JP2003329902A - Deposition method and optical fiber with metallic film deposited thereon - Google Patents

Deposition method and optical fiber with metallic film deposited thereon

Info

Publication number
JP2003329902A
JP2003329902A JP2002138750A JP2002138750A JP2003329902A JP 2003329902 A JP2003329902 A JP 2003329902A JP 2002138750 A JP2002138750 A JP 2002138750A JP 2002138750 A JP2002138750 A JP 2002138750A JP 2003329902 A JP2003329902 A JP 2003329902A
Authority
JP
Japan
Prior art keywords
film
optical fiber
vacuum
vacuum chamber
deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002138750A
Other languages
Japanese (ja)
Other versions
JP4162919B2 (en
Inventor
Toru Tateishi
徹 立石
Yukio Komura
幸夫 香村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2002138750A priority Critical patent/JP4162919B2/en
Publication of JP2003329902A publication Critical patent/JP2003329902A/en
Application granted granted Critical
Publication of JP4162919B2 publication Critical patent/JP4162919B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Optical Elements (AREA)
  • Physical Vapour Deposition (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable the deposition of clean, uniform and dense films on optical fibers, etc., coated with resins which is heretofore difficult. <P>SOLUTION: The deposition method is for depositing various kinds of the films, such as oxidized films and metallic films, by vacuum vapor deposition on the optical fibers or optical components having the optical fibers, in which the optical fibers, etc., are placed for a prescribed time in a vacuum chamber kept at a prescribed temperature and under a prescribed pressure and the degassing of the optical fibers is performed and thereafter the optical fibers, etc., are transferred into another vacuum chamber and are subjected to deposition by vacuum vapor deposition. The optical fibers are formed by depositing the Ti films of 10 to 50 nm by vacuum vapor deposition thereon within the vacuum chamber and depositing the Ni films of a thickness 10 to 50 nm by vacuum vapor depositing thereon. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光ファイバ等への
成膜方法と、金属膜が成膜された光ファイバとに関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a film on an optical fiber or the like and an optical fiber on which a metal film is formed.

【0002】[0002]

【従来の技術】光ファイバや光ファイバを備えた光部品
(以下「被成膜物」)に対して真空蒸着による成膜を行
う場合には、これら被成膜物をセットした真空槽内を10
-5Pa〜10-2Paに減圧した後に、該真空槽内において成膜
原料を蒸発させて蒸着させる。この際、均一で緻密な膜
を成膜するために、被成膜物を100℃〜300℃に加熱して
熱エネルギーを与えてやる方法が一般的である。また、
段替えや保守点検の際に前記真空槽を大気圧に解放した
場合は、該真空槽の脱ガス処理を行ってから成膜を行う
のが一般的である。ここで脱ガス処理とは、真空槽を15
0℃〜250℃に加熱して真空引きを行うことによって、大
気圧解放時に真空槽の内壁に付着した不純物(大部分は
水分)を除去する処理である。かかる脱ガス処理を行う
ことによって、真空槽の内壁に付着している不純物が成
膜時に蒸発して成膜原料に混入するといった不都合が回
避される。尚、脱ガス処理は被成膜物を真空槽にセット
した状態で行われるが、成膜は真空槽が常温まで冷却さ
れるのを待って開始するのが一般的である。
2. Description of the Related Art When a film is formed by vacuum vapor deposition on an optical fiber or an optical component equipped with an optical fiber (hereinafter referred to as "deposition object"), the inside of a vacuum tank in which the deposition object is set is set. Ten
After the pressure is reduced to -5 Pa to 10 -2 Pa, the film forming raw material is evaporated and vapor-deposited in the vacuum chamber. At this time, in order to form a uniform and dense film, it is common to heat the film formation object to 100 ° C. to 300 ° C. to apply thermal energy. Also,
When the vacuum chamber is opened to the atmospheric pressure at the time of change of stage or maintenance and inspection, it is common to perform the degassing process of the vacuum chamber before the film formation. The degassing process here means that the vacuum chamber is
This is a process of removing impurities (mostly water) adhering to the inner wall of the vacuum chamber when the atmospheric pressure is released by heating to 0 ° C. to 250 ° C. and performing vacuuming. By performing such degassing treatment, it is possible to avoid the inconvenience that the impurities adhering to the inner wall of the vacuum chamber are evaporated during film formation and are mixed into the film forming raw material. The degassing process is performed in a state in which the film formation target is set in a vacuum chamber, but the film formation is generally started after the vacuum chamber is cooled to room temperature.

【0003】[0003]

【発明が解決しようとする課題】前記従来の成膜方法に
は次のような課題があった。 (1)被成膜物の1つである石英系光ファイバは、ファ
イバ裸線を紫外線硬化樹脂や熱硬化樹脂等の合成樹脂か
らなる被覆層で被覆して強度を確保してある。この被覆
層は有機物であり、且つ未硬化部分が3〜5%残っている
ため、低真空で高温な状態に置かれると被覆層の原料成
分が蒸発し易い。従って、石英系光ファイバがセットさ
れた真空槽に対して脱ガス処理を実施すると、該光ファ
イバが低真空で高温な状態に置かれ、被覆層から原料成
分が蒸発する(ガスが発生する)。この結果、蒸発した
原料成分が成膜前の光ファイバ表面に付着したり、蒸発
した成膜原料に混入したりして、清浄な膜が成膜されな
いといった問題が発生する。 (2)被覆層は100℃〜150℃程度までしか耐熱性がな
い。従って、緻密で均一な膜を成膜するために、成膜時
に光ファイバを加熱すると被覆が傷んでしまう。このた
め均一で緻密な膜を成膜することが困難であった。
The above-mentioned conventional film forming method has the following problems. (1) In a silica-based optical fiber, which is one of the film-forming objects, the bare fiber is covered with a coating layer made of a synthetic resin such as an ultraviolet curing resin or a thermosetting resin to secure its strength. Since this coating layer is an organic substance and 3 to 5% of the uncured portion remains, the raw material components of the coating layer are likely to evaporate when placed in a low vacuum and high temperature state. Therefore, when the degassing process is performed on the vacuum chamber in which the silica optical fiber is set, the optical fiber is placed in a low vacuum and high temperature state, and the raw material components are evaporated from the coating layer (gas is generated). . As a result, the evaporated raw material components may adhere to the surface of the optical fiber before film formation or may be mixed with the evaporated film forming raw material, so that a problem that a clean film cannot be formed occurs. (2) The coating layer has heat resistance only up to about 100 ° C to 150 ° C. Therefore, in order to form a dense and uniform film, if the optical fiber is heated during film formation, the coating will be damaged. Therefore, it is difficult to form a uniform and dense film.

【0004】[0004]

【課題を解決するための手段】本発明の成膜方法の一つ
は、光ファイバ又は光ファイバを備えた光部品に真空蒸
着によって酸化膜や金属膜といった各種膜を成膜する成
膜方法であって、光ファイバ又は光ファイバを備えた光
部品を所定温度、所定圧力に保たれた真空槽内に所定時
間置いて光ファイバの脱ガスを行い、その後、これを別
の真空槽に移して真空蒸着による成膜を行うものであ
る。
One of the film forming methods of the present invention is a film forming method of forming various films such as an oxide film and a metal film on an optical fiber or an optical component equipped with the optical fiber by vacuum deposition. Therefore, the optical fiber or the optical component equipped with the optical fiber is placed in a vacuum chamber kept at a predetermined temperature and a predetermined pressure for a predetermined time to degas the optical fiber, and then this is transferred to another vacuum chamber. The film is formed by vacuum vapor deposition.

【0005】本発明の成膜方法の他の一つは、光ファイ
バ又は光ファイバを備えた光部品に真空蒸着によって酸
化膜や金属膜といった各種膜を成膜する成膜方法であっ
て、光ファイバ又は光ファイバを備えた光部品を温度が
70℃〜150℃、圧力が10-1Pa〜103Pa(0.1Pa〜1000Pa)
に保たれた真空槽内に8時間〜24時間置いて光ファイバ
の脱ガスを行い、その後、これを別の真空槽に移して真
空蒸着による成膜を行うものである。
Another one of the film forming methods of the present invention is a film forming method for forming various films such as an oxide film and a metal film on an optical fiber or an optical component equipped with the optical fiber by vacuum deposition. Fiber or optical component with optical fiber
70 ℃ ~ 150 ℃, pressure 10 -1 Pa ~ 10 3 Pa (0.1 Pa ~ 1000 Pa)
The optical fiber is degassed by placing it in a vacuum chamber kept for 8 to 24 hours, and then moving it to another vacuum chamber to form a film by vacuum vapor deposition.

【0006】本発明の成膜方法の他の一つは、成膜を行
うための真空槽に移された光ファイバの被覆部を板で覆
った上で真空蒸着による成膜を行うものである。
Another one of the film forming methods of the present invention is to form a film by vacuum vapor deposition after covering the coating part of the optical fiber transferred to a vacuum chamber for film formation with a plate. .

【0007】本発明の成膜方法の他の一つは、成膜を行
うための真空槽内にアルゴンガスを導入し、導入された
アルゴンガスに高周波電圧を印加して高周波アルゴンプ
ラズマを発生させた上で真空蒸着による成膜を行うもの
である。
Another one of the film forming methods of the present invention is to introduce an argon gas into a vacuum chamber for forming a film and apply a high frequency voltage to the introduced argon gas to generate a high frequency argon plasma. Then, the film is formed by vacuum evaporation.

【0008】本発明の成膜方法の他の一つは、アルゴン
ガスに印加される高周波電圧の周波数を13.56MHz、
電力を50W〜250Wとしたものである。
Another one of the film forming methods of the present invention is that the frequency of the high frequency voltage applied to the argon gas is 13.56 MHz,
The power is 50W to 250W.

【0009】本発明の成膜方法の他の一つは、プラズマ
を発生させた真空槽内で、光ファイバにTiを真空蒸着し
て厚みが10nm〜50nmのTi膜を成膜し、そのTi膜の上にNi
を真空蒸着して厚みが10nm〜50nmのNi膜を成膜するもの
である。
Another one of the film forming methods of the present invention is to vacuum-deposit Ti on an optical fiber to form a Ti film having a thickness of 10 nm to 50 nm in a vacuum chamber in which plasma is generated, and the Ti film is formed. Ni on the membrane
Is vacuum-deposited to form a Ni film having a thickness of 10 nm to 50 nm.

【0010】本発明の金属膜が成膜された光ファイバ
は、プラズマを発生させた真空槽内で、10nm〜50nmのTi
膜が真空蒸着によって成膜され、そのTi膜の上に、厚み
が10nm〜50nmのNi膜が真空蒸着によって成膜されたもの
である。
The optical fiber on which the metal film of the present invention is formed has a thickness of 10 nm to 50 nm of Ti in a vacuum chamber in which plasma is generated.
The film is formed by vacuum evaporation, and a Ni film having a thickness of 10 nm to 50 nm is formed on the Ti film by vacuum evaporation.

【0011】[0011]

【発明の実施の形態】(実施形態1)ここに示す実施例
は、被覆外径250μm、心線径125μmで、被覆に紫外線硬
化樹脂が用いられた光ファイバの端部に、本発明の成膜
方法を用いて金属膜を成膜したものである。具体的に
は、膜厚20nmのTi膜の上に、膜厚20nmのNi膜が積層され
た金属膜を成膜したものである。以下、工程を追って説
明する。
BEST MODE FOR CARRYING OUT THE INVENTION (Embodiment 1) In the embodiment shown here, the outer diameter of the coating is 250 μm, the core wire diameter is 125 μm, and the present invention is applied to the end portion of an optical fiber in which an ultraviolet curing resin is used for the coating. A metal film is formed by using the film method. Specifically, a metal film in which a Ni film having a film thickness of 20 nm is laminated on a Ti film having a film thickness of 20 nm is formed. The steps will be described below.

【0012】(1)光ファイバの端部の被覆層を所定長
だけ除去して、被成膜部分となるファイバ裸線を露出さ
せる。 (2)前記光ファイバを真空槽(真空チャンバー)に入
れた後に、該真空槽内を10Pa程度に減圧すると共に、10
0℃程度に加熱して光ファイバの脱ガス処理を行う。
尚、処理時間は12時間とした。 (3)前記真空槽から光ファイバを取り出し、被成膜部
分をアセトンで超音波洗浄する。この洗浄は、被覆層か
ら蒸発した原料成分が被成膜部分に付着している虞があ
るため、これを除去する目的で念ため実施するものであ
る。従って、必ずしも実施しなくてもよい。 (4)光ファイバを図1に示す真空槽(真空チャンバ
ー)に移してから、該真空槽の脱ガス処理を行う。図1
に示す真空槽は、真空蒸着を行うための真空槽であり、
前記(2)の真空槽とは別の真空槽である。ここで、図
1に示す真空槽は、成膜原料を収容する2つの容器(ル
ツボ)1a、1bと、夫々の容器1a、1b内の成膜原料に
電子ビームを照射して、これを蒸発させる2基の電子ビ
ーム銃(EBガン)2a、2bと、被成膜部分であるファ
イバ裸線3をセット可能なセット部4と、光ファイバの
被覆部5を覆って、真空槽内壁からの輻射熱による被覆
部5の温度上昇を防止する邪魔板6と、水冷基板7と、
RFコイル8とを備えている。尚、前記邪魔板6を設置
することなく脱ガス処理を行うと、被覆部5の温度は15
0℃以上に上昇するのが、邪魔板6を設置すると、100℃
以下に抑制されることが確認されている。 (5)真空槽の脱ガス処理が終了したら、イオンプレー
ティング法によって被成膜部分3に金属膜を成膜する。
具体的には、真空槽内にアルゴンガスを導入して圧力を
10-2Pa(0.01Pa)程度に保持すると共に、RFコイル8
に通電してアルゴンガスに100W、13.56MHzの高周波電
圧を印加し、高周波アルゴンプラズマを発生させる。さ
らに、かかる雰囲気中で、一方のルツボ1aに収容され
ているTi(チタン)に一方の電子ビーム銃2aから電子
ビームを照射してこれを蒸発させ、蒸発したTi成分を被
成膜部分3に蒸着させる。所定膜厚のTi膜が成膜された
ら電子ビーム銃2aを止め、他方のルツボ1bに収容され
ているNi(ニッケル)に他方の電子ビーム銃2bから電
子ビームを照射してこれを蒸発させ、蒸発したNi成分を
前記Ti膜の上に積層して蒸着させる。 (6)以上によって、端部に膜厚が20nmのTi膜が成膜さ
れ、そのTi膜の上に膜厚が20nmのNi膜が成膜された光フ
ァイバ(メタライジングファイバ)が得られる。尚、金
属膜の膜厚が50nm以上になると、光ファイバの強度が低
くなる。これは、膜厚が厚くなると表面状態が悪くなる
ためと考えられる。
(1) The coating layer at the end of the optical fiber is removed by a predetermined length to expose the bare fiber which is the film-forming portion. (2) After the optical fiber is placed in a vacuum chamber (vacuum chamber), the pressure in the vacuum chamber is reduced to about 10 Pa, and
The optical fiber is degassed by heating to about 0 ° C.
The processing time was 12 hours. (3) The optical fiber is taken out from the vacuum chamber, and the film formation portion is ultrasonically cleaned with acetone. This cleaning is carried out for the purpose of removing the raw material component evaporated from the coating layer, which may be attached to the film forming portion. Therefore, it is not always necessary to carry out. (4) The optical fiber is transferred to the vacuum chamber (vacuum chamber) shown in FIG. 1 and then the vacuum chamber is degassed. Figure 1
The vacuum tank shown in is a vacuum tank for performing vacuum deposition,
This is a vacuum chamber different from the vacuum chamber of (2). Here, in the vacuum chamber shown in FIG. 1, two containers (crucibles) 1a and 1b for accommodating film-forming raw materials and the film-forming raw materials in the respective containers 1a and 1b are irradiated with an electron beam to evaporate them. The two electron beam guns (EB guns) 2a and 2b, the set portion 4 on which the bare fiber 3 which is the film-forming portion can be set, and the coating portion 5 of the optical fiber are covered to remove them from the inner wall of the vacuum chamber. A baffle plate 6 for preventing the temperature rise of the coating part 5 due to radiant heat, a water cooling substrate 7,
The RF coil 8 is provided. When the degassing process is performed without installing the baffle plate 6, the temperature of the covering portion 5 is 15
The temperature that rises above 0 ℃ is 100 ℃ when the baffle plate 6 is installed.
It is confirmed to be suppressed below. (5) After the degassing process of the vacuum chamber is completed, a metal film is formed on the film formation portion 3 by the ion plating method.
Specifically, the pressure was increased by introducing argon gas into the vacuum chamber.
RF coil 8 as well as holding at about 10 -2 Pa (0.01 Pa)
And a high frequency voltage of 100 W and 13.56 MHz is applied to the argon gas to generate a high frequency argon plasma. Further, in such an atmosphere, Ti (titanium) housed in one crucible 1a is irradiated with an electron beam from one electron beam gun 2a to evaporate it, and the evaporated Ti component is deposited on the film formation portion 3. Vapor deposition. When the Ti film having a predetermined thickness is formed, the electron beam gun 2a is stopped, and Ni (nickel) housed in the other crucible 1b is irradiated with an electron beam from the other electron beam gun 2b to evaporate it. The evaporated Ni component is laminated on the Ti film and evaporated. (6) By the above, an optical fiber (metalizing fiber) is obtained in which a Ti film having a film thickness of 20 nm is formed on the end portion and a Ni film having a film thickness of 20 nm is formed on the Ti film. When the film thickness of the metal film is 50 nm or more, the strength of the optical fiber becomes low. It is considered that this is because the surface condition deteriorates as the film thickness increases.

【0013】前記(2)に示した光ファイバの脱ガス処
理を行う際の加熱温度が成膜用の真空槽の脱ガス処理時
における光ファイバの温度よりも低いと、十分な脱ガス
が行われない。一方、加熱温度が高すぎると、光ファイ
バの被覆を傷めてしまう。また、光ファイバの脱ガス処
理を行う際の圧力(真空度)は、低ければ低いほど良い
が、圧力が低ければ低いほど高性能で高価な排気設備が
必要になる。これらを踏まえた上で発明者らが行った実
験によれば、光ファイバの脱ガス処理を行う際の加熱温
度は70℃〜150℃、圧力は10-1Pa〜103Pa、処理時間は8
時間〜24時間が好適である。
If the heating temperature for degassing the optical fiber shown in (2) is lower than the temperature of the optical fiber for degassing in the vacuum chamber for film formation, sufficient degassing will occur. I don't know. On the other hand, if the heating temperature is too high, the coating of the optical fiber will be damaged. Also, the lower the pressure (vacuum degree) for degassing the optical fiber, the better, but the lower the pressure, the more expensive and expensive the exhaust equipment is required. Based on these, according to the experiment conducted by the inventors, the heating temperature when degassing the optical fiber is 70 ° C. to 150 ° C., the pressure is 10 −1 Pa to 10 3 Pa, and the treatment time is 8
Hours to 24 hours are suitable.

【0014】前記(5)に示したイオンプレーティング
法による成膜時におけるプラズマ印加電圧を15W〜300W
まで変化させて10本の光ファイバの端部に成膜を行
い、印加電圧と膜強度との関係を測定した結果を図2の
グラフに示す。図2のグラフは、10本の光ファイバに
成膜された膜の強度平均値と標準偏差を示している。こ
のグラフより、印加電圧が高くなると膜強度が向上する
が、300Wまで上げるとバラツキが大きくなることがわか
る。実際には、強度が2000gf程度のものがある反面、10
00gf以下のものが多数発生している。これは、プラズマ
のパワーによって膜強度が向上する一方で、成膜された
膜がプラズマによってスパッタされ、膜強度にバラツキ
が発生したものと考えられる。かかる測定結果より、イ
オンプレーティング法による成膜時におけるプラズマ印
加電圧は、50W〜250Wが好適である。
The plasma applied voltage during film formation by the ion plating method shown in (5) above is 15 W to 300 W.
The results of measuring the relationship between the applied voltage and the film strength are shown in the graph of FIG. The graph of FIG. 2 shows the intensity average value and the standard deviation of the films formed on the ten optical fibers. From this graph, it can be seen that the film strength improves as the applied voltage increases, but the variation increases as the applied voltage increases to 300W. Actually, the strength is about 2000gf, but 10
A lot of things below 00gf are occurring. It is considered that this is because while the film strength was improved by the power of plasma, the formed film was sputtered by plasma and the film strength varied. From these measurement results, the plasma applied voltage during film formation by the ion plating method is preferably 50W to 250W.

【0015】本発明の成膜方法による効果を確認するた
めに、光ファイバの脱ガス処理と、その後の真空蒸着と
を同一の真空槽内で行った。この場合、真空蒸着後(成
膜終了後)の真空槽内を観察したところ、水冷基板上に
油状の物質が発見された。この物質をフーリエ変換赤外
分光分析法で分析したところ、光ファイバの被覆樹脂と
ほぼ同一のスペクトルピークを示し、同一成分であるこ
とが確認された。かかる分析結果より、該物質は、光フ
ァイバの脱ガス処理時及び成膜時に、光ファイバの被覆
層から蒸発した原料成分が水冷基板で冷やされて付着し
たものと考えられる。さらに、成膜後の膜強度を試験し
たところ、いずれの光ファイバも500gf以下と満足な強
度を得ることはできなかった。これに対し、前記本発明
の成膜方法では、成膜に用いた真空槽の水冷基板には何
らの付着物も発見されなかった。
In order to confirm the effect of the film forming method of the present invention, the degassing process of the optical fiber and the subsequent vacuum deposition were carried out in the same vacuum chamber. In this case, when the inside of the vacuum chamber after the vacuum deposition (after the film formation was completed) was observed, an oily substance was found on the water-cooled substrate. When this substance was analyzed by Fourier transform infrared spectroscopy, it showed almost the same spectrum peak as the coating resin of the optical fiber, and it was confirmed that they were the same component. From these analysis results, it is considered that the substance adheres to the material after the raw material component evaporated from the coating layer of the optical fiber is cooled by the water-cooled substrate during the degassing process and film formation of the optical fiber. Furthermore, when the film strength after the film formation was tested, none of the optical fibers could obtain a satisfactory strength of 500 gf or less. On the other hand, in the film forming method of the present invention, no deposit was found on the water-cooled substrate in the vacuum chamber used for film formation.

【0016】前記実施形態1では、単体の光ファイバに
成膜を行う場合を例にとって本発明の成膜方法を説明し
たが、本発明の成膜方法によれば、光部品に取付けられ
ている光ファイバや光ファイバが取付けられている光部
品等にも同様にして成膜を行うことができる。
In the first embodiment, the film forming method of the present invention has been described by taking the case of forming a film on a single optical fiber as an example. However, according to the film forming method of the present invention, it is attached to an optical component. The film can be similarly formed on an optical fiber or an optical component to which the optical fiber is attached.

【0017】[0017]

【発明の効果】本発明の成膜方法では、光ファイバ又は
光ファイバを備えた光部品に真空蒸着によって各種膜を
成膜する際に、光ファイバ又は光ファイバを備えた光部
品を所定温度、所定圧力に保たれた真空槽内に所定時間
置いて光ファイバの脱ガスを行い、その後、これらを別
の真空槽に移して真空蒸着による成膜を行う。従って、
前記光ファイバの脱ガス時に該ファイバの被覆層から蒸
発した原料成分が被成膜部分に付着したり、成膜原料に
混入したりすることがなく、清浄な膜が成膜される。
According to the film forming method of the present invention, when various films are formed on an optical fiber or an optical part equipped with the optical fiber by vacuum deposition, the optical fiber or the optical part equipped with the optical fiber is heated to a predetermined temperature, The optical fiber is degassed by placing it in a vacuum chamber kept at a predetermined pressure for a predetermined period of time, and then these are transferred to another vacuum chamber to form a film by vacuum evaporation. Therefore,
A raw film component evaporated from the coating layer of the fiber during degassing of the optical fiber does not adhere to the film formation portion or mix into the film formation raw material, and a clean film is formed.

【0018】本発明の成膜方法では、高周波アルゴンプ
ラズマが発生した雰囲気中で真空蒸着による成膜を行
う。従って、光ファイバを加熱して熱エネルギーを与え
なくとも均一で緻密な膜が成膜される。このため、耐熱
性の低い光ファイバやそのような光ファイバを備えた光
部品にも均一で緻密な膜を成膜することが可能である。
In the film forming method of the present invention, film formation is performed by vacuum evaporation in an atmosphere in which high frequency argon plasma is generated. Therefore, a uniform and dense film can be formed without heating the optical fiber and applying heat energy. Therefore, it is possible to form a uniform and dense film on an optical fiber having low heat resistance and an optical component including such an optical fiber.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の成膜方法を実施するための真空槽の一
例を示す説明図。
FIG. 1 is an explanatory view showing an example of a vacuum chamber for carrying out a film forming method of the present invention.

【図2】プラズマ印加電圧と膜強度との関係を示す図。FIG. 2 is a diagram showing the relationship between plasma applied voltage and film strength.

【符号の説明】[Explanation of symbols]

1a ルツボ 1b ルツボ 2a 電子ビーム銃 2b 電子ビーム銃 3 被成膜部分(ファイバ裸線) 4 セット部 5 光ファイバの被覆部 6 邪魔板 7 水冷基板 8 RFコイル 1a crucible 1b crucible 2a electron beam gun 2b electron beam gun 3 Film forming part (fiber bare wire) 4 set section 5 Optical fiber coating 6 baffles 7 Water-cooled substrate 8 RF coil

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2H050 AA01 AB03Z AC86 AC89 2K009 BB02 CC14 DD03 DD04 EE00 4K029 AA11 AA23 AA27 BA01 BA43 BD00 CA01 FA01    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 2H050 AA01 AB03Z AC86 AC89                 2K009 BB02 CC14 DD03 DD04 EE00                 4K029 AA11 AA23 AA27 BA01 BA43                       BD00 CA01 FA01

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】光ファイバ又は光ファイバを備えた光部品
に真空蒸着によって酸化膜や金属膜といった各種膜を成
膜する成膜方法であって、光ファイバ又は光ファイバを
備えた光部品を所定温度、所定圧力に保たれた真空槽内
に所定時間置いて光ファイバの脱ガスを行い、その後、
これを別の真空槽に移して真空蒸着による成膜を行うこ
とを特徴とする成膜方法。
1. A film forming method for forming various films such as an oxide film and a metal film by vacuum deposition on an optical fiber or an optical part equipped with the optical fiber, wherein the optical fiber or the optical part equipped with the optical fiber is predetermined. Degas the optical fiber by placing it in a vacuum chamber maintained at a temperature and pressure for a specified time, and then
A film forming method, wherein the film is transferred to another vacuum chamber to form a film by vacuum evaporation.
【請求項2】光ファイバ又は光ファイバを備えた光部品
に真空蒸着によって酸化膜や金属膜といった各種膜を成
膜する成膜方法であって、光ファイバ又は光ファイバを
備えた光部品を温度が70℃〜150℃、圧力が10-1Pa〜103
Paに保たれた真空槽内に8時間〜24時間置いて光ファイ
バの脱ガスを行い、その後、これを別の真空槽に移して
真空蒸着による成膜を行うことを特徴とする成膜方法。
2. A film forming method for forming various films such as an oxide film and a metal film on an optical fiber or an optical part equipped with the optical fiber by vacuum deposition, wherein the optical fiber or the optical part equipped with the optical fiber is heated. 70 ℃ ~ 150 ℃, pressure 10 -1 Pa ~ 10 3
Deposition of the optical fiber by placing it in a vacuum tank kept at Pa for 8 to 24 hours, and then moving it to another vacuum tank to perform film formation by vacuum vapor deposition. .
【請求項3】成膜を行うための真空槽に移された光ファ
イバの被覆部を板で覆った上で真空蒸着による成膜を行
うことを特徴とする請求項1又は請求項2記載の成膜方
法。
3. The method according to claim 1 or 2, wherein the coating portion of the optical fiber transferred to a vacuum chamber for film formation is covered with a plate and then the film is formed by vacuum vapor deposition. Deposition method.
【請求項4】成膜を行うための真空槽内にアルゴンガス
を導入し、導入されたアルゴンガスに高周波電圧を印加
して高周波アルゴンプラズマを発生させた上で真空蒸着
による成膜を行うことを特徴とする請求項1乃至請求項
3のいずれかに記載の成膜方法。
4. Argon gas is introduced into a vacuum chamber for forming a film, a high frequency voltage is applied to the introduced argon gas to generate high frequency argon plasma, and then the film is formed by vacuum vapor deposition. The film forming method according to any one of claims 1 to 3, wherein
【請求項5】アルゴンガスに印加される高周波電圧の周
波数が13.56MHz、電力が50W〜250Wであることを特徴
とする請求項4記載の成膜方法。
5. The film forming method according to claim 4, wherein the high frequency voltage applied to the argon gas has a frequency of 13.56 MHz and an electric power of 50 W to 250 W.
【請求項6】プラズマを発生させた真空槽内で、光ファ
イバにTiを真空蒸着して厚みが10nm〜50nmのTi膜を成膜
し、そのTi膜の上にNiを真空蒸着して厚みが10nm〜50nm
のNi膜を成膜することを特徴とする成膜方法。
6. In a vacuum chamber in which plasma is generated, Ti is vacuum-deposited on an optical fiber to form a Ti film having a thickness of 10 nm to 50 nm, and Ni is vacuum-deposited on the Ti film to form a Ti film. Is 10 nm to 50 nm
Forming method of forming a Ni film of 1.
【請求項7】プラズマを発生させた真空槽内で、10nm〜
50nmのTi膜が真空蒸着によって成膜され、そのTi膜の上
に、厚みが10nm〜50nmのNi膜が真空蒸着によって成膜さ
れたことを特徴とする金属膜が成膜された光ファイバ。
7. In a vacuum chamber in which plasma is generated, 10 nm to
An optical fiber having a metal film formed by depositing a 50 nm Ti film by vacuum vapor deposition, and depositing a Ni film with a thickness of 10 nm to 50 nm on the Ti film by vacuum vapor deposition.
JP2002138750A 2002-05-14 2002-05-14 Deposition method on optical fiber Expired - Fee Related JP4162919B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002138750A JP4162919B2 (en) 2002-05-14 2002-05-14 Deposition method on optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002138750A JP4162919B2 (en) 2002-05-14 2002-05-14 Deposition method on optical fiber

Publications (2)

Publication Number Publication Date
JP2003329902A true JP2003329902A (en) 2003-11-19
JP4162919B2 JP4162919B2 (en) 2008-10-08

Family

ID=29700105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002138750A Expired - Fee Related JP4162919B2 (en) 2002-05-14 2002-05-14 Deposition method on optical fiber

Country Status (1)

Country Link
JP (1) JP4162919B2 (en)

Also Published As

Publication number Publication date
JP4162919B2 (en) 2008-10-08

Similar Documents

Publication Publication Date Title
CN114351110B (en) Reinforced diamond-like film and preparation method thereof
KR101353451B1 (en) Coated steel sheet and method for manufacturing the same
GB2226334A (en) Multilayer coatings
JP4162919B2 (en) Deposition method on optical fiber
US8512860B2 (en) Housing and method for making the same
US8512859B2 (en) Housing and method for making the same
US8568907B2 (en) Housing and method for making the same
KR20140057227A (en) Coated steel sheet and method for manufacturing the same
JP5360603B2 (en) Method for producing amorphous carbon-coated member
US20120164356A1 (en) Process for surface treating aluminum or aluminum alloy and article made with same
KR100711488B1 (en) Method for manufacturing aluminum-magnesium alloy films
JP3305786B2 (en) Manufacturing method of permanent magnet with excellent corrosion resistance
JP2001192206A (en) Method for manufacturing amorphous carbon-coated member
KR20110117528A (en) Method for coating aluninum on steel
RU2633438C1 (en) Method for sputtering titanium coating onto hydride titanium particles
JPH09118977A (en) Method for building up thin film
US8597782B2 (en) Housing and method for making the same
US8568906B2 (en) Housing and method for making the same
US8568904B2 (en) Housing and method for making the same
KR20130074648A (en) Coated steel sheet and method for manufacturing the same
CN112831769B (en) Composite antireflection film for infrared optical product and preparation method thereof
RU2816323C1 (en) Method for ion-plasma application of corrosion-resistant film coatings on products made of zirconium alloys
US8568905B2 (en) Housing and method for making the same
JPH08304614A (en) Synthetic resin reflection mirror, its production and producing device
US8597804B2 (en) Housing and method for making the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080723

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4162919

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees