JP2003329270A - Temperature control ventilation method and device - Google Patents
Temperature control ventilation method and deviceInfo
- Publication number
- JP2003329270A JP2003329270A JP2002133148A JP2002133148A JP2003329270A JP 2003329270 A JP2003329270 A JP 2003329270A JP 2002133148 A JP2002133148 A JP 2002133148A JP 2002133148 A JP2002133148 A JP 2002133148A JP 2003329270 A JP2003329270 A JP 2003329270A
- Authority
- JP
- Japan
- Prior art keywords
- heat storage
- outside air
- temperature
- phase change
- ventilation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Other Air-Conditioning Systems (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、調温換気方法およ
び装置に関し、詳しくは、建築物の屋内空間に外気を取
り込んで換気を行なう際に、外気を適度な温度に調整し
てから屋内空間へと取り込めるようにする方法と、この
調温方法に用いる調温装置とを対象にしている。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature-controlled ventilation method and device, and more particularly, to the ventilation of an indoor space of a building by taking in the outdoor air and then adjusting the temperature of the outdoor air to an appropriate temperature. The target is a method for making the temperature control device and a temperature control device used for this temperature control method.
【0002】[0002]
【従来の技術】通常、建築物の屋内空間に外気を取り込
んで換気を行なうには、壁面に取り付けられた換気扇を
作動させたり、外気と取り込んで各室へ新鮮な空気を送
り込む送風装置や換気ダクトを備えておいたりしてい
る。しかし、屋内の空気に比べて外気が極端に低温であ
ったり高温であったりした場合、換気によって室内の温
度が大きく変動して、居住者に不快感を与えたり、居住
者の健康に悪影響を与えたりする問題がある。そこで、
換気装置で外気を取り込む際に、ヒータで加温して調温
してから室内に放出したり、空調装置内で室内からの排
気と熱交換することで調温してから室内に放出したりす
ることも提案されている。2. Description of the Related Art Generally, in order to take in outside air into a building's indoor space for ventilation, a ventilation fan mounted on a wall is operated, or a ventilation device or a ventilation device for taking in the outside air and sending fresh air to each room. It is equipped with a duct. However, if the outside air is extremely cold or hot compared to the indoor air, the temperature of the room will fluctuate significantly due to ventilation, causing occupants to feel uncomfortable and adversely affecting their health. There is a problem to give. Therefore,
When the outside air is taken in by the ventilation device, it is heated by a heater to adjust the temperature and then released into the room, or by exchanging heat with the exhaust air from the room in the air conditioner and then released into the room. It is also suggested to do so.
【0003】さらに、屋外に比べて温度変化が少ない床
下空間に一旦外気を取り込み、床下空間である程度まで
調温された空気を室内に取り込む方法も提案されてい
る。Further, a method has also been proposed in which outside air is temporarily taken into the underfloor space where the temperature change is smaller than that in the outdoors, and the air whose temperature is controlled to a certain extent in the underfloor space is taken into the room.
【0004】[0004]
【発明が解決しようとする課題】前記した従来の調温方
法のうち、ヒータによる加温や空調装置による熱交換で
外気を調温する方法では、ヒータなどの加熱装置あるい
は熱交換装置が必要であり、稼動コストがかさむという
欠点がある。また、床下空間で調温するだけでは、外気
と室内空気との温度差が十分に解消できず、居住者にと
って十分に快適な調温が達成でき難い。そこで、本発明
の課題は、建築物の屋外空間から屋内空間へと外気を取
り込んで換気を行なう際に、外気の温度を適切かつ効率
的、経済的に調温して、居住環境を良好に維持できるよ
うにすることである。Among the above-mentioned conventional temperature control methods, the method of controlling the outside air by heating with a heater or heat exchange with an air conditioner requires a heating device such as a heater or a heat exchange device. However, there is a drawback that operating costs are high. Further, the temperature difference between the outside air and the indoor air cannot be sufficiently eliminated only by adjusting the temperature in the underfloor space, and it is difficult to achieve the temperature adjustment that is sufficiently comfortable for the occupants. Therefore, an object of the present invention is to adjust the temperature of the outside air appropriately, efficiently, and economically when taking in the outside air from the outdoor space of a building to the indoor space for ventilation, and to improve the living environment. It is to be able to maintain.
【0005】[0005]
【課題を解決するための手段】本発明にかかる調温換気
方法は、建築物の屋外空間から屋内空間へと外気を取り
込む換気方法であって、前記屋外空間から屋内空間への
外気の取り込み経路中で、外気を相変化蓄熱材と接触さ
せて外気を調温し、調温された外気を屋内空間へ供給す
る工程(a)と、前記屋外空間から取り込まれた外気また
は屋内空間の空気を、前記相変化蓄熱材と接触させて相
変化蓄熱材に蓄熱させたのち、屋外空間へと排出する工
程(b)とを含む。
〔建築物〕木造、コンクリート造などの一般住宅、集合
住宅、オフィスビル、病院、介護施設、工場、その他の
公衆施設など、使用者にとって快適な温度環境を維持す
る必要がある各種の建築物に適用できる。動植物の飼育
や生育を行なう作業施設にも適用できる。A temperature-controlled ventilation method according to the present invention is a ventilation method for taking in outside air from an outdoor space of a building to an indoor space, and a route for taking in outside air from the outdoor space to the indoor space. In the step (a) of adjusting the temperature of the outside air by bringing the outside air into contact with the phase change heat storage material and supplying the temperature-controlled outside air to the indoor space, the outside air taken in from the outdoor space or the air in the indoor space A step (b) of contacting the phase change heat storage material to store the heat in the phase change heat storage material and discharging the heat to the outdoor space. [Building] For various buildings that need to maintain a comfortable temperature environment for users, such as general housing such as wooden and concrete structures, apartment houses, office buildings, hospitals, nursing facilities, factories, and other public facilities Applicable. It can also be applied to work facilities that breed and grow animals and plants.
【0006】屋内空間とは、一般住宅の居室や集会室、
作業室などに使用される個々の部屋のほか、廊下や階段
などの共用空間も含まれる。特別な場合を除いて、居住
や作業に利用することがない建築物の床下空間や屋根裏
空間、軒下空間などは、屋内空間には含めない。換気
は、個々の部屋毎に行なうこともできるし、複数の部屋
あるいは建築物の屋内空間全体をまとめて行なう場合も
ある。屋内空間の使用環境や必要換気量などの条件によ
って、調温すべき温度範囲や必要な換気能力が変わる。
〔外気の取り込み経路〕屋外空間の外気は、自然通風あ
るいは強制通風で屋内空間へと取り込まれる。[0006] The indoor space means a living room or a meeting room of a general house,
In addition to individual rooms used as work rooms, shared spaces such as corridors and stairs are also included. Except in special cases, indoor spaces do not include underfloor spaces, attic spaces, and eaves spaces that are not used for living or work. Ventilation may be performed for each individual room, or may be performed for a plurality of rooms or the entire indoor space of a building collectively. The temperature range to be adjusted and the required ventilation capacity vary depending on the usage environment of the indoor space and the required ventilation. [Route of taking in outside air] The outside air in the outdoor space is taken into the indoor space by natural ventilation or forced ventilation.
【0007】外気の取り込み経路は、基本的には、通常
の建築物における換気構造が採用できる。具体的には、
屋外空間と屋内空間を仕切る外壁に換気孔を設けるだけ
の場合もあるし、建築物の外壁に開口する換気口から、
周囲を壁で囲まれた換気ダクトなどを経由して個々の部
屋や空間ごとに外気を送りこむ場合もある。外気の取り
込み経路を、建築物の外壁内や屋根裏空間、床下空間な
どに設けることができる。特に、床下空間に外気の取り
込み経路を設けると、外気が床下空間を移動する間に、
ある程度の調温作用を受け、全体としての調温性能を高
めることができる。屋根裏空間や床下空間を利用する場
合、特別な換気ダクトを設けず、これらの空間自体を外
気の取り込み経路として利用することもできる。Basically, the ventilation structure in a normal building can be adopted as the intake path of outside air. In particular,
In some cases, it is only necessary to provide ventilation holes on the outer wall that separates the outdoor space from the indoor space, or from the ventilation port that opens on the outer wall of the building,
Outside air may be sent to each room or space via a ventilation duct surrounded by walls. The outside air intake path can be provided in the outer wall of the building, the attic space, the underfloor space, or the like. In particular, when an outside air intake path is provided in the underfloor space, while the outside air moves through the underfloor space,
The temperature control action as a whole can be improved by receiving a temperature control action to some extent. When using the attic space or the underfloor space, it is also possible to use these spaces themselves as the intake path for the outside air without providing a special ventilation duct.
【0008】〔相変化蓄熱材〕蓄熱材とは、熱エネルギ
ーの貯蔵容量が大きな材料を意味する。相変化蓄熱材と
は、融解熱や転移熱など物質の相変化によって熱エネル
ギーの効率的な出し入れが行なわれる材料であり、潜熱
蓄熱材とも呼ばれる。ここで、蓄熱とは、温熱と冷熱と
の両方を意味で用いられる。相変化蓄熱材は、温度が変
化せずに熱交換が行なわれるので、外気を一定温度に調
温するのに適している。要求される調温機能に合わせ
て、相変化温度が適切な条件にある相変化蓄熱材を使用
する。具体的には、通常の居住環境では、相変化温度が
15〜35℃の範囲にあるものが好ましい。より望まし
くは、相変化温度が20〜28℃の範囲である。相変化
は、固相と液相、および、液相と気相、まれには固相と
気相との間で生じる。通常は、固相と液相との間の相変
化を利用する。相変化温度は、相変化の方向によって少
しずれが生じる。例えば、固相から液相への相変化温度
と、液相から固相への相変化温度が違うこともある。そ
の場合には、両方の相変化温度の平均値で相変化蓄熱材
の相変化温度を規定すればよい。勿論、厳密な評価を行
なう場合には、使用時の相変化方向とそのときの相変化
温度を評価する。[Phase Change Heat Storage Material] The heat storage material means a material having a large storage capacity of thermal energy. The phase change heat storage material is a material in which heat energy is efficiently taken in and out by a phase change of a substance such as heat of fusion or transition heat, and is also called a latent heat storage material. Here, the heat storage is used to mean both hot heat and cold heat. The phase change heat storage material is suitable for adjusting the temperature of the outside air to a constant temperature because heat exchange is performed without changing the temperature. Use a phase change heat storage material whose phase change temperature is in an appropriate condition according to the required temperature control function. Specifically, in a normal living environment, it is preferable that the phase change temperature is in the range of 15 to 35 ° C. More desirably, the phase change temperature is in the range of 20 to 28 ° C. Phase changes occur between solid and liquid phases, liquid and gas phases, and rarely between solid and gas phases. Usually, a phase change between solid and liquid phase is utilized. The phase change temperature slightly shifts depending on the direction of the phase change. For example, the phase change temperature from the solid phase to the liquid phase may be different from the phase change temperature from the liquid phase to the solid phase. In that case, the phase change temperature of the phase change heat storage material may be defined by the average value of both phase change temperatures. Of course, when performing a strict evaluation, the phase change direction at the time of use and the phase change temperature at that time are evaluated.
【0009】単位重量あるいは単位容積当たりの熱容量
が大きな材料が、効率的な調温に有効である。具体的に
は、相変化熱量が10〜400kJ/kgの範囲にある
ものが使用でき、好ましくは相変化熱量が40kJ/k
g以上の材料を用いる。具体的な材料としては、パラフ
ィン系、脂肪酸系などの芳香族低次化合物や無機含水塩
系などの相変化蓄熱材料が挙げられる。なお、相変化蓄
熱材は、相変化による調温(潜熱)だけではなく、顕熱
による調温作用を有していてもよい。この場合、相変化
で対応できる熱量や温度の範囲では、一定温度で潜熱に
よる調温作用が発揮され、相変化では対応できなくなっ
たあとも、顕熱による調温作用で、ある程度の調温作用
を発揮することができる。A material having a large heat capacity per unit weight or unit volume is effective for efficient temperature control. Specifically, a material having a phase change heat quantity of 10 to 400 kJ / kg can be used, and preferably a phase change heat quantity of 40 kJ / k.
A material of g or more is used. Specific examples of the material include aromatic low order compounds such as paraffinic and fatty acid compounds, and phase change heat storage materials such as inorganic hydrate salt compounds. The phase change heat storage material may have not only temperature control (latent heat) by phase change but also temperature control by sensible heat. In this case, within the range of heat quantity and temperature that can be handled by phase change, the temperature control action by latent heat is exerted at a constant temperature, and even after it cannot be handled by phase change, the temperature control action by sensible heat causes some temperature control action. Can be demonstrated.
【0010】〔外気との接触〕相変化蓄熱材を外気と接
触させるには、固体または液体の相変化蓄熱材を直接に
外気と接触させることもできるが、その場合は、固体の
表面または液面だけしか外気と接触して熱の出入りに関
与できず、熱交換の効率が十分に上がらない場合があ
る。そこで、相変化蓄熱材と外気との熱交換が効率的に
行なわれるように、相変化蓄熱材の担持構造を工夫する
ことが望ましい。具体的には、相変化蓄熱材を、繊維質
基材や多孔質基材に担持させておくことができる。相変
化蓄熱材が相変化しても、基材から脱落したり流出し難
い材料や構造が好ましい。多孔質基材は、相変化時に相
変化蓄熱材の脱落や流出が起こり難く、外気の流通抵抗
が少なく、相変化蓄熱材の担持量も大きい。外気と相変
化蓄熱材との接触および熱交換が効率的に行なわれる。[Contact with the Outside Air] In order to bring the phase change heat storage material into contact with the outside air, the solid or liquid phase change heat storage material can be directly brought into contact with the outside air. Only the surface can come into contact with the outside air and participate in the inflow and outflow of heat, and the efficiency of heat exchange may not be sufficiently improved. Therefore, it is desirable to devise the carrying structure of the phase change heat storage material so that the heat exchange between the phase change heat storage material and the outside air is efficiently performed. Specifically, the phase change heat storage material can be supported on a fibrous base material or a porous base material. Even if the phase change heat storage material undergoes a phase change, a material or structure that does not easily fall off or flow out from the base material is preferable. The porous base material is less likely to drop off or flow out of the phase change heat storage material at the time of phase change, has less resistance to flow of outside air, and has a large amount of the phase change heat storage material carried. Contact and heat exchange between the outside air and the phase change heat storage material are efficiently performed.
【0011】相変化蓄熱材を担持する具体的材料とし
て、セラミック、発泡ガラス、発泡シリカ、ゼオライト
などの多孔質体が挙げられる。相変化蓄熱材の担持体の
形状は、外気との接触効率や流通抵抗などを考慮して適
切に設定することができる。具体的には、管状や格子
状、あるいは、多数の貫通孔が並べられたハニカム構造
などが採用できる。相変化蓄熱材の担持体を、小さな粒
塊状に形成しておき、粒塊状の担持体を、容器などに集
積あるいは充填しておくことができる。粒塊状の担持体
の形状は、球形のほか、多面体、柱状、燐片状あるいは
無定形のものも使用できる。担持体の粒径は、0.5〜
30mmの範囲が採用でき、1〜10mmがより好まし
い。Specific examples of the material for supporting the phase change heat storage material include porous materials such as ceramics, foam glass, foam silica and zeolite. The shape of the carrier of the phase change heat storage material can be appropriately set in consideration of the contact efficiency with the outside air, the flow resistance, and the like. Specifically, a tubular shape, a lattice shape, or a honeycomb structure in which a large number of through holes are arranged can be adopted. The carrier of the phase change heat storage material may be formed in a small agglomerate shape, and the agglomerate carrier may be accumulated or filled in a container or the like. The shape of the support in the form of agglomerates may be spherical, polyhedral, columnar, scaly or amorphous. The particle size of the carrier is 0.5 to
A range of 30 mm can be adopted, and 1 to 10 mm is more preferable.
【0012】〔調 温〕外気の調温は、外気を相変化蓄
熱材と接触させたときに、相変化蓄熱材の相変化にとも
なう温熱または冷熱が外気に供給されることで果たされ
る。相変化蓄熱材の相変化温度に比べて高温の外気は、
相変化蓄熱材との接触で、相変化蓄熱材に生じる相変化
に伴ない、熱を奪われて冷却される。相変化蓄熱材の相
変化温度に比べて低温の外気は、相変化蓄熱材との接触
で、相変化蓄熱材の相変化に伴ない、熱が供給されて加
温される。その結果、外気は、相変化温度と同じ温度か
極めて近い狭い一定範囲の温度に調温されることにな
る。但し、外気と相変化蓄熱材との接触時間が短けれ
ば、外気は相変化温度まで調温されない場合もある。こ
の場合も、外気を直接に屋内空間に供給するよりは適温
に近い温度まで調温されることになる。[Temperature Control] The temperature control of the outside air is achieved by supplying the outside air with warm heat or cold heat accompanying the phase change of the phase change heat storage material when the outside air is brought into contact with the phase change heat storage material. The outside air, which is hotter than the phase change temperature of the phase change heat storage material,
Upon contact with the phase-change heat storage material, heat is taken away from the phase-change heat storage material, and the phase-change heat storage material is cooled. The outside air, which has a lower temperature than the phase change temperature of the phase change heat storage material, comes into contact with the phase change heat storage material and is supplied with heat as the phase change of the phase change heat storage material changes. As a result, the temperature of the outside air is adjusted to the same temperature as the phase change temperature or a temperature within a narrow fixed range that is extremely close. However, if the contact time between the outside air and the phase change heat storage material is short, the outside air may not be adjusted to the phase change temperature. In this case as well, the temperature is adjusted to a temperature close to an appropriate temperature as compared with the case where the outside air is directly supplied to the indoor space.
【0013】調温時における、相変化蓄熱材に対する外
気の通過速度は、熱交換が十分かつ効率的に行なわれる
ように設定する。本発明では、風速が小さな場合でも十
分に大きな熱交換性能が得られるのが特徴であるが、一
般には、面風速を毎秒数cm以上に保つことが望まし
い。
〔蓄 熱〕外気の調温を行なう前に、相変化蓄熱材に蓄
熱を行なっておく。蓄熱工程では、外気を、相変化蓄熱
材と接触させて相変化蓄熱材に蓄熱させたのち、再び屋
外空間へと排出する。外気が有する温熱あるいは冷熱が
相変化蓄熱材に蓄熱されることになる。The passage speed of the outside air through the phase-change heat storage material during temperature control is set so that heat exchange is sufficiently and efficiently performed. The present invention is characterized in that a sufficiently large heat exchange performance can be obtained even when the wind speed is low, but it is generally desirable to keep the surface wind speed at several cm / sec or more. [Heat Storage] Before the temperature control of the outside air, heat is stored in the phase change heat storage material. In the heat storage step, the outside air is brought into contact with the phase change heat storage material to store heat in the phase change heat storage material, and then discharged to the outdoor space again. The hot or cold heat of the outside air is stored in the phase change heat storage material.
【0014】したがって、相変化蓄熱材の相状態によっ
て、相変化を起こさせるために必要な外気の温度条件が
違ってくる。例えば、液相から固相への相変化を起こさ
せるには、相変化温度よりも低温の外気が必要であり、
固相から液相への相変化を起こさせるには、相変化温度
よりも高温の外気が必要である。前記調温時と蓄熱時
で、相変化蓄熱材が逆方向の相変化を起こすことで、効
率的な熱利用が果たせる。外気の代わりに、屋内空間の
空気を利用することもできる。屋内空間には、調温され
た外気が供給されるが、屋内空間での居住者の活動や冷
暖房などの影響で、屋内空間の空気は、調温外気の温度
よりも上昇したり降下したりする。この温度差を利用す
れば、屋内空気で相変化蓄熱材に蓄熱を行なうことが可
能である。Therefore, the temperature condition of the outside air required to cause the phase change differs depending on the phase state of the phase change heat storage material. For example, in order to cause a phase change from a liquid phase to a solid phase, outside air at a temperature lower than the phase change temperature is required,
In order to cause a phase change from a solid phase to a liquid phase, outside air at a temperature higher than the phase change temperature is required. Since the phase change heat storage material causes a phase change in the opposite direction during the temperature control and the heat storage, efficient heat utilization can be achieved. It is also possible to use the air in the indoor space instead of the outside air. Temperature-controlled outside air is supplied to the indoor space, but the air in the indoor space may rise or fall below the temperature of the controlled outside air due to the activities of residents in the indoor space and the effects of air conditioning. To do. By utilizing this temperature difference, it is possible to store heat in the phase change heat storage material with indoor air.
【0015】蓄熱時における、相変化蓄熱材に対する空
気の通過速度も、前記調温時と同様に、熱交換が十分か
つ効率的に行なわれるように設定する。この場合も、前
記したように、風速が小さな場合でも十分に大きな熱交
換性能が得られるが、一般には、面風速を毎秒数cm以
上に保つことが望ましい。
〔調 湿〕室内空間に送り込む外気は、調温に加えて調
湿を行なっておくことができる。調湿とは、空気の湿度
を適切な状態に調整することを意味する。乾燥と加湿と
を含む概念である。The passage speed of air through the phase-change heat storage material during heat storage is set so that heat exchange can be sufficiently and efficiently performed, as in the case of the temperature adjustment. Also in this case, as described above, a sufficiently large heat exchange performance can be obtained even when the wind speed is low, but it is generally desirable to keep the surface wind speed at several cm / sec or more. [Humidity control] The outside air sent into the indoor space can be subjected to humidity control in addition to temperature control. Humidity control means adjusting the humidity of air to an appropriate state. It is a concept that includes drying and humidification.
【0016】調湿は、調温の前に行なってもよいし、調
温の後に行なうこともできる。調温と調湿を同時に行な
うこともできる。通常は、外気を調湿してから調温した
ほうが効率的である。具体的な調湿手段としては、通常
の建築環境用の調湿装置や方法が採用できる。本発明と
組み合わせる調湿手段として、吸放湿性に優れた無機ま
たは有機の調湿材に外気を接触させる方法がある。調湿
材としては、珪質頁岩、シリカゲル、超吸水性ポリマ
ー、塩化カルシウム、ゼオライト、活性炭などが挙げら
れる。The humidity adjustment may be performed before the temperature adjustment or after the temperature adjustment. It is also possible to perform temperature control and humidity control at the same time. Generally, it is more efficient to condition the temperature after adjusting the humidity of the outside air. As a specific humidity control means, a normal humidity control device or method for a building environment can be adopted. As a humidity control means to be combined with the present invention, there is a method in which the outside air is brought into contact with an inorganic or organic humidity control material having an excellent moisture absorbing / releasing property. Examples of the humidity conditioner include siliceous shale, silica gel, super absorbent polymer, calcium chloride, zeolite, activated carbon and the like.
【0017】これらの調湿材は、調温材と同様に、多孔
質基材などに担持させておくことができる。調湿手段を
蓄熱器に組み込んでおくにも便利である。
〔調温換気装置〕基本的には、相変化蓄熱材による調温
機能を果たす蓄熱器と、蓄熱器への外気の流通を制御す
る空気の流通経路や送風手段、流通切換手段などからな
る。蓄熱器以外の構造は、通常の換気装置や換気ダクト
などの構造や設備装置が利用できる。具体的な装置構造
として、屋外空間から屋内空間へと外気が流通する換気
路を備える。換気路の配置構造は、基本的には、通常の
換気ダクトや換気通路と同様でよい。These humidity conditioners can be carried on a porous base material or the like in the same manner as the temperature conditioner. It is also convenient to incorporate the humidity control means into the heat storage device. [Temperature control / ventilation device] Basically, it comprises a heat accumulator that performs a temperature control function by a phase change heat storage material, and an air flow path, an air blowing means, a flow switching means, and the like that control the flow of outside air to the heat storage element. As the structure other than the heat storage unit, a structure such as a normal ventilation device or a ventilation duct or a facility device can be used. As a specific device structure, a ventilation path through which outside air flows from an outdoor space to an indoor space is provided. The arrangement structure of the ventilation passage may be basically the same as that of a normal ventilation duct or ventilation passage.
【0018】換気路のうち、外気を導入する部分の一端
は、屋外空間に連通させる。具体的には、建築物の外壁
や布基礎、屋根などに、ダクト状の換気導入路を開口し
ておくことができる。屋根裏空間や床下空間、壁内空間
などを換気路の一部として利用することもできる。この
場合、これらの空間が屋外空間と連通していれば、換気
ダクトなどが直接に屋外空間に開口している必要はな
い。換気路には、室内空間への連通構造も備えている。
具体的には、通常の建築物における換気口や換気吹き出
し口の構造が採用できる。室内空間への換気の吹き出し
口は、床面、壁面、天井面、柱面などに設置できる。One end of a portion of the ventilation path for introducing outside air is communicated with the outdoor space. Specifically, a duct-shaped ventilation introduction path can be opened in an outer wall of a building, a cloth foundation, a roof, or the like. Attic space, underfloor space, and space inside walls can be used as part of the ventilation path. In this case, as long as these spaces communicate with the outdoor space, it is not necessary for the ventilation duct or the like to directly open to the outdoor space. The ventilation passage is also equipped with a communication structure to the indoor space.
Specifically, the structure of the ventilation port or ventilation outlet in a normal building can be adopted. Ventilation outlets to the indoor space can be installed on the floor, wall, ceiling, pillar, etc.
【0019】換気路の途中には、蓄熱器が配置される。
蓄熱器には相変化蓄熱材が収容される。換気路を流通す
る外気は、蓄熱器の内部で相変化蓄熱材と接触して、調
温作用を受ける。また、蓄熱器の相変化蓄熱材を外気と
の接触で蓄熱させる。蓄熱器のうち、外気の出口側は、
室内空間に連通する換気路の残りの部分すなわち屋内連
結路と排気路とに連通する。排気路は屋外空間に連通
し、蓄熱器を通過した外気を、屋外空間に排出すること
ができる。蓄熱器を通過した外気は、調温工程では屋内
空間に供給され、蓄熱工程では屋外空間に排出される。
このような外気の流れを切換制御するには、方向切換ダ
ンパなどの流れの切換手段を備えておく。切換手段は、
通常の換気設備などと同様に空気流を効率的に切換制御
できるダンパや弁などが使用される。切換手段の制御操
作は、屋内空間などから電気的に遠隔操作できるように
しておくのが好ましい。屋内空間および屋外空間に備え
た温度センサで取得された温度情報をもとに、切換手段
の切換動作を自動制御することもできる。A heat storage device is arranged in the middle of the ventilation path.
The phase change heat storage material is accommodated in the heat storage device. The outside air flowing through the ventilation path comes into contact with the phase-change heat storage material inside the heat storage device and is subjected to temperature control. Further, the phase change heat storage material of the heat storage unit stores heat by contact with the outside air. Of the heat accumulators, the outside air outlet side is
The remaining part of the ventilation passage communicating with the indoor space, that is, the indoor connecting passage and the exhaust passage communicate with each other. The exhaust passage communicates with the outdoor space, and the outside air that has passed through the heat storage device can be discharged to the outdoor space. The outside air that has passed through the heat storage device is supplied to the indoor space in the temperature control process and discharged to the outdoor space in the heat storage process.
In order to switch and control such a flow of outside air, a flow switching means such as a direction switching damper is provided. The switching means is
As with ordinary ventilation equipment, dampers and valves are used that can efficiently switch and control the air flow. It is preferable that the control operation of the switching means can be performed electrically and remotely from an indoor space or the like. It is also possible to automatically control the switching operation of the switching means based on the temperature information acquired by the temperature sensors provided in the indoor space and the outdoor space.
【0020】換気路として、必要に応じて、蓄熱器を経
由せずに、外気を直接に屋内空間に供給できる第2の屋
内連結路を備えておくことができる。具体的には、換気
路のうち、蓄熱器よりも上流側に、切換手段を介して、
室内空間に連通する第2の屋内連結路を設けておくこと
ができる。第2の屋内連結路およびその屋内空間への連
通個所の構造は、前記した蓄熱器の下流側で屋内空間に
連通する第1の屋内連結路と同様の構造が採用できる。
換気路を、床下空間に配置しておくことで、換気路と流
通する外気と、床下空間の内部温度との間で熱交換をさ
せて、調温することができる。この調温作用は、相変化
蓄熱材による調温ほどは効率的ではないが、相変化蓄熱
材による調温の補完あるいは補助として利用できる。こ
の場合、床下空間に設置される換気路の長さが長いほ
ど、調温作用を受け易い。As a ventilation path, a second indoor connecting path that can directly supply the outside air to the indoor space without passing through the heat accumulator can be provided as needed. Specifically, in the ventilation path, on the upstream side of the heat storage device, through the switching means,
A second indoor connection path communicating with the indoor space can be provided. As the structure of the second indoor connecting path and the place of communication with the indoor space, the same structure as the first indoor connecting path communicating with the indoor space on the downstream side of the heat storage unit can be adopted.
By arranging the ventilation passage in the underfloor space, heat can be exchanged between the outside air flowing through the ventilation passage and the internal temperature of the underfloor space to control the temperature. Although this temperature control action is not as efficient as the temperature control by the phase change heat storage material, it can be used as a supplement or supplement to the temperature control by the phase change heat storage material. In this case, the longer the length of the ventilation path installed in the underfloor space, the more easily the temperature control effect is received.
【0021】〔蓄熱器〕蓄熱器は、基本的には通常の機
械設備や熱システムにおける蓄熱機構と同様の技術が適
用できる。蓄熱器は、相変化蓄熱材を収容する容器構造
を備える。容器構造は、鋼材などの金属やプラスチック
などの樹脂で構成することができる。具体的な容器形状
として、円筒、多角筒、直方体などが挙げられる。容器
構造は、外気の出入り口などを除いて気密構造にしてお
く。外部との熱遮断を行なうために断熱材などの熱遮断
構造を備えておくことが望ましい。蓄熱器の内部におけ
る外気の流れをスムーズにしたり相変化蓄熱材との接触
効率を高めたりするための制御板や堰、仕切りなどを設
けておくこともできる。相変化蓄熱材の位置決めや移動
防止のための構造も設けられる。蓄熱器の内部温度を測
定する温度センサや外気の流量を検出する流量センサを
備えておくこともできる。[Heat Reservoir] For the heat accumulator, basically, the same technique as that of the heat accumulating mechanism in ordinary mechanical equipment or heat system can be applied. The heat storage device includes a container structure that houses a phase change heat storage material. The container structure can be made of metal such as steel or resin such as plastic. Specific container shapes include a cylinder, a polygonal cylinder, and a rectangular parallelepiped. The container structure should be an airtight structure except for the entrance and exit of outside air. It is desirable to provide a heat insulating structure such as a heat insulating material in order to cut off heat from the outside. It is also possible to provide a control plate, a weir, a partition or the like for smoothing the flow of the outside air inside the heat storage device and improving the contact efficiency with the phase change heat storage material. A structure for positioning and preventing movement of the phase change heat storage material is also provided. It is also possible to provide a temperature sensor for measuring the internal temperature of the heat storage unit and a flow rate sensor for detecting the flow rate of outside air.
【0022】相変化蓄熱材の担持体は、予め蓄熱器の内
部形状に対応して成形加工しておくことができる。例え
ば、円筒状の内部形状に対応して円筒状の相変化蓄熱材
担持体を用意する。板状や棒状、管状さらには粒塊状の
相変化蓄熱材担持体を、容器構造の内部に押し込んだり
堆積させたりして詰め込むこともできる。蓄熱器には、
1種類の相変化蓄熱材だけを収容していても良いし、複
数種の相変化蓄熱材を別個の区画あるいは混在させて収
容しておくこともできる。例えば、相変化温度が異なる
複数種の相変化蓄熱材を組み合わせれば、調温により変
化させる温度の幅を大きくできたり、温度条件の異なる
外気にも対応させ易くなったり、蓄熱器の性能向上を図
ることができる。The carrier of the phase-change heat storage material can be formed beforehand in accordance with the internal shape of the heat storage device. For example, a cylindrical phase change heat storage material carrier is prepared corresponding to the cylindrical inner shape. A plate-shaped, rod-shaped, tubular, or agglomerate phase-change heat storage material carrier can also be packed into the container structure by pushing or accumulating. In the heat accumulator,
Only one type of phase change heat storage material may be stored, or a plurality of types of phase change heat storage material may be stored in separate compartments or mixed. For example, by combining multiple types of phase-change heat storage materials with different phase-change temperatures, it is possible to increase the range of temperature that can be changed by temperature adjustment, make it easier to handle outside air with different temperature conditions, and improve the performance of the regenerator. Can be achieved.
【0023】蓄熱器は、外気が流通する換気路に対し
て、1基のみを設置しておくこともできるが、直列ある
いは並列に複数基の蓄熱器を設置しておくことができ
る。複数の蓄熱器は、同じ相変化蓄熱材を収容したもの
であってもよいし、相変化温度などの特性が相違する複
数種の相変化蓄熱材が収容された蓄熱器を組み合わせて
使用することもできる。相変化温度の違う蓄熱器を組み
合わせれば、温度環境の変化に対応させたり、調温条件
を変更したりすることが可能になる。
〔調湿機能付蓄熱器〕蓄熱器の内部に、相変化蓄熱材と
ともに調湿材を収容しておくことができる。Although only one heat accumulator can be installed in the ventilation path through which the outside air flows, a plurality of heat accumulators can be installed in series or in parallel. The plurality of heat regenerators may contain the same phase change heat storage material, or a combination of heat regenerators containing a plurality of types of phase change heat storage materials having different characteristics such as phase change temperature. You can also By combining heat accumulators with different phase change temperatures, it becomes possible to respond to changes in the temperature environment and change the temperature control conditions. [Heat storage device with humidity control function] A humidity control material can be housed inside the heat storage device together with the phase change heat storage material.
【0024】調湿材の収容形態は、前記した相変化蓄熱
材の収容形態と同様でよい。蓄熱器における外気の通過
経路において、調湿材と相変化蓄熱材あるいはそれらの
担持体は、何れを上流側に設置することもできるが、通
常は、調湿材が上流側に配置される。調湿材と相変化蓄
熱材とを並列的に配置したり、調湿材と相変化蓄熱材と
を混在させたりしておくこともできる。蓄熱器の本体に
対して、調湿材の収容構造だけをカセット式に着脱でき
るようにしたり、外気を調湿材の収容部に選択的に流通
できるようにしたりして、必要なときだけ、調湿機能を
発揮させることもできる。逆に、外気が、相変化蓄熱材
とは接触せずに調湿材だけと接触するように、外気の流
れを切換制御できるようにしておくこともできる。The accommodation form of the humidity control material may be the same as the accommodation form of the phase change heat storage material described above. Either the humidity control material and the phase change heat storage material or their supports can be installed on the upstream side in the passage of the outside air in the heat storage device, but normally, the humidity control material is arranged on the upstream side. The humidity control material and the phase change heat storage material may be arranged in parallel, or the humidity control material and the phase change heat storage material may be mixed. With respect to the main body of the heat accumulator, only the accommodation structure of the humidity control material can be attached or detached in a cassette type, or the outside air can be selectively circulated to the accommodation part of the humidity control material, only when necessary, It can also exert a humidity control function. On the contrary, the flow of the outside air may be switchably controlled so that the outside air does not come into contact with the phase change heat storage material but only comes into contact with the humidity control material.
【0025】勿論、蓄熱器とは別に、調湿材またはその
担持体を収容した調湿器を、前記換気路の一部に設置し
ておくこともできる。Of course, in addition to the heat accumulator, a humidity controller accommodating a humidity control material or a carrier thereof can be installed in a part of the ventilation passage.
【0026】[0026]
【発明の実施形態】図1に示す建築物は、調温換気装置
が床下空間14に設置されている。建築物10は、一般
住宅であり、外壁で囲まれた居住空間12と、居住空間
12の下方に設けられた床下空間14とを有する。本発
明で、調温あるいは調湿を行なう必要がある屋内空間と
は、居住空間12である。床下空間14は、屋内空間お
よび屋外空間の何れでもなく、換気装置の一部として機
能する
〔調温換気装置〕床下空間14には、蓄熱器20が設置
されている。図2に示すように、蓄熱器20は、断熱性
の優れた筒状容器22の内部に、相変化蓄熱材を多孔質
基材に担持した成形物からなる相変化蓄熱材担持体70
と、調湿材を多孔質基材に担持した成形物からなる調湿
材担持体80とを、軸方向に前後に並べて収容してい
る。筒状容器22の長さ方向で、相変化蓄熱材担持体7
0の占める割合のほうが調湿材担持体80よりも大きく
なっている。BEST MODE FOR CARRYING OUT THE INVENTION In the building shown in FIG. 1, a temperature control ventilation device is installed in an underfloor space 14. The building 10 is a general house, and has a living space 12 surrounded by an outer wall and an underfloor space 14 provided below the living space 12. In the present invention, the indoor space in which it is necessary to control the temperature or the humidity is the living space 12. The underfloor space 14 is neither an indoor space nor an outdoor space, and functions as a part of a ventilation device (temperature control ventilation device). A heat storage device 20 is installed in the underfloor space 14. As shown in FIG. 2, the heat storage device 20 includes a phase-change heat storage material carrier 70 formed of a molded product in which a phase-change heat storage material is supported on a porous base material inside a cylindrical container 22 having excellent heat insulating properties.
And a humidity control material carrier 80 made of a molded product in which the humidity control material is supported on a porous base material are housed side by side in the axial direction. In the longitudinal direction of the cylindrical container 22, the phase change heat storage material carrier 7
The ratio of 0 is larger than that of the humidity control material carrier 80.
【0027】図1に示すように、床下空間14には、蓄
熱器20と屋外空間とをつなぐ換気導入路32が設けら
れている。換気導入路32の材料や構造は、通常の換気
ダクトなどと同様である。屋外空間の外気は、換気導入
路32を経て蓄熱器20へと流入する。換気導入路32
の途中で蓄熱器20に至るまでの位置には、流体の流れ
方向を切り換えることのできる切換ダンパ34が設けら
れている。切換ダンパ34には、蓄熱器20に至る経路
との間で切換自在な別の経路として、第2室内連結路6
2が接続されている。第2室内連結路62は、床下空間
14から床面を貫通して居住空間12に開口している。
居住空間12への開口部分には送風ファン64が設置さ
れている。さらに、この切換ダンパ34には、屋外空間
に連通する補助換気導入路35も接続されている。As shown in FIG. 1, the underfloor space 14 is provided with a ventilation introduction path 32 that connects the heat storage device 20 and the outdoor space. The material and structure of the ventilation introducing path 32 are the same as those of a normal ventilation duct. The outside air in the outdoor space flows into the heat storage device 20 through the ventilation introduction path 32. Ventilation passage 32
A switching damper 34 capable of switching the flow direction of the fluid is provided at a position up to the heat accumulator 20 in the middle of. In the switching damper 34, the second indoor connection path 6 is provided as another path that can be switched to and from the path to the heat storage device 20.
2 is connected. The second indoor connection path 62 penetrates the floor surface from the underfloor space 14 and opens into the living space 12.
A blower fan 64 is installed at the opening to the living space 12. Further, the switching damper 34 is also connected to an auxiliary ventilation introducing passage 35 that communicates with the outdoor space.
【0028】蓄熱器20の出口側(図1,2の右側)に
は、排気路42が接続されている。排気路42は、建築
物10の外壁で屋外空間に開口している。屋外空間への
開口部分には送風ファン46が設置されている。排気路
42の途中にも切換ダンパ34が取り付けられている。
切換ダンパ44には、居住空間12に開口する別の室内
連結路すなわち第1室内連結路52が接続されている。
第1室内連結路52の開口部分にも送風ファン54が設
置されている。
〔調温換気工程〕図1に矢印で示す経路を経て、外気を
調温してから居住空間12に送り込む。An exhaust path 42 is connected to the outlet side (the right side in FIGS. 1 and 2) of the heat storage device 20. The exhaust passage 42 is open to the outdoor space on the outer wall of the building 10. A blower fan 46 is installed at the opening to the outdoor space. The switching damper 34 is also attached in the middle of the exhaust path 42.
The switching damper 44 is connected to another indoor connecting path that opens to the living space 12, that is, a first indoor connecting path 52.
A blower fan 54 is also installed at the opening of the first indoor connection path 52. [Temperature Controlled Ventilation Step] The temperature of the outside air is controlled via the route indicated by the arrow in FIG.
【0029】換気導入路32に取り込まれた外気は、切
換ダンパ34の切換設定によって、蓄熱器20のほうへ
と送り込まれる。図2に示すように、蓄熱器20に入っ
た外気は、まず、調湿材担持体80を通過することで、
湿気を除去されたり水分を補給されたりして、適度な湿
度に調整される。次に、外気は相変化蓄熱材担持体70
と接触して、相変化蓄熱材が有する温熱または冷熱を受
け取り、ほぼ相変化温度に等しい温度に調整される。な
お、相変化蓄熱材には、後述する蓄熱工程で予め、温熱
または冷熱が蓄熱されている。The outside air taken into the ventilation introducing passage 32 is sent to the heat storage device 20 by the switching setting of the switching damper 34. As shown in FIG. 2, the outside air entering the heat storage device 20 first passes through the humidity control material carrier 80,
The humidity is removed and the water is replenished, and the humidity is adjusted to an appropriate level. Next, the outside air is the phase change heat storage material carrier 70.
In contact with the phase change heat storage material, the heat or cold of the phase change heat storage material is received and adjusted to a temperature substantially equal to the phase change temperature. Note that the phase-change heat storage material stores warm or cold heat in advance in a heat storage step described later.
【0030】温度および湿度が調整された外気は、蓄熱
器20を出て排気路42に送られ、切換ダンパ44の切
換設定によって、第1室内連結路52を経て、居住空間
12に供給される。第1室内連結路52の送風ファン5
4を作動させることで、換気導入路32から蓄熱器2
0、排気路42、第1室内連結路52へと外気を強制的
に流通させることができる。第2室内連結路62の送風
ファン64は作動を止めておき、切換ダンパ34では、
補助換気導入路35から第2室内連結路62へ、直接に
外気が流れ込まないようにしておく。The outside air, the temperature and humidity of which have been adjusted, exits the heat storage unit 20 and is sent to the exhaust passage 42, and is supplied to the living space 12 through the first indoor connecting passage 52 by the switching setting of the switching damper 44. . Blower fan 5 of the first indoor connection path 52
4 is operated so that the heat storage device 2 is removed from the ventilation introduction path 32.
0, the exhaust passage 42, and the first indoor connection passage 52 can be forced to flow outside air. The blower fan 64 of the second indoor connecting path 62 is deactivated, and the switching damper 34
The outside air is prevented from directly flowing into the second indoor connecting passage 62 from the auxiliary ventilation introducing passage 35.
【0031】居住空間12には、温度および湿度が調整
された新鮮な外気が供給され、居住空間12の居住環境
は良好に維持される。なお、居住空間12に外気が供給
されるのに合わせて、居住空間12の汚れた空気は、窓
などの開口や換気口から屋外空間に排出される。この居
住空間12の排気は、自然の流通で行っても良いし、強
制送風で行なっても良い。
〔蓄熱工程〕図3に矢印で示す経路を経て外気を流通さ
せることで、相変化蓄熱材に蓄熱を行なう。Fresh air, the temperature and humidity of which are adjusted, is supplied to the living space 12, and the living environment of the living space 12 is maintained in a good condition. As the outside air is supplied to the living space 12, the dirty air in the living space 12 is discharged to the outdoor space through an opening such as a window or a ventilation port. The exhaust of the living space 12 may be performed by natural circulation or by forced ventilation. [Heat storage step] Heat is stored in the phase change heat storage material by circulating the outside air through the path indicated by the arrow in FIG.
【0032】換気導入路32に取り込まれた外気は、切
換ダンパ34の切換設定によって、蓄熱器20のほうへ
流通する。調温換気工程と同様に、外気は、まず、調湿
材担持体80を通過することで、調湿材に過剰に溜まっ
た水分を外気に移行させたり、過剰に乾燥した調湿材に
水分を供給したりすることができる。次に、外気を相変
化蓄熱材担持体70と接触させることで、相変化蓄熱材
と外気との間で熱交換が行われ、相変化蓄熱材の相変化
による蓄熱が行なわれる。具体的には、相変化蓄熱材が
液相である場合、相変化温度よりも低温の外気を供給す
ることで、相変化蓄熱材を固相に相変化させる。固相状
態の相変化蓄熱材は、調温工程では、相変化温度よりも
高温の外気を冷却して調温する機能が発揮できる。The outside air taken into the ventilation introducing passage 32 flows to the heat storage device 20 by the switching setting of the switching damper 34. Similar to the temperature control ventilation step, the outside air first passes through the humidity control material carrier 80 to transfer excess water accumulated in the humidity control material to the outside air or to transfer moisture to the excessively dried humidity control material. Can be supplied. Next, the outside air is brought into contact with the phase change heat storage material carrier 70, whereby heat is exchanged between the phase change heat storage material and the outside air, and heat is stored by the phase change of the phase change heat storage material. Specifically, when the phase change heat storage material is in a liquid phase, the phase change heat storage material is phase-changed into a solid phase by supplying outside air having a temperature lower than the phase change temperature. The phase change heat storage material in the solid state can exert the function of cooling the outside air having a temperature higher than the phase change temperature in the temperature adjusting step.
【0033】固相の相変化蓄熱材に、相変化温度よりも
高温の外気を接触させて、液相に相変化させておくと、
その後の調温工程では、相変化温度よりも低温の外気を
加温して調温する機能が発揮できる。相変化蓄熱材に温
熱または冷熱を与えた外気は、蓄熱器20を出て排気路
42に送られ、切換ダンパ44の切換設定によって、排
気路42の末端から屋外空間に排出される。排気路42
の送風ファンを作動させることで、換気導入路32から
蓄熱器20、排気路42へと外気を強制的に流通させる
ことができる。なお、切換ダンパ34の切換設定および
送風ファン64の作動によって、補助換気導入路35か
ら取り込まれた外気を、第2室内連結路62から居住空
間12へと直接に流入させれば、蓄熱工程の間も、居住
空間12の換気を行なうことができる。必要であれば、
窓などによる自然流通、壁取り付け換気扇による強制換
気などで換気を行なってもよい。When the outside air having a temperature higher than the phase change temperature is brought into contact with the solid phase change heat storage material to change the phase to the liquid phase,
In the subsequent temperature adjusting step, the function of adjusting the temperature by heating the outside air having a temperature lower than the phase change temperature can be exhibited. The outside air which has given heat or cold to the phase-change heat storage material exits the heat storage unit 20 and is sent to the exhaust passage 42, and is discharged to the outdoor space from the end of the exhaust passage 42 by the switching setting of the switching damper 44. Exhaust path 42
By operating the blower fan, the outside air can be forced to flow from the ventilation introduction passage 32 to the heat storage device 20 and the exhaust passage 42. In addition, if the outside air taken in from the auxiliary ventilation introducing passage 35 is caused to directly flow from the second indoor connecting passage 62 into the living space 12 by the switching setting of the switching damper 34 and the operation of the blower fan 64, the heat storage process is performed. In the meantime, the living space 12 can be ventilated. If necessary,
Ventilation may be performed by natural circulation through windows or by forced ventilation using a wall-mounted ventilation fan.
【0034】〔相変化調温なしの換気〕図4に示すよう
に、相変化蓄熱材による調温換気の必要がない環境条件
の場合には、蓄熱器20を使用しない換気も行なえる。
すなわち、換気導入路32に取り込んだ外気を、切換ダ
ンパ34から直接、第2室内連結路62を経て居住空間
12に供給する。居住空間12の空気は、第1室内連結
路52を前工程とは逆に流通して、切換ダンパ34から
排気路42に入り、屋外空間に排出される。第2室内連
結路62の送風ファン64、排気路42の送風ファン4
2を作動させれば、上記した外気の流れを強制的に作り
出すことができる。第1室内連結路52の送風ファン5
4も、前工程とは逆回転させれば、強制的な排気流を作
り出すのに有効である。[Ventilation without Phase Change Temperature Control] As shown in FIG. 4, in the environmental condition where temperature control ventilation with a phase change heat storage material is not required, ventilation without using the heat storage device 20 can also be performed.
That is, the outside air taken into the ventilation introducing passage 32 is directly supplied from the switching damper 34 to the living space 12 through the second indoor connecting passage 62. The air in the living space 12 flows through the first indoor connection path 52 in the reverse direction of the previous step, enters the exhaust path 42 from the switching damper 34, and is discharged to the outdoor space. Blower fan 64 of the second indoor connection path 62, blower fan 4 of the exhaust path 42
If 2 is operated, the above-mentioned outside air flow can be forcibly created. Blower fan 5 of the first indoor connection path 52
4 is also effective in creating a compulsory exhaust flow if it is rotated in the reverse direction of the previous step.
【0035】この換気工程では、相変化蓄熱材による調
温作用は機能しないが、床下空間14による調温作用が
期待できる。床下空間14は、気象条件や昼夜の別に関
わらず、比較的に一定の温度範囲に維持されている。そ
のため、外気は、換気導入路32から第2室内連結路6
2への比較的に長い距離にわたって床下空間14を通過
する間に、適度な温度に調整されてから、居住空間12
へと送り込まれる。したがって、相変化蓄熱材による高
度な調温機能が不要である場合、蓄熱器20の点検や交
換、修理などを行う場合にも、床下空間14による、あ
る程度の調温機能を発揮させて、居住空間12の温度環
境が極端に低下しないようにすることができる。In this ventilation step, the temperature control action by the phase change heat storage material does not function, but the temperature control action by the underfloor space 14 can be expected. The underfloor space 14 is maintained in a relatively constant temperature range regardless of weather conditions or day or night. Therefore, the outside air flows from the ventilation introduction path 32 to the second indoor connection path 6
2, while passing through the underfloor space 14 over a relatively long distance to 2, the accommodation space 12 is adjusted to an appropriate temperature.
Sent to. Therefore, when the advanced temperature control function by the phase change heat storage material is unnecessary, even when the heat storage device 20 is inspected, replaced, or repaired, the underfloor space 14 exerts a certain temperature control function to allow living. It is possible to prevent the temperature environment of the space 12 from extremely decreasing.
【0036】〔循環調温工程〕図5に矢印で示すよう
に、外気の取り込みを行なわずに、室内空気の調温だけ
を行なうこともできる。居住空間12の空気を、第2室
内連結路62に取り込む。前工程とは逆方向に空気が流
れ、切換ダンパ34の切換設定で、空気は蓄熱器20に
送られる。蓄熱器20では、空気が、調湿材担持体80
による調湿作用、相変化蓄熱材担持体70による調温作
用を受ける。蓄熱器20を出た空気は、排気路42、切
換ダンパ44および第1室内連結路52を経て、再び居
住空間12に戻される。[Circulation Temperature Control Step] As shown by the arrow in FIG. 5, it is possible to perform only the temperature control of the room air without taking in the outside air. The air in the living space 12 is taken into the second indoor connection path 62. Air flows in the opposite direction to the previous step, and the air is sent to the heat storage device 20 by the switching damper 34 switching setting. In the heat storage device 20, the air is the humidity control material carrier 80.
And the temperature change effect of the phase change heat storage material carrier 70. The air that has exited the heat storage device 20 is returned to the living space 12 again via the exhaust passage 42, the switching damper 44, and the first indoor connection passage 52.
【0037】その結果、居住空間12には、温度および
湿度が調整された空気が常に循環していることになり、
居住空間12の居住環境を良好に維持することができ
る。
〔複数の工程の組み合わせ〕前記した各工程を適宜に組
み合わせて、それぞれの機能を複合的に発揮させること
もできる。例えば、図1の調温換気工程で、居住空間1
2の空気を、換気導入路32から蓄熱器20に送れば、
外気の供給に加えて、居住空間12の空気の一部を循環
させて、調温および調湿を行うことができる。外気に室
内空気を混合することで、ある程度までの調温・調湿が
行なわれるので、蓄熱器20の負担を軽減することがで
きる。As a result, the air whose temperature and humidity have been adjusted is constantly circulated in the living space 12,
The living environment of the living space 12 can be favorably maintained. [Combination of a plurality of steps] Each of the above-mentioned steps may be appropriately combined to exert their respective functions in a composite manner. For example, in the temperature control ventilation process of FIG.
If the air of 2 is sent from the ventilation introduction path 32 to the heat storage device 20,
In addition to the supply of outside air, a part of the air in the living space 12 can be circulated to control the temperature and the humidity. By mixing the room air with the outside air, the temperature and humidity are adjusted to a certain extent, so that the load on the heat storage device 20 can be reduced.
【0038】図3の蓄熱工程で、蓄熱器20からでた外
気の一部を切換ダンパ44から第1室内連結路52を経
て居住空間12に供給することもできる。上記何れの場
合も、切換ダンパ44では、入力流を2方向の出力流に
分割する切換状態が設定できるようにしておく。
〔調温制御の具体例〕
<夏季の外気冷却>夏季は、昼間の外気温度が高く、外
気をそのまま居住空間12に送り込むと、居住者に不快
な思いをさせる。また、居住空間12を冷房している場
合、換気によって室内温度が上昇し、冷房の効果が損な
われる。但し、夏季においても、夜間には外気温度が下
がる。In the heat storage step of FIG. 3, a part of the outside air from the heat storage unit 20 can be supplied to the living space 12 from the switching damper 44 through the first indoor connecting path 52. In any of the above cases, the switching damper 44 can be set to a switching state in which the input flow is split into the output flows in two directions. [Specific Example of Temperature Control] <Cooling of Outside Air in Summer> In the summer, the outside air temperature during the daytime is high, and if the outside air is sent into the living space 12 as it is, the occupants will feel uncomfortable. Further, when the living space 12 is cooled, the indoor temperature rises due to ventilation, and the cooling effect is impaired. However, even in summer, the outside air temperature drops at night.
【0039】そこで、相変化蓄熱材の相変化温度を、例
えば、26℃に設定しておく。外気温が26℃以下に下
がる夜間に、図3に示す蓄熱工程を実行する。26℃以
下の外気が蓄熱器20に導入されると、外気と接触した
相変化蓄熱材は、液相から固相へと相変化を起こす。そ
の結果、固相に転移した相変化蓄熱材には冷熱が蓄えら
れる。朝になって日射が強くなり、外気温が26℃を超
えると、図1に示す調温工程を実行する。外気が蓄熱器
20に導入されると、26℃を超える外気で相変化蓄熱
材が相変化を起こすが、相変化が完了するまでは、相変
化蓄熱材の温度は相変化温度を超えることはない。した
がって、外気は相変化蓄熱材との接触で冷却される。外
気の温度は、ほぼ26℃になってから、居住空間12へ
と供給される。Therefore, the phase change temperature of the phase change heat storage material is set to 26 ° C., for example. At night when the outside air temperature falls below 26 ° C., the heat storage step shown in FIG. 3 is executed. When the outside air at a temperature of 26 ° C. or less is introduced into the heat storage device 20, the phase change heat storage material in contact with the outside air undergoes a phase change from a liquid phase to a solid phase. As a result, cold heat is stored in the phase change heat storage material that has been transformed into the solid phase. When the sunlight becomes strong in the morning and the outside air temperature exceeds 26 ° C., the temperature adjusting process shown in FIG. 1 is executed. When the outside air is introduced into the heat storage device 20, the phase change heat storage material causes a phase change in the outside air exceeding 26 ° C. However, the temperature of the phase change heat storage material does not exceed the phase change temperature until the phase change is completed. Absent. Therefore, the outside air is cooled by contact with the phase change heat storage material. The temperature of the outside air reaches approximately 26 ° C. before being supplied to the living space 12.
【0040】居住空間12は、常に約26℃の新鮮な外
気で換気され、居住者に快適な環境を与える。居住空間
12が、例えば26℃以下に冷房されている場合でも、
真昼の30℃を大きく超えるような外気を直接に居住空
間12に送り込むのに比べると、換気による冷房効果の
低下が防止され、冷房装置の負担も軽減される。この場
合、昼間における相変化蓄熱材から外気への供給冷熱量
が、夜間に相変化蓄熱材に蓄えられる冷熱量を超えない
限り、昼夜における蓄熱工程と調温工程との繰り返しに
よって、居住空間12は常に快適な温度環境に維持され
ることになる。The living space 12 is constantly ventilated with fresh outside air of about 26 ° C. to provide a comfortable environment for the occupants. Even if the living space 12 is cooled to, for example, 26 ° C or lower,
Compared to sending the outside air that greatly exceeds 30 ° C. at noon directly into the living space 12, the cooling effect is prevented from being lowered by ventilation, and the load on the cooling device is also reduced. In this case, as long as the amount of cold heat supplied from the phase change heat storage material to the outside air during the daytime does not exceed the amount of cold heat stored in the phase change heat storage material at night, the residential space 12 is obtained by repeating the heat storage process and the temperature control process at day and night. Will always be maintained in a comfortable temperature environment.
【0041】蓄熱器20に調湿材が収容されている場合
は、一般的に湿気が多い夏季の外気から過剰な水分を除
去して、湿気の少ない外気で換気を行なうことができ
る。勿論、外気が乾燥し過ぎているときには、調湿材か
ら適度な湿気が供給される。
<冬季の外気加温>冬季は、夜間の外気温が低下するの
で、外気をそのまま居住空間12に送り込むと、居住者
に冷たい思いをさせる。また、居住空間12を暖房して
いる場合、換気によって室内温度が下降し、暖房の効果
が損なわれる。但し、冬季においても、日照のある昼間
には外気温度は、ある程度まで上がる。In the case where the humidity control material is stored in the heat storage device 20, it is possible to remove excess water from the outside air in summer, which is generally humid, and to ventilate the outside air with little humidity. Of course, when the outside air is too dry, a proper amount of humidity is supplied from the humidity control material. <Warming of outside air in winter> Since the outside air temperature at night is lowered in winter, if the outside air is sent to the living space 12 as it is, the occupants will feel cold. In addition, when the living space 12 is heated, the indoor temperature drops due to ventilation, and the heating effect is impaired. However, even in winter, the outside air temperature rises to some extent during the daytime when there is daylight.
【0042】この場合、相変化蓄熱材の相変化温度を、
例えば、15℃に設定する。外気温が15℃以上に上が
る昼間に、図3に示す蓄熱工程を実行する。15℃以上
の外気が蓄熱器20に導入されると、相変化蓄熱材は、
固相から液相へと相変化を起こす。その結果、相変化蓄
熱材には温熱が蓄えられる。なお、居住空間12が暖房
されている場合、暖房によって昇温した室内空気の一部
を、第2室内連結路62から蓄熱器20に送り込み、第
1室内連結路52から居住空間12に戻すようにする
と、相変化蓄熱材に比較的に高温の空気を送って、相変
化蓄熱材の蓄熱量を増大させることができる。この場
合、相変化温度が比較的に高く設定されていても、相変
化による蓄熱が行なえる。In this case, the phase change temperature of the phase change heat storage material is
For example, it is set to 15 ° C. During the daytime when the outside air temperature rises to 15 ° C. or higher, the heat storage step shown in FIG. 3 is executed. When the outside air of 15 ° C. or higher is introduced into the heat storage device 20, the phase change heat storage material is
A phase change occurs from the solid phase to the liquid phase. As a result, warm heat is stored in the phase change heat storage material. When the living space 12 is heated, part of the room air heated by the heating is sent to the heat storage device 20 from the second indoor connecting path 62 and returned to the living space 12 from the first indoor connecting path 52. In this case, relatively high temperature air can be sent to the phase change heat storage material to increase the heat storage amount of the phase change heat storage material. In this case, even if the phase change temperature is set relatively high, heat can be stored due to the phase change.
【0043】夕方から夜になって、外気温が15℃より
も下がると、図1に示す調温工程を実行する。外気が蓄
熱器20に導入されると、15℃未満の外気で相変化蓄
熱材が相変化を起こすが、相変化が完了するまでは、相
変化蓄熱材の温度は相変化温度を下回ることはない。し
たがって、外気は相変化蓄熱材との接触で加温される。
外気の温度はほぼ15℃になってから、居住空間12へ
と供給される。居住空間12は、常に約15℃の新鮮な
外気で換気され、居住者に快適な環境を与える。居住空
間12が、例えば15℃以上に暖房されている場合で
も、夜間の15℃を大きく下回るような冷気を直接に居
住空間12に送り込むのに比べると、換気による暖房効
果の低下および暖房装置への負担が軽減される。When the outside air temperature falls below 15 ° C. from the evening to the night, the temperature adjusting process shown in FIG. 1 is executed. When the outside air is introduced into the heat storage device 20, the phase change heat storage material undergoes a phase change in the outside air below 15 ° C. However, the temperature of the phase change heat storage material does not fall below the phase change temperature until the phase change is completed. Absent. Therefore, the outside air is heated by contact with the phase change heat storage material.
After the temperature of the outside air reaches about 15 ° C., it is supplied to the living space 12. The living space 12 is constantly ventilated with fresh outside air at about 15 ° C. to provide a comfortable environment for the occupants. Even if the living space 12 is heated to, for example, 15 ° C. or more, compared to sending cold air that is significantly lower than 15 ° C. at night to the living space 12 directly, a reduction in heating effect due to ventilation and a heating device Burden is reduced.
【0044】蓄熱器20に導入する外気を、一旦、屋外
空間から床下空間に導入してから蓄熱器20に送るよう
にすると、屋外の低温外気が床下空間である程度まで温
められてから蓄熱器20に送られるので、蓄熱器20に
蓄えられた温熱を有効に利用することができる。通常、
床下空間は、10℃前後を維持するので、温度5℃の外
気を床下空間で10℃に温めてから蓄熱器20に送り込
めば、相変化蓄熱材は10℃から15℃までの昇温に要
する熱エネルギーを供給するだけで済む。
<常時調温換気>昼間、夜間に関わらず、図1に示す居
住空間12への外気の取り込みによる換気を、継続して
行なうことができる。When the outside air introduced into the heat storage device 20 is introduced into the underfloor space from the outdoor space and then sent to the heat storage device 20, the outdoor low temperature outside air is warmed to a certain extent in the underfloor space and then the heat storage device 20. Therefore, the heat stored in the heat storage device 20 can be effectively used. Normal,
Since the underfloor space maintains around 10 ° C, if the outside air with a temperature of 5 ° C is heated to 10 ° C in the underfloor space and sent to the heat storage device 20, the phase change heat storage material can be heated from 10 ° C to 15 ° C. All you have to do is supply the required thermal energy. <Constant Temperature Controlled Ventilation> Regardless of the daytime or the nighttime, the ventilation by taking in the outside air into the living space 12 shown in FIG. 1 can be continuously performed.
【0045】この場合、蓄熱器20に収容された相変化
蓄熱材の相変化温度を境界点にして、相変化温度よりも
高温の外気は相変化温度まで冷却されてから居住空間1
2に供給され、相変化温度よりも低温の外気は相変化温
度まで加温されてから居住空間12に供給されることに
なる。建築物10の温度環境において、前記相変化温度
が、環境温度の変化範囲に対して丁度中間の温度程度で
あり、相変化温度を上回る時間と下回る時間とがほぼ同
程度であるというような条件に設定できれば、相変化蓄
熱材における冷熱と温熱の出入りがほぼ相殺されること
になる。その結果、調温工程と蓄熱工程との切り換えを
行なわなくても、居住空間12の温度は、継続的に相変
化温度付近に維持されることになる。In this case, with the phase change temperature of the phase change heat storage material housed in the heat storage device 20 as a boundary point, the outside air having a temperature higher than the phase change temperature is cooled to the phase change temperature before the living space 1
2, the outside air having a temperature lower than the phase change temperature is heated to the phase change temperature and then supplied to the living space 12. In the temperature environment of the building 10, the condition that the phase change temperature is about the middle temperature with respect to the change range of the environment temperature, and the time above the phase change temperature and the time below the phase change temperature are substantially the same. If it can be set to, the inflow and outflow of cold heat and warm heat in the phase-change heat storage material will almost cancel each other out. As a result, the temperature of the living space 12 is continuously maintained near the phase change temperature without switching between the temperature adjustment process and the heat storage process.
【0046】したがって、このような換気方法を適用す
るには、建築物10の温度環境を十分に検討した上、適
切な相変化温度特性を有する相変化蓄熱材を選択するこ
とが重要である。
<蓄熱器の切換>図6に示す調温換気装置は、2基の蓄
熱器20を切換運転する。建築物10の床下空間14に
は、各部材に付けた番号のうち添え字の英記号で区別さ
れるA系統およびB系統の2系統の換気系統を備える。
各換気系統A、Bは、蓄熱器20A、20Bと、屋外空
間と蓄熱器20A、20Bとを連通させる換気導入路3
2A、32Bと、蓄熱器20A、20Bと居住空間12
とを連通させる室内連結路52A、52Bとを備える。
換気導入路32A、32Bには、正逆切換自在な送風フ
ァン34A、34Bを備え、室内連結路52A、52B
にも正逆切換自在な送風ファン54A、54Bを備えて
いる。Therefore, in order to apply such a ventilation method, it is important to thoroughly study the temperature environment of the building 10 and select a phase change heat storage material having an appropriate phase change temperature characteristic. <Switching of heat storage device> The temperature control ventilation device shown in FIG. 6 switches and operates two heat storage devices 20. The underfloor space 14 of the building 10 is provided with two ventilation systems, that is, the A system and the B system, which are distinguished by subscript English symbols among the numbers given to the respective members.
Each of the ventilation systems A and B includes a heat storage device 20A, 20B and a ventilation introduction path 3 for communicating the outdoor space with the heat storage device 20A, 20B.
2A, 32B, heat storage units 20A, 20B and living space 12
And indoor connecting paths 52A and 52B for communicating with
The ventilation introduction passages 32A, 32B are provided with blower fans 34A, 34B that can be switched between forward and reverse, and the indoor connection passages 52A, 52B.
Also, it is provided with blower fans 54A and 54B that can be switched between normal and reverse directions.
【0047】図6では、まず、換気系統Bで前記した調
温工程を行なう。換気導入路32Bから取り込んだ外気
を、蓄熱器20Bで調温し、室内連結路52Bから居住
空間12に送り込む。換気系統Aでは、排気工程が行わ
れている。居住空間12の空気を、室内連結路52Aか
ら蓄熱器20Aを通過させ、換気導入路32Aを経て、
屋外空間に排出する。このとき、居住空間12の空気が
有する温熱または冷熱を、蓄熱器20Aの相変化蓄熱材
に受け渡すことができる。前記した蓄熱工程と同様の作
用が行なわれる。In FIG. 6, first, the temperature control step described above is performed in the ventilation system B. The outside air taken in from the ventilation introduction path 32B is temperature-controlled by the heat storage device 20B and sent into the living space 12 from the indoor connection path 52B. In the ventilation system A, the exhaust process is performed. Air in the living space 12 is allowed to pass from the indoor connecting path 52A through the heat storage unit 20A, and through the ventilation introducing path 32A,
Discharge to the outdoor space. At this time, the hot or cold heat of the air in the living space 12 can be transferred to the phase change heat storage material of the heat storage device 20A. The same operation as the heat storage step described above is performed.
【0048】調温工程を実行している換気系統Bで、蓄
熱器20Bに蓄えられていた温熱または冷熱が少なくな
ると、送風ファン32B、54Bを切り換えて、空気の
流れを逆方向にし、前記した排気工程を実行する。それ
と同時に、排気工程を実行していた換気系統Aでは、送
風ファン32B、54Aを切り換えて、空気の流れを逆
方向にし、今度は調温工程を実行する。蓄熱器20Aに
は、排気工程で蓄熱された温熱または冷熱が十分にある
ので、居住空間12に送り込む外気の調温が良好に維持
できる。2つの換気系統A、Bを、調温工程と排気工程
とに交互に切り換えて動作させることで、蓄熱器20
A、Bの相変化蓄熱材は、逆方向の相変化による放熱と
蓄熱とを交互に繰り返し、居住空間12に送り込む外気
を常に適切な調温状態に持つことができる。When the hot or cold heat stored in the heat accumulator 20B is reduced in the ventilation system B which is performing the temperature control process, the blower fans 32B and 54B are switched to reverse the air flow direction. Execute the exhaust process. At the same time, in the ventilation system A that was executing the exhaust process, the blower fans 32B and 54A are switched to reverse the air flow, and the temperature adjusting process is executed this time. The heat accumulator 20A has sufficient hot or cold heat stored in the exhaust process, so that the temperature of the outside air sent into the living space 12 can be favorably maintained. By alternately operating the two ventilation systems A and B for the temperature adjustment process and the exhaust process, the heat storage unit 20
The phase-change heat storage material of A and B alternately repeats heat radiation and heat storage due to the opposite phase change, and can always have the outside air sent into the living space 12 in an appropriate temperature control state.
【0049】具体的な調温制御の条件として、冬季にお
ける調温作用を説明する。外気の温度は5℃とする。蓄
熱器20A、Bの相変化蓄熱材の相変化温度を約20℃
に設定しておく。調温工程では、5℃の外気を18〜1
9℃程度まで温めて、居住空間12に送り込む。排気工
程では、居住空間12での居住者の活動や暖房によって
20℃を超える空気から、蓄熱器20の相変化蓄熱材に
熱を移行させ、20℃以下になった空気が屋外空間に排
気される。このような条件で稼動させれば、継続的に調
温と蓄熱とを効率的に繰り返すことができ、居住空間1
2には常に適切に調温された外気が供給される。As a specific temperature control condition, the temperature control operation in winter will be described. The temperature of the outside air is 5 ° C. The phase change temperature of the phase change heat storage material of the heat storage units 20A and 20B is about 20 ° C.
Set to. In the temperature control process, the outside air at 5 ° C is 18 to 1
Warm up to about 9 ° C and send to the living space 12. In the exhausting process, heat is transferred from the air exceeding 20 ° C. to the phase change heat storage material of the heat storage device 20 due to the activity of the resident in the living space 12 or heating, and the air having a temperature of 20 ° C. or less is exhausted to the outdoor space. It If operated under such conditions, temperature control and heat storage can be efficiently repeated continuously, and the living space 1
The outside air whose temperature has been adjusted appropriately is always supplied to 2.
【0050】上記実施形態では、昼と夜という1日の温
度差をもとに調温工程と蓄熱工程とを切り換える方法に
比べて、蓄熱器20の熱容量が小さくて済む。1日分の
調温工程で消費する温熱または冷熱を溜めておく蓄熱器
20はかなり大型化になるが、前記調温工程と排気工程
とを繰り返す方法では、1サイクル毎の調温工程および
排気工程の時間を短く設定することができるのである。
一つの蓄熱器20の熱容量が少なくて、長時間の調温工
程が実施できない条件でも、十分に対応することが可能
になる。例えば、10分間隔で調温工程と排気工程とを
繰り返すような制御が可能でなる。蓄熱器20を大幅に
小型化できることになる。In the above embodiment, the heat capacity of the heat accumulator 20 can be smaller than that in the method in which the temperature adjusting step and the heat storing step are switched based on the temperature difference between day and night. Although the heat storage device 20 for storing hot or cold heat consumed in the temperature control process for one day becomes considerably large, in the method of repeating the temperature control process and the exhaust process, the temperature control process and the exhaust gas for each cycle. The process time can be set short.
Even if the heat storage capacity of one heat storage device 20 is small and the temperature control process cannot be performed for a long time, it is possible to sufficiently cope with the condition. For example, it is possible to perform control such that the temperature adjustment process and the exhaust process are repeated at intervals of 10 minutes. The heat storage device 20 can be significantly downsized.
【0051】なお、温度環境によっては、調温工程と排
気工程とで、熱交換が良好に行なうのに適した温度に差
があり、1種類の相変化蓄熱材で両方の工程を最適化す
ることが難しい場合がある。この場合には、後述するよ
うな、相変化温度が異なる複数の相変化蓄熱材を組み合
わせた蓄熱器20を使用することが望ましい。
〔粒塊状蓄熱材担持体の使用〕図7に示す実施形態は、
粒塊状の相変化蓄熱材担持体を使用する。蓄熱器20の
筒状容器22には、粒塊状蓄熱材担持体72と粒塊状調
湿材担持体82とが、前後に区画された領域に分けて充
填されている。Depending on the temperature environment, there is a difference in temperature suitable for good heat exchange between the temperature adjustment process and the exhaust process, and both processes are optimized with one type of phase change heat storage material. Can be difficult. In this case, it is desirable to use the regenerator 20 in which a plurality of phase change heat storage materials having different phase change temperatures are combined, as will be described later. [Use of agglomerate heat storage material carrier] The embodiment shown in FIG.
An agglomerate phase change heat storage material carrier is used. The tubular container 22 of the heat storage device 20 is filled with the agglomerate heat storage material support 72 and the agglomerate humidity control material support 82 divided into front and rear regions.
【0052】粒塊状蓄熱材担持体72は、セラミックな
どの多孔質材料に相変化蓄熱材を担持させ、粉砕するこ
となどによって所定の粒径に調整したものである。粒塊
状調湿材担持体82も、セラミックなどの多孔質材料に
調湿材を担持させて、粉砕などで所定粒径に調整してい
る。このような粒塊状の蓄熱材担持体72は、外気と接
触できる表面積が大きく、通気抵抗も少ないので、効率
的な調温作用が発揮できる。筒状容器22の形状に関わ
らず、必要量だけの相変化蓄熱材を収容することがで
き、調温機能の調整も容易である。The agglomerate heat storage material carrier 72 is prepared by supporting a phase change heat storage material on a porous material such as ceramic and crushing it to adjust it to a predetermined particle size. The agglomerate humidity control material carrier 82 also has a humidity control material supported on a porous material such as ceramic, and is adjusted to a predetermined particle size by pulverization or the like. Since such a heat storage material carrier 72 in the form of agglomerates has a large surface area that can be brought into contact with the outside air and has a low ventilation resistance, an efficient temperature control effect can be exhibited. Regardless of the shape of the cylindrical container 22, only a necessary amount of the phase change heat storage material can be stored, and the adjustment of the temperature control function is easy.
【0053】粒塊状相変化蓄熱材担持体72の具体例と
して、RUBITHERM Gmbh社製の蓄熱材製品
GR25が挙げられる。この製品は、パラフィン系有機
物を粒径が1〜3mmの粒状セラミックに担持させたも
のであり、重量組成は、セラミック67%にパラフィン
33%となっている。かさ密度0.78g/cm3で間
隙率42.8%となり、融点23.5℃、凝固点25.
0℃、潜熱量43kJ/kg、15℃での熱伝導率0.
13W/(m・K)の性状を示す。
〔相変化特性の異なる蓄熱材の組み合わせ〕図8に示す
実施形態は、一つの蓄熱器20に相変化特性の異なる複
数種の相変化蓄熱材を収容しておく。A specific example of the agglomerate phase change heat storage material carrier 72 is a heat storage material product GR25 manufactured by RUBITHERM Gmbh. This product is made by supporting a paraffinic organic material on a granular ceramic having a particle diameter of 1 to 3 mm, and its weight composition is 67% ceramic and 33% paraffin. When the bulk density was 0.78 g / cm 3 , the porosity was 42.8%, the melting point was 23.5 ° C., and the freezing point was 25.
Thermal conductivity at 0 ° C., latent heat of 43 kJ / kg, and 15 ° C. of 0.
The property is 13 W / (m · K). [Combination of Heat Storage Materials Having Different Phase Change Characteristics] In the embodiment shown in FIG. 8, one heat storage device 20 stores a plurality of types of phase change heat storage materials having different phase change characteristics.
【0054】蓄熱器20は前後方向に4区画に分割され
ている。各区画にはそれぞれ別の相変化蓄熱材担持体7
0a〜70dが収容されている。各相変化蓄熱材担持体
70a〜70dの相変化温度は、70aから70dへと
段階的に高く設定されている。例えば、相変化蓄熱材担
持体70a=10℃、相変化蓄熱材担持体70b=14
℃、相変化蓄熱材担持体70c=17℃、相変化蓄熱材
担持体70c=20℃などと設定する。このような蓄熱
器20を用いて、図1に示す調温工程を行う場合を想定
する。外気温は5℃とする。The heat storage device 20 is divided into four sections in the front-rear direction. Each compartment has a different phase change heat storage material carrier 7
0a to 70d are stored. The phase change temperature of each of the phase change heat storage material carriers 70a to 70d is set to be gradually increased from 70a to 70d. For example, the phase change heat storage material carrier 70a = 10 ° C., the phase change heat storage material carrier 70b = 14
C., phase change heat storage material carrier 70c = 17.degree. C., phase change heat storage material carrier 70c = 20.degree. It is assumed that such a heat storage device 20 is used to perform the temperature adjustment process shown in FIG. The outside temperature is 5 ° C.
【0055】5℃の外気は、蓄熱器20で、相変化蓄熱
材担持体70a(相変化温度10℃)と接触して、10
℃程度まで調温される。つづいて、相変化蓄熱材担持体
70b(相変化温度14℃)、相変化蓄熱材担持体70
c(相変化温度17℃)、相変化蓄熱材担持体70d
(相変化温度20℃)に順次接触することで、段階的に
加温され、最終的には20℃程度に調温される。この実
施形態では、外気の温度と最終的に調温する温度との差
を、非常に大きく取ることができる。また、個々の相変
化蓄熱材担持体70a〜70dについては、比較的に狭
い温度範囲で加温または冷却するだけでよいので、比較
的に安価で入手し易い相変化蓄熱材の材料を使用するこ
とが可能になる。各相変化蓄熱材担持体70a〜70d
は最も効率的に熱交換ができる相変化温度の近くで動作
させるので、全体としての蓄熱器20の熱交換効率は極
めて高くなる。The outside air at 5 ° C. comes into contact with the phase change heat storage material carrier 70a (phase change temperature 10 ° C.) in the heat accumulator 20 for 10
The temperature is adjusted to about ℃. Subsequently, the phase change heat storage material support 70b (phase change temperature 14 ° C.), the phase change heat storage material support 70
c (phase change temperature 17 ° C.), phase change heat storage material carrier 70d
By sequentially contacting (phase change temperature 20 ° C.), the temperature is gradually increased and finally adjusted to about 20 ° C. In this embodiment, the difference between the temperature of the outside air and the temperature at which the temperature is finally adjusted can be made very large. Further, since the individual phase change heat storage material carriers 70a to 70d need only be heated or cooled in a relatively narrow temperature range, a relatively inexpensive and easily available material of the phase change heat storage material is used. It will be possible. Each phase change heat storage material carrier 70a-70d
Is operated near the phase change temperature at which heat can be most efficiently exchanged, the heat exchange efficiency of the heat storage device 20 as a whole is extremely high.
【0056】蓄熱器20に収容する相変化温度の違う相
変化蓄熱材担持体70a〜70dの数、あるいは、段階
的な相変化の段数を増やすほど、効率的な熱交換が可能
であるが、段数が増えるにつれ、細かく相変化温度を変
えた相変化蓄熱材を用意する手間が増え、製造が面倒に
なる。通常は、2段から10段まで程度で実施でき、5
段程度が実用的である。隣接する段の相変化温度の差
は、1〜20℃の範囲で設定でき、2℃程度が実用的で
ある。上記実施形態の蓄熱器20は、蓄熱工程でも、外
気が有する温熱あるいは冷熱を効率的に取り込むことが
できる。外気温が変動しても、蓄熱効率を良好に維持す
ることができる。As the number of the phase change heat storage material carriers 70a to 70d having different phase change temperatures accommodated in the heat accumulator 20 or the number of stepwise phase changes increases, more efficient heat exchange is possible. As the number of stages increases, the time and effort to prepare the phase change heat storage material in which the phase change temperature is finely changed increases, and the manufacturing becomes troublesome. Usually, it can be carried out from 2 to 10 steps, and 5
Steps are practical. The difference between the phase change temperatures of the adjacent stages can be set in the range of 1 to 20 ° C, and about 2 ° C is practical. The heat accumulator 20 of the above-described embodiment can efficiently take in warm heat or cold heat of the outside air even in the heat storage step. Even if the outside air temperature fluctuates, the heat storage efficiency can be favorably maintained.
【0057】さらに、上記実施形態の蓄熱器20は、前
記図6の実施形態で排気工程に使用することも勿論可能
である。この場合も、比較的高温の室内空気から複数段
階を経て効率的に大量の熱を取り戻すことができ、熱エ
ネルギーの有効利用が図れる。Further, the heat storage unit 20 of the above-described embodiment can of course be used in the exhaust process in the embodiment of FIG. Also in this case, a large amount of heat can be efficiently recovered from the relatively high temperature indoor air through a plurality of stages, and the thermal energy can be effectively used.
【0058】[0058]
【発明の効果】本発明にかかる調温換気方法および装置
は、外気を相変化蓄熱材と接触させて調温してから屋内
空間に供給する工程と、外気または屋内空気を相変化蓄
熱材と接触させてから排気することで相変化蓄熱材に蓄
熱を行なう工程とを、屋内温度と外気温との差などの温
度環境条件によって適切に切り換えるだけで、屋内空間
の温度環境を快適に維持することができる。冷暖房装置
などを用いて調温するのに比べて、はるかに設備が簡単
になり、消費エネルギーや稼動コストが大幅に削減でき
る。複雑な作動構造設備がないので保守管理も容易であ
り、長期間にわたって安定した性能が発揮できる。EFFECTS OF THE INVENTION The method and apparatus for controlling temperature and ventilation according to the present invention include a step of bringing the outside air into contact with the phase change heat storage material to adjust the temperature and then supplying the air to the indoor space, and the outside air or indoor air as the phase change heat storage material. The temperature environment of the indoor space can be maintained comfortably by simply switching appropriately between the process of storing heat in the phase change heat storage material by contacting and then exhausting it, depending on the temperature environment conditions such as the difference between the indoor temperature and the outdoor temperature. be able to. Compared with using an air conditioner to control the temperature, the equipment is much simpler and energy consumption and operating costs can be greatly reduced. Since there is no complicated operating structure equipment, maintenance management is easy and stable performance can be demonstrated over a long period of time.
【0059】特に、相変化蓄熱材では、相変化による調
温作用が行なわれている間は、相変化蓄熱材の温度は変
わらずに効率的な熱交換が行なわれるので、外気を相変
化温度とほぼ同じ温度に、自動的に調温することができ
る。複雑な温度制御回路や温調装置を使用しなくても、
確実かつ効率的に正確な調温が達成できる。また、調湿
材と組み合わせて、調温および調湿の両方の機能を良好
に発揮させるのも容易である。In particular, in the phase change heat storage material, the temperature of the phase change heat storage material does not change and efficient heat exchange is performed while the temperature control operation by the phase change is being performed. The temperature can be adjusted automatically to almost the same temperature as. Without using a complicated temperature control circuit or temperature controller
Accurate temperature control can be achieved reliably and efficiently. In addition, it is easy to achieve excellent functions of both temperature control and humidity control by combining with a humidity control agent.
【図1】 本発明の実施形態を表す調温換気装置の全体
構成図FIG. 1 is an overall configuration diagram of a temperature control ventilation device representing an embodiment of the present invention.
【図2】 蓄熱器の拡大断面図FIG. 2 is an enlarged sectional view of the heat storage device.
【図3】 別の工程状態を表す全体構成図FIG. 3 is an overall configuration diagram showing another process state
【図4】 別の工程状態を表す全体構成図FIG. 4 is an overall configuration diagram showing another process state.
【図5】 別の工程状態を表す全体構成図FIG. 5 is an overall configuration diagram showing another process state.
【図6】 調温換気装置の別の実施形態を表す全体構成
図FIG. 6 is an overall configuration diagram showing another embodiment of a temperature control ventilation device.
【図7】 蓄熱器の別の実施形態を表す拡大断面図FIG. 7 is an enlarged sectional view showing another embodiment of the heat storage device.
【図8】 蓄熱器の別の実施形態を表す拡大断面図FIG. 8 is an enlarged sectional view showing another embodiment of the heat storage device.
10 住宅 12 室内空間 14 床下空間 20 蓄熱器 32 屋外連結路 34、44 切換ダンパ 46、54、64 送風ファン 42 排気路 52、62 室内連結路 70 相変化蓄熱材担持体 80 調湿材担持体 10 houses 12 Indoor space 14 Underfloor space 20 heat accumulator 32 outdoor connection road 34, 44 switching damper 46, 54, 64 blower fan 42 exhaust path 52,62 Indoor connection path 70 Phase change heat storage material carrier 80 Humidity control agent carrier
───────────────────────────────────────────────────── フロントページの続き (72)発明者 持田 徹 北海道札幌市豊平区福住3−2−1−15− 302 (72)発明者 嶋倉 一實 北海道札幌市西区発寒2−1−2−1 (72)発明者 武田 清香 北海道札幌市南区真駒内南町5−4−3 (72)発明者 吉田 繁夫 大阪府豊中市新千里西町1丁目1番4号 ナショナル住宅産業株式会社内 Fターム(参考) 3L054 BG10 BH07 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Toru Mochida 3-2-1-15, Fukuzumi, Toyohira-ku, Sapporo-shi, Hokkaido 302 (72) Inventor Isamu Shimakura 2-2-1-1, cold from Nishi-ku, Sapporo-shi, Hokkaido (72) Inventor Kiyoka Takeda 5-4-3 Makomanai-Minamimachi, Minami-ku, Sapporo-shi, Hokkaido (72) Inventor Shigeo Yoshida 1-4-1, Shinsenri Nishimachi, Toyonaka City, Osaka Prefecture National Housing Industry Co., Ltd. F-term (reference) 3L054 BG10 BH07
Claims (7)
取り込む換気方法であって、 前記屋外空間から屋内空間への外気の取り込み経路中
で、外気を相変化蓄熱材と接触させて外気を調温し、調
温された外気を屋内空間へ供給する工程(a)と、 前記屋外空間から取り込まれた外気または屋内空間の空
気を、前記相変化蓄熱材と接触させて相変化蓄熱材に蓄
熱させたのち、屋外空間へと排出する工程(b)とを含む
調温換気方法。1. A ventilation method for taking in outside air from an outdoor space of a building to an indoor space, wherein the outside air is brought into contact with a phase change heat storage material in the outside air taking-in path from the outdoor space to the indoor space. And (a) supplying the temperature-controlled outside air to the indoor space, and the outside air or the air in the indoor space taken in from the outdoor space is brought into contact with the phase-change heat storage material to change the phase-change heat storage material. A temperature-controlled ventilation method that includes the step (b) of storing the heat in the room and discharging it to the outdoor space.
触させて外気を調湿し、調湿された外気を屋内空間へ供
給し、 前記工程(b)が、前記外気を、調湿材にも接触させて調
湿材の水分含量を調整したのち、屋外空間へと排出する
請求項1に記載の調温換気方法。2. The step (a) adjusts the outside air by bringing the outside air into contact with a humidity control material and supplies the adjusted outside air to an indoor space, and the step (b) includes the outside air The temperature-controlled ventilation method according to claim 1, wherein the humidity control material is brought into contact with the humidity control material to adjust the water content of the humidity control material, and then discharged to the outdoor space.
化蓄熱材と接触させて屋内空気を調温し、調温された屋
内空気を再び屋内空間へと戻す工程(c)を含む請求項1
または2に記載の調温換気方法。3. The method further includes the step (c) of bringing the air in the indoor space into contact with the phase-change heat storage material to control the temperature of the indoor air, and returning the temperature-controlled indoor air to the indoor space again. Item 1
Or the temperature-controlled ventilation method described in 2.
取り込む換気装置であって、 前記屋外空間から屋内空間へと外気が流通する換気路
と、 前記換気路の途中に配置され、相変化蓄熱材が収容さ
れ、前記外気が相変化蓄熱材と接触して流通する蓄熱器
と、 前記蓄熱器のうち、前記外気の出口側と前記屋外空間と
を連通させる排気路と、 前記蓄熱器の外気の出口側を、前記屋外空間に連通する
状態と、前記屋外空間に連通する状態とに選択的に切り
換える切換手段とを備える調温換気装置。4. A ventilation device for taking in outside air from an outdoor space of a building to an indoor space, wherein the ventilation path allows outside air to flow from the outdoor space to the indoor space, and the ventilation path is disposed in the middle of the ventilation path. A heat storage device that stores a change heat storage material, and in which the outside air flows in contact with the phase change heat storage material; an exhaust path that communicates the outlet side of the outside air with the outdoor space; and the heat storage device. A temperature control ventilation device comprising: switching means for selectively switching the outside air outlet side of the outdoor air communication state to the outdoor space communication state and the outdoor space communication state.
る多孔質基材をさらに有する請求項4に記載の調温換気
装置。5. The temperature-controlled ventilator according to claim 4, wherein the heat storage device further includes a porous base material carrying the phase change heat storage material.
さらに調湿材を収容する請求項4または5に記載の調温
換気装置。6. The temperature control / ventilation apparatus according to claim 4, wherein the heat storage device further accommodates a humidity control material in addition to the phase change heat storage material.
ずに屋内空間へと連通する屋内連結路と、 前記換気路が、前記蓄熱器に連通する状態と、前記屋内
連結路に連通する状態とを選択的に切り換える切換手段
とをさらに備える請求項4〜6の何れかに記載の調温換
気装置。7. An indoor connection path that branches from the ventilation path and communicates with an indoor space without passing through a heat storage device, a state in which the ventilation path communicates with the heat storage device, and a communication path with the indoor connection path. The temperature control ventilation device according to any one of claims 4 to 6, further comprising: a switching unit that selectively switches between the operating state and the operating state.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002133148A JP2003329270A (en) | 2002-05-08 | 2002-05-08 | Temperature control ventilation method and device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002133148A JP2003329270A (en) | 2002-05-08 | 2002-05-08 | Temperature control ventilation method and device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003329270A true JP2003329270A (en) | 2003-11-19 |
Family
ID=29696302
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002133148A Pending JP2003329270A (en) | 2002-05-08 | 2002-05-08 | Temperature control ventilation method and device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003329270A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006002955A (en) * | 2004-06-15 | 2006-01-05 | Sanyo Electric Co Ltd | Air conditioner |
JP2006328143A (en) * | 2005-05-24 | 2006-12-07 | Hitachi Chem Co Ltd | Heat storage material and method for producing the same |
JP2008281252A (en) * | 2007-05-09 | 2008-11-20 | Mitsui Home Co Ltd | Ventilation system |
JP2009511848A (en) * | 2005-10-10 | 2009-03-19 | エムジー イノベーションズ コーポレーション | Phase change material heat exchanger |
JP2013113463A (en) * | 2011-11-28 | 2013-06-10 | Passiv Energie Japan Inc | Heat storage element and ventilation unit using the same |
JP2013242108A (en) * | 2012-05-22 | 2013-12-05 | Nippon Jukankyo Kk | Indoor ventilation system |
JP2016057029A (en) * | 2014-09-11 | 2016-04-21 | 白川 利久 | Local dry cooling ventilation fan |
JP2017227397A (en) * | 2016-06-23 | 2017-12-28 | パナホーム株式会社 | Humidity control system |
KR20180027657A (en) * | 2016-09-05 | 2018-03-15 | 한온시스템 주식회사 | Portable type air conditioning system |
KR101967119B1 (en) * | 2018-12-27 | 2019-04-09 | 에이치엘비생명과학(주) | Apparatus for Heat Delivery and System for Heat Delivery |
CN114484667A (en) * | 2022-01-19 | 2022-05-13 | 新疆兵团城建集团有限公司 | Green energy-saving building ventilation device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5731742A (en) * | 1980-08-05 | 1982-02-20 | Iwao Yanase | Method and device for cooling and heating |
JPH0960981A (en) * | 1995-08-25 | 1997-03-04 | Misawa Homes Co Ltd | Heating apparatus for building |
JP2002089863A (en) * | 2000-09-14 | 2002-03-27 | National House Industrial Co Ltd | Heat accumulating floor structure |
-
2002
- 2002-05-08 JP JP2002133148A patent/JP2003329270A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5731742A (en) * | 1980-08-05 | 1982-02-20 | Iwao Yanase | Method and device for cooling and heating |
JPH0960981A (en) * | 1995-08-25 | 1997-03-04 | Misawa Homes Co Ltd | Heating apparatus for building |
JP2002089863A (en) * | 2000-09-14 | 2002-03-27 | National House Industrial Co Ltd | Heat accumulating floor structure |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006002955A (en) * | 2004-06-15 | 2006-01-05 | Sanyo Electric Co Ltd | Air conditioner |
JP2006328143A (en) * | 2005-05-24 | 2006-12-07 | Hitachi Chem Co Ltd | Heat storage material and method for producing the same |
JP2009511848A (en) * | 2005-10-10 | 2009-03-19 | エムジー イノベーションズ コーポレーション | Phase change material heat exchanger |
JP2008281252A (en) * | 2007-05-09 | 2008-11-20 | Mitsui Home Co Ltd | Ventilation system |
JP2013113463A (en) * | 2011-11-28 | 2013-06-10 | Passiv Energie Japan Inc | Heat storage element and ventilation unit using the same |
JP2013242108A (en) * | 2012-05-22 | 2013-12-05 | Nippon Jukankyo Kk | Indoor ventilation system |
JP2016057029A (en) * | 2014-09-11 | 2016-04-21 | 白川 利久 | Local dry cooling ventilation fan |
JP2017227397A (en) * | 2016-06-23 | 2017-12-28 | パナホーム株式会社 | Humidity control system |
KR20180027657A (en) * | 2016-09-05 | 2018-03-15 | 한온시스템 주식회사 | Portable type air conditioning system |
KR102483698B1 (en) * | 2016-09-05 | 2023-01-03 | 한온시스템 주식회사 | Portable type air conditioning system |
KR101967119B1 (en) * | 2018-12-27 | 2019-04-09 | 에이치엘비생명과학(주) | Apparatus for Heat Delivery and System for Heat Delivery |
CN114484667A (en) * | 2022-01-19 | 2022-05-13 | 新疆兵团城建集团有限公司 | Green energy-saving building ventilation device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2019226049B2 (en) | Cooling, heating and humidity stabilization using humidity fluctuations | |
Ma et al. | A review of heating, ventilation and air conditioning technologies and innovations used in solar-powered net zero energy Solar Decathlon houses | |
JP7038551B2 (en) | Harvesting energy from humidity fluctuations | |
Hauer | Thermal energy storage with zeolite for heating and cooling applications | |
JP2003329270A (en) | Temperature control ventilation method and device | |
KR20070054230A (en) | Ventilator and building | |
Lee et al. | Housing design methodology for passive hygrothermal control and effect verification via field measurements | |
JPH0960981A (en) | Heating apparatus for building | |
JP2004197974A (en) | Air conditioner and air conditioning method for residence | |
JP2524299B2 (en) | Handling box for solar system house | |
JP4524348B1 (en) | Energy saving ventilation system | |
US20140260003A1 (en) | Wall structure | |
JP2003083656A (en) | Cooling system | |
JP4341848B2 (en) | Air-collecting solar dehumidification cooler system | |
Nagano | Development of the PCM floor supply air-conditioning system | |
US4702227A (en) | Solar energy collector and system | |
GB2541634A (en) | Device for local ventilation with recovery of heat and humidity | |
JPH0961006A (en) | Cooling device for building | |
JPH0555781B2 (en) | ||
Chen et al. | Development of an intelligent envelope system with energy recovery ventilation for passive dehumidification in summer and solar collection in winter | |
Barzin et al. | Application of PCM Energy Storage in Combination with Night Ventilation for Space Cooling | |
Mizuno et al. | A study on desiccant system regenerated by waste heat from home-use solid oxide fuel cell cogeneration system | |
Paul et al. | Mathematical Model Development of a Solar Assisted Liquid Desiccant Air Conditioning System with Fin Coil Dehumidifier | |
Catalina et al. | Impact of moisture buffering on energy performance of cooling ceilings | |
Nishizawa et al. | THERMAL ENVIRONMENT OF THE HOUSE WITH A MOISTURE-ABSORBENT TYPE DEHUMIDIFIER IN SUMMER |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050427 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071009 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080325 |