JPH07113991A - Optical modulation element - Google Patents

Optical modulation element

Info

Publication number
JPH07113991A
JPH07113991A JP25740493A JP25740493A JPH07113991A JP H07113991 A JPH07113991 A JP H07113991A JP 25740493 A JP25740493 A JP 25740493A JP 25740493 A JP25740493 A JP 25740493A JP H07113991 A JPH07113991 A JP H07113991A
Authority
JP
Japan
Prior art keywords
type semiconductor
quantum well
semiconductor layer
light
absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25740493A
Other languages
Japanese (ja)
Other versions
JP2591445B2 (en
Inventor
Ichiro Ogura
一郎 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP5257404A priority Critical patent/JP2591445B2/en
Publication of JPH07113991A publication Critical patent/JPH07113991A/en
Application granted granted Critical
Publication of JP2591445B2 publication Critical patent/JP2591445B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide the optical modulation element having a large coefft. of absorption and wide operation range by continuously changing the lattice constants of semiconductor thin films to constitute quantum wells in their lamination direction. CONSTITUTION:An (n) type semiconductor layer 11, an undoped strain quantum well structure 12, a (p) type semiconductor layer 13 and a (p) type semiconductor layer 14 for ohmic contact with electrodes are laminated on an (n) type semiconductor substrate 10. The cathode electrode 21 is formed on the rear surface of the substrate 10 and the anode electrode 22 is formed on the 4 (p) type semiconductor layer 14. The anode and cathode electrodes are opened with windows for passing light. The substrate 10 is formed of InP, the (n) type semiconductor layer 11 and the (p) type semiconductor layer 13 are formed of semiconductors of an InGaAlAs system or InGaAsP system having the operation wavelength of the strain quantum well structure, i.e., the energy gap larger than the energy gap of the material of the quantum wells. The lattice constants of the semiconductor thin films of the quantum well layers are continuously changed in their lamination direction in such a manner, by which the strain quantum wells changed in the quantity of the strain are formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は光変調素子に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light modulator.

【0002】[0002]

【従来の技術】光の非干渉性を生かした高密度な情報処
理や情報伝達の実現のためには、二次元的に高密度に集
積できる光変調器あるいは光スイッチが求められる。
2. Description of the Related Art In order to realize high-density information processing and information transmission utilizing the incoherence of light, an optical modulator or an optical switch that can be integrated two-dimensionally with high density is required.

【0003】図5は、半導体量子井戸構造に電界を印加
したときの光吸収量の変化を利用した光変調器の一例で
ある。この光変調器については、1985年7月15日
発行の雑誌フィジカルレビューB「Physical
Review B」の1043−1060頁に掲載され
ている論文「Electric field depe
ndence of optical absorpt
ion near the band gap of
quantum−well structure」に詳
しく述べられている。具体的な構造としては、量子井戸
にガリウム・ヒ素(GaAs)、障壁層にアルミニウム
・ガリウム・ヒ素(AlGaAs)を用い、これを多数
集積した多重量子井戸構造とし、これをp形、及びn形
のAlGaAsではさみ、電圧を加えることによって量
子井戸に電界を印加できる構造である。同様に、量子井
戸にインジウム・ガリウム・ヒ素(InGaAs)、障
壁層にインジウム・リン(InP)あるいはインジウム
・アルミニウム・ヒ素(InAlAs)を用いることに
よって、光通信で用いられる1.55μmの波長で動作
する光変調素子が得られる。量子井戸構造の吸収スペク
トルが電界によって長波長側に移動する現象は量子閉じ
込めシュタルク効果として知られており、図6のような
関係を示す。図では量子井戸に形成される量子準位のう
ち量子の第1準位と重い正孔の第1の準位間の遷移に伴
う光吸収(以降、重い正孔の吸収と略す)及び、電子の
第1準位と軽い正孔の第一準位の遷移に伴った吸収(以
降、軽い正子うの吸収と略す)について示してある。電
界を印加しない時の吸収ピーク波長よりも少し長波長側
に入射光の波長を設定すると、電界印加しない時は吸収
が少なく、光は変調素子を透過するが、電界を印加する
と吸収ピークが入射光波長と一致し、大きな光吸収が起
こり、光は透過しにくくなるため、光の変調動作が可能
となる。
FIG. 5 shows an example of an optical modulator utilizing the change in the amount of light absorption when an electric field is applied to the semiconductor quantum well structure. About this optical modulator, the physical review B magazine “Physical” published on July 15, 1985
Review B ", pages 1043-1060," Electric field depth "
Ndence of optical absorpt
ion near the band gap of
"quantum-well structure". As a specific structure, gallium arsenide (GaAs) is used for the quantum well and aluminum gallium arsenide (AlGaAs) is used for the barrier layer to form a multiple quantum well structure in which a large number of them are integrated. With AlGaAs, the structure is such that an electric field can be applied to the quantum well by applying scissors and applying a voltage. Similarly, by using indium gallium arsenide (InGaAs) for the quantum well and indium phosphide (InP) or indium aluminum arsenide (InAlAs) for the barrier layer, it operates at a wavelength of 1.55 μm used in optical communication. A light modulation element that operates is obtained. The phenomenon in which the absorption spectrum of the quantum well structure moves to the long wavelength side due to the electric field is known as the quantum confined Stark effect, and shows the relationship as shown in FIG. In the figure, among the quantum levels formed in the quantum well, light absorption (hereinafter abbreviated as heavy hole absorption) and electron due to the transition between the quantum first level and the heavy hole first level. The absorption associated with the transition between the first level and the first level of light holes (hereinafter, abbreviated as light proton absorption) is shown. When the wavelength of the incident light is set to a wavelength side slightly longer than the absorption peak wavelength when no electric field is applied, the absorption is small when the electric field is not applied and the light passes through the modulator, but the absorption peak is incident when the electric field is applied. Since the light coincides with the light wavelength, a large amount of light is absorbed, and it becomes difficult for light to pass therethrough, the light can be modulated.

【0004】ところが、電界を印加して吸収ピークを長
波長側に移動させる際に、電子と正孔が空間的に分離す
ることによる吸収関数の低下も同時に起こってしまう。
図6の例では重い正孔の吸収が、軽い正孔のそれよりも
常に長波長側にあるため、光変調動作には重い正孔によ
る吸収のみが関与しており、吸収関数は電界によって一
様に減少する。そこで、図7に示す例では量子井戸層に
障壁層と異なる格子定数の半導体を用い、量子井戸層に
引っ張り歪みを加えることによって予め軽い正孔の吸収
端を重い正孔よりも長波長側に置き、電界を加えた状態
で軽い正孔と重い正孔の吸収を同じ波長で起こるように
してある。これにより、電界印加によて一様に減少して
いた吸収関数を重い正孔と軽い正孔両方の吸収を用いる
ことによって大きくしようとするものである。この光変
調素子の動作原理については、1992年6月発行の雑
誌アイイーイーイー ジャーナル オブ カンタム エ
レクトロニクス「IEEE Journal of Q
uantumElectronics」の1496−1
507頁に掲載の論文「Electroabsorpt
ion Enhancement in Tensil
e Strained Quantum Wells
via AbsorptionEdge Mergin
g」に詳しく述べられている。具体的な構造として量子
井戸層にインジウム組成0.49、ガリウム組成0.5
1のInGaAs層、障壁層にInPを用い、量子井戸
の幅を12.1nmとしたとき、52kV/cmの電界
を印加した状態で重い正孔と軽い正孔の吸収ピークが一
致する。
However, when the absorption peak is moved to the long wavelength side by applying an electric field, the absorption function is also reduced due to the spatial separation of electrons and holes.
In the example of FIG. 6, since the absorption of heavy holes is always on the longer wavelength side than that of light holes, only the absorption by heavy holes is involved in the light modulation operation, and the absorption function depends on the electric field. To decrease. Therefore, in the example shown in FIG. 7, a semiconductor having a lattice constant different from that of the barrier layer is used for the quantum well layer, and tensile absorption is applied to the quantum well layer so that the absorption edge of the light hole is previously set to a longer wavelength side than the heavy hole. In this state, light holes and heavy holes are absorbed at the same wavelength under an electric field. As a result, the absorption function, which has been uniformly reduced by the application of an electric field, is to be increased by using the absorption of both heavy holes and light holes. The principle of operation of this optical modulator is described in "IE Journal of Q," published by June 1992, IEEE Journal of Quantum Electronics.
1496-1 of "quantum Electronics"
Article "Electroabsorbt" on page 507
Ion Enhancement in Tensil
e Strained Quantum Wells
via AbsorptionEdge Merge
g ”. As a specific structure, the quantum well layer has an indium composition of 0.49 and a gallium composition of 0.5.
When InP is used for the InGaAs layer and the barrier layer of No. 1 and the width of the quantum well is 12.1 nm, the absorption peaks of the heavy holes and the light holes coincide with each other when an electric field of 52 kV / cm is applied.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、一様に
引っ張り歪みを加えた場合には、重い正孔と軽い正孔の
遷移波長が重なる点は一点しか無く、重くなった状態で
は吸収関数は大きくなるが、動作波長と印加電界の両方
に対して厳密な設定が必要で、動作させられる条件の範
囲が狭い。
However, when tensile strain is uniformly applied, there is only one point where the transition wavelengths of heavy holes and light holes overlap, and the absorption function is large in the heavy state. However, strict settings are required for both the operating wavelength and the applied electric field, and the range of operating conditions is narrow.

【0006】この発明の目的は、上記の欠点を無くし、
吸収係数が大きく、かつ動作範囲の広い光変調素子を提
供するものである。
The object of the present invention is to eliminate the above-mentioned drawbacks,
An optical modulator having a large absorption coefficient and a wide operating range is provided.

【0007】[0007]

【発明を解決するための手段】本発明の光変調素子は、
半導体量子井戸構造と量子井戸構造に電界を印加するた
めのpn接合構造と電極を有し、量子井戸となる半導体
薄膜は積層方向に対して格子定数が連続的に変化してい
ることを特徴としている。
The optical modulator of the present invention comprises:
A semiconductor quantum well structure, a pn junction structure for applying an electric field to the quantum well structure, and an electrode, and a semiconductor thin film to be a quantum well is characterized in that the lattice constant continuously changes in the stacking direction. There is.

【0008】[0008]

【作用】本発明では量子井戸層の半導体薄膜の格子定数
を積層方向に連続的に変化させ、歪の量を変化させた歪
量子井戸を形成する。価電子帯において軽い正孔と重い
正孔のバンド端のエネルギーは歪の無い状態では一致し
ているが、歪を加える歪の量に応じた分だけ両者は分離
し、引っ張り歪の場合、軽い正孔のバンド端が重い正孔
のそれよりも低エネルギー側、即ち、長波長側になり、
圧縮歪では逆に重い正孔が低エネルギー側になる。これ
により、連続的に歪の量を変化させればバンド端のエネ
ルギーに勾配をつけることができ、このとき、重い正孔
と軽い正孔とではその勾配が逆になる。
In the present invention, the strained quantum well is formed by continuously changing the lattice constant of the semiconductor thin film of the quantum well layer in the stacking direction to change the strain amount. In the valence band, the band edge energies of light holes and heavy holes are the same in the unstrained state, but the two are separated according to the amount of strain applied, and in the case of tensile strain, light The band edge of the hole is on the lower energy side than that of the heavy hole, that is, on the long wavelength side,
On the contrary, in compressive strain, heavy holes are on the low energy side. As a result, if the amount of strain is continuously changed, the energy at the band edge can be made to have a gradient, and at this time, the gradient is opposite between heavy holes and light holes.

【0009】この歪量子井戸をpn接合の中に形成し、
逆方向電圧を印加することにより歪量子井戸に電界を印
加する。量子井戸の引っ張り歪みの量をp形半導体の側
から連続的に減らししていく構造にすれば、上に述べた
歪による効果で軽い正孔のバンド端は電界と同じ方向に
傾き、重い正孔のバンド端はそれと逆方向に傾く。量子
閉じ込めシュタルク効果に基づく電界効果による吸収ピ
ークの移動量は重い正孔の方が軽い正孔よりも大きい
が、歪によるバンドの傾きによって、重い正孔は電界の
効果が弱められ、吸収ピークの移動量は小さく、逆に軽
い正孔は電界効果が増強され、吸収ピークの移動量が大
きくなる。よって、歪の変化量と量子井戸層厚を選ぶこ
とによって電界印加時の重い正孔と軽い正孔の吸収ピー
ク波長を一致させ、かつ、電界の広い範囲で、両者の吸
収ピークの移動量をほぼ等しく保ことが可能になる。
This strained quantum well is formed in a pn junction,
An electric field is applied to the strained quantum well by applying a reverse voltage. If the structure is such that the amount of tensile strain in the quantum well is continuously reduced from the side of the p-type semiconductor, the band edge of light holes tilts in the same direction as the electric field due to the effect of the strain described above, and the The band edge of the hole tilts in the opposite direction. The amount of movement of the absorption peak due to the electric field effect based on the quantum confined Stark effect is larger for heavy holes than for light holes, but the effect of the electric field is weakened for heavy holes due to the band tilt due to strain, and The amount of movement is small, but conversely, the light holes enhance the electric field effect and the amount of movement of the absorption peak is large. Therefore, by selecting the amount of change in strain and the thickness of the quantum well layer, the absorption peak wavelengths of heavy holes and light holes when an electric field is applied are made to coincide, and the movement amount of both absorption peaks in a wide range of the electric field is adjusted. It is possible to keep them almost equal.

【0010】[0010]

【実施例】次に、本発明について図面を参照して説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to the drawings.

【0011】実際の光吸収においては電子と正孔の準位
間のエネルギーより数meV程度低いエネルギーで励起
子を介した光吸収が起こるが、本実施例ではその効果を
除いて、準位間の吸収として説明する。
In actual light absorption, light absorption via excitons occurs at an energy of a few meV lower than the energy between the levels of electrons and holes. Absorption of.

【0012】図1は本発明の光変調素子の一実施例であ
る。
FIG. 1 shows an embodiment of the optical modulator of the present invention.

【0013】n形半導体基板10の上にn形半導体層1
1、アンドープの歪量子井戸構造12、p形半導体層1
3、及び、電極とのオーミックコンタクトのためのp形
半導体層14を積層し、基板裏面にカソード電極21、
p形半導体層14の上にアノード電極22を形成してい
る。アノード及びカソード電極には、光を通すための窓
が開けてある。本実施例で各層に用いる半導体として
は、基板10はInP、n形半導体層11及びp形半導
体層13は、歪量子井戸構造の動作波長、即ち、量子井
戸の材料よりもエネルギーギャップの大きなInGaA
lAs系あるいはInGaAsP系の半導体とする。
An n-type semiconductor layer 1 is formed on an n-type semiconductor substrate 10.
1, undoped strained quantum well structure 12, p-type semiconductor layer 1
3 and the p-type semiconductor layer 14 for ohmic contact with the electrode are laminated, and the cathode electrode 21,
The anode electrode 22 is formed on the p-type semiconductor layer 14. Windows are opened in the anode and cathode electrodes to allow light to pass therethrough. As the semiconductor used for each layer in this embodiment, the substrate 10 is InP, and the n-type semiconductor layer 11 and the p-type semiconductor layer 13 are InGaA having an operating wavelength of a strained quantum well structure, that is, an energy gap larger than the quantum well material.
The semiconductor is an lAs-based or InGaAsP-based semiconductor.

【0014】図2は図1の歪量子井戸構造部分12の構
造を示す一実施例で、電界が印加されていない状態のエ
ネルギーバンド図で示している。障壁層はInP30
で、量子井戸層31はInGaAsのIn組成を0.5
3から0.40に連続的に変化させ、歪の量を連続的に
変えている。井戸幅は8.4nmである。図3は図2の
歪量子井戸構造のエネルギーバンド図を80kV/cm
の電界が印加された状態について示している。図4は量
子井戸に電界を印加した時の重い正孔と軽い正孔による
吸収ピーク波長の変化を示しているが、両者は電界の範
囲が60kV/cmから100kV/cm程度の広い範
囲でほぼ一致して同じ電界依存性を示す。
FIG. 2 is an embodiment showing the structure of the strained quantum well structure portion 12 of FIG. 1, which is shown as an energy band diagram in a state where no electric field is applied. The barrier layer is InP30
In the quantum well layer 31, the In composition of InGaAs is 0.5.
The amount of strain is continuously changed from 3 to 0.40. The well width is 8.4 nm. FIG. 3 shows an energy band diagram of the strained quantum well structure of FIG. 2 at 80 kV / cm.
The electric field is applied. FIG. 4 shows the change in absorption peak wavelength due to heavy holes and light holes when an electric field is applied to the quantum well. Both of them show almost a wide range of electric field from 60 kV / cm to 100 kV / cm. The same electric field dependence is shown.

【0015】尚、図1に示した実施例において歪量子井
戸構造の障壁層の材料はInPの他に、InGaAsよ
りもエネルギーギャップの大きな材料、例えばInAl
GaAsやInGaAsPとすることも可能である。ま
た、歪量子井戸構造の部分を同様な格子定数の変化をも
たせたInGaAspあるはInGaAlAsとするこ
とにより、1.3μmの波長で動作さることもできる。
In the embodiment shown in FIG. 1, the material of the barrier layer of the strained quantum well structure is not only InP but also a material having a larger energy gap than InGaAs, such as InAl.
It is also possible to use GaAs or InGaAsP. Further, when the strained quantum well structure portion is made of InGaAsp or InGaAlAs having the same change of the lattice constant, it is possible to operate at a wavelength of 1.3 μm.

【0016】[0016]

【発明の効果】本発明の光変調素子によって、吸収量が
大きく、動作範囲の広い光変調素子が得られる。
According to the optical modulator of the present invention, an optical modulator having a large absorption amount and a wide operating range can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光変調素子の一実施例を説明するため
の図。
FIG. 1 is a diagram for explaining an embodiment of a light modulation element of the present invention.

【図2】本発明の図1の実施例の歪量子井戸構造のエネ
ルギーバンド図。
2 is an energy band diagram of the strained quantum well structure of the embodiment of FIG. 1 of the present invention.

【図3】歪量子井戸構造に電界を印加した場合のエネル
ギーバンド図。
FIG. 3 is an energy band diagram when an electric field is applied to the strained quantum well structure.

【図4】図1の光変調素子の光吸収を示す図。FIG. 4 is a diagram showing light absorption of the light modulation element of FIG.

【図5】光変調素子の従来例を説明するための図。FIG. 5 is a diagram for explaining a conventional example of a light modulation element.

【図6】光変調素子の従来例を説明するための図。FIG. 6 is a diagram for explaining a conventional example of a light modulation element.

【図7】光変調素子の従来例を説明するための図。FIG. 7 is a diagram for explaining a conventional example of a light modulation element.

【符号の説明】[Explanation of symbols]

10 半導体基板 11 n形半導体層 12 歪量子井戸構造 13 p形半導体層 14 p形半導体コンタクト層 21 カソード電極 22 アノード電極 30 InP障壁層 31 InGaAs歪量子井戸層 Reference Signs List 10 semiconductor substrate 11 n-type semiconductor layer 12 strained quantum well structure 13 p-type semiconductor layer 14 p-type semiconductor contact layer 21 cathode electrode 22 anode electrode 30 InP barrier layer 31 InGaAs strained quantum well layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 アンドープの半導体薄膜を該半導体薄膜
よりエネルギーギャップの大きなアンドープの半導体で
挟んだ量子井戸構造と該量子井戸構造に電界を印加する
ためのp形半導体層及びn形半導体層によるpn接合構
造が半導体基板上に積層され、該pn接合構造には電圧
印加のための電極を有し、該量子井戸構造の量子井戸と
なる前記半導体薄膜が積層方向に対して格子定数が連続
的に変化していることを特徴とする光変調素子。
1. A quantum well structure in which an undoped semiconductor thin film is sandwiched between undoped semiconductors having a larger energy gap than the semiconductor thin film, and a pn formed by a p-type semiconductor layer and an n-type semiconductor layer for applying an electric field to the quantum well structure. A junction structure is laminated on a semiconductor substrate, the pn junction structure has an electrode for applying a voltage, and the semiconductor thin film serving as the quantum well of the quantum well structure has a lattice constant continuous in the laminating direction. An optical modulator that is changing.
【請求項2】 前記半導体薄膜の格子定数は、基板とな
る半導体の格子定数に対して小さいものから同等あるい
は大きくなるように除々に変化し、その変化の方向は、
前記p形半導体層側が最も格子定数が小さく、前記n形
半導体層に向かって大きくなる方向であることを特徴と
する請求項1記載の光変調素子。
2. The lattice constant of the semiconductor thin film gradually changes from a smaller lattice constant to a larger or larger lattice constant of a semiconductor serving as a substrate, and the direction of the change is
2. The light modulation element according to claim 1, wherein the p-type semiconductor layer side has the smallest lattice constant, and the lattice constant increases toward the n-type semiconductor layer.
JP5257404A 1993-10-15 1993-10-15 Light modulation element Expired - Fee Related JP2591445B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5257404A JP2591445B2 (en) 1993-10-15 1993-10-15 Light modulation element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5257404A JP2591445B2 (en) 1993-10-15 1993-10-15 Light modulation element

Publications (2)

Publication Number Publication Date
JPH07113991A true JPH07113991A (en) 1995-05-02
JP2591445B2 JP2591445B2 (en) 1997-03-19

Family

ID=17305912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5257404A Expired - Fee Related JP2591445B2 (en) 1993-10-15 1993-10-15 Light modulation element

Country Status (1)

Country Link
JP (1) JP2591445B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6100543A (en) * 1996-05-29 2000-08-08 Nec Corporation Electro-absorption type semiconductor optical modulator having a quantum well structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02220025A (en) * 1989-02-21 1990-09-03 Nec Corp Optical modulator
JPH0682852A (en) * 1992-08-31 1994-03-25 Fujitsu Ltd Semiconductor device
JPH0799369A (en) * 1993-09-28 1995-04-11 Canon Inc Strain quantum well structure element and optical device having that

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02220025A (en) * 1989-02-21 1990-09-03 Nec Corp Optical modulator
JPH0682852A (en) * 1992-08-31 1994-03-25 Fujitsu Ltd Semiconductor device
JPH0799369A (en) * 1993-09-28 1995-04-11 Canon Inc Strain quantum well structure element and optical device having that

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6100543A (en) * 1996-05-29 2000-08-08 Nec Corporation Electro-absorption type semiconductor optical modulator having a quantum well structure

Also Published As

Publication number Publication date
JP2591445B2 (en) 1997-03-19

Similar Documents

Publication Publication Date Title
EP0645858B1 (en) Strained quantum well structure having variable polarization dependence and optical device inducing the strained quantum well structure
US4833511A (en) Phototransistor device
JP2584811B2 (en) Nonlinear optical element
EP1729167B1 (en) Semiconductor optical modulator having a quantum well structure for increasing effective photocurrent generating capability
JP2003248204A (en) Semiconductor optical element, semiconductor optical modulation element and semiconductor optical photodetector
CA2006680C (en) Self electrooptic effect device employing asymmetric quantum wells
JPH0713110A (en) Semiconductor optical modulator
JP3394789B2 (en) Light modulation element with high contrast ratio
US5249075A (en) Quantum well wave modulator and optical detector
JP2591445B2 (en) Light modulation element
JP2937460B2 (en) Quantum well structure optical device
JPH08262381A (en) Semiconductor device
JP3249235B2 (en) Light switch
JPH06188449A (en) Msm type photodetector
JP2000305055A (en) Electric field absorption optical modulator
JPH0772434A (en) Photoelectronic semiconductor element
CA2006682A1 (en) Semiconductor superlattice self-electrooptic effect device
JP3844664B2 (en) Absorption semiconductor quantum well optical modulator
JPH0473613A (en) Light modulator
JPH04245492A (en) Quantum well optical modulator
JPH09246639A (en) Optical semiconductor device
JP2003329988A (en) Semiconductor multi-layered structure and optical control element using the same
JP2007304472A (en) Semiconductor optical modulator
JPS61270726A (en) Waveguide type optical gate switch
JPH05333388A (en) Semiconductor quantum well structure

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19961029

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071219

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees