JP2003329307A - Heat exchange device - Google Patents

Heat exchange device

Info

Publication number
JP2003329307A
JP2003329307A JP2002138159A JP2002138159A JP2003329307A JP 2003329307 A JP2003329307 A JP 2003329307A JP 2002138159 A JP2002138159 A JP 2002138159A JP 2002138159 A JP2002138159 A JP 2002138159A JP 2003329307 A JP2003329307 A JP 2003329307A
Authority
JP
Japan
Prior art keywords
heat transfer
transfer tube
combustion
exhaust gas
gas passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002138159A
Other languages
Japanese (ja)
Inventor
Tatsumura Mo
立群 毛
Fumitaka Kikutani
文孝 菊谷
Masamitsu Kondo
正満 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002138159A priority Critical patent/JP2003329307A/en
Publication of JP2003329307A publication Critical patent/JP2003329307A/en
Pending legal-status Critical Current

Links

Landscapes

  • Details Of Fluid Heaters (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low-cost latent heat recovery heat exchange device having a simple structure without boiling accumulated water in a heat transfer pipe. <P>SOLUTION: This heat exchange device is provided with: a first combustion part 20 and a second combustion part 21 installed adjacently to each other; a can body 27 installed on the downstream side of both the combustion parts; the first heat transfer pipe 28 and the second heat transfer pipe 29 installed in the can body; an exhaust gas passage 33 formed on the downstream side of both the heat transfer pipes; a uniformly mixing means 34 installed in the exhaust gas passage for uniformly mixing a fluid flowing through the exhaust passage; and an auxiliary heat transfer pipe 35 installed on the downstream side of the uniformly mixing means. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、家庭用又は業務用
の潜熱回収熱交換装置に関し,更に詳しくは給湯と風
呂、または給湯と暖房などの複合使用に用いられる一缶
多回路式潜熱回収熱交換装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a latent heat recovery heat exchange device for home or business use, and more specifically, a one-can multi-circuit latent heat recovery heat used for combined use such as hot water supply and bath, or hot water supply and heating. The present invention relates to a switching device.

【0002】[0002]

【従来の技術】従来、この種の潜熱回収熱交換装置とし
て、例えば,特開平10−267414号公報に記載さ
れているようなものがあった。図13は、前記公報に記
載された従来の潜熱回収熱交換装置を示すものである。
2. Description of the Related Art Heretofore, as a latent heat recovery heat exchange device of this type, there has been one disclosed in, for example, Japanese Patent Application Laid-Open No. 10-267414. FIG. 13 shows a conventional latent heat recovery heat exchange device described in the above publication.

【0003】図13において、1はバーナ、2はバーナ
1に燃料ガスを供給するガス管、3はバーナ1に燃焼用
空気供給するファン、4はバーナ1の燃焼によって発生
する燃焼ガスの下流に位置する給湯熱交換器、5は給湯
熱交換器4と上下に重ね合わせて配設される追い炊き熱
交換器、6は給湯熱交換器4を形成する給湯伝熱管、7
は追い炊き熱交換器を形成する追い炊き伝熱管、8は給
湯熱交換器4の燃焼ガス下流側に設置される給湯潜熱回
収熱交換器、9は給湯潜熱回収熱交換器を形成する給湯
潜熱伝熱管、10は給湯潜熱伝熱管9の出口9bと給湯
伝熱管6の入口6aとを結ぶ温水管である。11は給湯
潜熱伝熱管9の入口9aに接続する給水管、12は給湯
伝熱管6の出口6bに接続する給湯管、13は追い炊き
伝熱管7の入口に接続する風呂戻り管、14は追い炊き
伝熱管7の出口に接続する風呂行き管である。また、1
5は給湯熱交換器4の給湯管12と給湯潜熱回収熱交換
器8の入口9aと連通させるバイパス通路で、このバイ
パス通路15には、給湯伝熱管の出口6bから給湯潜熱
伝熱管9の入口9aへ流れる方向に逆止弁15aが設け
られている。
In FIG. 13, 1 is a burner, 2 is a gas pipe for supplying fuel gas to the burner 1, 3 is a fan for supplying combustion air to the burner 1, and 4 is downstream of combustion gas generated by combustion of the burner 1. The hot-water supply heat exchanger 5 is located, 5 is a reheating heat exchanger that is arranged vertically above the hot-water supply heat exchanger 4, 6 is a hot-water supply heat transfer tube forming the hot-water supply heat exchanger 4, and 7
Is a reheating heat transfer tube forming a reheating heat exchanger, 8 is a hot water supply latent heat recovery heat exchanger installed downstream of the combustion gas of the hot water supply heat exchanger 4, and 9 is a hot water supply latent heat forming a hot water supply latent heat recovery heat exchanger The heat transfer pipes 10 are hot water pipes that connect the outlet 9b of the latent hot water heat transfer pipe 9 and the inlet 6a of the hot water heat transfer pipe 6. Reference numeral 11 is a water supply pipe connected to the inlet 9a of the latent hot water heat transfer pipe 9, 12 is a hot water supply pipe connected to the outlet 6b of the hot water heat transfer pipe 6, 13 is a bath return pipe connected to the inlet of the additional heat transfer pipe 7, and 14 is a follow-up pipe. It is a bathing pipe connected to the outlet of the cooking heat transfer pipe 7. Also, 1
Reference numeral 5 denotes a bypass passage communicating with the hot water supply pipe 12 of the hot water supply heat exchanger 4 and the inlet 9a of the latent heat recovery heat exchanger 8 for hot water supply. The bypass passage 15 has an inlet 6b from the outlet 6b of the hot water heat transfer pipe. A check valve 15a is provided in the direction of flow to 9a.

【0004】給湯熱交換器4と追い炊き熱交換器5は共
通のバーナ1によって加熱され、給水管11からの給水
が給湯潜熱回収熱交換器8に入り、給湯熱交換器4と追
い炊き熱交換器5を経た燃焼ガスによって加熱され、温
水管10を通じて、給湯熱交換器4に入り、バーナ1に
よって発生する燃焼ガスにさらに加熱され、所定の温度
になって、給湯管12から流出する。この給湯潜熱回収
熱交換器8では、主に燃焼ガス中の水蒸気に含まれる凝
縮潜熱を回収することになる。また、風呂戻り管13か
ら風呂水槽(図示せず)風呂水などが追い炊き熱交換器
5に入り、燃焼ガスによって加熱された後、風呂行き管
14を通じて、風呂水槽(図示せず)へ流れる。
The hot-water supply heat exchanger 4 and the reheating heat exchanger 5 are heated by the common burner 1, and the water supplied from the water supply pipe 11 enters the hot-water supply latent heat recovery heat exchanger 8 and the hot-water supply heat exchanger 4 and the additional heating heat. It is heated by the combustion gas that has passed through the exchanger 5, enters the hot water supply heat exchanger 4 through the hot water pipe 10, is further heated by the combustion gas generated by the burner 1, reaches a predetermined temperature, and flows out from the hot water supply pipe 12. The hot water supply latent heat recovery heat exchanger 8 mainly recovers the condensation latent heat contained in the water vapor in the combustion gas. Also, bath water (not shown) bath water or the like is reheated from the bath return pipe 13 into the heat exchanger 5, heated by the combustion gas, and then flows to the bath aquarium (not shown) through the bath going pipe 14. .

【0005】そして、風呂単独運転時、運転していない
給湯伝熱管6の管内の滞留水に熱が加わり滞留水温が上
昇するが、温度上昇した滞留水は自然対流により、給湯
熱交換器4よりも上部側に設けられた給湯潜熱回収熱交
換器8側に流れようとする。そして、バイパス通路15
に設けられた逆止弁15aの流れ方向規制によって、こ
の温度上昇した滞留水は給湯熱交換器4の出口6bから
バイパス通路15を介して給湯潜熱回収熱交換器8の入
口9aに流れ、給湯潜熱回収熱交換器8を通り、温水管
10を通して給湯熱交換器4の入口6aに達し、給湯熱
交換器4を通って再びその出口6bからバイパス通路1
5側に流れ、この給湯側循環回路の循環動作が連続して
行われる。
When the bath is operated independently, heat is added to the accumulated water in the hot water supply heat transfer pipes 6 that are not in operation, and the accumulated water temperature rises. However, the accumulated water temperature rises from the hot water heat exchanger 4 due to natural convection. Also tries to flow to the hot water supply latent heat recovery heat exchanger 8 side provided on the upper side. And the bypass passage 15
Due to the restriction of the flow direction of the check valve 15a provided in the hot water, the accumulated water whose temperature has risen flows from the outlet 6b of the hot water heat exchanger 4 to the inlet 9a of the latent heat recovery heat exchanger 8 of the hot water via the bypass passage 15. It passes through the latent heat recovery heat exchanger 8, reaches the inlet 6a of the hot water supply heat exchanger 4 through the hot water pipe 10, and passes through the hot water supply heat exchanger 4 again from its outlet 6b to the bypass passage 1
The circulation operation of the hot water supply side circulation circuit is continuously performed.

【0006】このように、風呂の追い焚き単独燃焼時に
バーナ1によって加熱させる給湯熱交換器4内の滞留水
が給湯側循環回路を通って循環するために、給湯伝熱管
6の滞留水の温度上昇を緩和することができる。よっ
て、風呂の単独燃焼時に、給湯熱交換器4の給湯伝熱管
6内の滞留水が沸騰するのを抑制することが可能とな
る。
[0006] As described above, since the accumulated water in the hot water supply heat exchanger 4 heated by the burner 1 at the time of additional combustion in the bath is circulated through the hot water supply side circulation circuit, the temperature of the accumulated water in the hot water supply heat transfer pipe 6 is increased. The rise can be moderated. Therefore, it is possible to suppress boiling of the accumulated water in the hot water supply heat transfer tube 6 of the hot water supply heat exchanger 4 during the single combustion of the bath.

【0007】また、給湯潜熱回収熱交換器8を設けたこ
とにより、給湯運転時、燃焼ガス中の水蒸気の凝縮潜熱
まで回収でき、高い熱効率が得られる。
Further, since the hot water supply latent heat recovery heat exchanger 8 is provided, even the latent heat of condensation of water vapor in the combustion gas can be recovered during the hot water supply operation, and high thermal efficiency can be obtained.

【0008】[0008]

【発明が解決しようとする課題】しかしながら上記従来
の構成では、風呂の単独燃焼時、バイパス通路15によ
って構成された循環回路で給湯伝熱管6内の滞留水の温
度上昇を抑え沸騰防止を図ろうとしているが、風呂単独
燃焼時、給湯熱交換器4と追い炊き熱交換器5を通過し
た燃焼ガスは、給湯潜熱回収熱交換器8を通過すると、
給湯潜熱伝熱管9を加熱することになり、給湯潜熱伝熱
管9内の滞留水も温度上昇し沸騰してしまう課題があっ
た。一方、給湯潜熱伝熱管9内の水温上昇を抑えようと
したら、風呂単独燃焼時の燃焼排気ガスは給湯潜熱回収
熱交換器8を通過させないことが必要になってくる。給
湯燃焼専用排気通路と風呂燃焼専用排気通路とを設ける
と、熱交換装置は制御部も含めて大変複雑な構成となる
ため、コストは膨大に膨らむという課題があった。
However, in the above-mentioned conventional configuration, when the bath is independently burned, the circulation circuit formed by the bypass passage 15 suppresses the temperature rise of the accumulated water in the hot water supply heat transfer pipe 6 to prevent boiling. However, when the bath alone burns, the combustion gas that has passed through the hot water supply heat exchanger 4 and the reheating heat exchanger 5 passes through the hot water supply latent heat recovery heat exchanger 8,
Since the hot water supply latent heat transfer tube 9 is heated, there is a problem that the temperature of the accumulated water in the hot water supply latent heat transfer tube 9 also rises and boils. On the other hand, in order to suppress an increase in the water temperature in the hot water supply latent heat transfer tube 9, it is necessary that the combustion exhaust gas during the single combustion of the bath does not pass through the hot water supply latent heat recovery heat exchanger 8. If the exhaust passage for exclusive use of hot water supply and the exhaust passage for exclusive use of bath combustion are provided, the heat exchange device has a very complicated configuration including the control unit, and thus there is a problem that the cost greatly expands.

【0009】本発明は、前記従来の課題を解決するもの
で、給湯潜熱伝熱管内の滞留水沸騰せずシンプルな構成
で低コストの潜熱回収熱交換装置を提供することを目的
とする。
An object of the present invention is to solve the above-mentioned conventional problems, and an object thereof is to provide a latent heat recovery heat exchange device having a simple structure and not boiling boiling water in the latent heat transfer pipe for hot water supply.

【0010】[0010]

【課題を解決するための手段】本発明は、前記従来の課
題を解決するために、隣接して設けた第一燃焼部及び第
二燃焼部と、この両燃焼部の下流に設けた缶体と、缶体
内に設けた第一伝熱管及び第二伝熱管と、この両伝熱管
の下流側に設けた排気ガス通路と、排気ガス通路に設け
られこの排気ガス通路を流れる流体を均一混合する均一
混合手段と、この均一混合手段の下流側に設けた副伝熱
管とを備えてなる熱交換装置を提供する。
In order to solve the above-mentioned conventional problems, the present invention provides a first combustion section and a second combustion section that are adjacent to each other, and a can body provided downstream of both combustion sections. And a first heat transfer pipe and a second heat transfer pipe provided in the can body, an exhaust gas passage provided downstream of both heat transfer pipes, and a fluid provided in the exhaust gas passage and flowing through the exhaust gas passage are uniformly mixed. Provided is a heat exchange device comprising a uniform mixing means and a sub heat transfer tube provided on the downstream side of the uniform mixing means.

【0011】上記の熱交換装置において、第一燃焼部単
独運転時、副伝熱管を流れる第一給水は第一伝熱管及び
第二伝熱管を経た燃焼ガスによって加熱された後、副伝
熱管と連通する第一伝熱管へ流れ、さらに燃焼ガスによ
って所定の温度まで加熱され、第一伝熱管から流出す
る。副伝熱管においては、主に燃焼ガス中の水蒸気の凝
縮潜熱を回収する。ここで、第一伝熱管と第二伝熱管は
隣接例えばペア管構成することによって、第二伝熱管内
の滞留水の熱が通水する第一伝熱管へ移動し温度上昇を
抑え沸騰を防止する構成になっている。
In the above heat exchange device, when the first combustion section is operated independently, the first feed water flowing through the sub heat transfer tube is heated by the combustion gas passing through the first heat transfer tube and the second heat transfer tube, and then the sub heat transfer tube It flows to the communicating first heat transfer tube, is further heated to a predetermined temperature by the combustion gas, and flows out from the first heat transfer tube. The sub heat transfer tube mainly recovers the latent heat of condensation of water vapor in the combustion gas. Here, by arranging the first heat transfer tube and the second heat transfer tube adjacent to each other, for example, in a pair tube, the heat of the accumulated water in the second heat transfer tube moves to the first heat transfer tube through which the temperature rises and the boiling is prevented. It is configured to do.

【0012】第二燃焼部単独運転時、第二伝熱管を流れ
る第二給水は第二燃焼部から形成される高温燃焼ガスに
よって加熱され、所定の温度となり、第二伝熱管から流
出する。この時、第一燃焼部は燃焼しないが、第一燃焼
部を通して空気を缶体内に送られる。この常温の空気は
第二燃焼部から発生した高温燃焼ガスとともに、第一伝
熱管と第二伝熱管を通過し排気ガス通路に流れる。ここ
で、高温燃焼ガスは熱を奪われ低温燃焼ガスとなる。そ
して、この常温の空気が温度少々上昇したものの、高温
燃焼ガスより遥かに低いので、均一混合手段によって、
この空気と低温燃焼ガスが均一化され、低温燃焼ガスの
温度がさらに下がるため、下流側に位置する副伝熱管を
通過する時、副伝熱管内の滞留水を沸騰させないことが
できる。
In the second combustion section alone operation, the second feed water flowing through the second heat transfer tube is heated by the high temperature combustion gas formed from the second combustion section, reaches a predetermined temperature, and flows out from the second heat transfer tube. At this time, the first combustion section does not burn, but air is sent into the can body through the first combustion section. The air at room temperature passes through the first heat transfer tube and the second heat transfer tube and flows into the exhaust gas passage together with the high temperature combustion gas generated from the second combustion section. Here, the high temperature combustion gas is deprived of heat and becomes a low temperature combustion gas. And, although the temperature of this room temperature air has risen a little, it is much lower than that of the high temperature combustion gas.
Since this air and the low-temperature combustion gas are homogenized and the temperature of the low-temperature combustion gas further decreases, it is possible to prevent the accumulated water in the sub-heat transfer tube from boiling when passing through the sub-heat transfer tube located on the downstream side.

【0013】このように、排気ガス通路を流れる第一燃
焼部から送られる空気と第二燃焼部から発生した燃焼ガ
スは、排気ガス通路に設けられる均一混合手段によっ
て、均一低温流体となり、副伝熱管内の滞留水を沸騰さ
せないことができるため、シンプルな構成で低コストの
沸騰防止可能の熱交換装置を提供することができる。
In this way, the air sent from the first combustion section flowing through the exhaust gas passage and the combustion gas generated from the second combustion section become a uniform low-temperature fluid by the uniform mixing means provided in the exhaust gas passage, and the sub-transmission occurs. Since the accumulated water in the heat pipe can be prevented from boiling, it is possible to provide a low-cost heat exchange device capable of preventing boiling with a simple structure.

【0014】[0014]

【発明の実施の形態】請求項1に係る熱交換装置は、隣
接して設けた第一燃焼部及び第二燃焼部と、この両燃焼
部の下流に設けた缶体と、缶体内に設けた第一伝熱管及
び第二伝熱管と、この両伝熱管の下流側に設けた排気ガ
ス通路と、排気ガス通路に設けられこの排気ガス通路を
流れる流体を均一混合する均一混合手段と、この均一混
合手段の下流側に設けた副伝熱管とを備えている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A heat exchange device according to a first aspect of the present invention is provided with a first combustion section and a second combustion section which are provided adjacent to each other, a can body provided downstream of both combustion sections, and a can body provided inside the can body. A first heat transfer tube and a second heat transfer tube, an exhaust gas passage provided on the downstream side of both heat transfer tubes, a uniform mixing means provided in the exhaust gas passage for uniformly mixing fluids flowing through the exhaust gas passage, And a sub heat transfer tube provided on the downstream side of the uniform mixing means.

【0015】上記の熱交換装置において、第一燃焼部単
独運転時、副伝熱管を流れる第一給水は第一伝熱管及び
第二伝熱管を経た燃焼ガスによって加熱された後、副伝
熱管と連通する第一伝熱管へ流れ、さらに燃焼ガスによ
って所定の温度まで加熱され、第一伝熱管から流出す
る。副伝熱管においては、主に燃焼ガス中の水蒸気の凝
縮潜熱を回収する。
In the above heat exchange device, when the first combustion section is operated independently, the first feed water flowing through the sub heat transfer tube is heated by the combustion gas passing through the first heat transfer tube and the second heat transfer tube, and then the sub heat transfer tube It flows to the communicating first heat transfer tube, is further heated to a predetermined temperature by the combustion gas, and flows out from the first heat transfer tube. The sub heat transfer tube mainly recovers the latent heat of condensation of water vapor in the combustion gas.

【0016】第二燃焼部単独運転時、第二伝熱管を流れ
る第二給水は第二燃焼部から形成される高温燃焼ガスに
よって加熱され、所定の温度となり、第二伝熱管から流
出する。この時、第一燃焼部は燃焼しないが、第一燃焼
部を通して空気を缶体内に送られる。この常温の空気は
第二燃焼部から発生した高温燃焼ガスとともに、第一伝
熱管と第二伝熱管を通過し排気ガス通路に流れる。ここ
で、高温燃焼ガスは熱を奪われ低温燃焼ガスとなる。そ
して、この常温の空気が温度少々上昇したものの、高温
燃焼ガスより遥かに低いので、均一混合手段によって、
この空気と低温燃焼ガスが均一化され、低温燃焼ガスの
温度がさらに下がるため、下流側に位置する副伝熱管を
通過する時、副伝熱管内の滞留水を沸騰させないことが
できる。
When the second combustion section is operated independently, the second feed water flowing through the second heat transfer tube is heated by the high temperature combustion gas formed from the second combustion section, reaches a predetermined temperature, and flows out from the second heat transfer tube. At this time, the first combustion section does not burn, but air is sent into the can body through the first combustion section. The air at room temperature passes through the first heat transfer tube and the second heat transfer tube and flows into the exhaust gas passage together with the high temperature combustion gas generated from the second combustion section. Here, the high temperature combustion gas is deprived of heat and becomes a low temperature combustion gas. And, although the temperature of this room temperature air has risen a little, it is much lower than that of the high temperature combustion gas.
Since this air and the low-temperature combustion gas are homogenized and the temperature of the low-temperature combustion gas further decreases, it is possible to prevent the accumulated water in the sub-heat transfer tube from boiling when passing through the sub-heat transfer tube located on the downstream side.

【0017】ここで、第一伝熱管と第二伝熱管は隣接例
えばペア管構成することによって、第一燃焼部単独運転
時も、第二燃焼部単独運転時も、第一伝熱管または第二
伝熱管内の滞留水の熱が通水する第二伝熱管または第一
伝熱管へ移動し温度上昇を抑え滞留水の沸騰を防止する
構成になっている。
Here, the first heat transfer tube and the second heat transfer tube are arranged adjacent to each other, for example, by forming a pair of tubes so that the first heat transfer tube or the second heat transfer tube can be operated both during the first combustion section independent operation and during the second combustion section independent operation. The heat of the stagnant water in the heat transfer tube moves to the second heat transfer tube or the first heat transfer tube through which water flows, and suppresses the temperature rise to prevent boiling of the stagnant water.

【0018】このように、排気ガス通路を流れる第一燃
焼部から送られる空気と第二燃焼部から発生した燃焼ガ
スは、排気ガス通路に設けられる均一混合手段によっ
て、均一低温流体となり、副伝熱管内の滞留水を沸騰さ
せないことができるため、シンプルな構成で低コストの
沸騰防止可能の熱交換装置を提供することができる。
In this way, the air sent from the first combustion section flowing through the exhaust gas passage and the combustion gas generated from the second combustion section become a uniform low-temperature fluid by the uniform mixing means provided in the exhaust gas passage, and the sub-transmission occurs. Since the accumulated water in the heat pipe can be prevented from boiling, it is possible to provide a low-cost heat exchange device capable of preventing boiling with a simple structure.

【0019】請求項2に係る熱交換装置は、隣接して設
けた第一燃焼部及び第二燃焼部と、この両燃焼部の上流
側に設けた燃焼用空気を供給する空気室と、両燃焼部の
下流に設けた缶体と、缶体内に設けた第一伝熱管及び第
二伝熱管と、この両伝熱管の下流側に設けた排気ガス通
路と、排気ガス通路に設けた副伝熱管と、排気ガス通路
と空気室を直接連通するバイパス空気通路とを備えてい
る。
According to a second aspect of the present invention, there is provided a heat exchange device in which a first combustion section and a second combustion section are provided adjacent to each other, an air chamber for supplying combustion air provided upstream of both combustion sections, A can body provided downstream of the combustion section, a first heat transfer tube and a second heat transfer tube provided in the can body, an exhaust gas passage provided downstream of both heat transfer tubes, and a secondary heat transfer passage provided in the exhaust gas passage. A heat pipe and a bypass air passage that directly connects the exhaust gas passage and the air chamber are provided.

【0020】上記の熱交換装置において、第一燃焼部単
独運転時、動作及び効果は請求項1記載のものと同様の
ため、ここで説明は省略する。
In the above heat exchange device, since the operation and effect are the same as those described in claim 1 when the first combustion section is in the single operation, the description thereof will be omitted here.

【0021】第二燃焼部単独運転時、排気ガス通路と空
気室を直接連通するバイパス空気通路から常温の空気が
排気ガス通路へ送られる。そしてこの空気は第二燃焼部
から発生した燃焼ガスと混合し燃焼ガスの温度をさらに
低下させることによって、排気ガス通路中に設けた副伝
熱管内の滞留水温度上昇を抑え沸騰防止できる。
During the second combustion section alone operation, normal temperature air is sent to the exhaust gas passage from the bypass air passage which directly connects the exhaust gas passage and the air chamber. Then, this air is mixed with the combustion gas generated from the second combustion section to further lower the temperature of the combustion gas, whereby the temperature rise of the accumulated water in the auxiliary heat transfer pipe provided in the exhaust gas passage can be suppressed and boiling can be prevented.

【0022】このように、排気ガス通路と空気室を直接
連通するバイパス空気通路を設けることによって、少量
の常温の空気で排気ガス通路を流れる燃焼ガスの温度を
低下させることができるため、シンプルな構成で低コス
トの沸騰防止可能の熱交換装置を提供することができ
る。
By thus providing the bypass air passage which directly connects the exhaust gas passage and the air chamber, the temperature of the combustion gas flowing through the exhaust gas passage can be lowered by a small amount of room temperature air, so that the temperature is simple. It is possible to provide a low-cost heat exchange device capable of preventing boiling with a configuration.

【0023】請求項3に係る熱交換装置は、隣接して設
けた第一燃焼部及び第二燃焼部と、この両燃焼部の上流
側に設けた燃焼用空気を供給する空気室と、両燃焼部の
下流に設けた缶体と、缶体内に設けた第一伝熱管及び第
二伝熱管と、缶体内の周囲に設けられ空気室と連通する
周囲空気流路と、両伝熱管の下流側に設けた排気ガス通
路と、排気ガス通路に設けた副伝熱管と、排気ガス通路
に設けられ周囲空気流路を流れる空気を排気ガス通路中
に流れるような流れ調節手段とを備えている。
According to a third aspect of the present invention, there is provided a heat exchange device in which a first combustion section and a second combustion section are provided adjacent to each other, an air chamber for supplying combustion air provided upstream of both combustion sections, A can body provided downstream of the combustion section, a first heat transfer tube and a second heat transfer tube provided in the can body, an ambient air flow path that is provided around the can body and communicates with an air chamber, and downstream of both heat transfer tubes. An exhaust gas passage provided in the exhaust gas passage, an auxiliary heat transfer pipe provided in the exhaust gas passage, and a flow adjusting means for allowing the air flowing through the ambient air flow passage in the exhaust gas passage to flow into the exhaust gas passage. .

【0024】上記の熱交換装置において、第一燃焼部単
独運転時、動作及び効果は請求項1記載のものと同様の
ため、ここで説明は省略する。
In the above heat exchange device, since the operation and effect are the same as those in claim 1 when the first combustion section is in the single operation, the description thereof will be omitted here.

【0025】第二燃焼部単独運転時、空気室から缶体の
周囲に設けた空気室と連通する周囲空気流路に常温の空
気が送られ、この空気は缶体の内壁に沿って第一伝熱管
及び第二伝熱管部を通過し排気ガス通路へ流れ込む。そ
して、排気ガス通路に設けた流れ調節手段例えば流れ方
向ガイドによって、この空気は排気ガス通路中へ向かっ
て流れてくるため、この空気は第二燃焼部から発生した
燃焼ガスと混合し燃焼ガスの温度をさらに下げることが
でき副伝熱管内の滞留水沸騰が防止できる。
During the second combustion section alone operation, room temperature air is sent from the air chamber to the ambient air flow path communicating with the air chamber provided around the can body, and this air flows along the inner wall of the can body. It passes through the heat transfer tube and the second heat transfer tube section and flows into the exhaust gas passage. Then, since this air flows toward the inside of the exhaust gas passage by the flow control means provided in the exhaust gas passage, for example, the flow direction guide, this air mixes with the combustion gas generated from the second combustion section, The temperature can be further lowered and boiling of accumulated water in the sub heat transfer tube can be prevented.

【0026】このように、周囲空気流路を流れる空気を
排気ガス通路中に流れるような流れ調節手段を設けるこ
とによって、空気と排気ガス通路を流れる燃焼ガスとを
混合させ燃焼ガスの温度を低下させることができるた
め、シンプルな構成で低コストの沸騰防止可能の熱交換
装置を提供することができる。
As described above, by providing the flow adjusting means for flowing the air flowing through the ambient air flow path into the exhaust gas passage, the temperature of the combustion gas is lowered by mixing the air with the combustion gas flowing through the exhaust gas passage. Therefore, it is possible to provide a low-cost heat exchange device capable of preventing boiling with a simple configuration.

【0027】請求項4に係る熱交換装置は、隣接して設
けた第一燃焼部及び第二燃焼部と、この両燃焼部の上流
側に設けた燃焼用空気を供給する空気室と、両燃焼部の
下流に設けた缶体と、缶体内に設けた第一伝熱管及び第
二伝熱管と、両伝熱管の下流側に設けた排気ガス通路
と、排気ガス通路に設けた副伝熱管と、排気ガス通路に
設けられ排気ガス通路を流れる燃焼ガスの流れ方向を調
節する流れダンパーと、この流れダンパーを制御する駆
動手段とを備えている。
According to a fourth aspect of the present invention, there is provided a heat exchange device in which a first combustion section and a second combustion section are provided adjacent to each other, an air chamber for supplying combustion air provided upstream of both combustion sections, A can body provided downstream of the combustion section, a first heat transfer tube and a second heat transfer tube provided in the can body, an exhaust gas passage provided downstream of both heat transfer tubes, and a sub heat transfer tube provided in the exhaust gas passage. And a flow damper provided in the exhaust gas passage for adjusting the flow direction of the combustion gas flowing through the exhaust gas passage, and a drive means for controlling the flow damper.

【0028】上記の熱交換装置において、第一燃焼部単
独運転時、動作及び効果は請求項1記載のものと同様の
ため、ここで説明は省略する。
In the above heat exchange device, the operation and effect of the first combustion section alone operation are the same as those of the first aspect, and the description thereof will be omitted here.

【0029】第二燃焼部単独運転時、排気ガス通路に設
けた流れダンパーは駆動手段によって、ダンパーの向き
が変えられるため、排気ガス通路を流れる第二燃焼部か
ら発生した燃焼ガスの流れ方向は制御することによっ
て、燃焼ガスは副伝熱管の局所部分のみを加熱すること
なく副伝熱管の全体を均一に加熱することができるた
め、副伝熱管内の滞留水の温度上昇を抑えることがで
き、沸騰防止が図れる。
During independent operation of the second combustion unit, the direction of the flow damper provided in the exhaust gas passage can be changed by the driving means, so that the flow direction of the combustion gas generated from the second combustion unit flowing through the exhaust gas passage is By controlling the combustion gas, it is possible to uniformly heat the entire sub heat transfer tube without heating only the local part of the sub heat transfer tube, so it is possible to suppress the temperature rise of the accumulated water in the sub heat transfer tube. It is possible to prevent boiling.

【0030】このように、駆動手段を用いて流れダンパ
ーの向きなどを変えることによって、燃焼ガスは副伝熱
管の局所部分のみを加熱することなく副伝熱管の全体を
均一に加熱することができ、副伝熱管内の滞留水の温度
上昇を抑えることができるため、シンプルな構成で低コ
ストの沸騰防止可能の熱交換装置を提供することができ
る。
As described above, by changing the direction of the flow damper using the driving means, the combustion gas can uniformly heat the entire sub heat transfer tube without heating only the local portion of the sub heat transfer tube. Since the temperature rise of the accumulated water in the sub heat transfer tube can be suppressed, it is possible to provide a low-cost heat exchange device capable of preventing boiling with a simple configuration.

【0031】請求項5に係る熱交換装置は、隣接して設
けた第一燃焼部及び第二燃焼部と、この両燃焼部の下流
に設けた缶体と、缶体内に設けた第一伝熱管及び第二伝
熱管と、両伝熱管の下流側に設けた排気ガス通路と、排
気ガス通路に設けた副伝熱管と、第二燃焼部の最大燃焼
量を制限する燃焼量制限手段とを備えている。
According to a fifth aspect of the present invention, there is provided a heat exchange device in which a first combustion section and a second combustion section are provided adjacent to each other, a can body provided downstream of both combustion sections, and a first transfer section provided in the can body. A heat pipe and a second heat transfer pipe, an exhaust gas passage provided on the downstream side of both heat transfer pipes, a sub heat transfer pipe provided in the exhaust gas passage, and a combustion amount limiting means for limiting the maximum combustion amount of the second combustion section. I have it.

【0032】上記の熱交換装置において、第一燃焼部単
独運転時、動作及び効果は請求項1記載のものと同様の
ため、ここで説明は省略する。
In the above heat exchange device, since the operation and effect are the same as those described in claim 1 when the first combustion section is in the independent operation, the description thereof will be omitted here.

【0033】第二燃焼部単独運転時、運転しない副伝熱
管内の滞留水は第二燃焼部から発生した燃焼ガスによっ
て加熱され温度上昇するが、第二燃焼部の最大燃焼量を
燃焼量制限手段によって、上記滞留水が沸騰しないよう
に設定することで、確実に上記滞留水の沸騰を防止する
ことができる。
During independent operation of the second combustion section, the accumulated water in the sub-heat transfer tube which is not operated is heated by the combustion gas generated from the second combustion section and rises in temperature, but the maximum combustion amount of the second combustion section is limited by the combustion amount. By setting the accumulated water so as not to boil by the means, it is possible to reliably prevent the accumulated water from boiling.

【0034】このように、第二燃焼部の最大燃焼量は燃
焼量制限手段を用いて制限することによって、確実に副
伝熱管内の滞留水を沸騰させないことができるため、第
二燃焼部の燃焼量が制限されることによって、若干第二
燃焼部の必要運転時間が長くなるものの、シンプルな構
成で低コストかつ確実に沸騰防止可能の熱交換装置を提
供することができる。
As described above, by limiting the maximum amount of combustion in the second combustion section by using the combustion amount limiting means, it is possible to reliably prevent the accumulated water in the sub heat transfer tube from boiling, so that the second combustion section Although the required operating time of the second combustion section is slightly lengthened due to the limited amount of combustion, it is possible to provide a heat exchange device with a simple configuration that can reliably prevent boiling at low cost.

【0035】請求項6に係る熱交換装置は、隣接して設
けた第一燃焼部及び第二燃焼部と、この両燃焼部の下流
に設けた缶体と、缶体内に設けた第一伝熱管及び第二伝
熱管と、この両伝熱管の下流側に設けた排気ガス通路
と、排気ガス通路に設けた第一伝熱管と連通する副伝熱
管と、この副伝熱管の入口側と第一伝熱管の出口側を連
通させる循環通路と、循環通路に設けた循環ポンプとを
備えている。
According to a sixth aspect of the present invention, there is provided a heat exchange device in which a first combustion section and a second combustion section are provided adjacent to each other, a can body provided downstream of both combustion sections, and a first transfer section provided in the can body. The heat pipe and the second heat transfer pipe, the exhaust gas passage provided on the downstream side of the both heat transfer pipes, the sub heat transfer pipe communicating with the first heat transfer pipe provided in the exhaust gas passage, the inlet side of the sub heat transfer pipe and the first heat transfer pipe. A circulation passage that connects the outlet side of one heat transfer tube and a circulation pump provided in the circulation passage are provided.

【0036】上記の熱交換装置において、第一燃焼部単
独運転時、動作及び効果は請求項1記載のものと同様の
ため、ここで説明は省略する。
In the above heat exchange device, since the operation and effect are the same as those described in claim 1 when the first combustion section is in the single operation, the description thereof will be omitted here.

【0037】第二燃焼部単独運転時、循環通路によって
副伝熱管の入口と第一伝熱管の出口とが連通され循環回
路が構成されるため、循環通路に設けた循環ポンプによ
って副伝熱管と第一伝熱管内の滞留水は駆動され強制循
環することになる。そして、副伝熱管と第一伝熱管内で
燃焼ガスの熱を受け温度上昇した滞留水は強制循環され
循環通路部での放熱によって、温度が低下し沸騰を防止
することができる。
During independent operation of the second combustion section, the inlet of the sub heat transfer tube and the outlet of the first heat transfer tube are communicated by the circulation passage to form a circulation circuit. The accumulated water in the first heat transfer tube is driven and forcedly circulates. Then, the retained water, which has received the heat of the combustion gas in the sub heat transfer tube and the first heat transfer tube and has its temperature raised, is forcibly circulated and the heat is radiated in the circulation passage portion to lower the temperature and prevent boiling.

【0038】このように、循環通路によって第一伝熱管
と副伝熱管とを循環回路にし循環ポンプを用いてその中
の滞留水を強制駆動することによって、温度上昇した滞
留水は循環通路で放熱し温度上昇を抑えられるため、第
一伝熱管と副伝熱管内の滞留水の温度が低下し沸騰を防
止することができ、シンプルな構成で低コスト沸騰防止
可能の熱交換装置を提供することができる。
As described above, the first heat transfer pipe and the sub heat transfer pipe are made into a circulation circuit by the circulation passage, and the accumulated water therein is forcibly driven by using the circulation pump, so that the accumulated water whose temperature has risen is radiated in the circulation passage. Since the temperature rise can be suppressed, the temperature of the accumulated water in the first heat transfer pipe and the sub heat transfer pipe can be reduced to prevent boiling, and a heat exchange device capable of preventing boiling at a low cost with a simple structure is provided. You can

【0039】請求項7に係る熱交換装置は、隣接して設
けた第一燃焼部及び第二燃焼部と、この両燃焼部の下流
に設けた缶体と、缶体内に設けた第一伝熱管及び第二伝
熱管と、この両伝熱管の下流側に設けた排気ガス通路
と、排気ガス通路に設けた第一伝熱管と連通する副伝熱
管と、副伝熱管の入口に設けた元止弁と、副伝熱管の出
口に設けた水抜き通路とを備えている。
According to a seventh aspect of the present invention, there is provided a heat exchange device in which a first combustion section and a second combustion section are provided adjacent to each other, a can body provided downstream of both combustion sections, and a first transfer section provided in the can body. The heat pipe and the second heat transfer pipe, the exhaust gas passage provided on the downstream side of the both heat transfer pipes, the sub heat transfer pipe communicating with the first heat transfer pipe provided in the exhaust gas passage, and the element provided at the inlet of the sub heat transfer pipe. A stop valve and a water drain passage provided at the outlet of the auxiliary heat transfer tube are provided.

【0040】上記の熱交換装置において、第一燃焼部単
独運転時、動作及び効果は請求項1記載のものと同様の
ため、ここで説明は省略する。
In the above heat exchange device, the operation and effect of the first combustion section alone operation are the same as those described in claim 1, and therefore the description thereof is omitted here.

【0041】第二燃焼部単独運転時、副伝熱管の入口に
設けた元止弁が作動し副伝熱管の入口を閉塞し、副伝熱
管の出口を開放にし水抜き通路を通して副伝熱管内の滞
留水を抜くことによって、副伝熱管内を空にした状態で
第二燃焼部から発生した燃焼ガスによって加熱されるた
め、管内滞留水が沸騰する心配なく第二燃焼部単独の運
転ができる。
During the second combustion section alone operation, the main stop valve provided at the inlet of the sub heat transfer tube is operated to close the inlet of the sub heat transfer tube, open the outlet of the sub heat transfer tube, and open the outlet of the sub heat transfer tube to the inside of the sub heat transfer tube. By removing the accumulated water in the second heat transfer tube, the auxiliary heat transfer tube is heated by the combustion gas generated from the second combustion section in an empty state, so that the second combustion section can be operated independently without boiling water in the tube. .

【0042】このように、元止弁と水抜き通路を用いる
ことによって、副伝熱管は滞留水が抜かれた状態で燃焼
ガスに加熱されることになる。ここで耐食性材料例えば
チタンまたはステンレスで作られる副伝熱管は、滞留水
なしの状態で燃焼ガスに加熱されても耐えられる。この
ように、滞留水の沸騰がまったく心配しなくて、シンプ
ルな構成で低コスト沸騰防止可能の熱交換装置を提供す
ることができる。
As described above, by using the main stop valve and the water drainage passage, the sub heat transfer pipe is heated by the combustion gas in a state where the accumulated water is drained. Here, the sub heat transfer tube made of a corrosion resistant material such as titanium or stainless steel can withstand heating to combustion gas without accumulated water. As described above, it is possible to provide a heat exchange device that has a simple structure and can prevent boiling at a low cost without worrying about boiling of accumulated water.

【0043】請求項8に係る熱交換装置は、隣接して設
けた第一燃焼部及び第二燃焼部と、この両燃焼部の下流
に設けた缶体と、缶体内に設けた第一伝熱管及び第二伝
熱管と、この両伝熱管の下流側に設けた排気ガス通路
と、排気ガス通路に設けた第一伝熱管と連通する副伝熱
管と、排気ガス通路中の第二燃焼部に対応する位置に設
けた副伝熱管が配列されない通りぬき排気通路とを備え
ている。
In the heat exchange device according to the eighth aspect, the first combustion section and the second combustion section provided adjacent to each other, the can body provided downstream of the both combustion sections, and the first transfer section provided in the can body. A heat pipe and a second heat transfer pipe, an exhaust gas passage provided on the downstream side of both heat transfer pipes, a sub heat transfer pipe communicating with the first heat transfer pipe provided in the exhaust gas passage, and a second combustion section in the exhaust gas passage. And an exhaust passage through which the sub-heat transfer tubes provided at positions corresponding to are not arranged.

【0044】上記の熱交換装置において、第一燃焼部単
独運転時、動作及び効果は請求項1記載のものと同様の
ため、ここで説明は省略する。
In the above heat exchange device, since the operation and effect are the same as those described in claim 1 when the first combustion section is in the single operation, the description thereof will be omitted here.

【0045】第二燃焼部単独運転時、排気ガス通路中の
第二燃焼部に対応する位置に、副伝熱管を配列しない通
りぬき排気通路を設けることによって、排気ガス通路を
流れる第二燃焼部から発生した燃焼ガスは副伝熱管を加
熱せずに通りぬき排気通路から排出することができるた
め、副伝熱管内の滞留水は燃焼ガスとの熱交換を避けて
滞留水の温度が上昇せず確実に沸騰を防止することがで
きる。
During independent operation of the second combustion section, the second combustion section flowing through the exhaust gas passage is provided by providing a passing exhaust passage in which a sub heat transfer tube is not arranged at a position corresponding to the second combustion section in the exhaust gas passage. Since the combustion gas generated from the exhaust gas can be discharged through the exhaust passage without heating the auxiliary heat transfer pipe, the temperature of the accumulated water in the auxiliary heat transfer pipe rises while avoiding heat exchange with the combustion gas. It is possible to prevent boiling without fail.

【0046】このように、排気ガス通路中の第二燃焼部
に対応する位置に、副伝熱管を配列しない通りぬき排気
通路を設けることによって、第一燃焼部専用排気通路と
第二燃焼部専用通路を別々に設けることなく、シンプル
な構成で低コスト沸騰防止可能の熱交換装置を提供する
ことができる。
As described above, by providing the passing exhaust passage without arranging the auxiliary heat transfer pipes at the position corresponding to the second combustion portion in the exhaust gas passage, the exhaust passage dedicated for the first combustion portion and the exhaust passage dedicated for the second combustion portion are provided. It is possible to provide a heat exchange device capable of preventing boiling at low cost with a simple structure without providing separate passages.

【0047】請求項9に係る熱交換装置は、隣接して設
けた第一燃焼部及び第二燃焼部と、この両燃焼部の下流
に設けた缶体と、缶体内に設けた第一伝熱管及び第二伝
熱管と、この両伝熱管の下流側に設けた排気ガス通路
と、排気ガス通路に設けた第一伝熱管と連通し燃焼ガス
の水蒸気凝縮潜熱を回収する副伝熱管と、副伝熱管で発
生した結露水を捕集し中和する中和装置と、副伝熱管の
入口側に設けたバイパスシャワー水路と、このバイパス
シャワー水路に設けた流量制御手段と、副伝熱管内温度
を検知する温度検知手段と、バイパスシャワー水路と連
通し副伝熱管の表面に噴水する流出口とを備えている。
According to a ninth aspect of the present invention, there is provided a heat exchange device in which a first combustion section and a second combustion section are provided adjacent to each other, a can body provided downstream of both combustion sections, and a first transfer section provided in the can body. A heat pipe and a second heat transfer pipe, an exhaust gas passage provided on the downstream side of the both heat transfer pipes, a sub heat transfer pipe that communicates with the first heat transfer pipe provided in the exhaust gas passage to recover the steam condensation latent heat of the combustion gas, A neutralization device that collects and neutralizes dew condensation water generated in the sub heat transfer tube, a bypass shower water channel provided at the inlet side of the sub heat transfer tube, a flow control means provided in the bypass shower water channel, and an inside of the sub heat transfer tube The temperature detecting means for detecting the temperature and the outlet for communicating with the bypass shower water passage and for spraying water on the surface of the sub heat transfer pipe are provided.

【0048】上記の熱交換装置において、第一燃焼部単
独運転時、動作及び効果は請求項1記載のものと同様の
ため、ここで説明は省略する。
In the above heat exchange device, since the operation and effect of the first combustion section alone operation are the same as those of the first aspect, the description thereof will be omitted here.

【0049】第二燃焼部単独運転時、運転しない副伝熱
管内の滞留水は第二燃焼部から発生した燃焼ガスによっ
て加熱され温度上昇するが、この滞留水の温度は温度検
知手段を用いて検知し所定温度になると、流量制御手段
が作動しバイパスシャワー水路を開通させ、流出口より
水を噴出させることになる。そしてこの噴出される水は
燃焼ガス及び温度上昇した副伝熱管と熱交換し、滞留水
を冷やしてから中和装置に流れ込む。このような冷却手
段で滞留水の沸騰を防止することが確実となる。
During the independent operation of the second combustion section, the accumulated water in the sub-heat transfer tube which is not operated is heated by the combustion gas generated from the second combustion section and rises in temperature. The temperature of this accumulated water is detected by the temperature detecting means. When the temperature is detected and reaches a predetermined temperature, the flow rate control means is activated to open the bypass shower water passage and jet water from the outlet. Then, the jetted water exchanges heat with the combustion gas and the sub-heat transfer pipe whose temperature has risen, cools the accumulated water, and then flows into the neutralization device. It becomes possible to prevent boiling of the accumulated water by such cooling means.

【0050】このように、バイパスシャワー水路を用い
て温度上昇した副伝熱管へ噴水することによって、滞留
水の温度上昇を所定温度以下に抑えて沸騰を確実に防止
できるとともに、副伝熱管への噴水は第一燃焼部の運転
によって副伝熱管表面に付着したほこりなどの付着物を
洗い落とし、副伝熱管表面を清掃することができるた
め、第一燃焼部が運転する時の副伝熱管の性能を維持し
耐久性を持たすことができる。
As described above, by spraying water to the sub heat transfer tube whose temperature has risen by using the bypass shower water passage, the temperature rise of the accumulated water can be suppressed to a predetermined temperature or less to prevent boiling surely, and at the same time, to the sub heat transfer tube. The fountain can clean the surface of the sub heat transfer tube by washing off the dust and other deposits adhering to the surface of the sub heat transfer tube due to the operation of the first combustion section, so the performance of the sub heat transfer tube when the first combustion section operates To maintain durability.

【0051】請求項10に係る熱交換装置は、隣接して
設けた第一燃焼部及び第二燃焼部と、この両燃焼部の下
流に設けた缶体と、缶体内に設けた第一伝熱管及び第二
伝熱管と、この両伝熱管の下流側に設けた排気ガス通路
と、排気ガス通路に設けた第一伝熱管と連通し燃焼ガス
の水蒸気凝縮潜熱を回収する副伝熱管と、副伝熱管で発
生した結露水を捕集し中和する中和装置と、副伝熱管の
出口と中和装置を連通する副伝熱管バイパス水路と、こ
の副伝熱管バイパス水路に設けた流量制御手段と、前記
副伝熱管内温度を検知する温度検知手段とを備えてい
る。
According to a tenth aspect of the present invention, there is provided a heat exchange device in which a first combustion section and a second combustion section are provided adjacent to each other, a can body provided downstream of both combustion sections, and a first transfer section provided in the can body. A heat pipe and a second heat transfer pipe, an exhaust gas passage provided on the downstream side of the both heat transfer pipes, a sub heat transfer pipe that communicates with the first heat transfer pipe provided in the exhaust gas passage to recover the steam condensation latent heat of the combustion gas, A neutralization device that collects and neutralizes the dew condensation water generated in the sub heat transfer pipe, a sub heat transfer pipe bypass water passage that connects the outlet of the sub heat transfer pipe and the neutralization device, and a flow rate control provided in this sub heat transfer pipe bypass water passage And means for detecting the temperature inside the sub heat transfer tube.

【0052】上記の熱交換装置において、第一燃焼部単
独運転時、動作及び効果は請求項1記載のものと同様の
ため、ここで説明は省略する。
In the above heat exchange device, the operation and effect of the first combustion section alone operation are the same as those of the first aspect, and the description thereof will be omitted here.

【0053】第二燃焼部単独運転時、運転しない副伝熱
管内の滞留水は第二燃焼部から発生した燃焼ガスによっ
て加熱され温度上昇するが、この滞留水の温度は温度検
知手段を用いて検知し所定温度になると、流量制御手段
が作動し副伝熱管バイパス水路を開通させ、副伝熱管内
の水が沸騰しないように所定流量で副伝熱管バイパス水
路を通じて中和装置へ水を流す。そして、副伝熱管内の
水は流動になり、低温燃焼ガスから受熱し温度上昇した
水は中和装置へ流れ、下水道へ流れるため、副伝熱管内
において、水温を所定の温度まで制御でき管内水の沸騰
を確実に防止できる。
During independent operation of the second combustion section, the accumulated water in the sub-heat transfer tube which is not operated is heated by the combustion gas generated from the second combustion section and rises in temperature. The temperature of this accumulated water is detected by the temperature detecting means. When the temperature is detected and reaches a predetermined temperature, the flow rate control means is activated to open the sub heat transfer tube bypass water passage, and water is flowed to the neutralization device through the sub heat transfer tube bypass water passage at a predetermined flow rate so that the water in the sub heat transfer tube does not boil. Then, the water in the sub heat transfer pipe becomes fluid, and the water that has received the heat from the low-temperature combustion gas and has risen in temperature flows to the neutralization device and flows to the sewer, so that the water temperature in the sub heat transfer pipe can be controlled to a predetermined temperature. The boiling of water can be reliably prevented.

【0054】このように、副伝熱管の出口と中和装置を
連通する副伝熱管バイパス水路を設けることによって、
第二燃焼部が運転する時、副伝熱管内の水を所定流量で
流動的にすることで副伝熱管内の水温を所定温度までコ
ントロールでき管内水の沸騰を確実に防止できる。よっ
て、シンプルな構成で低コスト沸騰防止可能の熱交換装
置を提供することができる。
As described above, by providing the sub heat transfer tube bypass water passage which connects the outlet of the sub heat transfer tube and the neutralizing device,
When the second combustion section operates, the water temperature in the sub heat transfer tube can be controlled to a predetermined temperature by fluidizing the water in the sub heat transfer tube at a predetermined flow rate, and boiling of the water in the tube can be reliably prevented. Therefore, it is possible to provide a heat exchange device having a simple structure and capable of preventing boiling at low cost.

【0055】請求項11に係る熱交換装置は、隣接して
設けた第一燃焼部及び第二燃焼部と、この両燃焼部の下
流に設けた缶体と、缶体内に設けた第一伝熱管及び第二
伝熱管と、この両伝熱管の下流側に設けた排気ガス通路
と、排気ガス通路に設けた第一伝熱管と連通し燃焼ガス
の水蒸気凝縮潜熱を回収する副伝熱管と、副伝熱管で発
生した結露水を捕集し中和する中和装置と、第一伝熱管
の出口と中和装置を連通する第一伝熱管バイパス水路
と、この第一伝熱管バイパス水路に設けた流量制御手段
と、副伝熱管内温度を検知する温度検知手段とを備えて
いる。
A heat exchange device according to an eleventh aspect of the present invention is such that a first combustion section and a second combustion section which are provided adjacent to each other, a can body provided downstream of both combustion sections, and a first transfer section provided in the can body. A heat pipe and a second heat transfer pipe, an exhaust gas passage provided on the downstream side of the both heat transfer pipes, a sub heat transfer pipe that communicates with the first heat transfer pipe provided in the exhaust gas passage to recover the steam condensation latent heat of the combustion gas, Provided in the neutralization device that collects and neutralizes the dew condensation water generated in the sub heat transfer pipe, the first heat transfer pipe bypass water passage that connects the outlet of the first heat transfer pipe and the neutralization device, and this first heat transfer pipe bypass water passage And a temperature detecting means for detecting the temperature inside the sub heat transfer tube.

【0056】上記の熱交換装置において、第一燃焼部単
独運転時、動作及び効果は請求項1記載のものと同様の
ため、ここで説明は省略する。
In the above heat exchange device, the operation and effect of the first combustion section alone operation are the same as those of the first aspect, and the description thereof will be omitted here.

【0057】第二燃焼部単独運転時、運転しない副伝熱
管内の滞留水は第二燃焼部から発生した燃焼ガスによっ
て加熱され温度上昇するが、この滞留水の温度は温度検
知手段を用いて検知し所定温度になると、流量制御手段
が作動し第一伝熱管バイパス水路を開通させ、第一伝熱
管の出口から所定流量で第一伝熱管バイパス水路を通じ
て中和装置へ水を流す。そして、副伝熱管と第一伝熱管
内の水は流動になり、燃焼ガスから受熱し温度上昇した
副伝熱管内の水は第一伝熱管へ、そして第一伝熱管から
中和装置へ流れ、下水道へ流れるため、第一伝熱管内に
おいても副伝熱管内においても、水温を所定の温度まで
制御でき管内水の沸騰を確実に防止できる。
During the independent operation of the second combustion section, the accumulated water in the sub-heat transfer tube which is not operated is heated by the combustion gas generated from the second combustion section and rises in temperature. The temperature of this accumulated water is detected by the temperature detecting means. When the temperature is detected and reaches a predetermined temperature, the flow rate control means is activated to open the first heat transfer tube bypass water channel, and water is flown from the outlet of the first heat transfer tube to the neutralizer at a predetermined flow rate through the first heat transfer tube bypass water channel. Then, the water in the sub heat transfer tube and the first heat transfer tube becomes fluidized, and the water in the sub heat transfer tube that receives the heat from the combustion gas and rises in temperature flows to the first heat transfer tube and from the first heat transfer tube to the neutralizer. Since the water flows to the sewer, the water temperature can be controlled to a predetermined temperature in both the first heat transfer pipe and the sub heat transfer pipe, and boiling of the pipe water can be reliably prevented.

【0058】このように、第一伝熱管の出口と中和装置
を連通する第一伝熱管バイパス水路を設けることによっ
て、第二燃焼部が運転する時、第一伝熱管内の水も副伝
熱管内の水も所定流量で流動的にすることで第一伝熱管
と副伝熱管内の水温を所定温度までコントロールでき管
内水の沸騰を確実に防止できる。よって、シンプルな構
成で低コスト沸騰防止可能の熱交換装置を提供すること
ができる。
As described above, by providing the first heat transfer tube bypass water passage which communicates the outlet of the first heat transfer tube with the neutralization device, the water in the first heat transfer tube is also sub-transferred when the second combustion section operates. By making the water in the heat pipe fluid at a predetermined flow rate, the water temperature in the first heat transfer pipe and the sub heat transfer pipe can be controlled to a predetermined temperature, and boiling of the pipe water can be reliably prevented. Therefore, it is possible to provide a heat exchange device having a simple structure and capable of preventing boiling at low cost.

【0059】請求項12に係る熱交換装置は、隣接して
設けた第一燃焼部及び第二燃焼部と、この両燃焼部の下
流に設けた缶体と、缶体内に設けた第一伝熱管及び第二
伝熱管と、この両伝熱管の下流側に設けた排気ガス通路
と、排気ガス通路に設けた複数の副伝熱管と、排気ガス
通路の上流側に位置しかつ伝熱面積が下流側に位置する
副伝熱管より小さい小伝熱面積副伝熱管とを備えてい
る。
According to a twelfth aspect of the present invention, there is provided a heat exchange device in which a first combustion section and a second combustion section are provided adjacent to each other, a can body provided downstream of both combustion sections, and a first transfer section provided in the can body. The heat pipe and the second heat transfer pipe, the exhaust gas passage provided on the downstream side of the both heat transfer pipes, the plurality of sub heat transfer pipes provided on the exhaust gas passage, and the heat transfer area located on the upstream side of the exhaust gas passage. And a small heat transfer area sub heat transfer tube smaller than the sub heat transfer tube located on the downstream side.

【0060】上記の熱交換装置において、第一燃焼部単
独運転時、動作及び効果は請求項1記載のものと同様の
ため、ここで説明は省略する。
In the above heat exchange device, since the operation and effect of the first combustion section alone operation are the same as those of claim 1, the description thereof will be omitted here.

【0061】第二燃焼部単独運転時、運転しない副伝熱
管内の滞留水は第二燃焼部から発生した燃焼ガスによっ
て加熱され温度上昇するが、ここで、燃焼ガスの温度が
比較的高い排気ガス通路の上流側において、表面伝熱面
積を比較的小さい小伝熱面積副伝熱管を設けることによ
って、この小伝熱面積副伝熱管の燃焼ガスからの受熱を
抑えることによって、排気ガス通路の上流側に配置され
る副伝熱管が過度受熱し局所沸騰することが防止でき
る。よって、シンプルな構成で低コスト沸騰防止可能の
熱交換装置を提供することができる。
During independent operation of the second combustion section, the accumulated water in the sub-heat transfer tube that is not operated is heated by the combustion gas generated from the second combustion section and rises in temperature. Here, the temperature of the combustion gas is relatively high. By providing a small heat transfer area auxiliary heat transfer tube with a relatively small surface heat transfer area on the upstream side of the gas passage, the heat reception from the combustion gas of this small heat transfer area auxiliary heat transfer tube is suppressed, and the upstream side of the exhaust gas passage It is possible to prevent the sub heat transfer tube arranged in the above from receiving excessive heat and locally boiling. Therefore, it is possible to provide a heat exchange device having a simple structure and capable of preventing boiling at low cost.

【0062】[0062]

【実施例】以下,本発明の実施例について図面を用いて
説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0063】(実施例1)図1は本発明の実施例1にお
ける熱交換装置のシステム構成図を示している。図1に
おいて、20は第一燃焼部、21は第一燃焼部と隣接す
る第二燃焼部、この二つの燃焼部には、ガス導管23を
分岐して夫々にガス遮断弁24、25及びガス導管23
の入口側にガス比例弁26が設けられている。箱形状の
缶体27は第一燃焼部20と第二燃焼部21の下流に設
けられている。第一伝熱管28は缶体27を貫通し第一
燃焼部20と第二燃焼部21の下流側に2段に設け、各
第一伝熱管28は一本の通路になるように連結されてい
る。第二伝熱管29は缶体27を貫通し第一燃焼部20
と第二燃焼部21の下流側に2段に設け、各第二伝熱管
29は一本の通路になるように連結されている。いずれ
の第一伝熱管28も隣接の第二伝熱管29と接触し、受
熱フィン30は第一伝熱管28と第二伝熱管29に貫通
溶着固定されている。28aは第一伝熱管の入口、28
bは第一伝熱管の出口、29aは第二伝熱管の入口、2
9bは第二伝熱管の出口である。
(Embodiment 1) FIG. 1 shows a system configuration diagram of a heat exchange apparatus in Embodiment 1 of the present invention. In FIG. 1, 20 is a first combustion section, 21 is a second combustion section adjacent to the first combustion section, and a gas conduit 23 is branched into these two combustion sections, and gas cutoff valves 24 and 25 and a gas are provided respectively. Conduit 23
A gas proportional valve 26 is provided on the inlet side of the. The box-shaped can body 27 is provided downstream of the first combustion section 20 and the second combustion section 21. The first heat transfer tubes 28 penetrate the can body 27 and are provided in two stages downstream of the first combustion section 20 and the second combustion section 21, and each first heat transfer tube 28 is connected to form a single passage. There is. The second heat transfer tube 29 penetrates the can body 27 and passes through the first combustion section 20.
The second heat transfer tubes 29 are connected to each other so as to form one passage. Each of the first heat transfer tubes 28 is in contact with the adjacent second heat transfer tube 29, and the heat receiving fins 30 are fixed to the first heat transfer tube 28 and the second heat transfer tube 29 by penetration welding. 28a is the inlet of the first heat transfer tube, 28
b is the outlet of the first heat transfer tube, 29a is the inlet of the second heat transfer tube, 2
9b is an outlet of the second heat transfer tube.

【0064】また、燃焼ファン31は空気室32を介し
て第一燃焼部20と第二燃焼部21に連通している。3
3は第一伝熱管28と第二伝熱管29の下流側に設けら
れる排気ガス通路、34はこの排気ガス通路33中に設
けた排気ガス通路33を流れる流体を均一混合する均一
混合手段である流れ調節板、35は流れ調節板34の下
流側に設けた副伝熱管、この副伝熱管35は連通管36
を介して第一伝熱管28の入口28aと連通している。
35aは副伝熱管35の入口、37は排気ガス通路33
と連通しこの排気ガス通路を流れる流体を熱交換装置外
へ排出する排気口である。
The combustion fan 31 communicates with the first combustion section 20 and the second combustion section 21 via the air chamber 32. Three
3 is an exhaust gas passage provided downstream of the first heat transfer pipe 28 and the second heat transfer pipe 29, and 34 is a uniform mixing means for uniformly mixing fluids flowing through the exhaust gas passage 33 provided in the exhaust gas passage 33. A flow control plate, 35 is a sub heat transfer pipe provided on the downstream side of the flow control plate 34, and this sub heat transfer pipe 35 is a communication pipe 36.
Through the inlet 28a of the first heat transfer tube 28.
Reference numeral 35a is an inlet of the sub heat transfer pipe 35, and 37 is an exhaust gas passage 33.
It is an exhaust port communicating with the exhaust gas passage and discharging the fluid flowing through the exhaust gas passage to the outside of the heat exchange device.

【0065】以上のように構成された熱交換装置につい
て、以下動作、作用を説明する。
The operation and action of the heat exchange device configured as described above will be described below.

【0066】第一燃焼部単独運転時、副伝熱管35の入
口35aから通水され、燃焼ファン31が駆動し、ガス
遮断弁24とガス比例弁26が開き、第一燃焼部20が
点火手段(図示せず)により燃焼を開始する。そして、
発生した高温燃焼ガスは受熱フィン30から第一伝熱管
28内を流れる予熱水へ伝わり、熱を奪われ低温燃焼ガ
スとなって排気ガス通路33へ流れる。この低温燃焼ガ
スは排気ガス通路33中の副伝熱管35内の水と熱交換
し水を予熱することによってさらに低温の排気ガスとな
り、低温燃焼ガス中の水蒸気は凝縮潜熱を奪われて副伝
熱管35の表面で凝縮水となる。この凝縮水にはCO2
やNOxなどのガスが溶解しているため、酸性(pH=
2〜4)を示す。発生した凝縮水は凝縮水捕集手段(図
示せず)に捕集され中和装置(図示せず)へ流れ中和さ
れた後排出される。一方更に低温となった排気ガスは排
気口37から大気に排出される。
During independent operation of the first combustion section, water is passed through the inlet 35a of the auxiliary heat transfer tube 35, the combustion fan 31 is driven, the gas cutoff valve 24 and the gas proportional valve 26 are opened, and the first combustion section 20 is ignited. Combustion is started by (not shown). And
The generated high-temperature combustion gas is transferred from the heat-receiving fins 30 to the preheated water flowing in the first heat transfer pipe 28, and is deprived of heat to become a low-temperature combustion gas and flows into the exhaust gas passage 33. This low-temperature combustion gas exchanges heat with the water in the auxiliary heat transfer pipe 35 in the exhaust gas passage 33 to preheat the water to become an even lower-temperature exhaust gas, and the steam in the low-temperature combustion gas is deprived of latent heat of condensation to cause sub-transfer. Condensed water is formed on the surface of the heat pipe 35. CO2 in this condensed water
Since gases such as NOx and NOx are dissolved, it is acidic (pH =
2 to 4) are shown. The generated condensed water is collected by a condensed water collecting means (not shown), flows to a neutralizing device (not shown), and is neutralized and then discharged. On the other hand, the exhaust gas that has become lower in temperature is exhausted to the atmosphere through the exhaust port 37.

【0067】一方、被加熱流体である水は入口35aか
ら副伝熱管35内へ導入され、低温燃焼ガスから水蒸気
潜熱を奪い給水時よりやや温度が高い予熱水となって、
連通管36を通して第一伝熱管の入口28aから第一伝
熱管28内へ導入される。そして、この予熱水は第一伝
熱管28内で所定の温度まで加熱され第一温水として第
一伝熱管28の出口28bから出湯する。その際に、要
求された第一温水温度になるようにガス比例弁26が第
一燃焼部20の燃焼量を調整する。
On the other hand, water as a fluid to be heated is introduced into the sub heat transfer pipe 35 through the inlet 35a to remove the latent heat of steam from the low temperature combustion gas to become preheated water having a temperature slightly higher than that at the time of water supply.
It is introduced into the first heat transfer tube 28 from the inlet 28a of the first heat transfer tube through the communication tube 36. Then, this preheated water is heated to a predetermined temperature in the first heat transfer tube 28 and is discharged from the outlet 28b of the first heat transfer tube 28 as the first hot water. At that time, the gas proportional valve 26 adjusts the combustion amount of the first combustion unit 20 so as to reach the required first hot water temperature.

【0068】次に、第二燃焼部単独運転について説明す
る。循環ポンプ(図示せず)により第2伝熱管29に第
二温水が吸引された場合、ガス遮断弁25とガス比例弁
26が開き、第二燃焼部21が点火手段(図示せず)に
より燃焼を開始する。その際、要求された第二温水の温
度になるようにガス比例弁26が燃焼量を調整する。そ
して、第二燃焼部21から発生した高温燃焼ガスAが第
二燃焼部21の下流側の受熱フィン30から第二伝熱管
29内の水と熱交換してから、低温燃焼ガスA1となり
排気ガス通路33に流れる。温度上昇した第二温水が循
環ポンプ(図示せず)の駆動で第二伝熱管29の出口2
9bから熱端末(図示せず)へ送り熱端末から第二伝熱
管29の入口29aに戻ってくるように循環する。
Next, the second operation of the second combustion unit alone will be described. When the second hot water is sucked into the second heat transfer pipe 29 by the circulation pump (not shown), the gas cutoff valve 25 and the gas proportional valve 26 are opened, and the second combustion section 21 is burned by the ignition means (not shown). To start. At that time, the gas proportional valve 26 adjusts the combustion amount so that the temperature of the required second hot water is reached. Then, the high temperature combustion gas A generated from the second combustion section 21 exchanges heat with the water in the second heat transfer tube 29 from the heat receiving fins 30 on the downstream side of the second combustion section 21, and then becomes the low temperature combustion gas A1 and the exhaust gas. It flows into the passage 33. The second hot water whose temperature has risen is driven by a circulation pump (not shown) to the outlet 2 of the second heat transfer tube 29.
9b is sent to a heat terminal (not shown) and circulated so as to return from the heat terminal to the inlet 29a of the second heat transfer tube 29.

【0069】この時、燃焼ファン31は空気室32を介
して第二燃焼部21へ燃焼用空気を送るとともに、空気
室32とも連通している第一燃焼部20を通して空冷空
気Bを缶体27内に送ることになる。そして、この空冷
空気Bは第一伝熱管28及び第二伝熱管29を通過し
て、温度がやや上昇し比較的温度の低い温風空気B1と
なり排気ガス通路33内に流れる。
At this time, the combustion fan 31 sends the combustion air to the second combustion section 21 through the air chamber 32, and the air-cooled air B is passed through the first combustion section 20 which is also in communication with the air chamber 32 to the can body 27. Will be sent in. Then, the air-cooled air B passes through the first heat transfer pipe 28 and the second heat transfer pipe 29, and the temperature thereof slightly rises to become warm air B1 having a relatively low temperature and flows into the exhaust gas passage 33.

【0070】そして、第一燃焼部20に対応する排気ガ
ス通路33の位置を流れるこの温風空気B1は、排気ガ
ス通路33の中に設けた均一混合手段である流れ調節板
34によって、第二燃焼部21に対応する排気ガス通路
33の位置を流れる低温燃焼ガスA1へ偏向され、低温
燃焼ガスA1と混合均一となる。よって、低温燃焼ガス
A1は温風空気B1との混合によって温度が低下し冷却
されるため、さらに下流側に設けた副伝熱管35を通過
した時、副伝熱管35内の滞留水を加熱しても滞留水が
沸騰しないようになる。
The hot air B1 flowing in the position of the exhaust gas passage 33 corresponding to the first combustion section 20 is supplied to the second position by the flow adjusting plate 34 which is a uniform mixing means provided in the exhaust gas passage 33. It is deflected to the low temperature combustion gas A1 flowing through the position of the exhaust gas passage 33 corresponding to the combustion section 21, and is uniformly mixed with the low temperature combustion gas A1. Therefore, the temperature of the low temperature combustion gas A1 is lowered by being mixed with the warm air B1 so that the low temperature combustion gas A1 is cooled. Therefore, when the low temperature combustion gas A1 passes through the sub heat transfer pipe 35 provided further downstream, However, the accumulated water will not boil.

【0071】このように、流れ調節板34を設けること
によって、低温燃焼ガスA1は温風空気B1との混合に
よって温度が低下し、副伝熱管35内の滞留水の受熱を
抑え沸騰を防止することができるため、シンプルな構成
で低コストの潜熱回収熱交換装置を提供することができ
る。
As described above, by providing the flow control plate 34, the temperature of the low temperature combustion gas A1 is lowered by mixing with the hot air B1 and the heat of the accumulated water in the sub heat transfer tube 35 is suppressed and boiling is prevented. Therefore, it is possible to provide a low-cost latent heat recovery heat exchange device with a simple configuration.

【0072】また、第一伝熱管28は通水する第二伝熱
管29と密接されるため、第一伝熱管28内の滞留水の
熱は通水する第二伝熱管へ伝熱することによって、滞留
水の沸騰が防止できる。
Since the first heat transfer tube 28 is in close contact with the second heat transfer tube 29 through which water flows, the heat of the accumulated water in the first heat transfer tube 28 is transferred to the second heat transfer tube through which water flows. The boiling of accumulated water can be prevented.

【0073】なお、本実施例において、均一混合手段で
ある流れ調節板34は温風空気B1を低温燃焼ガスA1
へ偏向して流れるようにしているが、低温燃焼ガスA1
を温風空気B1へ偏向して流れるようにしても、同様な
効果が得られる。
In the present embodiment, the flow control plate 34, which is a uniform mixing means, converts the warm air B1 into the low temperature combustion gas A1.
Although it is deflected to flow to low temperature combustion gas A1
Even if the air is deflected to the warm air B1 to flow, the same effect can be obtained.

【0074】(実施例2)図2は本発明の実施例2にお
ける熱交換装置のシステム構成図である。本実施例にお
いて、実施例1の構成と異なるところは、排気ガス通路
33と空気室32を直接連通するバイパス空気通路38
と、バイパス空気通路38に設けたバイパス空気弁39
とを設けたことである。なお、実施例1で用いた均一混
合手段である流れ調節板34は本実施例で廃棄する。
(Embodiment 2) FIG. 2 is a system configuration diagram of a heat exchange apparatus in Embodiment 2 of the present invention. The present embodiment is different from the configuration of the first embodiment in that the bypass air passage 38 that directly connects the exhaust gas passage 33 and the air chamber 32.
And a bypass air valve 39 provided in the bypass air passage 38
That is to say. The flow control plate 34, which is the uniform mixing means used in the first embodiment, is discarded in this embodiment.

【0075】以上のように構成された熱交換装置につい
て、以下動作、作用を説明する。第一燃焼部20単独運
転時、または第二燃焼部21単独運転時について、燃焼
ガスと水の流れは実施例1と同様のため、ここでの説明
は省略する。
The operation and action of the heat exchange device constructed as above will be described below. The flow of combustion gas and water during the independent operation of the first combustion unit 20 or the independent operation of the second combustion unit 21 is the same as that of the first embodiment, and therefore the description thereof is omitted here.

【0076】そして、第二燃焼部21が単独運転する
時、バイパス空気弁39が開き、常温の空気は空気室3
2からバイパス空気通路38を通して排気ガス通路33
に流れこむ。そこで、排気ガス通路33内に流れ込んだ
この常温の空気Cは第二燃焼部21より発生した低温燃
焼ガスA1と混合しこの低温燃焼ガスA1を冷却し温度
を低下させることになる。よって、低温燃焼ガスA1は
常温の空気Cとの混合によって温度が低下し冷却される
ため、さらに下流側に設けた副伝熱管35を通過した
時、副伝熱管35内の滞留水を加熱しても滞留水が沸騰
しないようになる。
When the second combustion section 21 operates independently, the bypass air valve 39 is opened, and the air at room temperature is supplied to the air chamber 3
2 through exhaust gas passage 33 through bypass air passage 38
Flow into. Therefore, the room temperature air C flowing into the exhaust gas passage 33 is mixed with the low temperature combustion gas A1 generated from the second combustion section 21 to cool the low temperature combustion gas A1 and lower the temperature. Therefore, the temperature of the low temperature combustion gas A1 is lowered by being mixed with the air C at room temperature to be cooled. Therefore, when the low temperature combustion gas A1 passes through the sub heat transfer tube 35 provided further downstream, it heats the accumulated water in the sub heat transfer tube 35. However, the accumulated water will not boil.

【0077】このように、バイパス空気通路38を設け
ることによって、低温燃焼ガスA1は常温空気Cとの混
合によって温度が低下し、副伝熱管35内の滞留水の受
熱を抑え沸騰を防止することができるため、シンプルな
構成で低コストの潜熱回収熱交換装置を提供することが
できる。
As described above, by providing the bypass air passage 38, the temperature of the low temperature combustion gas A1 is lowered by mixing with the room temperature air C, and the heat of the accumulated water in the sub heat transfer tube 35 is suppressed and boiling is prevented. Therefore, it is possible to provide a low-cost latent heat recovery heat exchange device with a simple configuration.

【0078】また、本実施例において、空気室32の圧
力は排気ガス通路33の圧力より高いため、特別な駆動
手段も要らず動圧を有する常温の空気を送ることによっ
て、低温燃焼ガスA1とよく混合し少量の空気で低温燃
焼ガスA1の温度を低下させることができるため、実用
上より好ましい。
Further, in the present embodiment, since the pressure of the air chamber 32 is higher than the pressure of the exhaust gas passage 33, the low temperature combustion gas A1 and It is more preferable for practical use because the temperature of the low temperature combustion gas A1 can be lowered by mixing well and a small amount of air.

【0079】(実施例3)図3は本発明の実施例3にお
ける熱交換装置のシステム構成図である。本実施例にお
いて、実施例1の構成と異なるところは、缶体27内の
周囲に設けられ空気室32と連通する周囲空気流路40
と、排気ガス通路33に周囲空気流路を流れる空気を排
気ガス通路中に流れるような流れ調節手段である流れガ
イド41を設けたことである。なお、実施例1で用いた
均一混合手段である流れ調節板34は本実施例で廃棄す
る。
(Embodiment 3) FIG. 3 is a system configuration diagram of a heat exchange apparatus in Embodiment 3 of the present invention. In this embodiment, the difference from the configuration of the first embodiment is that an ambient air flow passage 40 is provided around the inside of the can body 27 and communicates with the air chamber 32.
That is, the exhaust gas passage 33 is provided with the flow guide 41 which is a flow adjusting means for allowing the air flowing through the ambient air passage to flow into the exhaust gas passage. The flow control plate 34, which is the uniform mixing means used in the first embodiment, is discarded in this embodiment.

【0080】以上のように構成された熱交換装置につい
て、以下動作、作用を説明する。第一燃焼部20単独運
転時、または第二燃焼部21単独運転時について、燃焼
ガスと水の流れは実施例1と同様のため、ここでの説明
は省略する。
The operation and action of the heat exchange device constructed as above will be described below. The flow of combustion gas and water during the independent operation of the first combustion unit 20 or the independent operation of the second combustion unit 21 is the same as that of the first embodiment, and therefore the description thereof is omitted here.

【0081】そして、第二燃焼部21が単独運転する
時、燃焼ファン31の駆動より、缶体27の周囲に設け
た空気室32と連通する周囲空気流路40に常温空気が
送られ、この常温空気は缶体27の内壁に沿って第一伝
熱管28及び第二伝熱管部29の端部を通過し缶体27
の壁を冷やしながら排気ガス通路33へ流れ込む。そし
て、排気ガス通路33を流れるこの周囲空気Dは流れ調
節手段である流れガイド41の方向規制によって、排気
ガス通路33の中へ向かって流れてくるため、この周囲
空気Dは第二燃焼部21から発生した低温燃焼ガスA1
と混合し燃焼ガスの温度をさらに下げることができ副伝
熱管35内の滞留水沸騰が防止できる。
When the second combustion section 21 operates independently, ambient temperature air is sent from the driving of the combustion fan 31 to the ambient air flow passage 40 that communicates with the air chamber 32 provided around the can body 27. The room temperature air passes along the inner wall of the can body 27 and passes through the ends of the first heat transfer tube 28 and the second heat transfer tube portion 29 and passes through the can body 27.
While flowing into the exhaust gas passage 33 while cooling the wall. The ambient air D flowing through the exhaust gas passage 33 flows toward the inside of the exhaust gas passage 33 due to the direction regulation of the flow guide 41, which is a flow adjusting means. Low temperature combustion gas A1 generated from
It is possible to further lower the temperature of the combustion gas by mixing with, and it is possible to prevent boiling of accumulated water in the sub heat transfer tube 35.

【0082】このように、周囲空気流路40を流れる空
気を排気ガス通路33の中に向かって流れるような流れ
調節手段である流れガイド41を設けることによって、
周囲空気Dと排気ガス通路33を流れる低温燃焼ガスA
1とを混合させ燃焼ガスの温度を低下させることがで
き、副伝熱管35内の滞留水の受熱を抑え沸騰を防止す
ることができるため、シンプルな構成で低コストの沸騰
防止可能の熱交換装置を提供することができる。
As described above, by providing the flow guide 41 which is a flow adjusting means for allowing the air flowing through the ambient air flow path 40 to flow into the exhaust gas passage 33,
Ambient air D and low temperature combustion gas A flowing through the exhaust gas passage 33
1 can be mixed with 1 to lower the temperature of the combustion gas, and the heat of the accumulated water in the sub heat transfer pipe 35 can be suppressed to prevent boiling. Therefore, a simple structure and low cost heat exchange capable of preventing boiling A device can be provided.

【0083】また、本実施例において、運転する燃焼フ
ァン31が供給する空気の一部を周囲空気流路40へ導
き、流れガイド41の方向規制によって、低温燃焼ガス
A1とよく混合し特別な送風手段を要らず低温燃焼ガス
A1の温度を低下させることができるため、実用上によ
り好ましい。
Further, in the present embodiment, a part of the air supplied by the operating combustion fan 31 is guided to the ambient air passage 40, and by the direction regulation of the flow guide 41, it is well mixed with the low temperature combustion gas A1 and special air is blown. Since the temperature of the low temperature combustion gas A1 can be lowered without any means, it is more practically preferable.

【0084】(実施例4)図4は本発明の実施例4にお
ける熱交換装置のシステム構成図である。本実施例にお
いて、実施例1の構成と異なるところは、排気ガス通路
33に排気ガス通路33を流れる燃焼ガスの流れ方向を
調節する流れダンパー42と、この流れダンパー42を
制御する駆動手段である回転モータ43を設けたことで
ある。なお、実施例1で用いた均一混合手段である流れ
調節板34は本実施例で廃棄する。
(Embodiment 4) FIG. 4 is a system configuration diagram of a heat exchange apparatus in Embodiment 4 of the present invention. In the present embodiment, the difference from the configuration of the first embodiment is a flow damper 42 for adjusting the flow direction of the combustion gas flowing through the exhaust gas passage 33 in the exhaust gas passage 33, and a drive means for controlling this flow damper 42. The rotation motor 43 is provided. The flow control plate 34, which is the uniform mixing means used in the first embodiment, is discarded in this embodiment.

【0085】上記の熱交換装置において、第一燃焼部2
0単独運転時、または第二燃焼部21単独運転時につい
て、燃焼ガスと水の流れは実施例1と同様のため、ここ
での説明は省略する。
In the above heat exchange device, the first combustion section 2
Since the flow of the combustion gas and the water is the same as that of the first embodiment during the 0 independent operation or the second combustion unit 21 alone operation, the description thereof is omitted here.

【0086】第二燃焼部単独運転時、排気ガス通路33
に設けた流れダンパー42は駆動手段である回転モータ
43によって、流れダンパー42の向きが変えられるた
め、排気ガス通路33を流れる低温燃焼ガスA1の流れ
方向を制御することによって、低温燃焼ガスA1は副伝
熱管35の局所部分のみを加熱することなく副伝熱管3
5の全体を均一に加熱することができるため、副伝熱管
35中の滞留水の温度上昇を抑えることができ、沸騰防
止が図れる。
In the second combustion section alone operation, the exhaust gas passage 33
Since the direction of the flow damper 42 is changed by the rotary motor 43 which is a driving means, the low temperature combustion gas A1 is controlled by controlling the flow direction of the low temperature combustion gas A1 flowing through the exhaust gas passage 33. The sub heat transfer tube 3 without heating only the local portion of the sub heat transfer tube 35.
Since the whole of No. 5 can be heated uniformly, the temperature rise of the accumulated water in the sub heat transfer tube 35 can be suppressed, and boiling can be prevented.

【0087】このように、回転モータ43を用いて流れ
ダンパー42の向きなどを変えることによって、低温燃
焼ガスA1は副伝熱管35の局所部分のみを加熱するこ
となく副伝熱管35の全体を均一に加熱することがで
き、副伝熱管35内の滞留水の温度上昇を抑えることが
できるため、シンプルな構成で低コストの沸騰防止可能
の熱交換装置を提供することができる。
As described above, by changing the direction of the flow damper 42 by using the rotary motor 43, the low temperature combustion gas A1 does not heat only the local portion of the sub heat transfer tube 35, and the entire sub heat transfer tube 35 is made uniform. Since it can be heated to a high temperature and the temperature rise of the accumulated water in the sub heat transfer tube 35 can be suppressed, it is possible to provide a heat exchange device having a simple structure and capable of preventing boiling at a low cost.

【0088】(実施例5)図5は本発明の実施例5にお
ける熱交換装置のシステム構成図である。本実施例にお
いて、実施例1の構成と異なるところは、副伝熱管35
内の滞留水温度を計測する滞留水温センサー44と、第
二燃焼部の最大燃焼量を所定燃焼量まで制限する燃焼量
制限手段45を設けたことである。なお、実施例1で用
いた均一混合手段である流れ調節板34は本実施例で廃
棄する。
(Embodiment 5) FIG. 5 is a system configuration diagram of a heat exchange apparatus in Embodiment 5 of the present invention. This embodiment is different from the structure of the first embodiment in that the sub heat transfer pipe 35
That is, a staying water temperature sensor 44 for measuring the staying water temperature therein and a combustion amount limiting means 45 for limiting the maximum combustion amount of the second combustion portion to a predetermined combustion amount are provided. The flow control plate 34, which is the uniform mixing means used in the first embodiment, is discarded in this embodiment.

【0089】上記の熱交換装置において、第一燃焼部2
0単独運転時、または第二燃焼部21単独運転時につい
て、燃焼ガスと水の流れは実施例1と同様のため、ここ
での説明は省略する。
In the above heat exchange device, the first combustion section 2
Since the flow of the combustion gas and the water is the same as that of the first embodiment during the 0 independent operation or the second combustion unit 21 alone operation, the description thereof is omitted here.

【0090】第二燃焼部単独運転時、運転しない副伝熱
管29内の滞留水は第二燃焼部21から発生した低温燃
焼ガスA1によって加熱され温度上昇する。そして、滞
留水温センサー44によってこの滞留水の温度を検知し
所定の最大温度になると、燃焼量制限手段45へ規制信
号を送り第二燃焼部21の燃焼量を上記滞留水が所定の
最大温度にならないように絞ることによって、確実に上
記滞留水の沸騰を防止することができる。
During the independent operation of the second combustion section, the accumulated water in the sub heat transfer tube 29 which is not operated is heated by the low temperature combustion gas A1 generated from the second combustion section 21 and its temperature rises. Then, when the temperature of the accumulated water is detected by the accumulated water temperature sensor 44 and reaches a predetermined maximum temperature, a regulation signal is sent to the combustion amount limiting means 45 so that the combustion amount of the second combustion section 21 makes the accumulated water reach the prescribed maximum temperature. By squeezing so as not to become, it is possible to reliably prevent boiling of the accumulated water.

【0091】このように、第二燃焼部21の最大燃焼量
は燃焼量制限手段45を用いて制限することによって、
確実に副伝熱管内の滞留水を沸騰させないことができる
ため、シンプルな構成で低コストかつ確実に沸騰防止可
能の熱交換装置を提供することができる。
As described above, the maximum combustion amount of the second combustion section 21 is limited by using the combustion amount limiting means 45.
Since the accumulated water in the sub heat transfer tube can be surely not boiled, it is possible to provide a heat exchange device which has a simple structure and can reliably prevent boiling at low cost.

【0092】なお、本実施例において、滞留水温センサ
ー44を用いて滞留水の温度を検知し最大燃焼量を燃焼
量制限手段45によって制限するようになっているが、
予めの設定で比例弁26を用いても同様に第二燃焼部の
最大燃焼量を制限することができ同様な効果が得られ
る。
In this embodiment, the accumulated water temperature sensor 44 is used to detect the temperature of the accumulated water and the maximum combustion amount is limited by the combustion amount limiting means 45.
Even if the proportional valve 26 is used in advance, the maximum combustion amount of the second combustion section can be similarly limited, and the same effect can be obtained.

【0093】(実施例6)図6は本発明の実施例6にお
ける熱交換装置のシステム構成図である。本実施例にお
いて、実施例1の構成と異なるところは、副伝熱管35
の入口35aと第一伝熱管28の出口28bを連通させ
る循環通路46と、循環通路46に循環ポンプ47とを
設けたことである。なお、実施例1で用いた均一混合手
段である流れ調節板34は本実施例で廃棄する。
(Embodiment 6) FIG. 6 is a system configuration diagram of a heat exchange apparatus in Embodiment 6 of the present invention. This embodiment is different from the structure of the first embodiment in that the sub heat transfer pipe 35
The circulation passage 46 that connects the inlet 35 a of the first heat transfer tube 28 to the outlet 28 b of the first heat transfer tube 28, and the circulation pump 47 are provided in the circulation passage 46. The flow control plate 34, which is the uniform mixing means used in the first embodiment, is discarded in this embodiment.

【0094】以上のように構成された熱交換装置につい
て、以下動作、作用を説明する。第一燃焼部20単独運
転時、または第二燃焼部21単独運転時について、燃焼
ガスと水の流れは実施例1と同様のため、ここでの説明
は省略する。
The operation and action of the heat exchange device constructed as above will be described below. The flow of combustion gas and water during the independent operation of the first combustion unit 20 or the independent operation of the second combustion unit 21 is the same as that of the first embodiment, and therefore the description thereof is omitted here.

【0095】そして、第二燃焼部単独運転時、循環通路
46によって副伝熱管35の入口35aと第一伝熱管2
8の出口28bとが連通され循環回路が構成されるた
め、循環通路46に設けた循環ポンプ47を用いて、副
伝熱管35と第一伝熱管28内の滞留水は駆動され強制
循環することができる。そして、副伝熱管35と第一伝
熱管28内で燃焼ガスの熱を受け温度上昇した滞留水は
強制循環され循環通路46部での放熱によって、温度が
低下し沸騰を防止することができる。
When the second combustion unit is operated independently, the inlet 35a of the sub heat transfer tube 35 and the first heat transfer tube 2 are circulated by the circulation passage 46.
Since the circulation circuit is constructed by communicating with the outlet 28b of the No. 8 outlet, the circulating water in the sub-heat transfer pipe 35 and the first heat transfer pipe 28 is driven and forcedly circulated by using the circulation pump 47 provided in the circulation passage 46. You can Then, the retained water that has received the heat of the combustion gas in the sub heat transfer pipe 35 and the first heat transfer pipe 28 and has a temperature rise is forcibly circulated, and the heat is radiated in the circulation passage 46 to lower the temperature and prevent boiling.

【0096】このように、循環通路46によって第一伝
熱管28と副伝熱管35とを循環回路にし循環ポンプ4
7を用いてその中の滞留水を強制駆動することによっ
て、温度上昇した滞留水は循環通路46で放熱し温度上
昇を抑えられるため、第一伝熱管28内の滞留水の温度
も副伝熱管35内の滞留水の温度も低下し沸騰を防止す
ることができ、シンプルな構成で低コスト沸騰防止可能
の熱交換装置を提供することができる。
As described above, the circulation passage 46 makes the first heat transfer pipe 28 and the sub heat transfer pipe 35 into a circulation circuit, and the circulation pump 4
By forcibly driving the accumulated water therein by using No. 7, the accumulated water whose temperature has risen radiates heat in the circulation passage 46 and the temperature rise can be suppressed, so that the temperature of the accumulated water in the first heat transfer pipe 28 also increases. It is possible to provide a heat exchange device capable of preventing boiling by lowering the temperature of the accumulated water in 35 to prevent boiling and having a simple structure and capable of preventing boiling at low cost.

【0097】なお、本実施例において、副伝熱管35の
入口35aと第一伝熱管28の出口28bを連通させる
循環通路46を用いたが、副伝熱管35の入口35aと
副伝熱管35の出口35bを循環通路で連通しても、同
様な効果が得られる。
In the present embodiment, the circulation passage 46 which connects the inlet 35a of the sub heat transfer tube 35 and the outlet 28b of the first heat transfer tube 28 is used, but the inlet 35a of the sub heat transfer tube 35 and the sub heat transfer tube 35 are connected to each other. Even if the outlet 35b is communicated with the circulation passage, the same effect can be obtained.

【0098】(実施例7)図7は本発明の実施例7にお
ける熱交換装置のシステム構成図である。本実施例にお
いて、実施例1の構成と異なるところは、副伝熱管35
の入口35aに設けた元止弁48と、副伝熱管35の出
口35bに設けた水抜き通路49と、水抜き通路49に
設けた水抜き開閉弁50とを設けたことである。なお、
実施例1で用いた均一混合手段である流れ調節板34は
本実施例で廃棄する。
(Embodiment 7) FIG. 7 is a system configuration diagram of a heat exchange apparatus in Embodiment 7 of the present invention. This embodiment is different from the structure of the first embodiment in that the sub heat transfer pipe 35
The main stop valve 48 provided at the inlet 35a of the above, the drainage passage 49 provided at the outlet 35b of the sub heat transfer tube 35, and the drainage on-off valve 50 provided at the drainage passage 49 are provided. In addition,
The flow control plate 34, which is the uniform mixing means used in the first embodiment, is discarded in this embodiment.

【0099】以上のように構成された熱交換装置につい
て、以下動作、作用を説明する。第一燃焼部20単独運
転時、または第二燃焼部21単独運転時について、燃焼
ガスと水の流れは実施例1と同様のため、ここでの説明
は省略する。
The operation and action of the heat exchange device configured as described above will be described below. The flow of combustion gas and water during the independent operation of the first combustion unit 20 or the independent operation of the second combustion unit 21 is the same as that of the first embodiment, and therefore the description thereof is omitted here.

【0100】そして、第二燃焼部単独運転時、副伝熱管
35の入口35aに設けた元止弁48が作動し副伝熱管
35の入口を閉塞してから、水抜き開閉弁を開放にして
水抜き通路49を通して副伝熱管35内の滞留水を抜
く。よって、副伝熱管35内を空にした状態で第二燃焼
部21から発生した燃焼ガスに加熱されるため、管内滞
留水が沸騰する心配なく第二燃焼部21単独の運転がで
きる。
During the second combustion section alone operation, the stop valve 48 provided at the inlet 35a of the sub heat transfer tube 35 is actuated to close the inlet of the sub heat transfer tube 35, and then the drainage on-off valve is opened. The accumulated water in the sub heat transfer pipe 35 is drained through the drainage passage 49. Therefore, since the combustion gas generated from the second combustion section 21 is heated in a state where the sub heat transfer tube 35 is emptied, the second combustion section 21 alone can be operated without fear of boiling water in the tube.

【0101】このように、元止弁48と水抜き通路49
を用いることによって、副伝熱管35は滞留水が抜かれ
た状態で燃焼ガスに加熱されることになる。ここで耐食
性材料例えばチタンまたはステンレスで作られる副伝熱
管35は、滞留水なしの状態で燃焼ガスに加熱されても
耐えられる。このように、滞留水の沸騰がまったく心配
することなく、シンプルな構成で低コスト沸騰防止可能
の熱交換装置を提供することができる。
As described above, the stop valve 48 and the drainage passage 49 are provided.
By using, the sub heat transfer pipe 35 is heated by the combustion gas with the accumulated water being removed. Here, the sub heat transfer pipe 35 made of a corrosion resistant material such as titanium or stainless steel can withstand the heating to the combustion gas without accumulated water. As described above, it is possible to provide a heat exchange device that has a simple structure and can prevent boiling at low cost without worrying about boiling of accumulated water.

【0102】(実施例8)図8は本発明の実施例8にお
ける熱交換装置のシステム構成図である。本実施例にお
いて、実施例1の構成と異なるところは、排気ガス通路
33の中の第二燃焼部21に対応する位置に、副伝熱管
35が配列されない通りぬき排気通路51を設けたこと
である。また、本実施例において、副伝熱管35の軸方
向は第一伝熱管28及び第二伝熱管29の軸方向と一致
せず交差するように配置されている。なお、実施例1で
用いた均一混合手段である流れ調節板34は本実施例で
廃棄する。
(Embodiment 8) FIG. 8 is a system configuration diagram of a heat exchange apparatus in Embodiment 8 of the present invention. In the present embodiment, the difference from the configuration of the first embodiment is that a passing exhaust passage 51 in which the auxiliary heat transfer tubes 35 are not arranged is provided at a position in the exhaust gas passage 33 corresponding to the second combustion portion 21. is there. Further, in the present embodiment, the axial direction of the sub heat transfer tube 35 is arranged so as not to coincide with the axial directions of the first heat transfer tube 28 and the second heat transfer tube 29 and to intersect with each other. The flow control plate 34, which is the uniform mixing means used in the first embodiment, is discarded in this embodiment.

【0103】以上のように構成された熱交換装置につい
て、以下動作、作用を説明する。第一燃焼部20単独運
転時、または第二燃焼部21単独運転時について、燃焼
ガスと水の流れは実施例1と同様のため、ここでの説明
は省略する。
The operation and action of the heat exchange device configured as described above will be described below. The flow of combustion gas and water during the independent operation of the first combustion unit 20 or the independent operation of the second combustion unit 21 is the same as that of the first embodiment, and therefore the description thereof is omitted here.

【0104】そして、第二燃焼部単独運転時、排気ガス
通路33の中の第二燃焼部21に対応する位置に、副伝
熱管35を配列しない通りぬき排気通路51を設けるこ
とによって、排気ガス通路33を流れる第二燃焼部21
から発生した低温燃焼ガスA1は副伝熱管35を加熱せ
ずに通りぬき排気通路51から排出することができるた
め、副伝熱管35内の滞留水は燃焼ガスとの熱交換を避
けて滞留水の温度が上昇せず確実に沸騰を防止すること
ができる。
When the second combustion section is operated independently, the exhaust gas passage 33 is provided in the exhaust gas passage 33 at a position corresponding to the second combustion section 21. Second combustion section 21 flowing through passage 33
Since the low temperature combustion gas A1 generated from the exhaust gas can be discharged from the exhaust passage 51 without passing through the auxiliary heat transfer pipe 35, the accumulated water in the auxiliary heat transfer pipe 35 avoids heat exchange with the combustion gas and is retained water. It is possible to surely prevent boiling without increasing the temperature of.

【0105】このように、排気ガス通路33の中の第二
燃焼部21に対応する位置に、副伝熱管35を配列しな
い通りぬき排気通路51を設けることによって、第一燃
焼部専用排気通路と第二燃焼部専用通路を別々に設ける
ことなく、シンプルな構成で低コスト沸騰防止可能の熱
交換装置を提供することができる。
As described above, by providing the passing exhaust passage 51 in which the auxiliary heat transfer tubes 35 are not arranged in the exhaust gas passage 33 at a position corresponding to the second combustion portion 21, the exhaust passage dedicated to the first combustion portion is provided. It is possible to provide a heat exchange device with a simple structure and capable of preventing boiling at low cost, without separately providing a passage dedicated to the second combustion unit.

【0106】(実施例9)図9は本発明の実施例9にお
ける熱交換装置のシステム構成図である。本実施例にお
いて、実施例1の構成と異なるところは、副伝熱管35
で発生する結露水を捕集し中和する中和装置52と、副
伝熱管35の入口35a側に設けたバイパスシャワー水
路53と、このバイパスシャワー水路53に設けた流量
制御手段54と、副伝熱管35内の水温を検知する温度
検知手段55と、バイパスシャワー水路53と連通し副
伝熱管35の表面に噴水する流出口56とを設けたこと
である。また、57は中和装置52内の水を排出する中
和排出口である。なお、実施例1で用いた均一混合手段
である流れ調節板34は本実施例で廃棄する。
(Ninth Embodiment) FIG. 9 is a system configuration diagram of a heat exchange device in a ninth embodiment of the present invention. This embodiment is different from the structure of the first embodiment in that the sub heat transfer pipe 35
Neutralizing device 52 for collecting and neutralizing the dew condensation water generated in the above, a bypass shower water channel 53 provided on the inlet 35a side of the sub heat transfer tube 35, a flow rate control means 54 provided in this bypass shower water channel 53, That is, the temperature detecting means 55 for detecting the water temperature in the heat transfer tube 35 and the outlet 56 for communicating with the bypass shower water passage 53 and for spraying water on the surface of the sub heat transfer tube 35 are provided. Further, 57 is a neutralization outlet for discharging water in the neutralization device 52. The flow control plate 34, which is the uniform mixing means used in the first embodiment, is discarded in this embodiment.

【0107】以上のように構成された熱交換装置につい
て、以下動作、作用を説明する。第一燃焼部20単独運
転時、または第二燃焼部21単独運転時について、燃焼
ガスと水の流れは実施例1と同様のため、ここでの説明
は省略する。
The operation and action of the heat exchange device configured as described above will be described below. The flow of combustion gas and water during the independent operation of the first combustion unit 20 or the independent operation of the second combustion unit 21 is the same as that of the first embodiment, and therefore the description thereof is omitted here.

【0108】そして、第二燃焼部単独運転時、運転しな
い副伝熱管35内の滞留水は第二燃焼部21から発生し
た燃焼ガスによって加熱され温度が上昇するが、この滞
留水の温度は温度検知手段55を用いて検知し所定温度
になると、流量制御手段54が作動しバイパスシャワー
水路53を開通させ、流出口56より水を噴出させるこ
とになる。そしてこの噴出される水は燃焼ガス及び温度
上昇した副伝熱管35と熱交換し、滞留水を冷やしてか
ら中和装置52に流れ込み中和排出口57を通して排出
される。このような冷却手段で滞留水の沸騰を防止する
ことが確実となる。
When the second combustion section is operated independently, the accumulated water in the sub heat transfer tube 35 which is not operated is heated by the combustion gas generated from the second combustion section 21 and its temperature rises. When the temperature is detected by the detection means 55 and reaches a predetermined temperature, the flow rate control means 54 operates to open the bypass shower water passage 53 and jet water from the outflow port 56. The jetted water exchanges heat with the combustion gas and the sub heat transfer pipe 35 whose temperature has risen, cools the accumulated water, and then flows into the neutralization device 52 and is discharged through the neutralization outlet 57. It becomes possible to prevent boiling of the accumulated water by such cooling means.

【0109】このように、バイパスシャワー水路53を
用いて温度上昇した副伝熱管35へ噴水することによっ
て、滞留水の温度上昇を所定温度以下に抑えて沸騰を確
実に防止できるとともに、副伝熱管35表面への噴水は
第一燃焼部などの運転によって副伝熱管35の表面に付
着したほこりなどの付着物を洗い落とし、副伝熱管35
の表面を清掃することができるため、例え第一燃焼部が
運転する時の副伝熱管35の性能を維持し耐久性を持た
すことができる。
As described above, by spraying water to the sub heat transfer pipe 35 whose temperature has risen by using the bypass shower water passage 53, the temperature rise of the accumulated water can be suppressed to a predetermined temperature or less, and boiling can be reliably prevented, and at the same time, the sub heat transfer pipe can be prevented. The water sprayed on the surface of the sub-heat pipe 35 is washed away by removing dust and other adhered substances adhering to the surface of the sub-heat transfer pipe 35 by the operation of the first combustion section or the like.
Since the surface of the sub-heat transfer tube 35 can be cleaned, the performance of the sub heat transfer tube 35 can be maintained and durability can be maintained even when the first combustion section is operating.

【0110】(実施例10)図10は本発明の実施例1
0における熱交換装置のシステム構成図である。本実施
例において、実施例1の構成と異なるところは、副伝熱
管で発生する結露水を捕集し中和する中和装置58と、
副伝熱管35の出口35bと中和装置58を連通する副
伝熱管バイパス水路59と、この副伝熱管バイパス水路
59に設けた流量制御手段60と、副伝熱管35内の滞
留水温度を検知する温度検知手段61とを設けたことで
ある。なお、実施例1で用いた均一混合手段である流れ
調節板34は本実施例で廃棄する。
(Embodiment 10) FIG. 10 shows Embodiment 1 of the present invention.
It is a system block diagram of the heat exchange apparatus in 0. In this embodiment, the difference from the configuration of the first embodiment is a neutralization device 58 for collecting and neutralizing the dew condensation water generated in the sub heat transfer tube,
An auxiliary heat transfer tube bypass water channel 59 that communicates the outlet 35b of the auxiliary heat transfer tube 35 and the neutralization device 58, a flow rate control means 60 provided in the auxiliary heat transfer tube bypass water channel 59, and the accumulated water temperature in the auxiliary heat transfer tube 35 are detected. The temperature detecting means 61 is provided. The flow control plate 34, which is the uniform mixing means used in the first embodiment, is discarded in this embodiment.

【0111】以上のように構成された熱交換装置につい
て、以下動作、作用を説明する。第一燃焼部20単独運
転時、または第二燃焼部21単独運転時について、燃焼
ガスと水の流れは実施例1と同様のため、ここでの説明
は省略する。
The operation and action of the heat exchange device configured as described above will be described below. The flow of combustion gas and water during the independent operation of the first combustion unit 20 or the independent operation of the second combustion unit 21 is the same as that of the first embodiment, and therefore the description thereof is omitted here.

【0112】そして、第二燃焼部単独運転時、運転しな
い副伝熱管35内の滞留水は第二燃焼部21から発生し
た燃焼ガスによって加熱され温度上昇するが、この滞留
水の温度は温度検知手段61を用いて検知し所定温度に
なると、流量制御手段60が作動し副伝熱管バイパス水
路59を開通させ、副伝熱管35内の水が沸騰しないよ
うに所定流量で副伝熱管バイパス水路59を通じて中和
装置58へ水を流す。そして、副伝熱管35内の水は流
動になり、低温燃焼ガスA1から受熱し温度上昇した水
は中和装置58へ流れ、下水道へ流れるため、副伝熱管
35内において、水温を所定の温度まで制御でき管内水
の沸騰を確実に防止できる。
When the second combustion section is operated independently, the accumulated water in the sub heat transfer tube 35 which is not operated is heated by the combustion gas generated from the second combustion section 21 and its temperature rises. When the temperature is detected by the means 61 and reaches a predetermined temperature, the flow rate control means 60 operates to open the sub heat transfer tube bypass water channel 59, and the sub heat transfer tube bypass water channel 59 is controlled at a predetermined flow rate so that the water in the sub heat transfer tube 35 does not boil. Through the neutralizer 58. Then, the water in the sub heat transfer tube 35 becomes fluid, and the water that has received the heat from the low temperature combustion gas A1 and whose temperature has risen flows to the neutralization device 58 and flows to the sewer. It is possible to control even up to boiling water in the pipe.

【0113】このように、副伝熱管35の出口35bと
中和装置58を連通する副伝熱管バイパス水路59を設
けることによって、第二燃焼部21が単独運転する時、
副伝熱管35内の水を所定流量で流動的にすることで副
伝熱管35内の水温を所定温度までコントロールでき管
内水の沸騰を確実に防止できる。よって、シンプルな構
成で低コスト沸騰防止可能の熱交換装置を提供すること
ができる。
As described above, by providing the sub heat transfer tube bypass water passage 59 that connects the outlet 35b of the sub heat transfer tube 35 and the neutralization device 58, when the second combustion section 21 operates independently,
By making the water in the sub heat transfer tube 35 fluid at a predetermined flow rate, the water temperature in the sub heat transfer tube 35 can be controlled to a predetermined temperature, and boiling of the water in the tube can be reliably prevented. Therefore, it is possible to provide a heat exchange device having a simple structure and capable of preventing boiling at low cost.

【0114】(実施例11)図11は本発明の実施例1
1における熱交換装置のシステム構成図である。本実施
例において、実施例1の構成と異なるところは、副伝熱
管35で発生する結露水を捕集し中和する中和装置62
と、第一伝熱管28の出口28bと中和装置62を連通
する第一伝熱管バイパス水路63と、この第一伝熱管バ
イパス水路63に設けた流量制御手段64と、副伝熱管
35内滞留水温度を検知する温度検知手段65とを設け
たことである。なお、実施例1で用いた均一混合手段で
ある流れ調節板34は本実施例で廃棄する。
(Embodiment 11) FIG. 11 shows Embodiment 1 of the present invention.
2 is a system configuration diagram of the heat exchange device in FIG. The present embodiment is different from the configuration of the first embodiment in that the neutralization device 62 that collects and neutralizes the dew condensation water generated in the sub heat transfer tube 35.
A first heat transfer tube bypass water passage 63 that communicates the outlet 28b of the first heat transfer tube 28 with the neutralization device 62; a flow rate control means 64 provided in the first heat transfer tube bypass water passage 63; That is, the temperature detecting means 65 for detecting the water temperature is provided. The flow control plate 34, which is the uniform mixing means used in the first embodiment, is discarded in this embodiment.

【0115】以上のように構成された熱交換装置につい
て、以下動作、作用を説明する。第一燃焼部20単独運
転時、または第二燃焼部21単独運転時について、燃焼
ガスと水の流れは実施例1と同様のため、ここでの説明
は省略する。
The operation and action of the heat exchange device configured as above will be described below. The flow of combustion gas and water during the independent operation of the first combustion unit 20 or the independent operation of the second combustion unit 21 is the same as that of the first embodiment, and therefore the description thereof is omitted here.

【0116】そして、第二燃焼部単独運転時、運転しな
い副伝熱管35内の滞留水は第二燃焼部21から発生し
た燃焼ガスによって加熱され温度上昇するが、この滞留
水の温度は温度検知手段65を用いて検知し所定温度に
なると、流量制御手段64が作動し第一伝熱管バイパス
水路63を開通させ、第一伝熱管28の出口28bから
所定流量で第一伝熱管バイパス水路63を通じて中和装
置62へ水を流す。そして、副伝熱管35と第一伝熱管
28内の水は流動になり、低温燃焼ガスA1から受熱し
温度上昇した副伝熱管35内の水は第一伝熱管28へ、
そして第一伝熱管28から中和装置62へ流れ、下水道
へ流れるため、第一伝熱管28内においても副伝熱管3
5内においても、水温を所定の温度まで制御でき管内水
の沸騰を確実に防止できる。
When the second combustion section is operated independently, the accumulated water in the sub heat transfer tube 35 which is not operated is heated by the combustion gas generated from the second combustion section 21 and its temperature rises. When the temperature is detected using the means 65 and reaches a predetermined temperature, the flow rate control means 64 operates to open the first heat transfer tube bypass water passage 63, and the first heat transfer tube 28 has an outlet 28b at a predetermined flow rate through the first heat transfer tube bypass water passage 63. Water is supplied to the neutralizer 62. Then, the water in the sub heat transfer tube 35 and the first heat transfer tube 28 becomes a fluid, and the water in the sub heat transfer tube 35 which has received the heat from the low temperature combustion gas A1 and has increased in temperature flows to the first heat transfer tube 28,
Then, since it flows from the first heat transfer pipe 28 to the neutralization device 62 and flows into the sewer, the sub heat transfer pipe 3 also flows inside the first heat transfer pipe 28.
Even within 5, the water temperature can be controlled to a predetermined temperature and the boiling of water in the pipe can be reliably prevented.

【0117】このように、第一伝熱管28の出口28b
と中和装置62を連通する第一伝熱管バイパス水路63
を設けることによって、第二燃焼部21が運転する時、
第一伝熱管28内の水も副伝熱管35内の水も所定流量
で流動的にすることで第一伝熱管28と副伝熱管35内
の水温を所定温度までコントロールでき管内水の沸騰を
確実に防止できる。よって、シンプルな構成で低コスト
沸騰防止可能の熱交換装置を提供することができる。
In this way, the outlet 28b of the first heat transfer tube 28
First heat transfer tube bypass water passage 63 that communicates with the neutralization device 62
By providing, when the second combustion unit 21 operates,
By making both the water in the first heat transfer tube 28 and the water in the sub heat transfer tube 35 fluid at a predetermined flow rate, the water temperature in the first heat transfer tube 28 and the sub heat transfer tube 35 can be controlled to a predetermined temperature, and boiling of water in the tube can be controlled. It can be surely prevented. Therefore, it is possible to provide a heat exchange device having a simple structure and capable of preventing boiling at low cost.

【0118】(実施例12)図12は本発明の実施例1
2における熱交換装置のシステム構成図である。本実施
例において、実施例1の構成と異なるところは、排気ガ
ス通路33の上流側に位置しかつ伝熱面積が下流側に位
置する副伝熱管35より小さい小伝熱面積副伝熱管66
を設けたことである。
(Embodiment 12) FIG. 12 shows Embodiment 1 of the present invention.
2 is a system configuration diagram of the heat exchange device in FIG. In the present embodiment, the difference from the configuration of the first embodiment is that a small heat transfer area sub heat transfer pipe 66 that is located upstream of the exhaust gas passage 33 and has a heat transfer area smaller than the sub heat transfer pipe 35 located downstream.
Is provided.

【0119】以上のように構成された熱交換装置につい
て、以下動作、作用を説明する。第一燃焼部20単独運
転時、または第二燃焼部21単独運転時について、燃焼
ガスと水の流れは実施例1と同様のため、ここでの説明
は省略する。
The operation and action of the heat exchange device configured as above will be described below. The flow of combustion gas and water during the independent operation of the first combustion unit 20 or the independent operation of the second combustion unit 21 is the same as that of the first embodiment, and therefore the description thereof is omitted here.

【0120】そして、第二燃焼部単独運転時、運転しな
い副伝熱管35と66内の滞留水は第二燃焼部21から
発生した低温燃焼ガスA1によって加熱され温度上昇す
るが、ここで、低温燃焼ガスA1の温度が比較的高い排
気ガス通路33の上流側において、表面伝熱面積を比較
的小さい小伝熱面積副伝熱管66を設けることによっ
て、この小伝熱面積副伝熱管66の燃焼ガスからの受熱
を抑えることによって、排気ガス通路33の上流側に配
置される副伝熱管が過度受熱し局所沸騰することが防止
できる。よって、シンプルな構成で低コスト沸騰防止可
能の熱交換装置を提供することができる。
During the second combustion section alone operation, the accumulated water in the sub heat transfer tubes 35 and 66 which are not operated is heated by the low temperature combustion gas A1 generated from the second combustion section 21 and rises in temperature. By providing a small heat transfer area sub heat transfer tube 66 having a relatively small surface heat transfer area on the upstream side of the exhaust gas passage 33 where the temperature of the combustion gas A1 is relatively high, the combustion gas of the small heat transfer area sub heat transfer tube 66 is It is possible to prevent the sub heat transfer pipe arranged on the upstream side of the exhaust gas passage 33 from receiving excessive heat and locally boiling by suppressing the heat reception of the above. Therefore, it is possible to provide a heat exchange device having a simple structure and capable of preventing boiling at low cost.

【0121】なお、上記各実施例において、第一燃焼部
と第二燃焼部がそれぞれ単独燃焼時について説明した
が、第一燃焼部と第二燃焼部が同時に燃焼する時、副伝
熱管と第一伝熱管を通水し、第二伝熱管を通水せずにし
て、第一燃焼部単独運転と同様に、副伝熱管での燃焼ガ
ス中の水蒸気凝縮潜熱を回収することができるため、同
様な効果が得られる。
In each of the above-mentioned embodiments, the first combustion section and the second combustion section have been described as independent combustion, respectively, but when the first combustion section and the second combustion section simultaneously burn, the auxiliary heat transfer tube and the (1) Passing water through the heat transfer tube, without passing through the second heat transfer tube, as in the independent operation of the first combustion section, the latent heat of steam condensation in the combustion gas in the sub heat transfer tube can be recovered. Similar effects are obtained.

【0122】[0122]

【発明の効果】以上のように、本発明によれば、給湯潜
熱伝熱管内の滞留水沸騰せずシンプルな構成で低コスト
の潜熱回収熱交換装置を提供することが可能となる。
As described above, according to the present invention, it is possible to provide a low-cost latent heat recovery heat exchange device with a simple configuration that does not cause boiling of accumulated water in the latent heat transfer tube for hot water supply.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1における熱交換装置の構成図FIG. 1 is a configuration diagram of a heat exchange device according to a first embodiment of the present invention.

【図2】本発明の実施例2における熱交換装置の構成図FIG. 2 is a configuration diagram of a heat exchange device according to a second embodiment of the present invention.

【図3】本発明の実施例3における熱交換装置の構成図FIG. 3 is a configuration diagram of a heat exchange device according to a third embodiment of the present invention.

【図4】本発明の実施例4における熱交換装置の構成図FIG. 4 is a configuration diagram of a heat exchange device according to a fourth embodiment of the present invention.

【図5】本発明の実施例5における熱交換装置の構成図FIG. 5 is a configuration diagram of a heat exchange device according to a fifth embodiment of the present invention.

【図6】本発明の実施例6における熱交換装置の構成図FIG. 6 is a configuration diagram of a heat exchange device according to a sixth embodiment of the present invention.

【図7】本発明の実施例7における熱交換装置の構成図FIG. 7 is a configuration diagram of a heat exchange device according to a seventh embodiment of the present invention.

【図8】本発明の実施例8における熱交換装置の構成図FIG. 8 is a configuration diagram of a heat exchange device according to an eighth embodiment of the present invention.

【図9】本発明の実施例9における熱交換装置の構成図FIG. 9 is a configuration diagram of a heat exchange device according to a ninth embodiment of the present invention.

【図10】本発明の実施例10における熱交換装置の構
成図
FIG. 10 is a configuration diagram of a heat exchange device according to a tenth embodiment of the present invention.

【図11】本発明の実施例11における熱交換装置の構
成図
FIG. 11 is a configuration diagram of a heat exchange device according to an eleventh embodiment of the present invention.

【図12】本発明の実施例12における熱交換装置の構
成図
FIG. 12 is a configuration diagram of a heat exchange device according to a twelfth embodiment of the present invention.

【図13】従来の熱交換装置の構成図FIG. 13 is a configuration diagram of a conventional heat exchange device.

【符号の説明】[Explanation of symbols]

20 第一燃焼部 21 第二燃焼部 27 缶体 28 第一伝熱管 29 第二伝熱管 33 排気ガス通路 34 流れ調節板(均一混合手段) 35 副伝熱管 38 バイパス空気通路 39 バイパス空気弁 40 周囲空気流路 41 流れガイド(流れ調節手段) 42 流れダンパー 43 回転モータ(駆動手段) 45 燃焼量制限手段 46 循環通路 47 循環ポンプ 48 元止弁 49 水抜き通路 51 通りぬき排気通路 52、58、62 中和装置 53 バイパスシャワー水路 54 温度検知手段 55 流量制御手段 56 流出口 59 副伝熱管バイパス水路 60 流量制御手段 61 温度検知手段 63 第一伝熱管バイパス水路 64 流量制御手段 65 温度制御手段 66 小伝熱面積副伝熱管 20 First combustion section 21 Second combustion section 27 cans 28 First heat transfer tube 29 Second heat transfer tube 33 Exhaust gas passage 34 Flow control plate (uniform mixing means) 35 Sub heat transfer tube 38 Bypass air passage 39 Bypass air valve 40 ambient air flow path 41 Flow guide (flow control means) 42 flow damper 43 rotary motor (driving means) 45 Combustion amount limiting means 46 Circulation passage 47 Circulation pump 48 yuan stop valve 49 drainage passage 51 street exhaust passage 52,58,62 Neutralizer 53 Bypass shower channel 54 Temperature detection means 55 Flow rate control means 56 Outlet 59 Sub heat transfer pipe bypass channel 60 Flow control means 61 Temperature detecting means 63 First heat transfer pipe bypass channel 64 flow control means 65 Temperature control means 66 Small heat transfer area Sub heat transfer tube

───────────────────────────────────────────────────── フロントページの続き (72)発明者 近藤 正満 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 3L036 AA04 3L103 AA42 BB43 CC02 CC27 DD09   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Masamitsu Kondo             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. F-term (reference) 3L036 AA04                 3L103 AA42 BB43 CC02 CC27 DD09

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 隣接して設けた第一燃焼部及び第二燃焼
部と、前記両燃焼部の下流に設けた缶体と、前記缶体内
に設けた第一伝熱管及び第二伝熱管と、前記両伝熱管の
下流側に設けた排気ガス通路と、前記排気ガス通路に設
けられ前記排気ガス通路を流れる流体を均一混合する均
一混合手段と、前記均一混合手段の下流側に設けた副伝
熱管とを備えてなる熱交換装置。
1. A first combustion section and a second combustion section provided adjacent to each other, a can body provided downstream of both combustion sections, and a first heat transfer tube and a second heat transfer tube provided in the can body. An exhaust gas passage provided on the downstream side of both heat transfer tubes, a uniform mixing means provided on the exhaust gas passage for uniformly mixing fluids flowing through the exhaust gas passage, and a sub-stream provided on the downstream side of the uniform mixing means. A heat exchange device comprising a heat transfer tube.
【請求項2】 隣接して設けた第一燃焼部及び第二燃焼
部と、前記両燃焼部の上流側に設けた燃焼用空気を供給
する空気室と、前記両燃焼部の下流に設けた缶体と、前
記缶体内に設けた第一伝熱管及び第二伝熱管と、前記両
伝熱管の下流側に設けた排気ガス通路と、前記排気ガス
通路に設けた副伝熱管と、前記排気ガス通路と前記空気
室を直接連通するバイパス空気通路とを備えてなる熱交
換装置。
2. A first combustion section and a second combustion section provided adjacent to each other, an air chamber for supplying combustion air provided on the upstream side of the both combustion sections, and a downstream side of the both combustion sections. A can body, a first heat transfer tube and a second heat transfer tube provided in the can body, an exhaust gas passage provided at a downstream side of the both heat transfer tubes, a sub heat transfer tube provided in the exhaust gas passage, and the exhaust gas. A heat exchange device comprising a gas passage and a bypass air passage which directly connects the air chamber.
【請求項3】隣接して設けた第一燃焼部及び第二燃焼部
と、前記両燃焼部の上流側に設けた燃焼用空気を供給す
る空気室と、前記両燃焼部の下流に設けた缶体と、前記
缶体内に設けた第一伝熱管及び第二伝熱管と、前記缶体
内の周囲に設けられ前記空気室と連通する周囲空気流路
と、前記両伝熱管の下流側に設けた排気ガス通路と、前
記排気ガス通路に設けた副伝熱管と、前記排気ガス通路
に設けられ周囲空気流路を流れる空気を排気ガス通路中
に流れるような流れ調節手段とを備えてなる熱交換装
置。
3. A first combustion section and a second combustion section provided adjacent to each other, an air chamber for supplying combustion air provided on the upstream side of the both combustion sections, and a downstream side of the both combustion sections. A can body, a first heat transfer tube and a second heat transfer tube provided in the can body, an ambient air flow path that is provided around the can body and communicates with the air chamber, and is provided on the downstream side of both the heat transfer tubes. An exhaust gas passage, a sub heat transfer pipe provided in the exhaust gas passage, and a flow adjusting means for allowing the air flowing through the ambient air passage to flow in the exhaust gas passage into the exhaust gas passage. Exchange device.
【請求項4】 90隣接して設けた第一燃焼部及び第二
燃焼部と、前記両燃焼部の上流側に設けた燃焼用空気を
供給する空気室と、前記両燃焼部の下流に設けた缶体
と、前記缶体内に設けた第一伝熱管及び第二伝熱管と、
前記両伝熱管の下流側に設けた排気ガス通路と、前記排
気ガス通路に設けた副伝熱管と、前記排気ガス通路に設
けられ排気ガス通路を流れる燃焼ガスの流れ方向を調節
する流れダンパーと、前記流れダンパーを制御する駆動
手段とを備えてなる熱交換装置。
4. A first combustion section and a second combustion section provided adjacent to each other, an air chamber for supplying combustion air provided on the upstream side of the both combustion sections, and a downstream side of the both combustion sections. A can body, a first heat transfer tube and a second heat transfer tube provided in the can body,
An exhaust gas passage provided on the downstream side of the both heat transfer pipes, a sub heat transfer pipe provided in the exhaust gas passage, and a flow damper provided in the exhaust gas passage for adjusting a flow direction of combustion gas flowing through the exhaust gas passage. A heat exchange device comprising: a drive means for controlling the flow damper.
【請求項5】 隣接して設けた第一燃焼部及び第二燃焼
部と、前記両燃焼部の下流に設けた缶体と、前記缶体内
に設けた第一伝熱管及び第二伝熱管と、前記両伝熱管の
下流側に設けた排気ガス通路と、前記排気ガス通路に設
けた副伝熱管と、前記第二燃焼部の最大燃焼量を制限す
る燃焼量制限手段とを備えてなる熱交換装置。
5. A first combustion section and a second combustion section provided adjacent to each other, a can body provided downstream of both combustion sections, and a first heat transfer tube and a second heat transfer tube provided in the can body. A heat provided with an exhaust gas passage provided on the downstream side of the both heat transfer pipes, a sub heat transfer pipe provided in the exhaust gas passage, and a combustion amount limiting means for limiting the maximum combustion amount of the second combustion section. Exchange device.
【請求項6】 隣接して設けた第一燃焼部及び第二燃焼
部と、前記両燃焼部の下流に設けた缶体と、前記缶体内
に設けた第一伝熱管及び第二伝熱管と、前記両伝熱管の
下流側に設けた排気ガス通路と、前記排気ガス通路に設
けた前記第一伝熱管と連通する副伝熱管と、前記副伝熱
管の入口側と前記第一伝熱管の出口側を連通させる循環
通路と、前記循環通路に設けた循環ポンプとを備えてな
る熱交換装置。
6. A first combustion section and a second combustion section provided adjacent to each other, a can body provided downstream of both combustion sections, and a first heat transfer tube and a second heat transfer tube provided in the can body. An exhaust gas passage provided on the downstream side of the both heat transfer tubes, a sub heat transfer tube communicating with the first heat transfer tube provided on the exhaust gas passage, an inlet side of the sub heat transfer tube and the first heat transfer tube A heat exchange device comprising: a circulation passage communicating with the outlet side; and a circulation pump provided in the circulation passage.
【請求項7】 隣接して設けた第一燃焼部及び第二燃焼
部と、前記両燃焼部の下流に設けた缶体と、前記缶体内
に設けた第一伝熱管及び第二伝熱管と、前記両伝熱管の
下流側に設けた排気ガス通路と、前記排気ガス通路に設
けた前記第一伝熱管と連通する副伝熱管と、前記副伝熱
管の入口に設けた元止弁と、前記副伝熱管の出口に設け
た水抜き通路とを備えてなる熱交換装置。
7. A first combustion section and a second combustion section provided adjacent to each other, a can body provided downstream of both combustion sections, and a first heat transfer tube and a second heat transfer tube provided in the can body. An exhaust gas passage provided on the downstream side of both heat transfer tubes, a sub heat transfer tube communicating with the first heat transfer tube provided in the exhaust gas passage, and a stop valve provided at an inlet of the sub heat transfer tube, A heat exchange device comprising: a drainage passage provided at an outlet of the sub heat transfer tube.
【請求項8】 隣接して設けた第一燃焼部及び第二燃焼
部と、前記両燃焼部の下流に設けた缶体と、前記缶体内
に設けた第一伝熱管及び第二伝熱管と、前記両伝熱管の
下流側に設けた排気ガス通路と、前記排気ガス通路に設
けた前記第一伝熱管と連通する副伝熱管と、前記排気ガ
ス通路中の前記第二燃焼部に対応する位置に設けた前記
副伝熱管が配列されない通りぬき排気通路とを備えてな
る熱交換装置。
8. A first combustion section and a second combustion section provided adjacent to each other, a can body provided downstream of the both combustion sections, and a first heat transfer tube and a second heat transfer tube provided in the can body. Corresponding to an exhaust gas passage provided on the downstream side of the both heat transfer pipes, a sub heat transfer pipe communicating with the first heat transfer pipe provided in the exhaust gas passage, and the second combustion section in the exhaust gas passage. A heat exchanging device comprising: a through-passage exhaust passage in which the sub heat transfer pipes are not arranged.
【請求項9】 隣接して設けた第一燃焼部及び第二燃焼
部と、前記両燃焼部の下流に設けた缶体と、前記缶体内
に設けた第一伝熱管及び第二伝熱管と、前記両伝熱管の
下流側に設けた排気ガス通路と、前記排気ガス通路に設
けた前記第一伝熱管と連通し燃焼ガスの水蒸気凝縮潜熱
を回収する副伝熱管と、前記副伝熱管で発生した結露水
を捕集し中和する中和装置と、前記副伝熱管の入口側に
設けたバイパスシャワー水路と、前記バイパスシャワー
水路に設けた流量制御手段と、前記副伝熱管内温度を検
知する温度検知手段と、前記バイパスシャワー水路と連
通し前記副伝熱管の表面に噴水する流出口とを備えてな
る熱交換装置。
9. A first combustion section and a second combustion section provided adjacent to each other, a can body provided downstream of the both combustion sections, and a first heat transfer tube and a second heat transfer tube provided in the can body. An exhaust gas passage provided on the downstream side of the both heat transfer pipes, a sub heat transfer pipe communicating with the first heat transfer pipe provided in the exhaust gas passage to recover the steam condensation latent heat of the combustion gas, and the sub heat transfer pipe. A neutralizer for collecting and neutralizing the generated dew condensation water, a bypass shower water channel provided on the inlet side of the auxiliary heat transfer tube, a flow rate control means provided in the bypass shower water channel, and a temperature inside the auxiliary heat transfer tube. A heat exchange device comprising temperature detecting means for detecting, and an outlet for communicating with the bypass shower water passage and for spraying water on the surface of the sub heat transfer pipe.
【請求項10】 隣接して設けた第一燃焼部及び第二燃
焼部と、前記両燃焼部の下流に設けた缶体と、前記缶体
内に設けた第一伝熱管及び第二伝熱管と、前記両伝熱管
の下流側に設けた排気ガス通路と、前記排気ガス通路に
設けた前記第一伝熱管と連通し燃焼ガスの水蒸気凝縮潜
熱を回収する副伝熱管と、前記副伝熱管で発生した結露
水を捕集し中和する中和装置と、前記副伝熱管の出口と
前記中和装置を連通する副伝熱管バイパス水路と、この
副伝熱管バイパス水路に設けた流量制御手段と、前記副
伝熱管内温度を検知する温度検知手段とを備えてなる熱
交換装置。
10. A first combustion section and a second combustion section provided adjacent to each other, a can body provided downstream of the both combustion sections, and a first heat transfer tube and a second heat transfer tube provided in the can body. An exhaust gas passage provided on the downstream side of the both heat transfer tubes, a sub heat transfer tube that communicates with the first heat transfer tube provided in the exhaust gas passage to recover the steam condensation latent heat of the combustion gas, and the sub heat transfer tube. A neutralization device that collects and neutralizes the generated dew condensation water, an auxiliary heat transfer pipe bypass water passage that connects the outlet of the auxiliary heat transfer pipe and the neutralization device, and a flow rate control means provided in the auxiliary heat transfer pipe bypass water passage. A heat exchange device comprising a temperature detecting means for detecting the temperature inside the sub heat transfer tube.
【請求項11】 隣接して設けた第一燃焼部及び第二燃
焼部と、前記両燃焼部の下流に設けた缶体と、前記缶体
内に設けた第一伝熱管及び第二伝熱管と、前記両伝熱管
の下流側に設けた排気ガス通路と、前記排気ガス通路に
設けた前記第一伝熱管と連通し燃焼ガスの水蒸気凝縮潜
熱を回収する副伝熱管と、前記副伝熱管で発生した結露
水を捕集し中和する中和装置と、前記第一伝熱管の出口
と前記中和装置を連通する第一伝熱管バイパス水路と、
この第一伝熱管バイパス水路に設けた流量制御手段と、
前記副伝熱管内温度を検知する温度検知手段とを備えて
なる熱交換装置。
11. A first combustion section and a second combustion section provided adjacent to each other, a can body provided downstream of both combustion sections, and a first heat transfer tube and a second heat transfer tube provided in the can body. An exhaust gas passage provided on the downstream side of the both heat transfer pipes, a sub heat transfer pipe communicating with the first heat transfer pipe provided in the exhaust gas passage to recover the steam condensation latent heat of the combustion gas, and the sub heat transfer pipe. A neutralization device that collects and neutralizes the generated dew condensation water, a first heat transfer tube bypass water channel that connects the outlet of the first heat transfer tube and the neutralization device,
Flow rate control means provided in the first heat transfer tube bypass water channel,
A heat exchange device comprising: a temperature detection unit that detects the temperature inside the sub heat transfer tube.
【請求項12】 隣接して設けた第一燃焼部及び第二燃
焼部と、前記両燃焼部の下流に設けた缶体と、前記缶体
内に設けた第一伝熱管及び第二伝熱管と、前記両伝熱管
の下流側に設けた排気ガス通路と、前記排気ガス通路に
設けた複数の副伝熱管と、前記排気ガス通路の上流側に
位置しかつ伝熱面積が下流側に位置する副伝熱管より小
さい小伝熱面積副伝熱管とを備えている熱交換装置。
12. A first combustion section and a second combustion section provided adjacent to each other, a can body provided downstream of the both combustion sections, and a first heat transfer tube and a second heat transfer tube provided in the can body. An exhaust gas passage provided on the downstream side of the both heat transfer pipes, a plurality of sub heat transfer pipes provided on the exhaust gas passage, and the heat transfer area located on the upstream side of the exhaust gas passage and on the downstream side. A heat exchange device having a small heat transfer area smaller than the sub heat transfer tube and the sub heat transfer tube.
JP2002138159A 2002-05-14 2002-05-14 Heat exchange device Pending JP2003329307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002138159A JP2003329307A (en) 2002-05-14 2002-05-14 Heat exchange device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002138159A JP2003329307A (en) 2002-05-14 2002-05-14 Heat exchange device

Publications (1)

Publication Number Publication Date
JP2003329307A true JP2003329307A (en) 2003-11-19

Family

ID=29699674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002138159A Pending JP2003329307A (en) 2002-05-14 2002-05-14 Heat exchange device

Country Status (1)

Country Link
JP (1) JP2003329307A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007120867A (en) * 2005-10-28 2007-05-17 Gastar Corp Hot water supply system
JP2012117723A (en) * 2010-11-30 2012-06-21 T Rad Co Ltd Heat exchanger for hot-water supply

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007120867A (en) * 2005-10-28 2007-05-17 Gastar Corp Hot water supply system
JP2012117723A (en) * 2010-11-30 2012-06-21 T Rad Co Ltd Heat exchanger for hot-water supply

Similar Documents

Publication Publication Date Title
JP2007187419A (en) Hot water supply heating device
JP4527893B2 (en) Water heater
JP2007120865A (en) Single-drum two-waterway hot water supply system
JP6449687B2 (en) Heat source equipment
JP2003329307A (en) Heat exchange device
JP4454169B2 (en) Water heater
JP4867273B2 (en) Water heater
JP3907032B2 (en) Water heater
JP3792637B2 (en) Water heater
JP2005207687A (en) Combustion device
JP2009228961A (en) Bath hot water supply device
JP6449688B2 (en) Heat source equipment
JP4400407B2 (en) Water heater
JP4867274B2 (en) Water heater
CN216790514U (en) Gas heating and hot water supply dual-purpose furnace system
JP2008180401A (en) Hot water supply device
JP2008075886A (en) Water heater
JP2007107742A (en) Water heater
JP2006057989A (en) Hot-water supply apparatus
JP4105661B2 (en) Water heater
JP4602062B2 (en) Water heater
JP2007107822A (en) Water heater
KR100479868B1 (en) Structure For Exhaust Machine Pipe Of Condensing Gas Boiler
JP2006292236A (en) Hot water supply apparatus
JP2000055458A (en) Single can multiple water passages type water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041015

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070424