JP2003328919A - Method for repairing existing hydraulic machinery - Google Patents

Method for repairing existing hydraulic machinery

Info

Publication number
JP2003328919A
JP2003328919A JP2002140928A JP2002140928A JP2003328919A JP 2003328919 A JP2003328919 A JP 2003328919A JP 2002140928 A JP2002140928 A JP 2002140928A JP 2002140928 A JP2002140928 A JP 2002140928A JP 2003328919 A JP2003328919 A JP 2003328919A
Authority
JP
Japan
Prior art keywords
hydraulic machine
existing hydraulic
flow
loss
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002140928A
Other languages
Japanese (ja)
Other versions
JP4020695B2 (en
Inventor
Koichiro Shimizu
光一郎 清水
Takanori Nakamura
高紀 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002140928A priority Critical patent/JP4020695B2/en
Publication of JP2003328919A publication Critical patent/JP2003328919A/en
Application granted granted Critical
Publication of JP4020695B2 publication Critical patent/JP4020695B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Hydraulic Turbines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To easily grasp water turbine characteristics of an existing hydraulic machinery, to predict how far an actual operation is deviated from a proper operation, and to properly indicate repair of a hydraulic machinery and direction of replace. <P>SOLUTION: Flow passage shape data of an existing hydraulic machinery is sampled by a process flow 101 and based on the sampled data, mesh data for flow analysis is produced by a process flow 102 to effect flow analysis. Based on the result of the flow analysis, an iso efficiency chart of water turbine efficiency is prepared in a plane-form based on a flow rate head and a water turbine output. An operation point indicating the yearly flow state of the existing hydraulic machinery is indicated as spray data on the iso efficiency chart to confirm a deviation between present operation and water wheel characteristics and based on the deviation, a repair policy for the existing hydraulic machinery is decided. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は既設水力機械の改修
方法に関する。
TECHNICAL FIELD The present invention relates to a method for repairing an existing hydraulic machine.

【0002】[0002]

【従来の技術】従来の水力機械の例としては、図7にそ
の縦断面図を示すフランシス形水力機械などがある。図
7に示すように、このような水力機械は、回転軸1をそ
の回転中心に結合されたランナ2を、上カバー3と下カ
バー4によって形成される空間であるランナ室内に格納
する構成となっている。ここで、ランナ2は、水の流路
となるランナクラウン2aとランナバンド2bの間に複
数枚のランナベーン2cを保持する構成となっており、
ランナクラウン2aが前記回転軸と接続されている。そ
して、前記ランナ室の外周にはランナ室内に流入する水
の流量を調節する可動式のガイドベーン5と、その外側
に固定式のステーベーン6がそれぞれ複数枚設けられて
いる。そして、前記ステーベーン6の外側には前記ラン
ナ室を包囲するケーシング7が設けられるとともに、前
記ランナ室の下側には吸出し管8が設けられている。
2. Description of the Related Art An example of a conventional hydraulic machine is a Francis type hydraulic machine whose longitudinal section is shown in FIG. As shown in FIG. 7, such a hydraulic machine has a configuration in which a runner 2 in which a rotary shaft 1 is connected to its rotation center is stored in a runner chamber which is a space formed by an upper cover 3 and a lower cover 4. Has become. Here, the runner 2 is configured to hold a plurality of runner vanes 2c between a runner crown 2a and a runner band 2b, which are water flow paths,
The runner crown 2a is connected to the rotary shaft. A plurality of movable guide vanes 5 for adjusting the flow rate of water flowing into the runner chamber and a plurality of fixed stay vanes 6 are provided outside the runner chamber. A casing 7 that surrounds the runner chamber is provided outside the stay vane 6, and a suction pipe 8 is provided below the runner chamber.

【0003】このような構成の水力機械において、図示
しない上池から流出した水は、ケーシング7へと導か
れ、ステーベーン6の間を通過した後、ガイドベーン5
によってその流量を調節されてランナ室内に流入する。
ランナ室内に流入した水は、ランナ2のランナクラウン
2aとランナバンド2bとの間に流入し、ここに設けら
れた複数枚のランナベーン2cの間を通過する間に仕事
を行ってランナ2と回転軸1とを回転させる。回転軸1
には図示しない発電機が接続されており、回転軸1の回
転が伝えられ、これによって電力が発生する。そして、
ランナ2に仕事をさせた水は、ランナ室の下部から流出
して吸出し管8へと流入し、ここから図示しない下池へ
と導かれる。
In the hydraulic machine having such a structure, the water flowing out from the upper pond (not shown) is guided to the casing 7, passes between the stay vanes 6 and then the guide vanes 5.
The flow rate is adjusted by and flows into the runner chamber.
The water that has flowed into the runner chamber flows between the runner crown 2a and the runner band 2b of the runner 2 and performs work while passing between the plurality of runner vanes 2c provided here to rotate with the runner 2. Rotate shaft 1 and. Rotating shaft 1
A generator (not shown) is connected to, and the rotation of the rotating shaft 1 is transmitted to generate electric power. And
The water that has caused the runner 2 to perform work flows out from the lower part of the runner chamber, flows into the suction pipe 8, and is guided from there to a lower pond (not shown).

【0004】このような水力機械の設置を計画する段階
では、要求される出力や立地等の自然条件を基に運転パ
ターンを想定し、このうち頻度の高い運転状態をもって
各機器の設計がなされる場合が多い。しかし、水力機械
は一般的に数十年間の長期に亘って運用されるため、こ
のような長期の運用の間に当初想定していた運転パター
ンと実際の運転パターンが異なってくる場合がある。と
ころが、水力機械のもつ特性は計画当初に想定された運
転パターンで運用した際に最適に設計されているため、
このような場合、水力機械は最適でない運転をせざるを
得ない。上述のように当初想定された運転パターンと実
際の運転パターンが異なってきた場合に、実際の運転パ
ターンがどの程度ずれているかを判断するためには、水
力機械のの効率特性である水車特性を求める必要があ
り、水車特性を求めることで初めて水力機械の性能確認
が可能となる。
At the stage of planning the installation of such a hydraulic machine, an operating pattern is assumed based on the required output, natural conditions such as location, and each device is designed in a frequently operating state. In many cases. However, since a hydraulic machine is generally operated for a long period of several decades, the operation pattern initially assumed may differ from the actual operation pattern during such a long-term operation. However, the characteristics of hydraulic machinery are optimally designed when operating in the operating pattern assumed at the beginning of the plan.
In such cases, the hydraulic machine is forced to operate non-optimally. As described above, when the originally assumed operation pattern and the actual operation pattern differ, in order to judge how much the actual operation pattern deviates, the turbine characteristic, which is the efficiency characteristic of the hydraulic machine, is used. It is necessary to ask for it, and the performance of the hydraulic machine can be confirmed only by finding the characteristics of the turbine.

【0005】このように、既設水力機械の水車特性を求
める方法について図8を用いて説明する。一般的に水力
機械の水車特性を求めるためには、種々の流量、有効落
差に対して水の持つエネルギーの内どれだけが仕事とし
て得られるかを実際の水力機械を用いて試験する現地効
率試験を行なう方法や、実際の水力機械と相似形状の模
型水車を製作し、相似模型水車試験によって特性を確認
する方法が用いられている。現地効率試験は、一般に新
設直後の水力機械や、ランナ入れ替え(リプレイス)前
後の確認試験として行なわれることが多い。現地効率試
験を行なう場合、流量、有効落差、発生出力等のデータ
を計測する必要が生じるため、これらのそれぞれについ
てどのような計測方法を用いるかをまず検討する必要が
ある。特に流量の検出にあたっては、超音波法や圧力時
間法といった方法を用いる必要があり、このための計測
装置を水力機械に取り付ける。計測方法が決定された
後、現地効率試験を実施するが、運転時の有効落差が常
にほぼ一定である地点に設置される水力機械は少ないた
め、一般には有効落差を種々変化させて複数回現地効率
試験を実施し、それらの結果によって既設水力機械の特
性が確認される。
A method for obtaining the turbine characteristic of the existing hydraulic machine will be described with reference to FIG. Generally, in order to obtain the hydraulic turbine characteristics of a hydraulic machine, a field efficiency test is conducted by using an actual hydraulic machine to test how much of the energy of water can be obtained as work for various flow rates and effective heads. And a method of making a model turbine with a similar shape to an actual hydraulic machine and confirming the characteristics by a similar model turbine test. In general, the on-site efficiency test is often performed as a confirmation test before and after the replacement of the runner (replacement) with a hydraulic machine immediately after new construction. When conducting an on-site efficiency test, it is necessary to measure data such as flow rate, effective head, generated output, etc. Therefore, it is necessary to first consider what measurement method to use for each of these. Especially for detecting the flow rate, it is necessary to use a method such as an ultrasonic method or a pressure time method, and a measuring device for this purpose is attached to the hydraulic machine. After the measurement method is decided, on-site efficiency tests are conducted.However, since there are few hydraulic machines installed at points where the effective head during operation is almost constant, generally, the effective head is changed variously and the effective head is changed several times. An efficiency test will be conducted and the results will confirm the characteristics of the existing hydraulic machine.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、既設水
力機械の水車特性を求めるために現地効率試験を行なう
場合でも、設置から数十年を経た水力機械に計測装置を
取り付けるなど、煩雑な作業が発生することも多い。ま
た、現地効率試験の実施前後の期間において有効落差を
変えることができるかは水力機械が設置された地点の立
地条件により、一般的には現地効率試験の実施前後の期
間において有効落差を変えられることは稀である。した
がって、種々の有効落差に対して現地効率試験を行なう
場合、特に有効落差の変動の大きな地点に設置された水
力機械の場合は、落差が変わった時期に再度現地効率試
験を実施することとなり、既設の水力機械の特性を把握
するまでに長い時間を要することもあった。また、実機
相似の模型水車を製作し、相似模型水車試験を実施して
特性を確認する方法もあるが模型の製作費用や試験費用
がかかるという問題点もある。
However, even when conducting an on-site efficiency test in order to obtain the turbine characteristics of an existing hydraulic machine, complicated work such as mounting a measuring device on the hydraulic machine several decades after its installation occurs. I often do it. Whether the effective head can be changed before and after the on-site efficiency test can be changed depending on the location condition of the point where the hydraulic machine is installed. Generally, the effective head can be changed before and after the on-site efficiency test. Things are rare. Therefore, when conducting a local efficiency test for various effective heads, especially for hydraulic machines installed at points where the fluctuation of the effective head is large, the local efficiency test will be carried out again when the head changes. It sometimes took a long time to understand the characteristics of the existing hydraulic machine. There is also a method of manufacturing a model water turbine similar to an actual machine and conducting a similar model water turbine test to confirm the characteristics, but there is a problem that it costs a manufacturing cost and a test cost of the model.

【0007】このように、既設水力機械の水車特性を把
握して性能確認を行なうためには、現地効率試験または
相似模型水車試験を行えばよいが、上述のような問題点
のために多大な手間と労力を必要とすることが多い。と
ころが手間をかけてこれらを行なったとしてもあくまで
既設の水力機械の性能確認ができるのみであり、性能確
認の結果を基に既設の水力機械の改修、ランナ入れ替え
(リプレイス)工事、もしくは水力機械の一括更新を行
なうなどの手段を講じることで初めて効率のよい水力機
械を得ることができる。
As described above, in order to confirm the performance of the existing hydraulic machine by grasping the characteristics of the hydraulic turbine, a field efficiency test or a similar model turbine test may be carried out. It often requires labor and effort. However, even if it takes time and effort to perform these, it is only possible to confirm the performance of the existing hydraulic machine, and based on the results of the performance confirmation, the existing hydraulic machine will be repaired, the runners will be replaced (replaced), or the hydraulic machine will be replaced. An efficient hydraulic machine can be obtained only by taking measures such as batch updating.

【0008】このため、当初想定された運転パターンと
実際の運転パターンが異なってきた場合などは、実際の
運転パターンに適正な運転を行なうように既設の水力機
械を改修したり、ランナのリプレイスを行なうといった
対応を取ることが最も重要であるため、これらの対応を
決定するためだけに上述のように多大な手間と費用を掛
けて既設の水力機械の性能確認を行なうことは稀であ
り、既設水力機械に対する現地効率試験や相似模型水車
試験はほとんど実施されないのが現状である。
For this reason, when the initially assumed operation pattern and the actual operation pattern are different, the existing hydraulic machine is refurbished or the runner is replaced so that the operation pattern is suitable for the actual operation pattern. Since it is most important to take measures such as taking measures, it is rare to check the performance of the existing hydraulic machinery with great effort and cost as described above just to determine these measures. At present, almost no local efficiency tests or similar model turbine tests are performed on hydraulic machinery.

【0009】本発明はこれらの点に鑑みなされたもので
あり、既設の水力機械の水車特性を容易に把握し、現実
の運用がどの程度適正な運用から外れているかを評価
し、水力機械の改修やリプレイスの方向性を適正に示す
ことをその目的とする。
The present invention has been made in view of these points, and it is possible to easily grasp the turbine characteristics of an existing hydraulic machine, evaluate how the actual operation deviates from the proper operation, and Its purpose is to properly indicate the direction of repairs and replacements.

【0010】[0010]

【課題を解決するための手段】上述の課題を解決するた
めに、本発明の請求項1に係るの既設水力機械の改修方
法は、水車、ポンプなどの既設水力機械の流路形状を図
面あるいは現物測定により数値化した解析モデルを作成
し、前記既設水力機械の様々な運転状態を解析条件とし
て前記解析モデルを用いて流れ解析を行い、前記流れ解
析によって得られた結果から求まった既設水力機械の水
車特性と当該既設水力機械の実際の運用を示す年間流況
とを比較し、前記水車特性と前記年間流況との比較結果
によって前記既設水力機械の流路形状を前記年間流況か
ら定まる運転頻度の高い運転点での水車効率が向上する
ように変更することを特徴とする。このような方法とす
ることによって、既設水力機械の性能確認を現地効率試
験や相似模型水車試験によらずに比較的簡単に行なうこ
とができるとともに、既設水力機械を実際の運用に合っ
た特性に改修する方針を適切に定めることができる。
In order to solve the above-mentioned problems, a method for rehabilitating an existing hydraulic machine according to claim 1 of the present invention is to draw a flow path shape of an existing hydraulic machine such as a water turbine, a pump or the like. An analysis model that is quantified by physical measurement is created, and a flow analysis is performed using the analysis model with various operating states of the existing hydraulic machine as analysis conditions, and the existing hydraulic machine obtained from the result obtained by the flow analysis. And the annual flow regime showing the actual operation of the existing hydraulic machine are compared, and the flow path shape of the existing hydraulic machine is determined from the annual flow regime by the result of comparison between the hydraulic turbine property and the annual flow regime. It is characterized in that it is changed so as to improve the efficiency of the water turbine at the driving point where the driving frequency is high. By using this method, it is possible to confirm the performance of the existing hydraulic machine relatively easily without conducting a local efficiency test or a similar model turbine test, and make sure that the existing hydraulic machine has characteristics suitable for actual operation. A policy for renovation can be appropriately set.

【0011】また、本発明の請求項2に係る既設水力機
械の改修方法は、請求項1に加えて、水車特性は有効落
差と流量、もしくは有効落差と水車出力を軸とする平面
上における等効率線図として表され、年間流況は前記平
面上に前記既設水力機械の年間の運転点を散布図として
表すことを特徴とする。このようにすることによって、
流れ解析によって求まった既設水力機械の水車特性と、
既設水力機械の実際の運用を示す年間流況とを簡単に比
較でき、既設水力機械の水車特性が実際の運用に合った
ものであるかを簡単に判断することが可能となる。
Further, in the method for rehabilitating an existing hydraulic machine according to claim 2 of the present invention, in addition to claim 1, the turbine characteristic is that the effective head and the flow rate, or the effective head and the turbine output are on a plane. It is represented as an efficiency diagram, and the annual flow regime is characterized in that an annual operating point of the existing hydraulic machine is represented on the plane as a scatter diagram. By doing this,
Turbine characteristics of existing hydraulic machinery obtained by flow analysis,
It is possible to easily compare with the annual flow condition showing the actual operation of the existing hydraulic machine, and it is possible to easily judge whether the turbine characteristics of the existing hydraulic machine are suitable for the actual operation.

【0012】さらに、本発明の請求項3に係る既設水力
機械の改修方法は、請求項1もしくは請求項2に加え、
年間流況から定まる運転頻度の高い運転点と流れ解析に
よって求まった水車効率の高い運転点の、流路にて生じ
る損失である漏れ損失、円板摩擦損失、摩擦損失、およ
び渦損失をそれぞれ比較し、前記運転頻度の高い運転点
での損失に対する前記水車効率の高い運転点における損
失の割合が最も小さい損失を低減するように前記既設水
力機械の流路形状の変更を行なうことを特徴とする。こ
のように、運転頻度の高い運転点と効率の高い運転点に
おいて流路にて生じる各損失をそれぞれ比較すること
で、どの損失を低減させることによって運転頻度の高い
運転点における効率を向上させられるかを把握し、既設
水力機械の改修を適切に行なうことが可能となる。
Further, a method for rehabilitating an existing hydraulic machine according to claim 3 of the present invention is the same as claim 1 or claim 2,
The leakage loss, disc friction loss, friction loss, and eddy loss, which are the losses generated in the flow path, are compared between the operating point with high operating frequency determined by the annual flow regime and the operating point with high turbine efficiency determined by flow analysis. However, the flow path shape of the existing hydraulic machine is changed so as to reduce the loss with the smallest ratio of the loss at the operating point with high turbine efficiency to the loss at the operating point with high operating frequency. . In this way, by comparing each loss that occurs in the flow path at the operating point with high operation frequency and the operating point with high efficiency, which loss can be reduced to improve the efficiency at the operating point with high operation frequency. Therefore, it becomes possible to properly rehabilitate the existing hydraulic machinery.

【0013】また、本発明の請求項4に係る既設水力機
械の改修方法は、請求項3に加えて、既設水力機械がフ
ランシス形水力機械であり、渦損失の低減を行なう場合
に前記既設水力機械のランナベーンのうち、出口開度お
よび出口羽根角度を変更することを特徴とする。
Further, in the method for rehabilitating an existing hydraulic machine according to claim 4 of the present invention, in addition to claim 3, the existing hydraulic machine is a Francis type hydraulic machine, and when the eddy loss is reduced, the existing hydraulic machine is reduced. Among the runner vanes of the machine, it is characterized by changing the outlet opening and the outlet blade angle.

【0014】さらに、本発明の請求項5に係る既設水力
機械の改修方法は、請求項1から請求項4までのいずれ
かに加えて、流路形状の変更を行なった場合の解析モデ
ルを作成し、これを基に再度流れ解析を行なって性能の
確認を行なった後に流路形状の変更を行なうことを特徴
とする。
Further, in the method for rehabilitating an existing hydraulic machine according to claim 5 of the present invention, in addition to any one of claims 1 to 4, an analytical model in the case of changing the flow path shape is created. Then, based on this, the flow analysis is performed again to confirm the performance, and then the flow path shape is changed.

【0015】[0015]

【発明の実施の形態】以下、図1〜図6を用いて本発明
の実施の形態を示す。図1は本発明の第1の実施の形態
を示すフローチャートである。本実施の形態では、処理
フロー101として、まず既設水力機械の流路形状デー
タを採取する。このデータの作成にあたっては、既設の
水力機械の図面を用いるか、もしくは既設の水力機械の
流路形状を実測して行なう。例えば図7に示した従来の
水力機械の場合では、ランナ2、上カバー3と下カバー
4によって形成されるランナ室、ガイドベーン5、ケー
シング7、および吸出し管8などの流路形状に関するデ
ータを採取する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to FIGS. FIG. 1 is a flow chart showing a first embodiment of the present invention. In the present embodiment, as the processing flow 101, first, the flow path shape data of the existing hydraulic machine is sampled. To create this data, use the drawings of the existing hydraulic machine or measure the flow path shape of the existing hydraulic machine. For example, in the case of the conventional hydraulic machine shown in FIG. 7, data regarding flow path shapes such as the runner 2, the runner chamber formed by the upper cover 3 and the lower cover 4, the guide vanes 5, the casing 7, and the suction pipe 8 is provided. Collect.

【0016】そして、処理フロー101にて既設水力機
械の流路形状データの採取が完了すると、次に、処理フ
ロー102にて採取した流路形状データをもとに、流れ
解析用のメッシュデータ(解析モデル)の作成を行な
う。
When the collection of the flow path shape data of the existing hydraulic machine is completed in the processing flow 101, next, based on the flow path shape data collected in the processing flow 102, mesh data for flow analysis ( Create an analysis model).

【0017】次に、処理フロー103にて、既設水力機
械の現状の運転パターンから、有効落差の変化、流量変
化に対応する複数の運転状態における解析条件を選定
し、その各々の解析条件のもとで流れ解析を実施する。
ここで、解析条件の選定にあたってはまず処理フロー1
03aにて有効落差Hを選定する。ここで、有効落差H
を選定する場合には、まずは既設水力機械の運転パター
ンに基づき運転頻度の高い有効落差Hを選定すればよい
が、複数の運転状態に対応する解析条件を選定して流れ
解析を行なうことが必要であるため、最大落差、最小落
差、基準落差などから適宜選定してもよい。そして、処
理フロー103bにおいて、処理フロー103aで選定
した有効落差Hにおける流量Qを選定する。ここで、処
理フロー103bにおいては、流量Qを選定することと
しているが、流量ではなく水力機械の出力(水車出力
P)を選定するようにしてもよい。また、ここでも処理
フロー103aと同様に、流量Qや水車出力Pの選定に
当たっては、既設水力機械の運転パターンに基づき、運
転頻度の高い流量Qや水車出力Pを選定するようにする
とよい。
Next, in process flow 103, analysis conditions in a plurality of operating states corresponding to changes in effective head and flow rate are selected from the current operation pattern of the existing hydraulic machine, and the analysis conditions for each are also selected. And perform flow analysis.
Here, in selecting the analysis conditions, first, the processing flow 1
The effective head H is selected at 03a. Where the effective head H
When selecting, the effective head H that is frequently operated should be selected based on the operation pattern of the existing hydraulic machine, but it is necessary to select the analysis conditions corresponding to a plurality of operating states and perform the flow analysis. Therefore, it may be appropriately selected from the maximum head, the minimum head, the reference head, and the like. Then, in the processing flow 103b, the flow rate Q in the effective head H selected in the processing flow 103a is selected. Here, in the process flow 103b, the flow rate Q is selected, but the output of the hydraulic machine (turbine output P) may be selected instead of the flow rate. Also here, in the same manner as the processing flow 103a, in selecting the flow rate Q and the turbine output P, the flow rate Q and the turbine output P that are frequently operated may be selected based on the operation pattern of the existing hydraulic machine.

【0018】このようにして、解析条件が選定される
と、処理フロー103cへと進み、処理フロー103
a,103bにて選定した解析条件(有効落差H,流量
Q)での流れ解析を行なう。この結果、水車出力Pと水
力機械の各流路における損失、および水力機械のキャビ
テーション性能が算出される。そして、処理フロー10
3dへと進み、処理フロー103cで得られた各流路の
損失、および水力機械のキャビテーション性能に基づい
て、処理フロー103a,103bにて選定した解析条
件における水力機械の効率である水車効率ηを算定す
る。なお、処理フロー103bにて水車出力Pを選定し
て流れ解析を行なった場合処理フロー103cにて、流
量Qと水力機械の各流路における損失が算出されるの
で、処理フロー103dではこれらに基づき処理フロー
103a,103bにて選定した解析条件における水車
効率ηを算定することとなる。さらに、処理フロー10
3eへと進み、処理フロー103dにて算定した水車効
率ηに発電機効率を考慮して、発電効率ηEと発電出力
を算定することもできる。これらを算定する場合、
処理フロー103a,103bにて選定した解析条件で
の発電機効率が必要となるが、不明である場合には平均
的な発電機効率を代表値として用いるとよい。ここまで
の処理によって、最初に選定した有効落差H、および流
量Q(もしくは水車出力P)を解析条件とした場合の水
車効率ηや発電効率ηが求まる。そして、処理フロー
103bに戻り、別の流量Q(もしくは水車出力P)を
選定してその解析条件での流れ解析を行ない、同様に水
車効率ηや発電効率ηを算定する。このようにして処
理フロー103aにて選定した有効落差Hを解析条件と
した流れ解析を複数回行う。さらに処理フロー103a
へと戻り、別の有効落差Hを選定して同様に流れ解析を
行なう。これらの処理によって、既設水力機械の複数の
運転状態に対応する解析条件おける水車効率η、発電効
率ηが算定される。なお、本実施の形態においては複
数の解析条件において流れ解析を実施するが、この回数
および解析条件の選定は、後述する水車特性図や効率曲
線図を作成するために必要かつ十分だけ行ない、既設の
水力機械の性能確認をある程度の精度にて行なうことが
できるようにしておく。
When the analysis condition is selected in this manner, the process flow 103c is advanced to the process flow 103.
Flow analysis is performed under the analysis conditions (effective head H, flow rate Q) selected in a and 103b. As a result, the turbine output P, the loss in each flow path of the hydraulic machine, and the cavitation performance of the hydraulic machine are calculated. Then, the processing flow 10
3d, the turbine efficiency η, which is the efficiency of the hydraulic machine under the analysis conditions selected in the processing flows 103a and 103b, is calculated based on the loss of each flow path obtained in the processing flow 103c and the cavitation performance of the hydraulic machine. Calculate. When the turbine output P is selected and the flow analysis is performed in the processing flow 103b, the flow rate Q and the loss in each flow path of the hydraulic machine are calculated in the processing flow 103c. The turbine efficiency η under the analysis conditions selected in the processing flows 103a and 103b will be calculated. Furthermore, the processing flow 10
It is also possible to proceed to 3e and calculate the power generation efficiency η E and the power generation output P E by taking the generator efficiency into consideration in the turbine efficiency η calculated in the processing flow 103d. When calculating these,
Although the generator efficiency under the analysis conditions selected in the processing flows 103a and 103b is required, if it is unknown, it is preferable to use the average generator efficiency as the representative value. Through the processing up to this point, the turbine efficiency η and the power generation efficiency η E when the initially selected effective head H and flow rate Q (or turbine output P) are used as the analysis conditions are obtained. Then, returning to the processing flow 103b, another flow rate Q (or the turbine output P) is selected and the flow analysis is performed under the analysis conditions, and similarly, the turbine efficiency η and the power generation efficiency η E are calculated. In this way, the flow analysis is performed a plurality of times with the effective head H selected in the processing flow 103a as the analysis condition. Further processing flow 103a
Returning to, another effective head H is selected and the flow analysis is performed in the same manner. By these processes, the turbine efficiency η and the power generation efficiency η E under the analysis conditions corresponding to the plurality of operating states of the existing hydraulic machine are calculated. In the present embodiment, the flow analysis is carried out under a plurality of analysis conditions, but the number of times and the analysis conditions are selected only as necessary and sufficient as possible to create a water turbine characteristic diagram and an efficiency curve diagram, which will be described later. Be prepared to be able to confirm the performance of the hydraulic machine with a certain degree of accuracy.

【0019】処理フロー103にて複数の解析条件に対
応する水車効率、発電効率等が算定されると処理フロー
104へと進み、解析結果をまとめ図2に示すような水
車特性図を作成する。図2は、有効落差Hを横軸、流量
Qを縦軸にとって水車効率ηの等効率線を表した水車特
性図である。また、このようにして求められた水車特性
図に、既設水力機械の最高落差Hmax、基準落差H
nor、さらに最低落差Hminを図示することで、こ
れらに囲まれた内側がこの水力機械の運転範囲であるこ
とがわかる。さらに本実施の形態においては、流れ解析
によって求まった水車特性図に、既設の水力機械の1年
間の運用を示す年間流況とを重ね合わせる。この年間流
況は、既設水力機械の1年間にどのような運転点でどれ
だけ運転されているかを傾向として示すデータであり、
運転を行った際の有効落差と流量を、例えば丸印等で有
効落差−流量平面上に示した散布図として表すことがで
きる。そして、このように既設の水力機械の運転パター
ンを示す年間流況を流れ解析によって求めた水車特性図
上に重ねて示すことによって、既設の水力機械の運転パ
ターンが適正なものからどの程度ずれているかを簡易か
つ正確に知ることができる。
When the turbine efficiency, the power generation efficiency, etc. corresponding to a plurality of analysis conditions are calculated in the processing flow 103, the process proceeds to the processing flow 104, and the analysis results are summarized to create a turbine characteristic diagram as shown in FIG. FIG. 2 is a hydraulic turbine characteristic diagram showing the contour line of the hydraulic turbine efficiency η with the effective head H as the horizontal axis and the flow rate Q as the vertical axis. In addition, the maximum drop H max of the existing hydraulic machine and the reference drop H
By drawing nor and the minimum head H min , it can be seen that the inside surrounded by these is the operating range of this hydraulic machine. Further, in the present embodiment, the hydraulic turbine characteristic diagram obtained by the flow analysis is superposed with the annual flow condition showing the operation of the existing hydraulic machine for one year. This annual flow condition is data that shows as a trend what kind of operating points and how many operating points an existing hydraulic machine is operating in one year.
The effective head and the flow rate when the operation is performed can be expressed as a scatter diagram shown on a plane of the effective head-flow rate by a circle, for example. Then, by superimposing the annual flow condition showing the operation pattern of the existing hydraulic machine on the turbine characteristic diagram obtained by the flow analysis, how much the operation pattern of the existing hydraulic machine deviates from the proper one. You can easily and accurately know what is happening.

【0020】すなわち、本実施の形態においては、既設
の水力機械の流路形状を用いて流れ解析を行なって得た
水車特性を、この水力機械の実際の運用である年間流況
と比較することによって、既設の水力機械の運転パター
ンのずれを容易に知ることができるので、既設の水力機
械の性能確認を現地効率試験や相似模型水車試験によら
ずに簡易かつ正確に行なうことができる。
That is, in the present embodiment, the turbine characteristics obtained by performing a flow analysis using the flow path shape of the existing hydraulic machine are compared with the annual flow condition which is the actual operation of this hydraulic machine. Since it is possible to easily know the deviation of the operation pattern of the existing hydraulic machine, it is possible to easily and accurately confirm the performance of the existing hydraulic machine without performing a local efficiency test or a similar model turbine test.

【0021】図2で示した水車特性図をもとに、より細
かく性能確認を行なうことも可能である。図3は、図1
で示した処理フロー103にて実施した流れ解析の結果
と既設の水力機械の年間流況をもとに、流量Qを横軸、
水車効率ηを縦軸にとり、有効落差Hを一定とした場合
の水車効率ηを示した効率曲線図である。すなわち、図
3は図2において有効落差Hを一定とした場合の効率曲
線図であり、概念的には、図2における等効率線をある
有効落差Hで切り取った断面を示している。ここで、一
定とする有効落差Hの値としては図2において示された
年間流況で頻度の多い有効落差Hとすることで、年間流
況とのより精度のよい比較を行なうことができる。な
お、ここでは説明の便宜上、年間流況を示す丸印は運転
頻度の多い代表的な2点A,Bのみを図示している。
It is also possible to perform more detailed performance confirmation based on the characteristic diagram of the water turbine shown in FIG. FIG. 3 shows FIG.
Based on the result of the flow analysis performed in the processing flow 103 shown in and the annual flow condition of the existing hydraulic machine, the flow rate Q is plotted on the horizontal axis,
FIG. 7 is an efficiency curve diagram showing the turbine efficiency η when the turbine efficiency η is plotted on the vertical axis and the effective head H is constant. That is, FIG. 3 is an efficiency curve diagram when the effective head H is constant in FIG. 2, and conceptually shows a cross section obtained by cutting the equiefficiency line in FIG. 2 at a certain effective head H. Here, by setting the value of the effective head H that is constant to the effective head H that is frequently used in the annual flow regime shown in FIG. 2, it is possible to perform more accurate comparison with the annual flow regime. Here, for convenience of explanation, the circles indicating the annual flow condition show only two typical points A and B which are frequently operated.

【0022】このような図3において、最も運転頻度の
大きい点の効率を比較する。この図に示す点Aは、最も
運転頻度の大きい点が最高効率点に近い場合は適正な特
性であると判定できるが、点Bのように最高効率点から
離れた効率の低い運転点の場合は適性な特性ではないと
判定することができる。図3に示したように、年間流況
にて運転頻度の大きな有効落差Hにおいて運転頻度の大
きな点Bが効率の低い運転点であり、既設の水力機械が
適正な特性であると判定できない場合には、水力機械の
改修やリプレイスといった対策を講じる必要がある。こ
のための方針の決定方法を以下に示す。
In FIG. 3 as described above, the efficiencies at points having the highest operating frequency are compared. Point A shown in this figure can be determined to be an appropriate characteristic when the point with the highest operating frequency is close to the maximum efficiency point, but in the case of an operating point with low efficiency such as point B that is far from the maximum efficiency point. Can be determined not to be an appropriate property. As shown in FIG. 3, when it is not possible to determine that the existing hydraulic machine has proper characteristics, the point B with a large operating frequency is the operating point with a low efficiency in the effective head H with a large operating frequency in the annual flow regime. Therefore, it is necessary to take measures such as repair and replacement of hydraulic machinery. The method of determining the policy for this is shown below.

【0023】一般に、水力機械の流路で生じる損失は、
漏れ損失、円板摩擦損失、摩擦損失、および渦損失から
なる。このうち、漏れ損失は、図7で示した水力機械に
おいて、ケーシング7から導かれた水がランナ2内へと
流入せず、例えば上カバー3と下カバー4で構成される
ランナ室とランナ2との間隙を通過するなどして吸出し
管8へと導かれることによって発生する損失であり、円
板摩擦損失はランナ室内でランナ2が回転する際のラン
ナクラウン2aやランナバンド2bと水との摩擦によっ
て生じる損失である。また、摩擦損失は、各流路の表面
粗さに起因した損失と各流路内での流れの剥離によって
生じる損失を合わせたものであり、渦損失はランナ2内
部から吸出し管8へ導かれた水が、吸出し管8の内部で
旋回速度成分を持った流れとなることによって生じる損
失である。
Generally, the losses that occur in the flow path of a hydraulic machine are
It consists of leakage loss, disc friction loss, friction loss, and eddy loss. Among them, the leakage loss is that in the hydraulic machine shown in FIG. 7, the water guided from the casing 7 does not flow into the runner 2 and, for example, the runner chamber and the runner 2 which are composed of the upper cover 3 and the lower cover 4. Is a loss generated by being guided to the suction pipe 8 through a gap between the runner crown 2a and the runner crown 2a when the runner 2 rotates in the runner chamber and water. It is a loss caused by friction. The friction loss is a sum of the loss due to the surface roughness of each flow path and the loss caused by the separation of the flow in each flow path, and the eddy loss is guided from the inside of the runner 2 to the suction pipe 8. This is a loss caused by the generated water becoming a flow having a swirl velocity component inside the suction pipe 8.

【0024】水力機械の改修などによってこれらの各損
失を低減するためには、一般的に次のような方法が採用
される。漏れ損失の低減のためは、例えば、回転部であ
るランナ2と、静止部である上カバー3および下カバー
4とのシール形状の設計変更等を行なうといった対策を
とればよく、円板摩擦損失の低減のためには、ランナ2
のランナクラウン2aおよびランナバンド2bの外周側
面積の低減を行なうといった対策を講じることが有効で
ある。また、摩擦損失は、各流路の表面粗さによって生
じる損失と、ランナ2の内部への水の流入角度のアンマ
ッチ等によって生じる流れの剥離による損失を合わせた
ものであるため、ランナベーン2c、ガイドベーン5、
またステーベーン6といった流路を構成する要素の表面
粗さや形状の変更を行なうことで、損失低減を図ること
ができる。渦損失については、ランナ2下流に発生する
旋回流れが大きく関与しているため、主にランナ2出口
側におけるランナベーン2cの設計変更を行なうことが
損失低減の有効な対策となる。
In order to reduce these losses by repairing the hydraulic machine, the following methods are generally adopted. In order to reduce the leakage loss, for example, the seal shape of the runner 2 which is the rotating part and the design of the seals of the upper cover 3 and the lower cover 4 which are the stationary parts may be changed. Runner 2 to reduce
It is effective to take measures such as reducing the outer peripheral side areas of the runner crown 2a and the runner band 2b. Further, the friction loss is a sum of the loss caused by the surface roughness of each flow path and the loss caused by the separation of the flow caused by the mismatch of the inflow angle of water into the runner 2, so that the runner vane 2c and the guide Vane 5,
Further, the loss can be reduced by changing the surface roughness and the shape of the elements constituting the flow path such as the stay vanes 6. Since the swirling flow generated downstream of the runner 2 is greatly involved in the eddy loss, it is an effective measure to reduce the loss that the runner vane 2c is mainly changed in design on the runner 2 outlet side.

【0025】本実施の形態においては、既設の水力機械
の流れ解析を行ない、図1で示した処理フロー103d
にて、水車出力Pと水力機械の各流路における損失、お
よび水力機械のキャビテーション性能等を算出している
ので、漏れ損失、円板摩擦損失、摩擦損失、および渦損
失がそれぞれ全体のうちのどの程度の割合を占めている
のかを簡単に知ることができる。図4はこれらを求めた
結果を示しており、図3で示した効率曲線を、漏れ損
失、円板摩擦損失、摩擦損失、および渦損失の各損失ご
とに示したものである。なお、ここでは水車の効率の比
較を行なうために、図4の縦軸は水車効率ηとしてい
る。
In the present embodiment, the flow analysis of the existing hydraulic machine is performed, and the processing flow 103d shown in FIG. 1 is performed.
Since the turbine output P, the loss in each flow path of the hydraulic machine, and the cavitation performance of the hydraulic machine are calculated, the leakage loss, the disc friction loss, the friction loss, and the eddy loss are respectively included in the total. You can easily find out what percentage it is. FIG. 4 shows the results of obtaining these, and shows the efficiency curve shown in FIG. 3 for each loss of leakage loss, disc friction loss, friction loss, and eddy loss. Here, in order to compare the efficiencies of the turbines, the vertical axis of FIG. 4 is the turbine efficiency η.

【0026】前述のように、図3の運転点Bにおける運
転は、この落差における最高効率点に近い運転点Aにお
ける運転よりも効率が低い。そして、本実施の形態にお
いては、図4に示すように、効率の低い運転点Bにおけ
る漏れ損失、円板摩擦損失、摩擦損失、および渦損失の
各損失と、この有効落差における最高効率点に近い運転
点Aでの各損失との比較を行なう。例えば図4に示した
運転点Bと運転点Aの各損失を比較すると、渦損失の低
減割合が一番大きいため、運転点Bにおける効率を向上
させるためには、渦損失を低減させることが有効である
ことがわかる。
As described above, the operation at the operating point B in FIG. 3 is lower in efficiency than the operation at the operating point A close to the maximum efficiency point in this head. Then, in the present embodiment, as shown in FIG. 4, the leakage loss, the disk friction loss, the friction loss, and the eddy loss at the operating point B where the efficiency is low and the maximum efficiency point in this effective head are determined. A comparison is made with each loss at the near operating point A. For example, comparing the respective losses at the operating point B and the operating point A shown in FIG. 4, the reduction ratio of the eddy loss is the largest. Therefore, in order to improve the efficiency at the operating point B, it is necessary to reduce the eddy loss. It turns out to be effective.

【0027】このようにして、本実施の形態において
は、流れ解析の結果算定された各損失に注目し、図4の
例に示すように例えば運転頻度の高落差における効率の
高い運転点と比較することによって、既設機の効率が低
い原因がどの損失によるものかを判定する。そして、既
設機のどの部分の設計が悪いのかを判断して改善の方向
を明らかにすることができる。すなわち、既設水力機械
の流れ解析の結果と実際の年間流況とを比較して、既設
水力機械が効率の低い運転点で運転される頻度が高い場
合には、運転頻度の高い運転点と効率の高い運転点にお
ける各損失を比較する。そして、運転頻度の高い運転点
での損失に対する効率の高い運転点における損失の割合
が最も小さい損失に注目することにより、どの部位の設
計変更が有効かを簡単に判断することができる。そし
て、この判断に基づき、既設水力機械に許される範囲の
設計変更可能な部位を改善することにより、適正な特性
に近づけることができる。以上のように、本実施の形態
は、既設の水力機械の流路形状を基に流れ解析を行い、
この結果と、既設の水力機械の実際の運用を示す年間流
況とを比較する。そして、この比較の結果、既設の水力
機械が効率の低い運転点での運転頻度が高い場合、この
運転点における効率を向上させるように流路形状等の変
更の方針を簡単に定めることができる。次に、このよう
な場合の具体的な水力機械の設計変更の方法について、
図7で示した従来の水力機械であるフランシス形水力機
械に適用した場合を例に示す。
In this way, in the present embodiment, attention is paid to each loss calculated as a result of the flow analysis, and as shown in the example of FIG. 4, for example, a comparison is made with a highly efficient operating point at a high head of operating frequency. By doing so, it is determined which loss causes the efficiency of the existing machine to be low. Then, it is possible to determine which part of the existing machine is badly designed and clarify the direction of improvement. That is, comparing the results of the flow analysis of the existing hydraulic machine with the actual annual flow conditions, if the existing hydraulic machine is operated at a low efficiency operating point frequently, the operating point with a high operating frequency and the efficiency Compare each loss at higher operating points. Then, by paying attention to the loss in which the ratio of the loss at the operating point having high efficiency to the loss at the operating point having high operating frequency is the smallest, it is possible to easily determine which part of the design change is effective. Then, based on this judgment, by improving the design changeable part within the range allowed for the existing hydraulic machine, it is possible to approach the proper characteristics. As described above, the present embodiment performs the flow analysis based on the flow path shape of the existing hydraulic machine,
This result will be compared with the annual flow regime showing the actual operation of the existing hydraulic machinery. Then, as a result of this comparison, when the existing hydraulic machine has a high operation frequency at an inefficient operating point, it is possible to easily determine a policy of changing the flow channel shape or the like so as to improve the efficiency at this operating point. . Next, regarding such a specific method for changing the design of a hydraulic machine,
An example of application to the Francis type hydraulic machine, which is the conventional hydraulic machine shown in FIG. 7, is shown.

【0028】図5は、図7に示した従来の水力機械であ
るフランシス形水力機械のA−A断面を図示したもの
で、ランナ2内部を流れる水の流線に沿ったランナベー
ン2cの断面を示す図である。この図において、入口仮
想曲線linは、図7のA−A断面において、複数枚設
けられているランナベーン2cの入口側の端部、すなわ
ちランナベーン2cの前縁を滑らかに接続した曲線であ
り、同様に出口仮想曲線loutは図7のA−A断面に
おけるランナベーン2cの出口側の端部、すなわちラン
ナベーン2cの後縁を滑らかに接続した曲線である。
FIG. 5 shows an AA cross section of the Francis type hydraulic machine which is the conventional hydraulic machine shown in FIG. 7, and shows a cross section of the runner vane 2c along the streamline of the water flowing inside the runner 2. FIG. In this figure, an inlet virtual curve lin is a curve in which the inlet side end portions of a plurality of runner vanes 2c, that is, the front edges of the runner vanes 2c are smoothly connected in the AA cross section of FIG. Similarly, the virtual exit curve l out is a curve in which the end of the runner vane 2c on the exit side in the section AA in FIG. 7, that is, the trailing edge of the runner vane 2c is smoothly connected.

【0029】そして、本実施の形態においては、ランナ
ベーン2cの後縁における隣接するランナベーン2cと
の距離である出口開度Dと、ランナベーン2cの後縁に
おける水の流出方向を示す後縁線と出口仮想曲線l
outとがなす角度である羽根出口角度θoutの値を
修正し、ランナベーン2cの形状を実線で示した形状か
ら点線で示した形状へと変更している。ここで、この例
は図3で示した運転点Bにおける水車効率を向上させる
ための対策として出口開度Dと羽根出口角度θout
修正した例を示しており、このように出口開度Dと羽根
出口角度θoutを小さくすることによって渦損失を低
減させている。また、ランナベーン2cの出口側の形状
を変更すると、ランナベーン2c回りの流れの循環の値
やランナベーン2cの表面における圧力分布も変化する
ため、渦損失の低減だけでなく、摩擦損失低減の効果が
得られる場合もある。
In the present embodiment, the outlet opening D, which is the distance between the adjacent runner vanes 2c at the trailing edge of the runner vane 2c, and the trailing edge line and the outlet indicating the outflow direction of water at the trailing edge of the runner vane 2c. Virtual curve l
The value of the blade outlet angle θ out , which is the angle formed by out , is modified, and the shape of the runner vane 2c is changed from the shape shown by the solid line to the shape shown by the dotted line. Here, this example shows an example in which the outlet opening D and the blade outlet angle θ out are modified as a measure for improving the turbine efficiency at the operating point B shown in FIG. The eddy loss is reduced by reducing the blade outlet angle θ out . Further, when the shape of the outlet side of the runner vanes 2c is changed, the circulation value of the flow around the runner vanes 2c and the pressure distribution on the surface of the runner vanes 2c also change, so that not only eddy loss but also friction loss can be reduced. In some cases

【0030】特に、本実施の形態で示したように既設の
フランシス形水力機械の運転パターンが変化する場合、
部分負荷運転、すなわち、図2に示したように各落差に
おける最高効率点よりも流量の小さい運転点での運転が
増えることが多い。そして、このような場合、ランナ2
の設計変更、特にランナベーン2cの出口側の形状のの
みを行なうことで渦損失を低減させれば実際の運転パタ
ーンに適した水車特性を得ることが可能となる。渦損失
の低減のためには上述のように、ランナベーン2cの出
口開度Dと羽根出口角度θoutを修正することによっ
て、他の静止流路等の大きな変更を行なわずに水車特性
を、部分負荷運転に適した水車特性に変更することがで
きる。
In particular, when the operation pattern of the existing Francis type hydraulic machine changes as shown in this embodiment,
Partial load operation, that is, operation at an operating point where the flow rate is smaller than the maximum efficiency point at each head as shown in FIG. 2, often increases. And in such a case, runner 2
If the eddy loss is reduced by changing the design, especially by changing the shape of the runner vane 2c on the outlet side, it is possible to obtain the turbine characteristic suitable for the actual operation pattern. In order to reduce the eddy loss, as described above, the outlet opening degree D of the runner vane 2c and the blade outlet angle θ out are corrected, so that the turbine characteristics can be partially changed without making other large changes such as other static flow paths. It is possible to change to a turbine characteristic suitable for load operation.

【0031】さらに、本実施の形態によれば、このよう
にして水力機械の設計変更や改修などの方法を決定した
後に、変更後の流路形状を用いて再度水車特性の確認を
行なうことも可能である。この場合であっても、図1で
示した処理フローと同様な処理を行なえば簡単に変更後
の水力機械についても特性の確認や、年間流況との比較
を行なうことができる。図6は、既設水力機械の年間流
況に関して月ごとでの運転点のデータを用いて月別の発
生電力量を比較した例を示している。ここで、この例は
図2〜図5で説明した水力機械に対して改修を行なった
場合を例示しており、既設の水力機械と図5で示したよ
うに水車特性を変更した後の水力機械との月別の発生電
力量を比較している。
Further, according to the present embodiment, after the method of design change or refurbishment of the hydraulic machine is determined in this manner, the turbine characteristics can be confirmed again using the changed flow path shape. It is possible. Even in this case, if the same processing as the processing flow shown in FIG. 1 is performed, it is possible to easily confirm the characteristics of the changed hydraulic machine and compare it with the annual flow condition. FIG. 6 shows an example of comparison of monthly generated electric energy by using monthly operating point data regarding the annual flow condition of the existing hydraulic machine. Here, this example exemplifies a case where the hydraulic machine described in FIGS. 2 to 5 is refurbished, and the existing hydraulic machine and the hydraulic machine after changing the turbine characteristics as shown in FIG. We are comparing the amount of electricity generated by machine with each month.

【0032】すなわち、図6で示した例では、有効落差
Hと流量Qとで定まる運転点のデータに、それぞれの運
転点での運転が行われた時刻情報を付加した年間流況の
データを用いることによって、年間の発生電力量を概算
したものである。特に本実施の形態においては、これら
を各月ごとにグラフ化することによって、改修を行なっ
て水車特性を変更することによって1年間のうちのどの
時期にどれだけの発生電力量増加を見込めるかを把握す
ることができ、既設の水力機械の改修を行なうことによ
る経済的な効果についても簡単に評価することが可能と
なる。
That is, in the example shown in FIG. 6, the annual flow regime data obtained by adding the time information of the operation at each operating point to the data of the operating point determined by the effective head H and the flow rate Q. By using it, it is an estimate of the amount of electric power generated annually. In particular, in the present embodiment, by graphing these for each month, it is possible to predict how much power generation can be expected at what time of the year by performing repairs and changing the characteristics of the water turbine. It is possible to grasp the information, and it is possible to easily evaluate the economic effect of retrofitting the existing hydraulic machinery.

【0033】この例においては、図5で示したようにラ
ンナベーン2cの出口開度Dと羽根出口角度θout
修正することによって、部分負荷運転時の効率を向上さ
せている。そして、図6に示したように、この対策によ
って、流量Qが少なくなり部分負荷運転となっても水車
効率が向上するため、発生電力量が低下する冬場の発生
電力量を増加させて年間の発生電力量を増加できること
がわかる。そして、これらの比較を図5に示した改修だ
けでなく、水力機械全体を更新した場合やその他様々な
ケースについて行なうことによって、既設の水力機械に
対してどのような改修を行なうことが有効であるかを簡
単に知ることができる。したがって、これらに基づいて
実際の改修を行なうことで、既設水力機械の運転パター
ンが実際の運転パターンと異なってきた場合であって
も、適正な特性の水力機械に改修することが可能とな
る。
In this example, as shown in FIG. 5, the outlet opening degree D of the runner vane 2c and the blade outlet angle θ out are modified to improve the efficiency during partial load operation. Then, as shown in FIG. 6, this measure improves the turbine efficiency even if the flow rate Q is reduced and the partial load operation is performed. Therefore, the generated power amount in winter when the generated power amount is decreased is increased to increase the It can be seen that the amount of generated power can be increased. Then, by making these comparisons not only in the repair shown in FIG. 5 but also in the case where the entire hydraulic machine is renewed and in various other cases, it is effective to perform what kind of repair to the existing hydraulic machine. You can easily know if there is. Therefore, by carrying out an actual repair based on these, even if the operation pattern of the existing hydraulic machine is different from the actual operation pattern, it becomes possible to repair the hydraulic machine with appropriate characteristics.

【発明の効果】以上詳述したように本発明の既設水力機
械の改修方法によれば、既設水力機械の流路形状データ
を採取し、数値化して解析モデルを作成し、様々な運転
点の流れ解析を実施することにより現状の水車特性を求
め、既設水力機械の実際の運用を示す年間流況とを比較
することで、既設水力機械が適正な特性からどの程度外
れているかを簡単に把握し、運用効率を向上させるため
の既設水力機械の改修などの方向性を正確に示すことが
可能となる。
As described in detail above, according to the method for repairing an existing hydraulic machine of the present invention, the flow path shape data of the existing hydraulic machine is sampled and digitized to create an analytical model, which is used for various operating points. By obtaining the current turbine characteristics by performing flow analysis and comparing it with the annual flow condition that shows the actual operation of the existing hydraulic machine, it is possible to easily understand how much the existing hydraulic machine deviates from the appropriate characteristics. However, it will be possible to accurately indicate the direction such as the rehabilitation of the existing hydraulic machinery to improve the operation efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による第1の実施の形態のフローチャー
ト図。
FIG. 1 is a flow chart diagram of a first embodiment according to the present invention.

【図2】流れ解析によって得られた水車特性図。FIG. 2 is a characteristic diagram of a water turbine obtained by flow analysis.

【図3】流れ解析によって得られた水力機械の効率曲線
図。
FIG. 3 is an efficiency curve diagram of the hydraulic machine obtained by the flow analysis.

【図4】流れ解析によって得られた水力機械の効率曲線
図。
FIG. 4 is an efficiency curve diagram of the hydraulic machine obtained by the flow analysis.

【図5】本発明によるランナベーン変更前後の形状説明
図。
FIG. 5 is an explanatory view of a shape before and after changing a runner vane according to the present invention.

【図6】本発明による水力機械の改修の前後における年
間発生電力量の比較図。
FIG. 6 is a comparison diagram of annual electric power generation before and after the repair of the hydraulic machine according to the present invention.

【図7】従来の水力機械のフランシス形水力機械の縦断
面図。
FIG. 7 is a vertical cross-sectional view of a Francis type hydraulic machine which is a conventional hydraulic machine.

【図8】従来の既設水車の特性を得る説明図。FIG. 8 is an explanatory diagram for obtaining characteristics of a conventional existing water turbine.

【符号の説明】[Explanation of symbols]

1 回転軸 2 ランナ 3 上カバー 4 下カバー 5 ガイドベーン 6 ステーベーン 7 ケーシング 8 吸出し管 1 rotation axis 2 runners 3 Top cover 4 Lower cover 5 guide vanes 6 Stay vanes 7 casing 8 Suction tube

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 水車、ポンプなどの既設水力機械の流路
形状を図面あるいは現物測定により数値化した解析モデ
ルを作成し、前記既設水力機械の様々な運転状態を解析
条件として前記解析モデルを用いて流れ解析を行い、前
記流れ解析によって得られた結果から求まった既設水力
機械の水車特性と当該既設水力機械の実際の運用を示す
年間流況とを比較し、前記水車特性と前記年間流況との
比較結果によって前記既設水力機械の流路形状を前記年
間流況から定まる運転頻度の高い運転点での水車効率が
向上するように変更することを特徴とする既設水力機械
の改修方法。
1. An analytical model in which a flow path shape of an existing hydraulic machine such as a water turbine or a pump is quantified by drawing or actual measurement, and the analytical model is used as various operating conditions of the existing hydraulic machine as analysis conditions. The flow characteristics of the existing hydraulic machine obtained from the results obtained by the flow analysis are compared with the annual flow conditions showing the actual operation of the existing hydraulic machine. A method for repairing an existing hydraulic machine, characterized in that the shape of the flow path of the existing hydraulic machine is changed so as to improve the turbine efficiency at an operating point with a high operating frequency determined from the annual flow regime, according to the result of comparison with the existing hydraulic machine.
【請求項2】 請求項1に記載の既設水力機械の改修方
法において、水車特性は有効落差と流量、もしくは有効
落差と水車出力を軸とする平面上における等効率線図と
して表され、年間流況は前記平面上に前記既設水力機械
の年間の運転点を散布図として表すことを特徴とする既
設水力機械の改修方法。
2. The method for rehabilitating an existing hydraulic machine according to claim 1, wherein the turbine characteristic is represented as an iso-efficiency map on a plane having the effective head and the flow rate, or the effective head and the turbine output as an axis, and the annual flow rate. The situation is a method of rehabilitating an existing hydraulic machine, characterized in that annual operating points of the existing hydraulic machine are represented on the plane as a scatter diagram.
【請求項3】 請求項1もしくは請求項2に記載の既設
水力機械の改修方法において、年間流況から定まる運転
頻度の高い運転点と流れ解析によって求まった水車効率
の高い運転点の、流路にて生じる損失である漏れ損失、
円板摩擦損失、摩擦損失、および渦損失をそれぞれ比較
し、前記運転頻度の高い運転点での損失に対する前記水
車効率の高い運転点における損失の割合が最も小さい損
失を低減するように前記既設水力機械の流路形状の変更
を行なうことを特徴とする既設水力機械の改修方法。
3. The method for rehabilitating an existing hydraulic machine according to claim 1 or 2, wherein a flow path is provided between an operating point with a high operating frequency determined from the annual flow regime and an operating point with a high turbine efficiency determined by flow analysis. Leakage loss, which is the loss caused by
Disc friction loss, friction loss, and eddy loss are respectively compared, and the existing hydraulic power is reduced so as to reduce the loss with the smallest ratio of the loss at the operating point with high turbine efficiency to the loss at the operating point with high operating frequency. A method for rehabilitating an existing hydraulic machine, characterized by changing the flow path shape of the machine.
【請求項4】 請求項3に記載の既設水力機械の改修方
法において、前記既設水力機械がフランシス形水力機械
であり、渦損失の低減を行なう場合に前記既設水力機械
のランナベーンのうち、出口開度および出口羽根角度を
変更することを特徴とすることを特徴とする既設水力機
械の改修方法。
4. The method for repairing an existing hydraulic machine according to claim 3, wherein the existing hydraulic machine is a Francis type hydraulic machine, and when the eddy loss is reduced, the outlet opening of the runner vanes of the existing hydraulic machine is opened. Degree and exit blade angle are changed, the existing hydraulic machine rehabilitation method characterized by the above-mentioned.
【請求項5】 請求項1から請求項5のいずれかに記載
の既設水力機械の改修方法において、流路形状の変更を
行なった場合の解析モデルを作成し、これを基に再度流
れ解析を行なって性能の確認を行なった後に流路形状の
変更を行なうことを特徴とする既設水力機械の改修方
法。
5. In the method for rehabilitating an existing hydraulic machine according to any one of claims 1 to 5, an analysis model is created when the shape of the flow path is changed, and the flow analysis is performed again based on this. A method for rehabilitating an existing hydraulic machine, characterized in that the shape of the flow path is changed after the performance has been confirmed.
JP2002140928A 2002-05-16 2002-05-16 Rehabilitation method for existing hydraulic machinery Expired - Lifetime JP4020695B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002140928A JP4020695B2 (en) 2002-05-16 2002-05-16 Rehabilitation method for existing hydraulic machinery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002140928A JP4020695B2 (en) 2002-05-16 2002-05-16 Rehabilitation method for existing hydraulic machinery

Publications (2)

Publication Number Publication Date
JP2003328919A true JP2003328919A (en) 2003-11-19
JP4020695B2 JP4020695B2 (en) 2007-12-12

Family

ID=29701654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002140928A Expired - Lifetime JP4020695B2 (en) 2002-05-16 2002-05-16 Rehabilitation method for existing hydraulic machinery

Country Status (1)

Country Link
JP (1) JP4020695B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008046931A2 (en) * 2007-01-10 2008-04-24 Shell Internationale Research Maatschappij B.V. Method and device to measure, test and/or monitor turbine performance
CN107165770A (en) * 2017-05-22 2017-09-15 武汉大学 A kind of hydroenergy storage station unit starting transient state monitoring and safety estimation system and method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008046931A2 (en) * 2007-01-10 2008-04-24 Shell Internationale Research Maatschappij B.V. Method and device to measure, test and/or monitor turbine performance
WO2008046931A3 (en) * 2007-01-10 2008-08-21 Shell Int Research Method and device to measure, test and/or monitor turbine performance
US7946157B2 (en) 2007-01-10 2011-05-24 Shell Oil Company Method and device to measure, test and/or monitor turbine performance
RU2451825C2 (en) * 2007-01-10 2012-05-27 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Method and device for measurements, inspection and/or continuous monitoring of turbine functioning
CN107165770A (en) * 2017-05-22 2017-09-15 武汉大学 A kind of hydroenergy storage station unit starting transient state monitoring and safety estimation system and method
CN107165770B (en) * 2017-05-22 2020-01-07 武汉大学 Pumped storage power station unit starting transient monitoring and safety evaluation system and method

Also Published As

Publication number Publication date
JP4020695B2 (en) 2007-12-12

Similar Documents

Publication Publication Date Title
Liu et al. A selected literature review of efficiency improvements in hydraulic turbines
CN102272444B (en) Fluid directing system for turbines
Adhikari et al. Computational analysis of part-load flow control for crossflow hydro-turbines
Rai et al. Analyzing hydro abrasive erosion in Kaplan turbine: A case study from India
US20060257238A1 (en) Method for flow optimization in multi-stage turbine-type machines
KR101636841B1 (en) Method of refurbishing an energy conversion facility and refurbished energy conversion facility
CN106194821A (en) A kind of centrifugal hydraulic turbine impeller and method for designing thereof
Simpson et al. Design of propeller turbines for pico hydro
CN110020489A (en) The method for determining turbine blade erosion protection sheild geomery is analyzed based on CFD
Alexander et al. Radial-and mixed-flow turbines for low head microhydro systems
CN108661840A (en) Francis Hydro Turbine Blades export side repairing type method
JP2003328919A (en) Method for repairing existing hydraulic machinery
Ge et al. Sediment erosion on pelton turbines: a review
Giovannini et al. Reducing Secondary Flow Losses in Low-Pressure Turbines With Blade Fences: Part II—Experimental Validation on Linear Cascades
Dörfler et al. Low-frequency phenomena in swirling flow
Musch et al. Combined optimisation of the last stage and diffuser in a steam turbine using meta-model
Pereira et al. A study on the efficiency of a cross-flow turbine based on experimental measurements
CN108416181A (en) A kind of all-pass stream turbine multi-dimensional Coupling Fast design method
KR102291395B1 (en) Micro hydro turbine with guide vane and runner and design method thereof
Kim et al. A study of tip clearance effect for a mixed-flow pump on performance
CN105937415A (en) Supercritical carbon dioxide turbine device capable of adapting to large-range back pressure and flow
Maiwald et al. Numerical investigation of Francis turbine draft tubes with respect to geometry modification and turbulence treatment
van der Schoot et al. Efficiency upgrade of a double-case pump using CFD-based design optimization and scaled model tests
Bourdon et al. Hydro turbine profitability and cavitation erosion
Kumar et al. Flow field investigation in draft tube of Francis turbine at off-design operation using a vortex identification algorithm

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041215

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050415

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070925

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4020695

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131005

Year of fee payment: 6

EXPY Cancellation because of completion of term