JP2003329988A - Semiconductor multi-layered structure and optical control element using the same - Google Patents

Semiconductor multi-layered structure and optical control element using the same

Info

Publication number
JP2003329988A
JP2003329988A JP2002134836A JP2002134836A JP2003329988A JP 2003329988 A JP2003329988 A JP 2003329988A JP 2002134836 A JP2002134836 A JP 2002134836A JP 2002134836 A JP2002134836 A JP 2002134836A JP 2003329988 A JP2003329988 A JP 2003329988A
Authority
JP
Japan
Prior art keywords
layer
semiconductor
barrier layer
well
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002134836A
Other languages
Japanese (ja)
Other versions
JP4150210B2 (en
Inventor
Teruo Busshu
照夫 物集
Minefumi Shimoyama
峰史 下山
Haruhiko Yoshida
春彦 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Fujitsu Ltd
Hitachi Ltd
Original Assignee
Toshiba Corp
Fujitsu Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Fujitsu Ltd, Hitachi Ltd filed Critical Toshiba Corp
Priority to JP2002134836A priority Critical patent/JP4150210B2/en
Publication of JP2003329988A publication Critical patent/JP2003329988A/en
Application granted granted Critical
Publication of JP4150210B2 publication Critical patent/JP4150210B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an element structure which reduces the energy consumption of an optical control element using inter-subband transition up to a level adaptive to a large-capacity optical communication system. <P>SOLUTION: Disclosed are: a semiconductor multi-layered structure including as a basic constitutional element a quantum well structure which has a compound barrier layer in which an AlAs barrier layer of ≥1 nm film thickness is arranged between an InGaAs well layer and an Al(Ga)AsSb barrier layer; and a semiconductor optical control element formed by arranging the semiconductor multi-layered structure on an InP substrate. By irradiating the multi- quantum well structure with a light resonating to the inter-subband transition energy of the conduction band of a multi-quantum well structure, and the absorption coefficient, refractive index, or optical gain to the light corresponding to energy of inter-subband transition are varied. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は,光通信および光情
報処理システムに用いる光素子用半導体多層構造に関係
し,特に半導体量子井戸構造の伝導帯サブバンド間遷移
を利用した広帯域光制御素子、およびこれに用いる半導
体多層構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor multilayer structure for optical devices used in optical communication and optical information processing systems, and in particular to a broadband optical control device using the conduction band intersubband transition of a semiconductor quantum well structure, And a semiconductor multilayer structure used therefor.

【0002】[0002]

【従来の技術】近年,超高速時分割多重光通信システム
や光情報処理システムへの適用をめざした全光・光制御
素子に関する研究開発が活発に展開されている。なかで
も、半導体を用いた光スイッチは、小型・軽量化が容易
であり、半導体レーザ、光変調器等の半導体素子とのモ
ノリシック集積化が可能であり、さらに超格子や量子井
戸等の量子構造の採用により、光スイッチングの高効率
化が可能になるという利点がある。
2. Description of the Related Art In recent years, research and development on all-optical / optical control elements have been actively developed for application to ultrahigh-speed time division multiplex optical communication systems and optical information processing systems. Among them, optical switches using semiconductors are easy to reduce in size and weight, can be monolithically integrated with semiconductor elements such as semiconductor lasers and optical modulators, and have quantum structures such as superlattices and quantum wells. With the adoption of, there is an advantage that the efficiency of optical switching can be improved.

【0003】従来のバンド間遷移による吸収を利用した
半導体光スイッチは、実励起キャリアのバンド間再結合
時間(数ナノ秒)によりスイッチ・オフ時間が制限され
ることが問題となっていた。これに対して、半導体量子
井戸構造の伝導帯サブバンド間遷移は、緩和時間が数ピ
コ秒以下であり、バンド間遷移に比べて千倍以上の高速
化が可能である。このため、サブバンド間遷移の高速性
を利用したスイッチの検討が精力的に進められており、
我々も例えばエレクトロニクスレター37巻(2001
年)第129頁から第131頁(Electronics Lett. 3
7, (2001)pp 129〜131)にはスイッチング速度の指標と
なる吸収回復時間0.69psを、またホトニクステクノ
ロジーレター14巻(2002年)第495頁から第4
97頁(Photonics Techn. Lett. 14 (2002) PP 495〜4
97)では、1ps間隔の制御光パルスによるOTDM−D
EMUXの模擬実験を報告しており、1Tb/sの超高
速光通信システムでの動作見通しが得られている。しか
し、このように高速性に優れたサブバンド間遷移を用い
た光制御素子を実用化するには、解決しなければならな
い課題が多々存在するが、中でも信号光を制御する制御
光のパワーを少なくとも2桁程度低減する事が重要であ
る。
The conventional semiconductor optical switch utilizing absorption due to band-to-band transition has a problem that the switch-off time is limited by the band-to-band recombination time (several nanoseconds) of the actually excited carriers. On the other hand, the relaxation time of the conduction band inter-subband transition of the semiconductor quantum well structure is several picoseconds or less, and the speed can be increased 1,000 times or more as compared with the interband transition. For this reason, studies are underway on switches that utilize the high-speed transition between subbands.
We also have Electronics Letter 37 (2001)
Year) 129 to 131 (Electronics Lett. 3
7, (2001) pp129-131), an absorption recovery time of 0.69 ps, which is an index of switching speed, and Photonics Technology Letter 14 (2002), pages 495 to 4
Page 97 (Photonics Techn. Lett. 14 (2002) PP 495-4
97), OTDM-D with a control light pulse at 1ps intervals
We have reported a simulation experiment of EMUX and obtained an operation prospect in an ultrahigh-speed optical communication system of 1 Tb / s. However, there are many problems to be solved in order to put into practical use an optical control element using inter-subband transition excellent in high speed as described above. Among them, the power of the control light for controlling the signal light is It is important to reduce by at least 2 digits.

【0004】しかし、InGaAs/AlAsSbヘテ
ロ構造では、GaAs/AlGaAs系ヘテロ構造と異
なり、サブバンド間吸収強度の増大を図るために不純物
添加量を増大すると、構成元素の置換および相互拡散が
促進されて構造が大幅に乱れることが明らかとなった。
このため、InGaAs層とAlAsSb層の間に界面
層が形成され、吸収強度の低下を来していた。従来、こ
の界面層が形成されるのを抑制して、急峻な界面を形成
するために、量子井戸構造を形成する時に、例えばAl
AsSb層からInGaAs層に成長を切り替えるとき
に、AlAsSb層の成長を終えた段階で一旦成長を中
断し、砒素のみを基板表面に照射し、しかる後にInG
aAs層の成長を開始する、いわゆる界面終端法が採用
されていた。しかし、この界面終端法により一定の改善
が見られているが、十分な吸収強度を得るまでには至っ
ていなかった。
However, in the InGaAs / AlAsSb heterostructure, unlike the GaAs / AlGaAs heterostructure, when the impurity addition amount is increased in order to increase the intersubband absorption intensity, substitution of constituent elements and mutual diffusion are promoted. It became clear that the structure was significantly disturbed.
Therefore, an interface layer is formed between the InGaAs layer and the AlAsSb layer, and the absorption strength is reduced. Conventionally, in order to suppress the formation of this interface layer and form a steep interface, when forming a quantum well structure, for example, Al
When switching the growth from the AsSb layer to the InGaAs layer, the growth is temporarily stopped at the stage when the growth of the AlAsSb layer is finished, and only the arsenic is irradiated on the substrate surface.
A so-called interface termination method for starting the growth of the aAs layer has been adopted. However, although a certain improvement was observed by this interface termination method, sufficient absorption intensity was not obtained.

【0005】[0005]

【発明が解決しようとする課題】上述のように、従来の
サブバンド間遷移を用いた光制御素子では、実用レベル
よりも2桁程度大きな制御光パワーが必要であるという
課題があった。
As described above, the conventional optical control element using the inter-subband transition has a problem that the control optical power which is about two orders of magnitude higher than the practical level is required.

【0006】本発明は、上記課題を考慮してなされたも
ので、その目的は、上記のサブバンド間遷移を利用して
超高速で光変調あるいは光スイッチを行うことが出来、
テラビット/秒以上の大容量光通信システムに対応可能
な光制御素子、並びにこれを実現できる半導体多層構造
を提供することである。
The present invention has been made in consideration of the above problems, and an object thereof is to perform optical modulation or optical switching at ultra-high speed by utilizing the above inter-subband transition.
An object of the present invention is to provide an optical control element compatible with a large-capacity optical communication system of terabits / second or more, and a semiconductor multilayer structure capable of realizing the same.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に本発明では,以下のような構成を採用している。すな
わち本発明は、光制御素子の基本構成要素となる多重量
子井戸構造において、井戸層にInの組成xが0.5〜
1.0のInGa1−xAsを、また障壁層にはAs
の組成yが0.3〜0.7のAl(Ga)AsSb
1−yおよびAlAsからなる複合障壁層を採用し、膜
厚1nm以上のAlAs層がInGaAs井戸層とAl
(Ga)AsSb障壁層との間に挿入されたことを特徴
とする半導体多層構造を採用している。
In order to solve the above problems, the present invention employs the following configurations. That is, according to the present invention, in the multiple quantum well structure which is a basic constituent element of the light control element, the composition x of In in the well layer is 0.5 to 0.5.
1.0 In x Ga 1-x As, and As for the barrier layer.
Composition y of 0.3-0.7 Al (Ga) As y Sb
Adopting a composite barrier layer consisting of 1-y and AlAs, an AlAs layer with a thickness of 1 nm or more is an InGaAs well layer and an Al
A semiconductor multi-layer structure characterized by being inserted between the (Ga) AsSb barrier layer is adopted.

【0008】サブバンド間吸遷移の吸収強度は、界面特
性に大きく依存している。従来用いられていた、界面終
端法では、一定の改善は見られるものの、未だ不十分な
ものであった。そこで、さらなる改善を目指して、In
GaAs層とAlAsSb層間にAlAs層を挿入し、
界面の急峻性改善を図った。多重量子井戸構造を用い
て、サブバンド間吸収係数のAlAs層膜厚依存性を調
べた結果、0.6nmのAlAs層を挿入した多場合に
は、顕著な改善は見られなかったが、1.0nmのAlA
s層を挿入することにより、おおよそ吸収係数が5倍大
きい10,500cm-1が得らた。従って、膜厚1.0nm以上の
AlAs層を挿入することにより、InGaAs層とA
lAsSb層間の界面層の形成が抑制されて、吸収強度
を大幅に増大させることが可能となる。
The absorption intensity of the intersubband absorption transition depends largely on the interface characteristics. The interface termination method, which has been used conventionally, shows some improvement, but is still insufficient. Therefore, with the aim of further improvement, In
Insert the AlAs layer between the GaAs layer and the AlAsSb layer,
The sharpness of the interface was improved. As a result of investigating the AlAs layer film thickness dependence of the absorption coefficient between sub-bands by using the multi-quantum well structure, no remarkable improvement was observed in many cases where the AlAs layer of 0.6 nm was inserted. 0.0 nm AlA
By inserting the s layer, an absorption coefficient of 10,500 cm -1 was obtained, which was about five times larger. Therefore, by inserting an AlAs layer with a thickness of 1.0 nm or more, the InGaAs layer and the A
The formation of the interface layer between the 1AsSb layers is suppressed, and the absorption intensity can be significantly increased.

【0009】さて、サブバンド間遷移に伴う励起キャリ
アの緩和速度は、単一量子井戸の場合より、結合量子井
戸の方が高速になる。従って、大容量の通信を必要とす
る場合には、よりキャリア緩和の高速化を図れる2個の
量子井戸層からなる結合多重量子井戸構造において、井
戸層にInの組成xが0.5〜1.0のInGa
−xAsを、また障壁層にはAsの組成yが0.3〜
0.7のAl(Ga)As Sb1−yおよびAlAs
を用い、隣り合うInGaAs井戸層間の障壁層1には
AlAs層ないしはAl(Ga)AsSb層を、また2
個のInGaAs井戸層を挟む障壁層2には、AlAs
層とAl(Ga)AsSb層からなる複合障壁層を採用
し、AlAs層がInGaAs井戸層とAl(Ga)A
sSb障壁層との間に挿入されたことを特徴とする半導
体多層構造を採用するのが望ましい。
Now, the excitation carrier accompanying the intersubband transition
The relaxation rate of A is higher than that of a single quantum well.
The door is faster. Therefore, it requires a large amount of communication.
In case of
In the coupled multiple quantum well structure consisting of quantum well layers,
The composition x of In in the door layer is 0.5 to 1.0xGa1
-XAs, and the composition y of As in the barrier layer is 0.3 to
0.7 Al (Ga) As ySb1-yAnd AlAs
Is used for the barrier layer 1 between the adjacent InGaAs well layers.
An AlAs layer or an Al (Ga) AsSb layer, and
The barrier layer 2 sandwiching the InGaAs well layers is formed of AlAs.
Adopt a composite barrier layer consisting of a layer and Al (Ga) AsSb layer
The AlAs layer is the InGaAs well layer and the Al (Ga) A layer.
A semiconductor which is inserted between the sSb barrier layer and the semiconductor layer
It is desirable to employ a body multilayer structure.

【0010】また、導波路構造における光の透過特性を
見た場合、図9に示したように、基板側クラッド層を3
μm、表面側クラッド層を2μm、クラッド層の屈折率が
3.1、コア層を形成する量子井戸構造の膜厚が0.8
μmの場合は、良好な光導波特性が得られるが、図10
に示したようにコア層を0.3μmとした場合は、良好
な透過特性が得られない。また、基板側クラッド層の膜
厚を3μmから2μmに薄くした場合にも、十分な透過特
性が得られない(図11)。さらに、クラッド層の屈折
率を3.15とした場合には、入射光は基板に漏れ、ほ
とんど導波路を伝搬しないことが分かる(図12)。
When the light transmission characteristics of the waveguide structure are examined, as shown in FIG.
μm, the surface side clad layer is 2 μm, the refractive index of the clad layer is 3.1, and the thickness of the quantum well structure forming the core layer is 0.8.
In the case of μm, good optical waveguide characteristics can be obtained.
When the core layer has a thickness of 0.3 μm as shown in FIG. 5, good transmission characteristics cannot be obtained. Further, even when the film thickness of the substrate-side cladding layer is reduced from 3 μm to 2 μm, sufficient transmission characteristics cannot be obtained (FIG. 11). Further, when the refractive index of the clad layer is 3.15, it can be seen that the incident light leaks to the substrate and hardly propagates in the waveguide (FIG. 12).

【0011】以上の結果を鑑み、以下に本発明の望まし
い実施形態を示す。 (1)InGaAs井戸層の膜厚が1〜3nm、AlAs
障壁層の膜厚が1〜5nm、さらにAl(Ga)AsSb
障壁層の膜厚が3〜20nmである単一あるいは結合量子
井戸層を積層した半導体多層構造の膜厚が、少なくとも
0.4μm以上であること。 (2)InP基板と、コア層として、上記(1)記載の
半導体多層構造を有し、これを挟む上下に屈折率が3.
1以下である材料からなるクラッド層を有し、その少な
くとも一方がAl(Ga)AsSb層からなり、さらに
キャップ層を有する半導体導波路構造であること。 (3)基板側クラッド層の膜厚が3μm以上、表面側の
クラッド層の膜厚が2μm以上、またコア層の膜厚が
0.4μm以上である半導体導波路構造であること。 (4)該多重量子井戸構造の伝導帯のサブバンド間遷移
エネルギーに共鳴する光を照射し、該サブバンド間遷移
のエネルギーにおける光の吸収係数、屈折率、または光
学利得を変化させる半導体光スイッチにおいて、上記の
半導体多層構造、ないしは半導体導波路構造を用いたこ
とを特徴とする光制御素子。
In view of the above results, preferred embodiments of the present invention will be shown below. (1) The thickness of the InGaAs well layer is 1 to 3 nm, AlAs
The thickness of the barrier layer is 1 to 5 nm, and also Al (Ga) AsSb
The thickness of the semiconductor multilayer structure in which single or coupled quantum well layers having a barrier layer thickness of 3 to 20 nm are laminated is at least 0.4 μm or more. (2) The semiconductor multilayer structure according to (1) above is used as the InP substrate and the core layer, and the refractive index is 3.
A semiconductor waveguide structure having a cladding layer made of a material of 1 or less, at least one of which is an Al (Ga) AsSb layer, and further having a cap layer. (3) A semiconductor waveguide structure in which the substrate-side clad layer has a thickness of 3 μm or more, the surface-side clad layer has a thickness of 2 μm or more, and the core layer has a film thickness of 0.4 μm or more. (4) A semiconductor optical switch that irradiates light that resonates with the intersubband transition energy of the conduction band of the multiple quantum well structure to change the absorption coefficient, refractive index, or optical gain of light at the energy of the intersubband transition 2. A light control element using the above semiconductor multilayer structure or semiconductor waveguide structure.

【0012】[0012]

【発明の実施の形態】以下、本発明の詳細を図示の実施
形態によって説明する。
DETAILED DESCRIPTION OF THE INVENTION The details of the present invention will be described below with reference to the illustrated embodiments.

【0013】図1は、本発明の一実施形態に関わる半導
体多層構造の基本構成を示す概略図である。AlAs
0.55Sb0.45障壁層11、AlAs障壁層1
2、およびSiを添加したIn0.8Ga0.2As井
戸層13から成る5層を基本単位として、これを80組
積層しコア層1を形成した。なお、Siの添加量は1x
1019cmとした。また、井戸幅は1.8nm、A
lAs障壁層は1.5nm、またAlAsSb障壁層は
5.5nmとした。本構造の光パルス透過率のパルスエ
ネルギー依存性を図2に示す。ここで入射光としては、
量子井戸構造の伝導帯サブバンド間遷移エネルギーにほ
ぼ等しい波長1.55μmのパルス光(パルス幅100
fs)を用いた。また図2には、従来採用されていた構
造であるAlAs障壁層82を有さないInGaAs/
AlAsSb量子井戸層構造を用いた半導体多層構造の
光透過特性を併せて示した。図から明らかなように、本
発明になる構造では、従来構造の場合に比べ、吸収飽和
が起こり、透過率が高くなる入射光強度がおおよそ二桁
低くなっており、本多層構造を光制御素子に適用した場
合、消費パワーの2桁低減が可能となる。
FIG. 1 is a schematic diagram showing the basic structure of a semiconductor multilayer structure according to an embodiment of the present invention. AlAs
0.55Sb0.45 barrier layer 11, AlAs barrier layer 1
The core layer 1 was formed by stacking 80 sets of 5 layers each including 2 and Si-added In0.8Ga0.2As well layers 13 as a basic unit. The amount of Si added is 1x
It was 10 19 cm 3 . The well width is 1.8 nm, A
The lAs barrier layer was 1.5 nm, and the AlAsSb barrier layer was 5.5 nm. FIG. 2 shows the pulse energy dependence of the optical pulse transmittance of this structure. Here, as the incident light,
Pulsed light with a wavelength of 1.55 μm (pulse width 100
fs) was used. Further, FIG. 2 shows InGaAs / without the AlAs barrier layer 82, which is a conventionally adopted structure.
The light transmission characteristics of the semiconductor multi-layer structure using the AlAsSb quantum well layer structure are also shown. As is clear from the figure, in the structure according to the present invention, the incident light intensity at which absorption saturation occurs and the transmittance becomes high is approximately two orders of magnitude lower than in the case of the conventional structure. When applied to, it is possible to reduce power consumption by two digits.

【0014】次に、本発明の第二の実施形態に関わる半
導体多層構造の基本構成を図3に示す。
Next, FIG. 3 shows the basic structure of the semiconductor multilayer structure according to the second embodiment of the present invention.

【0015】幅の等しい2つのIn0.8Ga0.2A
s井戸層13aおよび13b、2つの井戸層の間のAl
As障壁層14、さらに2つの井戸層を挟むAlAs
0.5Sb0.5障壁層11およびAlAs障壁層12
から成る7層を基本単位とした結合量子井戸構造1を、
80組積層しコア層1を形成した。それぞれの膜厚は、
井戸層13a、13bは2.3nm、AlAs障壁層1
4は1.5nm、障壁層11は5.5nm、さらに障壁
層12は1.7nmとした。本構造の吸収スペクトルに
は図4に示したように2個の吸収ピークが観測され、短
波長側のピークは1.55μmであり、長波長側のピー
クは1.8μmである。パルス幅100fsの1.55
μmの光を照射したときの1.55μmにおける吸収係数
の過渡応答特性を図5に示した。この図からわかるよう
に、吸収回復時間の半値幅は、多重量子井戸構造で2〜
3ps、また結合多重量子井戸構造で1ps以下であり、共
にテラビット級の光スイッチへの適用が可能である。
Two In0.8Ga0.2A having the same width
s Well layers 13a and 13b, Al between two well layers
As barrier layer 14 and AlAs sandwiching two well layers
0.5Sb0.5 barrier layer 11 and AlAs barrier layer 12
A coupled quantum well structure 1 having 7 layers as a basic unit
The core layer 1 was formed by laminating 80 sets. Each film thickness is
The well layers 13a and 13b are 2.3 nm, and the AlAs barrier layer 1 is
4 was 1.5 nm, the barrier layer 11 was 5.5 nm, and the barrier layer 12 was 1.7 nm. In the absorption spectrum of this structure, two absorption peaks are observed as shown in FIG. 4, the peak on the short wavelength side is 1.55 μm, and the peak on the long wavelength side is 1.8 μm. 1.55 with a pulse width of 100 fs
FIG. 5 shows the transient response characteristics of the absorption coefficient at 1.55 μm when irradiated with μm light. As can be seen from this figure, the full width at half maximum of the absorption recovery time is 2 to 10 in the multiple quantum well structure.
It is 3 ps or less than 1 ps in the coupled multiple quantum well structure, and both can be applied to terabit class optical switches.

【0016】さて、導波路構造を採用することは、半導
体レーザ、半導体光検出器等の他の半導体素子と集積化
する上で好ましい。以下、本発明の第三の実施形態に関
わる導波路構造を有する半導体多層構造の基本構成を図
6に示す。半絶縁性InP基板2の上に、屈折率が3.
1以下である材料からなるクラッド層3および前記第一
ないしは第二の実施例に示した半導体多層構造から成る
コア層1を順次積層し、さらにその上に、屈折率が3.
1以下である材料からなる表面側クラッド層4およびキ
ャップ層5を積層し、その後キャップ層5とクラッド層
4の一部をエッチング除去し、光ガイド層(4b、5
a)が形成されている。
The adoption of the waveguide structure is preferable for integration with other semiconductor elements such as a semiconductor laser and a semiconductor photodetector. The basic structure of the semiconductor multilayer structure having the waveguide structure according to the third embodiment of the present invention is shown below in FIG. On the semi-insulating InP substrate 2, the refractive index is 3.
A clad layer 3 made of a material of 1 or less and a core layer 1 made of the semiconductor multi-layer structure shown in the first or second embodiment are sequentially laminated, and a refractive index of 3.
The surface-side clad layer 4 and the cap layer 5 made of a material of 1 or less are laminated, and then the cap layer 5 and a part of the clad layer 4 are removed by etching, and the optical guide layers (4b, 5
a) has been formed.

【0017】以下、より具体的な構成例について説明す
る。下部クラッド層3は、膜厚3μmのAlAs0.5
Sb0.5であり、コア層としては、上記の第二の実施
例に示した結合多重量子井戸構造を採用した。すなわ
ち、幅の等しい2つのIn0.8Ga0.2As井戸層
13aおよび13b、2つの井戸層の間のAlAs障壁
層14、さらに2つの井戸層を挟むAlAs0.5Sb
0.5障壁層11およびAlAs障壁層12から成る7
層を基本単位として、これを80組積層した。それぞれ
の膜厚は、井戸層13a、13bは2.3nm、AlA
s障壁層14は1.5nm、障壁層11は5.5nm、
さらに障壁層12は1.7nmとした。上部クラッド層
4は、膜厚2μmのAlAs0.5Sb0.5であり、
その上にInAlAsキャップ層5を0.2μm積層し
た。その後、InAlAsキャップ層5とAlAs0.
5Sb0.5クラッド層4の一部をエッチング除去し、
幅4μm、厚さ2μmのリッジ型導波路構造を形成した。
本構造の1.55μmにおける吸収飽和強度はおおよそ
200fJが得られ、本構造を採用することにより、テ
ラビット級の光信号スイッチング素子が実現可能とな
る。
A more specific configuration example will be described below. The lower clad layer 3 is made of AlAs0.5 having a film thickness of 3 μm.
Sb is 0.5, and the coupled multiple quantum well structure shown in the second embodiment is adopted as the core layer. That is, two In0.8Ga0.2As well layers 13a and 13b having the same width, an AlAs barrier layer 14 between the two well layers, and an AlAs0.5Sb sandwiching the two well layers.
7 consisting of 0.5 barrier layer 11 and AlAs barrier layer 12
Using the layer as a basic unit, 80 sets were laminated. The thickness of each well layer 13a, 13b is 2.3 nm, AlA
s barrier layer 14 is 1.5 nm, barrier layer 11 is 5.5 nm,
Further, the barrier layer 12 has a thickness of 1.7 nm. The upper clad layer 4 is AlAs0.5Sb0.5 having a film thickness of 2 μm,
The InAlAs cap layer 5 was laminated thereon to a thickness of 0.2 μm. After that, the InAlAs cap layer 5 and AlAs0.
A part of the 5Sb0.5 cladding layer 4 is removed by etching,
A ridge type waveguide structure having a width of 4 μm and a thickness of 2 μm was formed.
The absorption saturation intensity at 1.55 μm of this structure is approximately 200 fJ, and by adopting this structure, a terabit-class optical signal switching element can be realized.

【0018】以下、本発明になる半導体多層構造を採用
した光制御素子の実施形態を、図7を用いて説明する。
図7において光制御素子の基本構成としては、上記リッ
ジ型導波路構造を採用した。図中6は制御光、7は信号
光、71は制御された信号光を示している。制御光6
は、結合量子井戸構造1のサブバンド間遷移エネルギー
に共鳴する波長であり、信号光7は、同じサブバンド間
遷移エネルギー又は他のサブバンド間遷移エネルギーに
ほぼ等しい波長である。このような構成において、量子
井戸層13a、13bにはn型不純物がドープされてお
り、伝導帯のサブバンド(第1、第2)に電子が蓄積さ
れている。ここに、光を照射することにより、低次なサ
ブバンドから高次サブバンドに電子が励起され、サブバ
ンド間光吸収が生じる。この制御光によるサブバンド間
吸収に伴う、吸収係数、屈折率等を利用して、信号光を
変調あるいはスイッチングすることが可能となり、テラ
ビット級の光制御素子を実現できる。
An embodiment of the light control element adopting the semiconductor multilayer structure according to the present invention will be described below with reference to FIG.
In FIG. 7, the ridge type waveguide structure is adopted as the basic configuration of the light control element. In the figure, 6 indicates control light, 7 indicates signal light, and 71 indicates controlled signal light. Control light 6
Is a wavelength that resonates with the intersubband transition energy of the coupled quantum well structure 1, and the signal light 7 has a wavelength that is substantially equal to the same intersubband transition energy or another intersubband transition energy. In such a structure, the quantum well layers 13a and 13b are doped with n-type impurities, and electrons are accumulated in the conduction band subbands (first and second). By irradiating with light, electrons are excited from the low order subbands to the high order subbands, and intersubband light absorption occurs. It is possible to modulate or switch the signal light by utilizing the absorption coefficient, the refractive index, etc. accompanying the inter-subband absorption by the control light, and it is possible to realize a terabit-class light control element.

【0019】なお、本実施例では光ガイド層付きの導波
路構造を採用したが、図8aに示したようなマルチパス
導波路構造でも、また図8bのシングルパス導波路構造
でも光制御素子を実現できることに変わりはない。
Although the waveguide structure with the optical guide layer is adopted in this embodiment, the optical control element may be used in the multi-pass waveguide structure as shown in FIG. 8a or the single-pass waveguide structure in FIG. 8b. There is no change in what can be achieved.

【0020】[0020]

【発明の効果】以上説明したように本発明にれば、全光
学的な半導体光制御素子を構成する、量子井戸構造を、
井戸層と異なる材料から構成される2種類の障壁層で構
成し、井戸層に隣接する障壁層の膜厚を1nm以上とする
ことにより、量子井戸のサブバンド間遷移の吸収飽和強
度を大幅に低減できるので、テラビット/秒以上の光通
信システムに対応することが可能となる。
As described above, according to the present invention, the quantum well structure, which constitutes the all-optical semiconductor light control element, is
The absorption saturation strength of the intersubband transition of the quantum well is significantly increased by configuring the barrier layer adjacent to the well layer with a thickness of 1 nm or more by using two types of barrier layers made of different materials from the well layer. Since it can be reduced, it becomes possible to support an optical communication system of terabits / second or more.

【図面の簡単な説明】[Brief description of drawings]

【図1】第一の実施形態に関わる半導体多層構造断面
図。
FIG. 1 is a sectional view of a semiconductor multilayer structure according to a first embodiment.

【図2】実施形態の光パルス透過率のパルスエネルギー
依存性を示す図。
FIG. 2 is a diagram showing the pulse energy dependence of the optical pulse transmittance of the embodiment.

【図3】第二の実施形態に関わる半導体多層構造断面
図。
FIG. 3 is a sectional view of a semiconductor multilayer structure according to a second embodiment.

【図4】実施形態のサブバンド間光吸収スペクトル特性
を示す図。
FIG. 4 is a diagram showing an intersubband optical absorption spectrum characteristic of the embodiment.

【図5】実施形態のサブバンド間光吸収係数の光パルス
応答を示す図。
FIG. 5 is a diagram showing an optical pulse response of an intersubband optical absorption coefficient according to the embodiment.

【図6】第三の実施形態に関わる半導体多層構造の基本
構成を示す模式図。
FIG. 6 is a schematic diagram showing a basic structure of a semiconductor multilayer structure according to a third embodiment.

【図7】一の実施形態に関わる半導体光制御素子の基本
構成を示す模式図。
FIG. 7 is a schematic diagram showing a basic configuration of a semiconductor light control element according to one embodiment.

【図8】一の実施形態に関わる半導体光制御素子の基本
構成を示す模式図。
FIG. 8 is a schematic diagram showing a basic configuration of a semiconductor light control element according to one embodiment.

【図9】導波路構造における光の透過特性を示す図。FIG. 9 is a diagram showing light transmission characteristics in a waveguide structure.

【図10】導波路構造における光の透過特性を示す図。FIG. 10 is a diagram showing light transmission characteristics in a waveguide structure.

【図11】導波路構造における光の透過特性を示す図。FIG. 11 is a diagram showing light transmission characteristics in a waveguide structure.

【図12】導波路構造における光の透過特性を示す図。FIG. 12 is a diagram showing light transmission characteristics in a waveguide structure.

【符号の説明】[Explanation of symbols]

1:コア層(InGaAs/AlAs/AlAsSb 多重量子井戸層) 2:InP基板 3:AlAsSb 下部クラッド層 4:AlAsSb 上部クラッド層 5:InAlAs キャップ層 6: 制御光 7:信号光 8: InGaAs/AlAsSb 量子井戸層 9:(AlAs混晶比=0.56) 11: AlAsSb障壁層 12: AlAs障壁層 13: InGaAs井戸層 14: AlAs障壁層。 1: Core layer (InGaAs / AlAs / AlAsSb multiple quantum well layer) 2: InP substrate 3: AlAsSb lower clad layer 4: AlAsSb upper clad layer 5: InAlAs cap layer 6: Control light 7: Signal light 8: InGaAs / AlAsSb quantum well layer 9: (AlAs mixed crystal ratio = 0.56) 11: AlAsSb barrier layer 12: AlAs barrier layer 13: InGaAs well layer 14: AlAs barrier layer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 物集 照夫 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 下山 峰史 神奈川県川崎市中原区上小田中4丁目1番 1号 富士通株式会社内 (72)発明者 吉田 春彦 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 Fターム(参考) 2H079 AA08 AA12 AA13 AA14 BA01 CA05 DA16 EA03 EA07    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor collection Teruo             1-280, Higashi Koikekubo, Kokubunji, Tokyo             Central Research Laboratory, Hitachi, Ltd. (72) Inventor Minamoto Shimoyama             4-1, Kamiodanaka, Nakahara-ku, Kawasaki-shi, Kanagawa             No. 1 within Fujitsu Limited (72) Inventor Haruhiko Yoshida             1st Komukai Toshiba-cho, Sachi-ku, Kawasaki-shi, Kanagawa             Inside the Toshiba Research and Development Center F-term (reference) 2H079 AA08 AA12 AA13 AA14 BA01                       CA05 DA16 EA03 EA07

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】井戸層と障壁層とからなる多重量子井戸構
造において、少なくともバンドギャップが1.6eV以
上で、しかもInGaAs層との伝導帯バンドオフセッ
トが1.0eVである2層以上の異なる材料から成る膜
で構成された複合障壁層を有することを特徴とする半導
体多層構造。
1. A multi-quantum well structure composed of a well layer and a barrier layer, having two or more different materials having a band gap of at least 1.6 eV and a conduction band offset from the InGaAs layer of 1.0 eV. A semiconductor multi-layer structure having a composite barrier layer composed of a film made of.
【請求項2】該複合障壁層のうち井戸層に隣接する障壁
層の膜厚が1nm以上であることを特徴とする請求項1記
載の半導体多層構造。
2. The semiconductor multilayer structure according to claim 1, wherein the barrier layer adjacent to the well layer of the composite barrier layer has a film thickness of 1 nm or more.
【請求項3】該複合障壁層が、AlAsSbを成分とし
て含む三元、四元、ないしは五元化合物半導体層、およ
びAlAsを主成分とする二元、三元ないしは四元化合物半
導体層で構成され、そのうち井戸層に隣接する障壁層が
AlAsを主成分とする二元、三元ないしは四元化合物半導
体からなる事を特徴とする請求項1記載の半導体多層構
造。
3. The composite barrier layer comprises a ternary, quaternary or quaternary compound semiconductor layer containing AlAsSb as a component and a binary, ternary or quaternary compound semiconductor layer containing AlAs as a main component. , Of which the barrier layer adjacent to the well layer is
2. The semiconductor multi-layer structure according to claim 1, which is composed of a binary, ternary or quaternary compound semiconductor containing AlAs as a main component.
【請求項4】井戸層と障壁層とからなる多重量子井戸構
造において、井戸層にInの組成xが0.5〜1.0の
InGa1−xAsを、また障壁層にAsの組成yが
0.3〜0.7のAl(Ga)AsSb1−yおよびA
lAsを主成分とする二元、三元ないしは四元化合物半導
体を用い、AlAsを主成分とする二元、三元ないしは四元
化合物半導体層がInGaAs井戸層とAl(Ga)A
sSb障壁層との間に挿入され、その膜厚が1nm〜5nm
であることを特徴とする請求項1記載の半導体多層構
造。
4. In a multi-quantum well structure comprising a well layer and a barrier layer, the well layer is made of In x Ga 1-x As having an In composition x of 0.5 to 1.0, and the barrier layer is made of As. Al composition y is 0.3~0.7 (Ga) As y Sb 1 -y and a
A binary, ternary or quaternary compound semiconductor containing lAs as a main component is used, and a binary, ternary or quaternary compound semiconductor layer containing AlAs as a main component is an InGaAs well layer and an Al (Ga) A layer.
It is inserted between the sSb barrier layer and its thickness is 1 nm to 5 nm.
The semiconductor multi-layer structure according to claim 1, wherein
【請求項5】2個の井戸層と障壁層とからなる結合多重
量子井戸構造において、井戸層にInの組成xが0.5
〜1.0のInGa1−xAsを、また障壁層にAs
の組成yが0.3〜0.7のAl(Ga)AsSb
1−yおよびAlAsを主成分とする二元、三元ないしは四
元化合物半導体を用い、隣り合うInGaAs井戸層間
の障壁層2にはAlAsを主成分とする二元、三元ないしは
四元化合物半導体層を、また2個のInGaAs井戸層
を挟む障壁層1には、AlAsを主成分とする二元、三元な
いしは四元化合物半導体層とAl(Ga)AsSb層の
複合障壁層を用い、AlAsを主成分とする二元、三元ない
しは四元化合物半導体層がInGaAs井戸層とAl
(Ga)AsSb層との間に配置され、その膜厚が1nm
〜5nmであることを特徴とする請求項1記載の半導体多
層構造。
5. In a coupled multiple quantum well structure comprising two well layers and a barrier layer, the In composition x of the well layer is 0.5.
~ 1.0 In x Ga 1-x As and As in the barrier layer.
Composition y of 0.3-0.7 Al (Ga) As y Sb
Binary, ternary or quaternary compound semiconductors containing 1-y and AlAs as main components are used, and a binary, ternary or quaternary compound semiconductor mainly containing AlAs is used for the barrier layer 2 between adjacent InGaAs well layers. As the barrier layer 1 sandwiching the two layers and the InGaAs well layer, a composite barrier layer of a binary, ternary or quaternary compound semiconductor layer containing AlAs as a main component and an Al (Ga) AsSb layer is used. The binary, ternary or quaternary compound semiconductor layer containing as a main component is an InGaAs well layer and an Al
It is placed between the (Ga) AsSb layer and its thickness is 1 nm.
2. The semiconductor multi-layer structure according to claim 1, wherein the thickness is about 5 nm.
【請求項6】InGaAs井戸層の膜厚が1nm〜3nm、
AlAsを主成分とする二元、三元ないしは四元化合物障壁
層の膜厚が1nm〜5nm、およびAl(Ga)AsSb障
壁層の膜厚が3nm〜20nmである単一量子井戸層ないし
は結合量子井戸層を積層した膜厚が少なくとも0.4μ
m以上であることを特徴とする請求項2又は請求項3の
いずれかに記載の半導体多層構造。
6. The thickness of the InGaAs well layer is 1 nm to 3 nm,
A single quantum well layer or a coupled quantum well in which a binary, ternary or quaternary compound barrier layer containing AlAs as a main component has a thickness of 1 nm to 5 nm and an Al (Ga) AsSb barrier layer has a thickness of 3 nm to 20 nm. The thickness of the well layers stacked is at least 0.4μ
The semiconductor multi-layer structure according to claim 2 or 3, wherein the thickness is at least m.
【請求項7】InP基板と、コア層として請求項4記載
の半導体多層構造を有し、これを挟む上下に屈折率が
3.1以下である材料からなるクラッド層を有し、その
少なくとも一方がAl(Ga)AsSb層からなり、最
表面にキャップ層を有することを特徴とする半導体導波
路構造。
7. An InP substrate and a semiconductor multilayer structure according to claim 4 as a core layer, and a cladding layer made of a material having a refractive index of 3.1 or less on both sides of the InP substrate, at least one of which is provided. Is an Al (Ga) AsSb layer and has a cap layer on the outermost surface.
【請求項8】基板側クラッド層の膜厚が3μm以上、表
面側のクラッド層の膜厚が2μm以上、またコア層の膜
厚が0.4μm以上であることを特徴とする請求項5記
載の半導体導波路構造。
8. The substrate-side clad layer has a film thickness of 3 μm or more, the surface-side clad layer has a film thickness of 2 μm or more, and the core layer has a film thickness of 0.4 μm or more. Semiconductor waveguide structure.
【請求項9】該多重量子井戸構造の伝導体のサブバンド
間遷移エネルギーに共鳴する光を照射し、該サブバンド
間遷移のエネルギーにおける光の吸収係数、屈折率、ま
たは光学利得を変化させる半導体光スイッチにおいて、
請求項1,2,3,4,5又は6のいずれか一に記載の
半導体多層構造を用いたことを特徴とする光制御素子。
9. A semiconductor that irradiates light that resonates with the intersubband transition energy of a conductor of the multi-quantum well structure and changes the absorption coefficient, refractive index, or optical gain of light at the energy of the intersubband transition. In the optical switch,
A light control element comprising the semiconductor multilayer structure according to any one of claims 1, 2, 3, 4, 5 and 6.
【請求項10】該多重量子井戸構造の伝導体のサブバン
ド間遷移エネルギーに共鳴する光を照射し、該サブバン
ド間遷移のエネルギーにおける光の吸収係数、屈折率、
または光学利得を変化させる半導体光スイッチにおい
て、請求項7又は8のいずれかに記載の半導体導波路構
造を用いたことを特徴とする光制御素子。
10. A light absorption coefficient, a refractive index, and a refractive index of light at the energy of the intersubband transition are irradiated by irradiating light that resonates with the intersubband transition energy of the conductor having the multiple quantum well structure.
Alternatively, in a semiconductor optical switch for changing the optical gain, the semiconductor waveguide structure according to claim 7 is used.
JP2002134836A 2002-05-10 2002-05-10 Semiconductor multilayer structure for optical element and semiconductor waveguide structure for optical element Expired - Fee Related JP4150210B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002134836A JP4150210B2 (en) 2002-05-10 2002-05-10 Semiconductor multilayer structure for optical element and semiconductor waveguide structure for optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002134836A JP4150210B2 (en) 2002-05-10 2002-05-10 Semiconductor multilayer structure for optical element and semiconductor waveguide structure for optical element

Publications (2)

Publication Number Publication Date
JP2003329988A true JP2003329988A (en) 2003-11-19
JP4150210B2 JP4150210B2 (en) 2008-09-17

Family

ID=29697327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002134836A Expired - Fee Related JP4150210B2 (en) 2002-05-10 2002-05-10 Semiconductor multilayer structure for optical element and semiconductor waveguide structure for optical element

Country Status (1)

Country Link
JP (1) JP4150210B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196484A (en) * 2005-01-11 2006-07-27 Hitachi Ltd Optical semiconductor device
US8179585B2 (en) 2006-08-17 2012-05-15 National Institute Of Advanced Industrial Science And Technology Coupled quantum well structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196484A (en) * 2005-01-11 2006-07-27 Hitachi Ltd Optical semiconductor device
US7223993B2 (en) 2005-01-11 2007-05-29 Hitachi, Ltd. Optical semiconductor device
US8179585B2 (en) 2006-08-17 2012-05-15 National Institute Of Advanced Industrial Science And Technology Coupled quantum well structure

Also Published As

Publication number Publication date
JP4150210B2 (en) 2008-09-17

Similar Documents

Publication Publication Date Title
Wang et al. Emerging technologies in Si active photonics
EP1729167B1 (en) Semiconductor optical modulator having a quantum well structure for increasing effective photocurrent generating capability
Odoh et al. A review of semiconductor quantum well devices
JP5207381B2 (en) Coupled quantum well structure
US20100288997A1 (en) Semiconductor electroluminescent device
JP2536714B2 (en) Optical modulator integrated multiple quantum well semiconductor laser device
JP7220837B1 (en) semiconductor optical modulator
JP2003329988A (en) Semiconductor multi-layered structure and optical control element using the same
Simoyama et al. InGaAs/AlAs/AlAsSb Coupled Quantum Well Intersubband Transition All-Optical Switch with Low Switching Energy for OTDM Systems
JP2800425B2 (en) Semiconductor laser
JP3249235B2 (en) Light switch
JPH09171162A (en) Semiconductor optical modulator
JP3455575B2 (en) Optical semiconductor device
Choi et al. Optical properties of selectively oxidized vertical cavity laser with depleted optical thyristor structure
JPS623221A (en) Optical modulator
JP2991707B1 (en) Semiconductor optical switch
JP2536116B2 (en) Wavelength multiplexing discrimination type semiconductor light receiving element
JP3550540B2 (en) Light control element
JP2003270596A (en) Very-high-speed, wide-band optical saturable absorption semiconductor, and semiconductor device and waveguide type light-light switch using the same
JP2010040872A (en) Semiconductor device, method of manufacturing same, and optical communication system
Suzuki Theoretical study on ultrafast 12 all-optical switches with GaN/AlN intersubband optical amplifiers
JPH02262133A (en) Semiconductor device
Raring et al. Quantum well intermixing and MOCVD regrowth for monolithic integration of 40 Gbit/s UTC type photodiodes with QW based components
JPH07113991A (en) Optical modulation element
JPH1084164A (en) Semiconductor quantum dot optical modulator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050427

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050511

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080624

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080627

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees