatus
US10706768B2 (en) 2016-06-01 2020-07-07 University-Industry Foundation (Uif), Yonsei University Luminous member, method of driving luminous member, non-volatile memory device, sensor, method of driving sensor, and display apparatus

Similar Documents

Publication Publication Date Title
US7700968B2 (en) Method of forming a light-emitting device with a triple junction
JP4776955B2 (en) Light emitting device and manufacturing method thereof
US7410600B2 (en) Light-emitting material and light-emitting element
JPS6240837B2 (en)
TWI386106B (en) Electroluminescent device
JP4897678B2 (en) Aluminum oxide and aluminum oxynitride for use in electroluminescent display phosphors
JP2015057786A (en) Laminated thick film dielectric structure for thick film dielectric electroluminescent display
US7411343B2 (en) Inorganic electroluminescent device
KR20060114387A (en) Field-emission phosphor, its manufacturing method, and field-emission device
KR20090047977A (en) Inorganic light emitting device
WO2005051045A1 (en) Light-emitting device
US4603280A (en) Electroluminescent device excited by tunnelling electrons
JPS5823191A (en) Thin film el element
JPWO2005004546A1 (en) Electroluminescent device and display device
JP2006004658A (en) Light emitting device and its manufacturing method
JP2006127780A (en) Electroluminescent element
JP4748940B2 (en) AC operation electroluminescence element
JP2003332078A (en) Solid planar light source
JP2005203336A (en) Electroluminescent element and electroluminescent particle
JP2004228062A (en) Electron emission element
JP2011076726A (en) Electroluminescent element and method of manufacturing the same
JP4831939B2 (en) Luminescent thin film and light emitting element
JPH0883686A (en) Thin film luminous element
JP4954535B2 (en) Electroluminescent device
JP2002280185A (en) Thin film el element