JP2003331880A - Fuel cell and its power generation method - Google Patents

Fuel cell and its power generation method

Info

Publication number
JP2003331880A
JP2003331880A JP2002135099A JP2002135099A JP2003331880A JP 2003331880 A JP2003331880 A JP 2003331880A JP 2002135099 A JP2002135099 A JP 2002135099A JP 2002135099 A JP2002135099 A JP 2002135099A JP 2003331880 A JP2003331880 A JP 2003331880A
Authority
JP
Japan
Prior art keywords
fuel
water
anode
fuel cell
supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002135099A
Other languages
Japanese (ja)
Other versions
JP4778659B2 (en
Inventor
Minoru Umeda
実 梅田
Isamu Uchida
勇 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2002135099A priority Critical patent/JP4778659B2/en
Publication of JP2003331880A publication Critical patent/JP2003331880A/en
Application granted granted Critical
Publication of JP4778659B2 publication Critical patent/JP4778659B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell, particularly a direct methanol fuel cell capable of solving an accompanying crossover problem to realize high output, and of immediately following the output variation while a fuel cell is fed with a liquid fuel directly to an anode, particularly a direct methanol fuel cell. <P>SOLUTION: As a result of analyzing a cause of the crossover problem, it is found that a high-concentration fuel can be fed without causing the crossover by employing a feed structure for fuel and water capable of avoiding a condition where the surface of the anode is always wet. This fuel cell includes the anode, a cathode and an electrolyte interposed between them. The fuel cell is characteristically provided with a means for feeding the fuel and water in the form of a liquid phase to the surface of the anode without bringing a storage solution including the fuel into contact with the anode. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、燃料電池、特に
直接メタノール形燃料電池に関し、より詳細には、クロ
スオーバーが改善された燃料電池、特に直接メタノール
形燃料電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell, particularly a direct methanol fuel cell, and more particularly to a fuel cell with improved crossover, and more particularly to a direct methanol fuel cell.

【0002】[0002]

【従来の技術】直接メタノール形燃料電池(DMFC)
は比較的低温(常温〜120℃)で運転する発電装置で
ある。この燃料電池は、古くより研究されているよう
に、メタノール燃料を直接アノードに供給するため、ア
ルコールから水素を取り出すための改質器が不要とな
り、装置自体が小型化ならびに安価にできるだけでなく
全体の運転手段も簡素化できる。液体燃料は水素ガスを
燃料として使用する場合に比べて可燃物としての安全性
及び小型化容易の面からおおきな期待がよせられてい
る。
2. Description of the Related Art Direct methanol fuel cell (DMFC)
Is a power generator that operates at a relatively low temperature (normal temperature to 120 ° C.). Since this fuel cell has been researched for a long time, it supplies methanol fuel directly to the anode, so that a reformer for taking out hydrogen from alcohol is not required, and the device itself can be miniaturized and inexpensive, as well as the entire device. The driving means can also be simplified. Liquid fuels are greatly expected from the standpoint of safety as a combustible material and easy miniaturization as compared with the case of using hydrogen gas as a fuel.

【0003】この電池のアノードでメタノールが酸化さ
れる反応は、完全に6電子酸化される場合、次式で表さ
れるように水分子の関与が必要不可欠である。 CHOH+HO→CO+6H+6e (1 ) すなわち、メタノールを二酸化炭素にまで完全酸化する
ための酸素源として水分子が欠かせない。(1)式によ
れば、メタノール1分子に対して水1分子が反応に必要
であり、この組成が最良の燃料組成比と考えられる。し
かし、(1)式で生成したプロトンが電解質膜中をカソ
ードに向って移動するためには、プロトンが水和するた
めの水分子の供給が、望ましくはアノード側から必要で
ある。さらに、現時点で最高性能を有する電解質膜を用
いた場合でも、メタノールを初めとする各種燃料が膜内
を透過し、燃料電池の出力特性を大きく低下させる現象
が問題となっている(クロスオーバー)。従って、現実
問題として、燃料極に常時接するメタノール濃度は、せ
いぜい1.5mol/リットル程度にせざるを得ない。
In the reaction in which methanol is oxidized at the anode of this battery, the involvement of water molecules is indispensable as shown in the following formula when completely oxidized by six electrons. CH 3 OH + H 2 O → CO 2 + 6H + + 6e (1) That is, water molecules are indispensable as an oxygen source for completely oxidizing methanol to carbon dioxide. According to the equation (1), one molecule of water is required for the reaction for one molecule of methanol, and this composition is considered to be the best fuel composition ratio. However, in order for the protons generated by the formula (1) to move in the electrolyte membrane toward the cathode, it is necessary to supply water molecules for hydrating the protons, preferably from the anode side. Further, even when the electrolyte membrane having the highest performance at the present time is used, the phenomenon that various fuels such as methanol permeate through the membrane and significantly deteriorate the output characteristics of the fuel cell is a problem (crossover). . Therefore, as a practical matter, the concentration of methanol constantly in contact with the fuel electrode must be at most about 1.5 mol / liter.

【0004】この問題を解決するため、様々な方法が提
案されている。例えば、アノードとカソードとの間の電
解質膜やその構造を改良する方法がとられている(特開
平11−26005、特開2002−83612等)。
また、液体燃料を一旦気化器や加熱器を用いて気化して
アノードに供給する方法が提案されている(例えば、特
開2001−93541)。しかし、気相での高濃度燃
料の供給は不可能であり、また気化器を加熱するエネル
ギーが必要だったり、加熱しない気化器の場合は燃料が
アノードに達するまでの時間を要したりする等の不具合
を生ずる。また、アノードに導電性の多孔性材料層を設
けこの層に燃料の酸化を促進する触媒を担持することが
提案されている(特表2000−502205)が、か
なり複雑な構造となり、コストも高くなると思われる。
Various methods have been proposed to solve this problem. For example, a method for improving the electrolyte membrane between the anode and the cathode and the structure thereof has been adopted (JP-A-11-26005, JP-A-2002-83612, etc.).
Further, a method has been proposed in which liquid fuel is once vaporized by using a vaporizer or a heater and supplied to the anode (for example, JP 2001-93541 A). However, it is not possible to supply high-concentration fuel in the vapor phase, and it requires energy to heat the carburetor, and in the case of a carburetor that does not heat it, it takes time for the fuel to reach the anode. Causes the problem of. In addition, it has been proposed that a conductive porous material layer is provided on the anode and a catalyst that promotes the oxidation of fuel is supported on this layer (Table 2000-502205), but the structure is rather complicated and the cost is high. I think it will be.

【0005】[0005]

【発明が解決しようとする課題】本発明は、このように
液体燃料を直接アノードに供給する燃料電池、特に直接
メタノール形燃料電池でありながら、付随するクロスオ
ーバーの問題を解消し、高出力を実現でき、さらには出
力変動にも即座に追随できる燃料電池、特に直接メタノ
ール形燃料電池を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention solves the problem of the crossover associated with the fuel cell which supplies the liquid fuel directly to the anode as described above, in particular, the direct methanol fuel cell. It is an object of the present invention to provide a fuel cell that can be realized and can immediately follow output fluctuations, in particular, a direct methanol fuel cell.

【0006】[0006]

【課題を解決するための手段】発明者らは、液体燃料を
直接アノードに供給する燃料電池、特に直接メタノール
形燃料電池でありながら、付随するクロスオーバーの問
題の原因を解析した結果、アノード表面が常に湿潤して
いる状態を回避することのできる燃料及び水の供給構造
を採ることで、クロスオーバーを起こさず高濃度燃料を
供給できることを見出し、本発明を完成させた。即ち、
本発明は、アノード、カソード及びこれらに挟持された
電解質を含む燃料電池であって、該アノードに燃料を含
む貯蔵液が接することなく、アノードの表面に燃料及び
水を液相供給する手段を備えたことを特徴とする燃料電
池である。ここで、アノード、カソード及び電解質は通
常燃料電池に用いるものを用いればよく、例えば、アノ
ードとカソードとして白金等の金属、電解質としてDu
Pont社製ナフィオン(登録商標)等のプロトン導電
性固体高分子電解質を用いることができる。
DISCLOSURE OF THE INVENTION The inventors of the present invention have analyzed the cause of the accompanying crossover problem even though it is a fuel cell for supplying a liquid fuel directly to the anode, particularly a direct methanol fuel cell. The present invention has been completed by finding that a high-concentration fuel can be supplied without causing crossover by adopting a fuel and water supply structure capable of avoiding the always wet state. That is,
The present invention is a fuel cell including an anode, a cathode, and an electrolyte sandwiched between the anode and the cathode. The fuel cell includes a means for supplying a fuel and water in a liquid phase to the surface of the anode without contacting the storage liquid containing the fuel with the anode. It is a fuel cell characterized by the above. Here, as the anode, the cathode and the electrolyte, those normally used in a fuel cell may be used. For example, a metal such as platinum is used as the anode and the cathode and Du is used as the electrolyte.
A proton conductive solid polymer electrolyte such as Nafion (registered trademark) manufactured by Pont Co. can be used.

【0007】通常の燃料電池は、燃料と水から成る貯蔵
液が、直接又は流路等を介して、アノードに接触する方
式になっている。その結果、この貯蔵液が常時アノード
表面を湿潤することとなる。このような構造を採るかぎ
り、クロスオーバーの問題を回避するためには貯蔵液中
の燃料(メタノール)の濃度を下げざるを得ず、その結
果高出力が得られない。本発明においては、このような
アノードに燃料を含む貯蔵液が接するような構造を採ら
ず、アノードの表面に燃料及び水を液相供給する手段を
備えた構造とした点に特徴がある。このアノードの表面
に燃料及び水を液相供給する手段は、燃料及び水を注射
するための注射器から成り、注射速度が可変であること
が好ましい。
A normal fuel cell is of a type in which a stored liquid composed of fuel and water comes into contact with the anode directly or through a flow path or the like. As a result, this storage solution always wets the anode surface. As long as such a structure is adopted, in order to avoid the problem of crossover, the concentration of the fuel (methanol) in the stored liquid must be lowered, and as a result, high output cannot be obtained. The present invention is characterized in that such a structure that a storage liquid containing a fuel is in contact with such an anode is not adopted, but a structure is provided with a means for supplying a liquid phase of fuel and water to the surface of the anode. The means for supplying the fuel and water in the liquid phase to the surface of the anode comprises a syringe for injecting the fuel and water, and the injection speed is preferably variable.

【0008】また、燃料と水とを混合して一つの供給手
段により供給してもよいし、燃料と水とを別々の供給手
段により独立に供給してもよい。後者は、燃料と水との
比を変えられるため、そのような必要のある場合には好
ましいといえる。この場合、アノードの表面に燃料及び
水を液相供給する手段は、燃料又は水を注射するための
2種の注射器から成り、各注射速度が独立に可変である
ことが好ましい。ここで注射器として、例えば、電磁
弁、送液ポンプ、加圧装置、注射器(例えば、インクジ
ェットプリンターヘッド(ピエゾ方式、サーマル方式な
ど))、表面弾性波素子などを組み合わせたものを用い
ることができる。このような構造を採ることにより、必
要量の燃料及び/又は水のみをアノード表面に供給する
ことを可能とし、その結果、クロスオーバーを起こさず
高濃度燃料を供給することを可能とし、更に燃料電池の
運転状況に応じて燃料及び水を適切な比率及び流量で供
給することを可能にした。
The fuel and water may be mixed and supplied by one supply means, or the fuel and water may be independently supplied by separate supply means. The latter can be said to be preferable in such a case because the ratio of fuel to water can be changed. In this case, the means for supplying the fuel and water in the liquid phase to the surface of the anode is preferably composed of two types of injectors for injecting the fuel or water, and each injection rate is independently variable. Here, as the injector, for example, a combination of an electromagnetic valve, a liquid feed pump, a pressurizing device, an injector (for example, an inkjet printer head (piezo type, thermal type, etc.)), a surface acoustic wave element, or the like can be used. By adopting such a structure, it is possible to supply only the required amount of fuel and / or water to the anode surface, and as a result, it is possible to supply a high-concentration fuel without causing crossover, It is possible to supply fuel and water at an appropriate ratio and flow rate according to the operating conditions of the battery.

【0009】このアノードの表面に燃料及び水を液相供
給する手段は、燃料電池の作動状況を検出しつつ所望の
運転状況を作り出すように制御されることが好ましい。
このような作動状況検出手段として、電池ユニットの電
圧及び電流計測手段や、アノード表面の燃料と水の比率
検出センサー、あるいは、固体電解質中の燃料と水の比
率検出センサー等を用いて行うことができる。更に、M
PU演算素子などを用いることにより、燃料と水を運転
状況に応じて適切な比率と流量でアノードに供給するこ
とが好ましい。
The means for supplying the fuel and water in the liquid phase to the surface of the anode is preferably controlled so as to produce a desired operating condition while detecting the operating condition of the fuel cell.
As such an operation status detecting means, it is possible to use a voltage and current measuring means of the battery unit, a fuel / water ratio detecting sensor on the anode surface, or a fuel / water ratio detecting sensor in the solid electrolyte. it can. Furthermore, M
It is preferable to supply the fuel and water to the anode at an appropriate ratio and flow rate according to the operating condition by using a PU arithmetic element or the like.

【0010】また本発明は、上記のいずれかの燃料電池
を発電する方法であって、前記アノードの表面に、アノ
ード表面が常に湿潤しない量の燃料と水を、燃料の供給
速度が燃料が消費される速度とほぼ同じとなるように、
液相供給する段階を含む燃料電池を発電する方法であ
る。燃料電池の運転状況により、この供給速度を変える
ことが好ましく、特に燃料及び水の供給速度を独立して
変えることがより好ましい。このような方法により、燃
料電池の運転状況に応じて、そのアノード表面に制御さ
れた比率と流量で燃料と水を供給することができる。既
述のように、アノード表面が常に湿潤する量の燃料と水
を供給すると、クロスオーバーの問題が生じてしまうた
め、その供給は、アノードの表面に、アノード表面が常
に湿潤しない量の燃料と水を、燃料の供給速度が燃料が
消費される速度とほぼ同じとなるように、供給する。こ
のような供給速度は、言い換えると、クロスオーバーを
生じない量の燃料及び水をアノード表面に供給するよう
な供給速度である。
The present invention also provides a method for generating power in any of the above fuel cells, wherein the surface of the anode consumes fuel and water in an amount such that the anode surface is not always wet, and the fuel is consumed at a fuel supply rate. So that the speed is almost the same as
A method of generating power from a fuel cell, including a step of supplying in a liquid phase. It is preferable to change the supply rate depending on the operating condition of the fuel cell, and it is more preferable to change the supply rates of fuel and water independently. By such a method, fuel and water can be supplied to the anode surface at a controlled ratio and flow rate according to the operating condition of the fuel cell. As mentioned above, supplying fuel and water in an amount such that the anode surface is always wet causes a crossover problem, so that the supply of the fuel and water to the anode surface is such that the anode surface does not always wet. The water is supplied such that the fuel supply rate is approximately the same as the fuel consumption rate. Such a supply rate is, in other words, such a supply rate as to supply the fuel and water in an amount that does not cause crossover to the anode surface.

【0011】更に、このような方法を用いることによ
り、発電量が多い場合には水の供給速度に対する燃料の
供給速度の比を高くし、発電量が少ない場合には水の供
給速度に対する燃料の供給速度の比を低くすることによ
り、必要とされる発電量に応じて適切な量の燃料と水を
供給することができる。このような燃料と水の適切な供
給速度は、燃料電池の構成や運転状況に依るため、燃料
電池を運転しつつ、燃料電池の運転状態や問題をフィー
ドバックすることによって最適値を把握することができ
る。
Further, by using such a method, the ratio of the fuel supply speed to the water supply speed is increased when the power generation amount is large, and the fuel ratio to the water supply speed is increased when the power generation amount is small. By reducing the ratio of the supply rates, it is possible to supply an appropriate amount of fuel and water according to the required amount of power generation. Since the appropriate supply speed of fuel and water depends on the configuration and operating condition of the fuel cell, it is possible to grasp the optimum value by feeding back the operating condition and problems of the fuel cell while operating the fuel cell. it can.

【0012】また、燃料電池を急停止する場合には、燃
料と水の混合物の供給をいきなり止めると、アノードの
材料が劣化する。これを防止するために、水のみをアノ
ードに供給すると、アノード表面はクロスオーバーの起
きない燃料低濃度状態になり、急停止に耐えられる。即
ち、発電を止める場合には、燃料の供給を止め、水のみ
を供給することが好ましい。一方、停止状態から急速に
運転開始する場合には、燃料のみを供給することで燃料
高濃度状態を実現することができる。また、定常状態に
移行する場合には燃料と水の比率を一定組成にすればよ
い。
Further, when the fuel cell is suddenly stopped, if the supply of the mixture of fuel and water is suddenly stopped, the material of the anode is deteriorated. In order to prevent this, if only water is supplied to the anode, the surface of the anode is in a low fuel concentration state where crossover does not occur, and a sudden stop can be endured. That is, when stopping the power generation, it is preferable to stop the fuel supply and supply only water. On the other hand, when the operation is rapidly started from the stopped state, it is possible to realize the high fuel concentration state by supplying only the fuel. Further, in the case of shifting to a steady state, the ratio of fuel and water may be set to a constant composition.

【0013】通常は、アノードを水平に置きその表面に
燃料及び水を供給すれば自然に拡散されるが、燃料及び
水をアノードの表面に均一に拡散するための適当な補助
手段を用いてもよい。例えば、より均一に拡散するため
や表面が大きい場合には、上記燃料及び水の供給手段を
複数用いてもよい。更に、燃料及び水をアノードの表面
により均一に拡散するために液体燃料吸収板を用いて行
ってもよく、これは多孔性材料、例えば、ガラス繊維マ
ット、炭素発泡体、膨張ポリテトラフルオロエチレン、
網状化金属等、から成ることが好ましい。また、燃料と
しては、C1〜C4までの低級アルコール、グリコール
又はエーテル等、例えば、ジメチルエーテル、ジエチル
エーテル、メタノール、エタノール、1−プロパノー
ル、2−プロパノ−ル、1−ブタノール、2級ブタノー
ル、3級ブタノール、エチレングリコール、ジエチレン
グリコールなどを用いることができるが、メタノールが
好ましく用いられる。
Normally, when the anode is placed horizontally and the fuel and water are supplied to the surface of the anode, it is naturally diffused. However, even if a suitable auxiliary means for evenly diffusing the fuel and water to the surface of the anode is used. Good. For example, a plurality of fuel and water supply means may be used for more uniform diffusion or when the surface is large. Additionally, a liquid fuel absorber plate may be used to more evenly diffuse the fuel and water to the surface of the anode, which may be a porous material such as glass fiber mat, carbon foam, expanded polytetrafluoroethylene,
It is preferably composed of a reticulated metal or the like. Further, as the fuel, a lower alcohol having 1 to 4 carbon atoms, glycol, ether or the like, for example, dimethyl ether, diethyl ether, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, secondary butanol, tertiary Butanol, ethylene glycol, diethylene glycol and the like can be used, but methanol is preferably used.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施の形態を説明
するが、本発明を限定することを意図するものではな
い。本発明の燃料電池の一例を図1及び2に示す。この
燃料電池はアノード(燃料極)2、カソード(空気極)
3及びこれらに挟持された固体電解質膜1から成り、ア
ノード2上には、燃料及び水を均一に拡散させるための
液体燃料吸収板7が接して配されている。アノード表面
で燃料と水の均一性が確保されていれば、この液体燃料
吸収板7はなくともよい。燃料と水とは混合して一つの
供給手段4(図1)により供給してもよいし、燃料と水
とを別々に2つの供給手段(燃料供給手段9と水供給手
段10、図2)により独立に供給してもよい。一定の燃
料と水との比で供給する場合には前者の方法でよく、こ
の場合には、この比を一定にしたまま燃料と水の供給速
度のみを変えることができる。後者の場合には、それぞ
れ独立した供給速度で燃料又は水を供給することができ
る。この燃料供給手段9と水供給手段10又は燃料と水
の混合液の供給手段4により、燃料と水は設定された比
率及び供給速度でアノード2又は液体燃料吸収板7上に
供給される。このような供給方法により、アノードの表
面に、アノード表面が常に湿潤しない量の燃料と水を、
燃料の供給速度が燃料が消費される速度とほぼ同じとな
るように、供給することができる。そのため、このアノ
ード7上でクロスオーバーを防止することができ、また
運転状況に応じた燃料を供給することができる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described, but it is not intended to limit the present invention. An example of the fuel cell of the present invention is shown in FIGS. This fuel cell has an anode (fuel electrode) 2 and a cathode (air electrode)
3 and a solid electrolyte membrane 1 sandwiched therebetween, a liquid fuel absorption plate 7 for uniformly diffusing fuel and water is arranged on the anode 2 in contact therewith. If the uniformity of fuel and water is ensured on the anode surface, this liquid fuel absorption plate 7 may be omitted. The fuel and water may be mixed and supplied by one supply means 4 (FIG. 1), or the fuel and water may be separately supplied by two supply means (fuel supply means 9 and water supply means 10, FIG. 2). May be supplied independently. When the fuel and water are supplied at a constant ratio, the former method may be used. In this case, only the fuel and water supply rate can be changed while keeping the ratio constant. In the latter case, fuel or water can be supplied at independent supply rates. The fuel and water are supplied onto the anode 2 or the liquid fuel absorption plate 7 by the fuel supply means 9 and the water supply means 10 or the supply means 4 of the mixed liquid of fuel and water at the set ratio and supply speed. By such a supply method, an amount of fuel and water that the anode surface does not always wet the surface of the anode,
The fuel can be supplied so that the fuel supply speed is almost the same as the fuel consumption speed. Therefore, crossover can be prevented on the anode 7, and fuel can be supplied according to the operating condition.

【0015】本発明の燃料電池の別の態様を図3に示
す。この燃料電池20は、ユニットセル(MEA)が複
数層(図3では3層)積層されて成り、各ユニットセル
はアノード(燃料極)12、カソード(空気極)14及
びこれらに挟持された固体電解質膜13の三層から成
り、更に、アノード12には液体燃料吸収板11が接
し、カソード14には空気流路15が接するように配さ
れている。燃料と水は燃料収容部16と水収容部とに別
々に貯蔵されており、これらは燃料水供給手段17から
別々にエアギャップを介して液体燃料吸収板11に供給
され、液体燃料(燃料と水)は液体燃料吸収板11によ
り、直ちにアノード12表面に均一に拡散して行き届
く。なお、3つのセルユニットはバイポーラ板を初めと
する公知の手段で直列又は並列に接続してもよい。
Another embodiment of the fuel cell of the present invention is shown in FIG. The fuel cell 20 is formed by stacking a plurality of layers (3 layers in FIG. 3) of unit cells (MEA), and each unit cell has an anode (fuel electrode) 12, a cathode (air electrode) 14 and a solid sandwiched between them. It is composed of three layers of an electrolyte membrane 13, and is further arranged so that the liquid fuel absorption plate 11 is in contact with the anode 12 and the air flow path 15 is in contact with the cathode 14. Fuel and water are separately stored in the fuel storage unit 16 and the water storage unit, and these are separately supplied from the fuel water supply unit 17 to the liquid fuel absorption plate 11 through the air gap, and the liquid fuel (fuel and The water) immediately diffuses uniformly to the surface of the anode 12 by the liquid fuel absorption plate 11 and reaches. The three cell units may be connected in series or in parallel by a known means such as a bipolar plate.

【0016】本発明の燃料電池の別の態様を図4に示
す。この燃料電池20は、上記図4の燃料電池を改良し
たものであり、複数の水収容部と燃料収容部16及び燃
料水供給手段17をひとつにまとめたものである。本発
明の燃料電池の更に別の態様を図5に示す。一枚の固体
電解質膜13に4組のアノード(燃料極)12とカソー
ド(空気極)14が固体電解質膜13を挟むように配さ
れたいわゆる平面スタックセルが、液体燃料吸収板11
を共有して、その上下に2枚配された構造をしている。
上記と同様に燃料と水は燃料水供給手段17から液体燃
料吸収板11に供給され、液体燃料(燃料と水)はアノ
ード12表面に均一に拡散される。なお、8つのセルユ
ニットは公知の手段で直列又は並列に接続してもよい。
Another embodiment of the fuel cell of the present invention is shown in FIG. The fuel cell 20 is an improved version of the fuel cell shown in FIG. 4 and has a plurality of water accommodating portions, a fuel accommodating portion 16, and a fuel water supply means 17 in one. Yet another embodiment of the fuel cell of the present invention is shown in FIG. A so-called flat stack cell in which four sets of anodes (fuel electrodes) 12 and cathodes (air electrodes) 14 are arranged on one solid electrolyte membrane 13 so as to sandwich the solid electrolyte membrane 13 is a liquid fuel absorption plate 11
Are shared, and two are arranged above and below it.
Similar to the above, the fuel and water are supplied from the fuel water supply means 17 to the liquid fuel absorption plate 11, and the liquid fuel (fuel and water) is uniformly diffused on the surface of the anode 12. The eight cell units may be connected in series or in parallel by known means.

【0017】本発明の燃料電池のまた別の態様を図6に
示す。燃料電池本体30が円筒形をしており、そこには
複数個のセルユニット21が配され、直列又は並列に接
続されている。セルユニット21の構造を図7に示す。
燃料24と水25は混合され燃料水供給手段26によ
り、燃料と水の混合物27として円筒状の燃料電池本体
30の内壁に吹き付けられる。この内壁にはセルユニッ
ト21のアノード32が露出するか、又はアノード上に
接して配された液体燃料吸収板34が露出しており、こ
れらに供給された液体燃料はアノードに均一に分散され
る。
Another embodiment of the fuel cell of the present invention is shown in FIG. The fuel cell main body 30 has a cylindrical shape, and a plurality of cell units 21 are arranged therein and connected in series or in parallel. The structure of the cell unit 21 is shown in FIG.
The fuel 24 and water 25 are mixed and sprayed as a mixture 27 of fuel and water onto the inner wall of the cylindrical fuel cell body 30 by the fuel water supply means 26. The anode 32 of the cell unit 21 is exposed to this inner wall, or the liquid fuel absorption plate 34 disposed in contact with the anode is exposed, and the liquid fuel supplied to these is uniformly dispersed in the anode. .

【0018】[0018]

【発明の効果】本発明の燃料電池は、様々な利点を有す
る。即ち、必要量の燃料が適宜アノードに供給されるた
め、高濃度燃料を供給してもクロスオーバーを生じな
い。更に、高濃度燃料が供給され得るので、高出力を取
り出すことができる。また、燃料と水が運転状況に応じ
て適切な比率でアノードに供給されるので、急激な出力
変動にも追随できる(例えば、ノートパソコンの使用モ
ード/スリープモード;携帯電話の待機モード/トーク
モード)。更に、気化器を使用するものではないため、
余分なスペースや加熱源を必要としない。
The fuel cell of the present invention has various advantages. That is, since the required amount of fuel is appropriately supplied to the anode, crossover does not occur even if high-concentration fuel is supplied. Further, since high concentration fuel can be supplied, high output can be taken out. In addition, fuel and water are supplied to the anode at an appropriate ratio according to operating conditions, so it is possible to follow sudden output fluctuations (for example, laptop computer use mode / sleep mode; mobile phone standby mode / talk mode). ). Furthermore, since it does not use a vaporizer,
Does not require extra space or heating source.

【0019】[0019]

【実施例】実施例1 市販のダイレクトメタノール燃料電池(H−TEC社
製)の膜電極構造体(MEA)を取り出して、図1のよ
うに改造した。即ち、アノード上に厚さ2mmのG4号
ガラスフィルターを密着させ、燃料揮発防止のためにそ
の上を直径5mmの穴をあけたポリエチレンテレフタレ
ートフィルムで覆って、単セルとして、試験に用いた。
このセルのアノード端子とカソード端子を電気化学計測
装置(ガルバノスタット:北斗電工社製HA301)に
接続した。シリンジ(室町機械製:KDS)に、メタノ
ール:水が30:70の体積比(メタノール濃度7.4
Mに相当する。)の混合液を入れて、ガラスフィルター
上へ注入した。電流値(I)を一定にして、クロスオー
バーを起こさない液体燃料混合液の供給速度を見極めな
がら、この供給速度を変化させて、最高出力(I×V)
が取り出せるときの電圧(V)を記録した。また、電流
値を変化させてその時々の得られた電圧をプロットし
た。その結果を図8に示す。その結果、後述の比較例1
や2を上回る電流−電圧特性が観察された。
【Example】Example 1 Commercial direct methanol fuel cell (H-TEC
Manufactured) and take out the membrane electrode structure (MEA) shown in FIG.
I remodeled it. That is, G2 with a thickness of 2 mm on the anode
Attach the glass filter closely to prevent the fuel from volatilizing.
Polyethylene terephthalate with a 5 mm diameter hole on the top
It was covered with a sheet of film and used as a single cell in the test.
Electrochemical measurement of the anode and cathode terminals of this cell
For equipment (galvanostat: HA301 manufactured by Hokuto Denko)
Connected Syringe (Muromachi Kikai: KDS)
30:70 volume ratio of methanol: water (methanol concentration 7.4
Equivalent to M. ) Put the mixed solution of
Injected up. Keep the current value (I) constant and
Do not determine the feed rate of the liquid fuel mixture that does not cause the bar.
The maximum output (I × V)
The voltage (V) at which the can be taken out was recorded. Also the current
Change the value and plot the resulting voltage
It was The result is shown in FIG. As a result, Comparative Example 1 described later
A current-voltage characteristic of over 2 was observed.

【0020】実施例2 実施例1と同じセルと装置を用いて、メタノールと水の
混合比率(体積比)を45:55(メタノール濃度11
Mに相当する。)とした以外は、実施例1と同様にして
電池セルの電流−電圧特性を測定した。測定結果を図8
に示す。本実施例においても後述の比較例1や2を上回
る電流−電圧特性が観察された。
[0020]Example 2 Using the same cell and apparatus as in Example 1, methanol and water were used.
The mixing ratio (volume ratio) was 45:55 (methanol concentration 11
Equivalent to M. ) Except that the same as in Example 1.
The current-voltage characteristics of the battery cell were measured. Figure 8 shows the measurement results.
Shown in. Also in this example, the results were higher than those in Comparative Examples 1 and 2 described later.
Current-voltage characteristics were observed.

【0021】比較例1 実施例1で改造して用いたダイレクトメタノール燃料電
池用膜電極構造体(MEA)を改造せずそのまま用い
て、0.5〜10Mの濃度のメタノール水溶液を使用し
て発電し、この電池セルの電流−電圧特性を、電気化学
計測装置(ガルバノスタット)を用いて測定した。用い
た燃料電池の構造を図9に示し、測定結果を図10に示
す。メタノール濃度が0.5Mから5Mまでは、濃度の
増加とともに電流−電圧特性も出力増加を示す。しか
し、メタノール濃度が7M以上では、出力低下が観測さ
れ、メタノールが固体電解質膜をクロスオーバーしたこ
とを示す。
[0021]Comparative Example 1 Direct methanol fuel cell modified and used in Example 1
The membrane electrode structure for ponds (MEA) is used without modification
Using a 0.5-10 M concentration aqueous methanol solution.
To generate electric power, and to determine the current-voltage characteristics of this battery cell by electrochemical
It measured using the measuring device (galvanostat). Use
The structure of the fuel cell is shown in Fig. 9, and the measurement results are shown in Fig. 10.
You When the methanol concentration is 0.5M to 5M,
The current-voltage characteristic also shows an increase in output with an increase. Only
However, when the methanol concentration is 7M or more, a decrease in output is observed.
The methanol crossed over the solid electrolyte membrane.
And indicates.

【0022】比較例2 比較例1で用いたセルと装置から燃料と水の混合液6を
抜き取り、変わりにメタノールと水を各々含む洗気瓶に
乾燥窒素ガスを通気したメタノールと水の飽和気体を4
00ミリリットル/分と100ミリリットル/分の割合
で混合しながら燃料極に導いた。実施例1と同様に、電
池セルの電流−電圧特性を測定した。この測定結果を図
8に示す。この比較例では非常に低い出力しか得ること
ができなかった。気相燃料供給では、燃料極に高濃度燃
料を送ることができないためと考えられる。
[0022]Comparative example 2 A mixed liquid 6 of fuel and water was supplied from the cell and apparatus used in Comparative Example 1.
Remove it, and replace it with a gas bottle containing methanol and water.
Saturated gas of methanol and water with dry nitrogen gas aeration 4
The ratio of 00 ml / min and 100 ml / min
While mixing with, led to the fuel electrode. Similar to the first embodiment,
The current-voltage characteristics of the pond cell were measured. Figure of this measurement result
8 shows. In this comparative example, you get very low output
I couldn't. In gas-phase fuel supply, high-concentration fuel
It is thought that it is not possible to send the fee.

【0023】図8の結果から、メタノールと水の供給速
度を調整することにより、比較例1でクロスオーバーを
起こした燃料濃度よりも高い燃料濃度での運転が可能に
なり、その結果、比較例1や2よりも高い電流−電圧特
性を得ることができた。すなわち、本発明の液体燃料供
給方式を用いると、高濃度メタノール水溶液の供給を行
ってもクロスオーバーを生ずることなく、高出力を得る
ことができることが示された。
From the results of FIG. 8, it is possible to operate at a fuel concentration higher than the fuel concentration at which crossover occurred in Comparative Example 1 by adjusting the supply rates of methanol and water. As a result, Comparative Example It was possible to obtain a current-voltage characteristic higher than 1 or 2. That is, it was shown that, when the liquid fuel supply system of the present invention is used, high output can be obtained without causing crossover even when supplying a high-concentration aqueous methanol solution.

【0024】実施例3 実施例1と同様の燃料電池を用い、その燃料電池の構造
を、図2に示すように、燃料と水を独立して供給できる
よう変更した。即ち、2個のシリンジ(室町機械製:K
DS)を用意し、一方にメタノールを入れ、他方に水を
入れて、メタノールと水の混合比率を下記のように代え
て供給しながら、20mAの定電流出力下で電池セルの
電圧変動を記録した。測定結果を図11に示す。図中の
矢印の記号は下記の比率の液体燃料を注入した時点を示
す。 A;メタノール:水(体積比)=30:70(メタノー
ル濃度7.4Mに相当) B;メタノール:水(体積比)=0:100 C;メタノール:水(体積比)=2:98(メタノール
濃度0.5Mに相当) D;メタノール:水(体積比)=0.5:99.5(メ
タノール濃度0.12Mに相当) この結果から、本発明の液体燃料供給方式を用いると、
急激な負荷変動に対しても、出力を追随させうることが
分かる。このような液体燃料供給方式による、負荷変動
に対応できる燃料電池システムが可能となった。
[0024]Example 3 Using the same fuel cell as in Example 1, the structure of the fuel cell
Can supply fuel and water independently, as shown in FIG.
Was changed. That is, 2 syringes (Muromachi Kikai: K
DS), put methanol in one and water in the other
And change the mixing ratio of methanol and water as shown below.
While supplying the power to the battery cell under constant current output of 20mA
The voltage change was recorded. The measurement result is shown in FIG. In the figure
The arrow symbol indicates the time when the following ratio of liquid fuel was injected.
You A: Methanol: water (volume ratio) = 30: 70 (methanone
(Equivalent to a concentration of 7.4M) B: Methanol: water (volume ratio) = 0: 100 C; methanol: water (volume ratio) = 2: 98 (methanol
Equivalent to a concentration of 0.5M) D; methanol: water (volume ratio) = 0.5: 99.5 (medium
Equivalent to a tanol concentration of 0.12M) From this result, using the liquid fuel supply system of the present invention,
The output can be made to follow even a sudden load change.
I understand. Load fluctuation due to such liquid fuel supply system
A fuel cell system that can handle the above has become possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の燃料電池の一実施形態を示す断面図で
ある。燃料と水とを混合して注入する。
FIG. 1 is a cross-sectional view showing an embodiment of a fuel cell of the present invention. Fuel and water are mixed and injected.

【図2】本発明の燃料電池の一実施形態を示す断面図で
ある。燃料と水とを独立して注入する。濃色は燃料を表
し、無色は水を表す。
FIG. 2 is a cross-sectional view showing an embodiment of the fuel cell of the present invention. Inject fuel and water independently. Dark color represents fuel and colorless color represents water.

【図3】本発明の燃料電池の一実施形態を示す断面図で
ある。濃色は燃料を表し、無色は水を表す。
FIG. 3 is a cross-sectional view showing an embodiment of the fuel cell of the present invention. Dark color represents fuel and colorless color represents water.

【図4】本発明の燃料電池の一実施形態を示す断面図で
ある。濃色は燃料を表し、無色は水を表す。
FIG. 4 is a cross-sectional view showing an embodiment of the fuel cell of the present invention. Dark color represents fuel and colorless color represents water.

【図5】本発明の燃料電池の一実施形態を示す断面図で
ある。濃色は燃料を表し、無色は水を表す。
FIG. 5 is a cross-sectional view showing an embodiment of the fuel cell of the present invention. Dark color represents fuel and colorless color represents water.

【図6】本発明の一実施形態を示す図である。濃色は燃
料を表し、無色は水を表す。
FIG. 6 is a diagram showing an embodiment of the present invention. Dark color represents fuel and colorless color represents water.

【図7】図6のセルの一部21を示す断面図である。7 is a cross-sectional view showing a part 21 of the cell of FIG.

【図8】実施例1,2と比較例2の電流−電圧特性を示
す図である。
8 is a diagram showing current-voltage characteristics of Examples 1 and 2 and Comparative Example 2. FIG.

【図9】比較例1で用いた従来のダイレクトメタノール
燃料電池セルを示す図である。
9 is a view showing a conventional direct methanol fuel cell used in Comparative Example 1. FIG.

【図10】比較例1の燃料電池セル(図9)の電流−電
圧特性を示す図である。
10 is a diagram showing current-voltage characteristics of the fuel cell (FIG. 9) of Comparative Example 1. FIG.

【図11】実施例3の電圧−時間特性を示す図である。11 is a diagram showing voltage-time characteristics of Example 3. FIG.

【符号の説明】[Explanation of symbols]

1、13、31 固体電解質膜 2、12、32 燃料極 3、14、33 空気極 4 燃料と水の混合液の供給手段 5 燃料容器 6、27 燃料と水の混合液 7、11、34 液体燃料吸収板 8 燃料揮発防止カバー 9 燃料供給手段 10 水供給手段 15 空気流路 16 燃料収容部 17、26 燃料水供給手段 20、30 燃料電池本体 21 燃料電池セルの一部 23a 燃料収容部 23b 水収容部 24 燃料 25 水 1, 13, 31 Solid electrolyte membrane 2, 12, 32 Fuel electrode 3, 14, 33 Air electrode 4 Fuel and water mixture supply 5 Fuel container 6,27 Fuel and water mixture 7, 11, 34 Liquid fuel absorption plate 8 Fuel volatility prevention cover 9 Fuel supply means 10 Water supply means 15 Air flow path 16 Fuel storage 17, 26 Fuel water supply means 20, 30 Fuel cell body 21 Part of fuel cell 23a Fuel storage section 23b Water storage section 24 fuel 25 water

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 アノード、カソード及びこれらに挟持さ
れた電解質を含む燃料電池であって、該アノードに燃料
を含む貯蔵液が接することなく、アノードの表面に燃料
及び水を液相供給する手段を備えたことを特徴とする燃
料電池。
1. A fuel cell comprising an anode, a cathode, and an electrolyte sandwiched between the anode and the cathode, and means for supplying a fuel and water in a liquid phase to the surface of the anode without the storage liquid containing the fuel coming into contact with the anode. A fuel cell characterized by being provided.
【請求項2】 前記アノードの表面に燃料及び水を液相
供給する手段が、燃料及び水を注射するための注射器か
ら成り、注射速度が可変である請求項1に記載の燃料電
池。
2. The fuel cell according to claim 1, wherein the means for supplying the fuel and water in a liquid phase to the surface of the anode comprises a syringe for injecting the fuel and water, and the injection speed is variable.
【請求項3】 前記アノードの表面に燃料及び水を液相
供給する手段が、燃料及び水を独立して供給することの
できる請求項1に記載の燃料電池。
3. The fuel cell according to claim 1, wherein the means for supplying the fuel and water in a liquid phase to the surface of the anode can supply the fuel and water independently.
【請求項4】 前記アノードの表面に燃料及び水を液相
供給する手段が、燃料又は水を注射するための2種の注
射器から成り、各注射速度が独立に可変である請求項3
に記載の燃料電池。
4. The means for liquid-phase supplying fuel and water to the surface of the anode comprises two kinds of injectors for injecting fuel or water, and each injection rate is independently variable.
The fuel cell described in 1.
【請求項5】 更に、燃料及び水をアノードの表面に均
一に拡散する手段を備えた請求項1〜4のいずれか一項
に記載の燃料電池。
5. The fuel cell according to claim 1, further comprising means for uniformly diffusing fuel and water on the surface of the anode.
【請求項6】 前記燃料及び水をアノードの表面に均一
に拡散する手段が多孔性材料層である請求項5に記載の
燃料電池。
6. The fuel cell according to claim 5, wherein the means for uniformly diffusing the fuel and water on the surface of the anode is a porous material layer.
【請求項7】 前記燃料がメタノールである請求項1〜
6のいずれか一項に記載の燃料電池。
7. The fuel according to claim 1, wherein the fuel is methanol.
6. The fuel cell according to any one of 6 above.
【請求項8】 請求項1〜7のいずれか一項に記載の燃
料電池の発電方法であって、前記アノードの表面に、ア
ノード表面が常に湿潤しない量の燃料と水を、燃料の供
給速度が燃料が消費される速度とほぼ同じとなるよう
に、液相供給する段階を含む燃料電池の発電方法。
8. The fuel cell power generation method according to claim 1, wherein the surface of the anode is supplied with fuel and water in an amount such that the surface of the anode is not always wet. A method for power generation in a fuel cell, which includes the step of supplying in a liquid phase so that the fuel consumption rate is substantially the same as the fuel consumption rate.
【請求項9】 前記供給速度を変える請求項8に記載の
方法。
9. The method of claim 8, wherein the feed rate is varied.
【請求項10】 燃料及び水の供給速度を独立して変え
る請求項9に記載の方法。
10. The method of claim 9, wherein the fuel and water feed rates are varied independently.
【請求項11】 発電量が多い場合には水の供給速度に
対する燃料の供給速度の比を高くし、発電量が少ない場
合には水の供給速度に対する燃料の供給速度の比を低く
する請求項10に記載の方法。
11. The ratio of the fuel supply speed to the water supply speed is increased when the power generation amount is high, and the ratio of the fuel supply speed to the water supply speed is decreased when the power generation amount is low. 10. The method according to 10.
【請求項12】 発電を止める場合には、燃料の供給を
止め、水のみを供給する請求項10又は11に記載の方
法。
12. The method according to claim 10, wherein when the power generation is stopped, the fuel supply is stopped and only water is supplied.
JP2002135099A 2002-05-10 2002-05-10 Fuel cell and power generation method thereof Expired - Fee Related JP4778659B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002135099A JP4778659B2 (en) 2002-05-10 2002-05-10 Fuel cell and power generation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002135099A JP4778659B2 (en) 2002-05-10 2002-05-10 Fuel cell and power generation method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009250237A Division JP2010027623A (en) 2009-10-30 2009-10-30 Fuel cell, and power generation method thereof

Publications (2)

Publication Number Publication Date
JP2003331880A true JP2003331880A (en) 2003-11-21
JP4778659B2 JP4778659B2 (en) 2011-09-21

Family

ID=29697508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002135099A Expired - Fee Related JP4778659B2 (en) 2002-05-10 2002-05-10 Fuel cell and power generation method thereof

Country Status (1)

Country Link
JP (1) JP4778659B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005032603A (en) * 2003-07-07 2005-02-03 Sony Corp Fuel cell system and electric equipment
WO2005045975A1 (en) * 2003-11-06 2005-05-19 Nec Corporation Fuel cartridge for fuel cell and fuel cell with the same
JP2005346975A (en) * 2004-05-31 2005-12-15 Canon Inc Fuel cell for small portable electrical apparatus and small portable electrical apparatus
JP2006221828A (en) * 2005-02-08 2006-08-24 Sony Corp Fuel cell system
JP2007184221A (en) * 2006-01-05 2007-07-19 Samsung Sdi Co Ltd Direct methanol fuel cell system and method of operating direct methanol fuel cell system
WO2009060604A1 (en) * 2007-11-07 2009-05-14 Kabushiki Kaisha Toshiba Fuel cell
JP2010050037A (en) * 2008-08-25 2010-03-04 Gs Yuasa Corporation Direct fuel cell system, and method for controlling the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005032603A (en) * 2003-07-07 2005-02-03 Sony Corp Fuel cell system and electric equipment
JP4665381B2 (en) * 2003-07-07 2011-04-06 ソニー株式会社 Fuel cell system and electrical equipment
WO2005045975A1 (en) * 2003-11-06 2005-05-19 Nec Corporation Fuel cartridge for fuel cell and fuel cell with the same
US7651804B2 (en) 2003-11-06 2010-01-26 Nec Corporation Fuel cartridge for fuel cell and fuel cell with the fuel cartridge
JP2005346975A (en) * 2004-05-31 2005-12-15 Canon Inc Fuel cell for small portable electrical apparatus and small portable electrical apparatus
JP2006221828A (en) * 2005-02-08 2006-08-24 Sony Corp Fuel cell system
JP2007184221A (en) * 2006-01-05 2007-07-19 Samsung Sdi Co Ltd Direct methanol fuel cell system and method of operating direct methanol fuel cell system
US7759012B2 (en) 2006-01-05 2010-07-20 Samsung Sdi Co., Ltd. Direct methanol fuel cell system and operating method thereof
WO2009060604A1 (en) * 2007-11-07 2009-05-14 Kabushiki Kaisha Toshiba Fuel cell
JP2010050037A (en) * 2008-08-25 2010-03-04 Gs Yuasa Corporation Direct fuel cell system, and method for controlling the same

Also Published As

Publication number Publication date
JP4778659B2 (en) 2011-09-21

Similar Documents

Publication Publication Date Title
Scott et al. Material aspects of the liquid feed direct methanol fuel cell
CN101276915B (en) Direct methanol type fuel cell
US20070243442A1 (en) Fuel Cell
JP5449644B2 (en) Dual pump anode system with circulating fluid for direct oxidation fuel cells
JP2007008800A (en) Hydrogen production apparatus, and fuel cell power generator, electric vehicle, submersible ship and hydrogen supply system using the same
US20080014491A1 (en) Fuel cell
Chan et al. A self-regulated passive fuel-feed system for passive direct methanol fuel cells
US7396605B2 (en) Method and system for improving the performance of a fuel cell
JP4772473B2 (en) Fuel cell power generation system
JP4958059B2 (en) Hydrogen production equipment
JP4778659B2 (en) Fuel cell and power generation method thereof
Wu et al. Studies on an ultrasonic atomization feed direct methanol fuel cell
Halim et al. Overview on vapor feed direct methanol fuel cell
CN101151754B (en) Fuel cell
US20100203427A1 (en) Fuel cell
JP4945914B2 (en) Fuel cell
JP4894385B2 (en) Passive hydrogen production apparatus and package type fuel cell power generation apparatus using the same
JP5403199B2 (en) Honeycomb type hydrogen production apparatus, fuel cell power generation apparatus using the same, electric vehicle, submarine ship and hydrogen supply system, and reaction tube for hydrogen production cell
JP2010027623A (en) Fuel cell, and power generation method thereof
JP2009146864A (en) Fuel cell
JP2007164994A (en) Fuel cell
US20100255389A1 (en) Fuel cell
JP2008210679A (en) Fuel cell
KR101147234B1 (en) Fuel cell system
JP2007242523A (en) Humidifier for fuel cell, and fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20081002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091030

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091202

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20091225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110704

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees