JP2003328164A - Method for preventing adhesion of marine organism to titanium ship - Google Patents
Method for preventing adhesion of marine organism to titanium shipInfo
- Publication number
- JP2003328164A JP2003328164A JP2002130398A JP2002130398A JP2003328164A JP 2003328164 A JP2003328164 A JP 2003328164A JP 2002130398 A JP2002130398 A JP 2002130398A JP 2002130398 A JP2002130398 A JP 2002130398A JP 2003328164 A JP2003328164 A JP 2003328164A
- Authority
- JP
- Japan
- Prior art keywords
- titanium
- ship
- seawater
- marine organisms
- hull
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Prevention Of Electric Corrosion (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、海水に接するチタ
ン製船舶の没水部の表面に付着して成長、増殖する海生
生物に起因する問題を解決するため、海生生物の付着を
防止する方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention solves the problem caused by marine organisms that grow and multiply by adhering to the surface of the submerged part of a titanium ship that is in contact with seawater. On how to do.
【0002】[0002]
【従来の技術】一般にチタンは表層の酸化膜である不働
態皮膜によって高い耐食性を有する。また、軽量性、見
た目の美しい意匠性などから干満飛沫帯に位置する海洋
構造物、発電所復水器、チタン製船舶など、さまざまな
海水と接する環境で用いられる。例えば、チタン製船舶
ではチタン特有の軽量性から高速船としての用途が可能
であり、また高耐食性からチタンの美しい意匠性を生か
した無塗装使用が可能である。また、海生生物付着防止
にはトリブチルスズをはじめとして、有機スズ系塗料の
塗装が用いられてきた。有機スズ系塗料は海生生物への
毒性、忌避作用が強いため、広く船舶の海生生物付着防
止のために用いられてきた。2. Description of the Related Art Generally, titanium has high corrosion resistance due to a passive film which is an oxide film on the surface. In addition, due to its light weight and beautiful design, it is used in environments that come into contact with various seawater, such as marine structures located in the ebb and splash zone, power plant condensers, titanium vessels, and so on. For example, a titanium-made ship can be used as a high-speed ship because of the lightness peculiar to titanium, and can be used without painting because of its high corrosion resistance and by utilizing the beautiful design of titanium. In addition, coating of organotin-based paints such as tributyltin has been used to prevent adhesion of marine organisms. Organotin-based paints are widely used for preventing marine organisms from adhering to ships because they are highly toxic and repellent to marine organisms.
【0003】さらに、有機スズ系塗料に代わって近年、
シリコーン系防汚塗料や亜鉛溶射被覆などが船舶への海
生生物付着防止方法として提案されている。また、船舶
の表面にカーボン、グラファイトなどを含有した導電塗
料で被覆し、塗料皮膜を陽極として通電し次亜塩素酸イ
オンや塩素を生成させて表面の生物付着を防止する方法
なども提案されている。また、海水と接するチタンの表
面に白金族金属或いはこれらの金属を基とした合金また
はこれらの金属の酸化物からなる電気触媒被膜を形成さ
せて、これを陽極として海水を電解して、酸素を発生さ
せて海生生物の付着を防止する方法が特公平1−465
95号公報に紹介されている。また、スポンジボール等
を用いて直接物理的に付着した海生生物を除去する方法
の他、過酸化水素や次亜塩素酸ナトリウムなどの化学薬
品を用いて付着海生生物を殺して除去する方法なども存
在する。Further, in recent years, in place of the organic tin-based paint,
Silicone antifouling paints and zinc thermal spray coatings have been proposed as methods for preventing marine organisms from adhering to ships. In addition, a method has been proposed in which the surface of a ship is coated with a conductive paint containing carbon, graphite, etc., and the paint film is used as an anode to generate electricity to generate hypochlorite ions and chlorine to prevent biofouling of the surface. There is. In addition, an electrocatalyst film made of a platinum group metal, an alloy based on these metals, or an oxide of these metals is formed on the surface of titanium in contact with seawater, and seawater is electrolyzed using this as an anode to generate oxygen. The method of generating and preventing the adhesion of marine organisms is Japanese Patent Publication 1-465.
It is introduced in Japanese Patent Publication No. 95. In addition to the method of directly removing the marine organisms that have been physically attached using a sponge ball, etc., the method of killing and removing the attached marine organisms using chemicals such as hydrogen peroxide and sodium hypochlorite. And so on.
【0004】[0004]
【発明が解決しようとする課題】上述したように、チタ
ン製船舶を海洋で使用する場合、チタンに海生生物が付
着することに起因する種々の問題がある。チタン製船舶
を無塗装で用いた場合、海生生物(フジツボ、イガイ、
イソギンチャク、海藻など)が付着して、海水と接する
チタン製船舶船体の抵抗が増加して、チタン製船舶の特
長である高速航行の障害になっている。また、海生生物
付着の防止に最も広く用いられてきたトリブチルスズな
どの有機スズ系塗料は、環境への悪影響が懸念されてお
り、使用が控えられる傾向にある。シリコーン系塗装は
船体没水部全体に施工すると多大なコスト要因となるほ
か、塗装の寿命など不明な点も多い。亜鉛溶射被覆も船
体没水部全体に施工すると多大なコスト要因となるほ
か、溶出する亜鉛イオンの環境負荷についても不明であ
る。As described above, when a titanium ship is used in the ocean, there are various problems caused by marine organisms adhering to titanium. When a titanium ship is used without painting, marine life (barnacles, mussels,
Sea anemones, seaweed, etc.) are attached, increasing the resistance of the titanium ship hull in contact with seawater, which is an obstacle to high-speed navigation, which is a feature of titanium ships. In addition, organotin-based paints such as tributyltin, which have been most widely used to prevent the adhesion of marine organisms, are feared to have an adverse effect on the environment, and thus their use tends to be withheld. If silicone coating is applied to the entire submerged part of the ship, it will be a significant cost factor, and there are many unclear points such as the life of the coating. Applying zinc spray coating to the entire submerged part of the ship also causes a great cost factor, and the environmental load of the eluted zinc ions is unknown.
【0005】船体表面をカーボン、グラファイトなどを
含有する導電塗料で被覆し、塗料皮膜を陽極として通電
し次亜塩素酸イオンや塩素を生成させて生物付着を防止
する方法については、導電性塗装によるコスト発生と塗
膜と船体間を絶縁する必要性など、施工面でも問題が多
く、実用化のためには解決すべき課題が多い。海水と接
するチタンの表面に白金族金属或いはこれらの金属を基
とした合金またはこれらの金属の酸化物からなる電気触
媒被膜を形成させて、これを陽極として海水を電解し
て、酸素を発生させて海生生物の付着を防止する方法に
ついても長期効果の期待に比して高価な電極材料と現場
施工工数がかかり、施工コストが他の方法よりも高くな
る可能性がある。船体の塗装や被覆はチタン製船舶の重
量を増加させる他、チタン素材が持つ平滑性も失わせる
ため、船体抵抗の原因にもなり、チタン製船舶の特徴で
ある高速航行に悪影響を及ぼす可能性もある。Regarding the method of coating the surface of a ship with a conductive paint containing carbon, graphite, etc., and using the paint film as an anode to generate electricity to generate hypochlorite ions and chlorine to prevent biofouling, conductive coating is used. There are many problems in terms of construction, such as cost generation and the need to insulate between the coating film and the hull, and there are many problems to be solved for practical use. An electrocatalyst coating consisting of a platinum group metal, an alloy based on these metals, or an oxide of these metals is formed on the surface of titanium in contact with seawater, and this is used as an anode to electrolyze seawater to generate oxygen. As for the method of preventing the adhesion of marine organisms, the cost of the electrode material and the on-site construction man-hour are higher than the expectation of long-term effect, and the construction cost may be higher than other methods. The coating and coating of the hull not only increases the weight of titanium vessels, but also loses the smoothness of titanium materials, which may cause hull resistance and adversely affect the high-speed navigation characteristic of titanium vessels. There is also.
【0006】また、スポンジボール等を用いて直接物理
的に付着した海生生物を除去する方法の他、過酸化水素
や次亜塩素酸ナトリウムなどの化学薬品を用いて付着海
生生物を殺して除去する方法についても、莫大なメンテ
ナンスコストがかかる。また、化学薬品を使用した場
合、海水中に廃棄されることに伴う環境負荷についても
懸念される。In addition to the method of directly removing the marine organisms which are physically attached using a sponge ball or the like, the attached marine organisms are killed by using a chemical agent such as hydrogen peroxide or sodium hypochlorite. There is also a huge maintenance cost for the method of removal. In addition, when chemicals are used, there is concern about the environmental load associated with their disposal in seawater.
【0007】[0007]
【課題を解決するための手段】以上の課題を解決するた
め、安価でかつ環境負荷の少ないチタン製船舶への海生
生物付着防止方法の開発に鋭意検討を行い本発明を完成
させた。その手段は次の通りである。
(1)スクリュープロペラおよびそのシャフトをチタン
製の船体から電気的に絶縁した構造を有するチタン製船
舶の海生生物付着防止方法であって、船体を海水に接す
る照合電極に対して1.2〜1.4V(飽和KCl A
g/AgCl照合電極基準)の電位に保持することを特
徴とするチタン製船舶の海生生物付着防止方法。[Means for Solving the Problems] In order to solve the above problems, the present invention has been completed by earnestly studying the development of a method for preventing adhesion of marine organisms to a titanium ship which is inexpensive and has a low environmental load. The means are as follows. (1) A method for preventing marine organisms from adhering to a titanium ship, which has a structure in which a screw propeller and its shaft are electrically insulated from the ship body made of titanium. 1.4V (saturated KCl A
A method for preventing marine organisms from adhering to a titanium ship, which is characterized in that a potential of g / AgCl reference electrode is maintained.
【0008】(2)前記(1)において、海水と接する
不溶性電極を陰極として照合電極と等しい電位に接続す
ることを特徴とするチタン製船舶の海生生物付着防止方
法。
(3)前記(1)において、スクリュープロペラ、シャ
フトを陰極として照合電極と等しい電位に接続すること
を特徴とするチタン製船舶の海生生物付着防止方法およ
びスクリュープロペラ、シャフト部の腐食防止方法にあ
る。そこで本発明ではチタン製船舶の無塗装使用を可能
とする環境負荷の少ない海生生物付着防止技術を提供す
ることを目的とする。(2) A method for preventing marine organisms from adhering to a titanium ship, wherein the insoluble electrode in contact with seawater is connected as a cathode to the same potential as the reference electrode in (1). (3) A method for preventing marine organisms from adhering to a titanium ship, and a method for preventing corrosion of a screw propeller and a shaft portion, characterized in that the screw propeller and the shaft are connected to the same potential as the reference electrode using the screw propeller as a cathode in the above (1). is there. Therefore, it is an object of the present invention to provide a technique for preventing the adhesion of marine organisms, which has a low environmental load and enables a titanium ship to be used without painting.
【0009】[0009]
【発明の実施の形態】チタン製船舶においてはチタン素
材が持つ意匠性、光沢性を活かして維持しつつ、表面改
質、溶射などをおこなわず無塗装の状態でチタン製船舶
への海生生物付着を防止することが、コスト的にも有利
である。さらに次亜塩素酸ソーダや過酸化水素などの大
量の薬剤使用による海生生物付着防止方法も海水中に棲
息する他の生物へ悪影響をあたえる懸念があることか
ら、薬剤使用によらないチタン製船舶船体への海生生物
付着を防止することが望まれている。ここでチタン製船
舶と実用化されている他の金属製船舶について比較し
た。BEST MODE FOR CARRYING OUT THE INVENTION In a titanium ship, the marine organisms to be applied to the titanium ship in the unpainted state without surface modification or thermal spraying while maintaining the design and gloss of the titanium material. Preventing the adhesion is also advantageous in terms of cost. Furthermore, the method of preventing the adhesion of marine organisms by using a large amount of chemicals such as sodium hypochlorite and hydrogen peroxide may adversely affect other organisms living in seawater. It is desired to prevent marine organisms from adhering to the hull. Here, a comparison was made between titanium vessels and other metal vessels that have been put into practical use.
【0010】チタン製船舶以外の金属製船舶としては、
鉄鋼製・ステンレス鋼製船舶、アルミニウム製船舶が広
く用いられている。鉄鋼製船舶、ステンレス鋼製船舶、
アルミニウム製船舶共に海水と接する部分は一般に塗装
される。海水中では鉄鋼、ステンレス、アルミニウムは
腐食する可能性が高いため、塗装による防食が必要とな
るからである。鉄鋼製・ステンレス鋼製船舶やアルミニ
ウム製船舶では無塗装での海水での使用が困難である。
また、もしも塗膜に欠陥があり、局部的に無塗装の鉄
鋼、ステンレス鋼やアルミニウムが海水に露出した場合
は、局部腐食の発生原因になりかねない問題がある。こ
のような腐食問題を解決するために、鉄鋼製・ステンレ
ス鋼製船舶では亜鉛やアルミニウムなどの犠牲陽極を用
いることがある。As metal vessels other than titanium vessels,
Steel and stainless steel vessels and aluminum vessels are widely used. Steel vessels, stainless steel vessels,
Parts of aluminum vessels that come into contact with seawater are generally painted. This is because steel, stainless steel, and aluminum are highly likely to corrode in seawater, so corrosion by painting is necessary. It is difficult to use unpainted seawater on steel / stainless steel vessels and aluminum vessels.
Further, if the coating film is defective and locally unpainted steel, stainless steel, or aluminum is exposed to seawater, there is a problem that it may cause local corrosion. In order to solve such a corrosion problem, a sacrificial anode made of zinc or aluminum may be used in a steel / stainless steel ship.
【0011】これに対して、チタン製船舶では海水中で
の無塗装使用が可能である。これはチタン表面の酸化皮
膜の耐食性による。また、鉄鋼、ステンレス鋼、アルミ
ニウムでは海水電解をおこなう陽極電位に設定すると容
易にアノード溶解してしまい、海水電解による海生生物
付着防止を直接実施することができない。これに対して
チタンでは無塗装で海水電解のための陽極電位に設定し
てもチタンのアノード溶解は殆ど起こらない。従って、
チタン製船舶ではその意匠性、光沢を生かしながら無塗
装で電気的に海生生物の付着を防止することが可能であ
ると考えた。On the other hand, titanium vessels can be used without coating in seawater. This is due to the corrosion resistance of the oxide film on the titanium surface. Further, with steel, stainless steel, and aluminum, if the anode potential for seawater electrolysis is set, the anode easily dissolves, and it is not possible to directly prevent the adhesion of marine organisms by seawater electrolysis. On the other hand, titanium is unpainted, and even if the anode potential for seawater electrolysis is set, anodic dissolution of titanium hardly occurs. Therefore,
We thought that it is possible to electrically prevent marine organisms from adhering to titanium vessels without painting while making good use of their design and luster.
【0012】そこで、無塗装のチタン板を自然海水中に
浸漬して、さまざまな陽極電位に設定して海生生物付着
防止効果を調べた結果、1.2〜1.4V(飽和KCl
Ag/AgCl照合電極基準)の塩素を発生し得る電
位に保持することで海生生物付着防止効果が顕著である
ことを認め、本発明のチタン製船舶での船体海水没水部
での印加電位とする通電条件を確立することで、チタン
製船舶の海生生物付着を防止する方法を見出した。Therefore, as a result of investigating the effect of preventing adhesion of marine organisms by immersing an unpainted titanium plate in natural seawater and setting various anode potentials, 1.2 to 1.4 V (saturated KCl
It was confirmed that the effect of preventing the adhesion of marine organisms is remarkable by keeping chlorine (Ag / AgCl reference electrode reference) at a potential at which chlorine is generated, and the applied potential at the seawater submersion part in the titanium ship of the present invention. We have found a method to prevent marine organisms from adhering to titanium vessels by establishing the energization conditions.
【0013】以下、詳細に本発明について説明する。チ
タン製船舶では駆動部のスクリュープロペラ・シャフト
部だけはステンレス鋼で作られる場合が多い。これは、
チタンでスクリュープロペラ・シャフトを作製すること
がステンレス鋼と比較して容易でないことに起因する。
ステンレス鋼製のスクリュープロペラ・シャフト部がチ
タン製船舶船体と電気的に絶縁されていない場合、ステ
ンレス鋼製のスクリュープロペラ・シャフト部とチタン
製船舶船体が海水を介してガルバニックセルを形成する
ことになり、プロペラ・シャフト部に激しい腐食を生じ
る可能性が大である。従って、ステンレス鋼製スクリュ
ープロペラ・シャフト部とチタン製船舶船体を間に絶縁
体を介在させることにより電気的に絶縁することによっ
て、このチタンとステンレス鋼が接触してともに海水に
接することに起因するガルバニックセルの形成によるス
クリュープロペラ・シャフト部のステンレス鋼腐食を防
止することができる。The present invention will be described in detail below. In titanium ships, only the screw propeller shaft of the drive unit is often made of stainless steel. this is,
This is due to the fact that it is not easy to make a screw propeller shaft from titanium as compared to stainless steel.
If the stainless steel screw propeller shaft part is not electrically insulated from the titanium ship hull, the stainless steel screw propeller shaft part and the titanium ship hull form a galvanic cell through seawater. Therefore, there is a great possibility that the propeller shaft will be severely corroded. Therefore, by electrically insulating by interposing an insulator between the stainless steel screw propeller shaft part and the titanium ship hull, the titanium and the stainless steel come into contact with each other and come into contact with seawater. It is possible to prevent the stainless steel corrosion of the screw propeller shaft portion due to the formation of galvanic cells.
【0014】以上のようにステンレス鋼製スクリュープ
ロペラ・シャフト部とチタン製船舶船体を電気的に絶縁
することによってステンレス鋼製スクリュープロペラ・
シャフト部ステンレス鋼のアノード溶解を避けながらチ
タン船船体を陽極とする電位印加が可能となる。本発明
者は海水中のチタンの電位を海水中に浸漬した照合電極
に対して+1.2〜+1.4V(飽和KCl Ag/A
gCl基準)に保持することによって、塩素が発生する
ことにより、塩素の殺菌効果で海生生物の付着を防止で
きることを見出した。そこでこの知見に基づいてチタン
製船舶の海生生物付着を防止する方法を確立したもので
ある。As described above, by electrically insulating the stainless steel screw propeller shaft portion from the titanium ship hull, the stainless steel screw propeller
It is possible to apply a potential with the titanium hull as the anode while avoiding the melting of the stainless steel in the shaft anode. The present inventors have found that the potential of titanium in seawater is +1.2 to +1.4 V (saturated KCl Ag / A) with respect to the reference electrode immersed in seawater.
It has been found that, by maintaining the gCl standard), chlorine is generated, so that the bactericidal effect of chlorine can prevent the adhesion of marine organisms. Therefore, based on this knowledge, we have established a method for preventing marine organisms from attaching to titanium vessels.
【0015】ここで、海水中のチタンの電位が海水中に
浸漬した照合電極に対して+1.2V未満の場合、充分
な殺菌効果が得られる量の塩素が発生しないため好まし
くない。また、海水中のチタンの電位が海水中に浸漬し
た照合電極に対して+1.4Vを超えると、チタンの変
色が起こり、さらに海生微生物の死骸が吸着するため、
好ましくない。Here, if the potential of titanium in seawater is less than +1.2 V with respect to the reference electrode immersed in seawater, chlorine is not generated in an amount sufficient to obtain a sufficient bactericidal effect, which is not preferable. Also, when the potential of titanium in seawater exceeds +1.4 V with respect to the reference electrode immersed in seawater, discoloration of titanium occurs and the dead body of marine microorganisms is adsorbed.
Not preferable.
【0016】次に、図1により本発明で不溶性電極を用
いた場合を説明する。図1は外部電源と不溶性陰極を海
水中へ吊架することによりチタン製船体への海生生物付
着を防止する方法の説明図である。本発明では、チタン
製船舶船体の海水に接する部位は無塗装とする。船体の
海水に接する部位への海生生物付着を防止するために、
船体を外部電源方式により陽極とする。電位印加に用い
る外部電源としては長時間電流を供給し続けることが可
能なバッテリーを使用することが望ましい。電源の正極
はチタン製船舶の船体に接続する。また、負極は海水中
へ吊架した不溶性電極3を陰極として、それに接続す
る。不溶性電極の材質としては、白金メッキチタン、白
金などが好ましい。Next, the case where an insoluble electrode is used in the present invention will be described with reference to FIG. FIG. 1 is an explanatory diagram of a method for preventing adhesion of marine organisms to a titanium hull by suspending an external power source and an insoluble cathode in seawater. In the present invention, the part of the titanium ship hull that contacts seawater is unpainted. In order to prevent marine organisms from attaching to the parts of the hull that come into contact with seawater,
The hull is made an anode by an external power supply method. It is desirable to use a battery capable of continuously supplying current for a long time as an external power source used for applying a potential. The positive electrode of the power supply is connected to the hull of a titanium ship. The negative electrode is connected to the insoluble electrode 3 suspended in seawater as a cathode. The material of the insoluble electrode is preferably platinum-plated titanium, platinum or the like.
【0017】この方式では、外部電源の負極に海水中に
吊架した不溶性陰極3を接続するが、不溶性陰極3まで
の導線が陽極に接続される船体と短絡するのを防止する
ために、導線を絶縁性の被覆で覆った絶縁樹脂アーム1
の中をとおし、かつ、このアームをクッション材で覆っ
て、船体との機械的な衝突による船体傷発生をも防止す
る形になっている。また、外部電源の負極は海水に接す
る照合電極4と接続する。照合電極としては、飽和KC
l Ag/AgCl電極、飽和甘コウ電極などを用いる
ことができる。In this system, the insoluble cathode 3 suspended in seawater is connected to the negative electrode of the external power source, but in order to prevent the conductive wire up to the insoluble cathode 3 from being short-circuited with the hull connected to the anode, the conductive wire is connected. Insulating resin arm 1 in which is covered with an insulating coating
Through the inside, and by covering this arm with a cushion material, the hull is prevented from being damaged due to a mechanical collision with the hull. Further, the negative electrode of the external power source is connected to the reference electrode 4 which is in contact with seawater. As a reference electrode, saturated KC
An Ag / AgCl electrode, a saturated sweet koh electrode or the like can be used.
【0018】以上のように、外部電源と船体、不溶性電
極と照合電極を接続することにより、海水を通じて通電
が可能になる。海水中の照合電極に対して船体を+1.
2〜+1.4V(飽和KCl Ag/AgCl基準)の
電位に保持することによって海生生物の付着を防止でき
る。なお、図1に係る符号2は船体と絶縁したエンジン
を示し、5は船体と絶縁したスクリュープロペラ、シャ
フトを示す。As described above, by connecting the external power source and the hull, and the insoluble electrode and the reference electrode, it becomes possible to conduct electricity through seawater. +1. For the reference electrode in seawater.
By keeping the potential of 2 to +1.4 V (saturated KCl Ag / AgCl standard), the adhesion of marine organisms can be prevented. Reference numeral 2 in FIG. 1 denotes an engine insulated from the hull, and 5 denotes a screw propeller and a shaft insulated from the hull.
【0019】さらに、図2により本発明の他の実施形態
について説明する。図2は外部電源方式によりチタン製
船舶船体への海生生物付着および船体と電気的に絶縁し
たスクリュープロペラ、シャフト部の防食を同時に可能
とする方法の説明図である。本発明では、チタン製船舶
船体の海水に接する部位は無塗装とする。船体の海水に
接する部位への海生生物付着を防止するために、船体を
外部電源方式により陽極とする。電位印加に用いる外部
電源としては長時間電流を供給し続けることが可能なバ
ッテリーを使用することが望ましい。電源の正極はチタ
ン製船舶の船体に接続する。また、負極はステンレス製
のスクリュープロペラ、シャフト部に接続する。また、
外部電源の負極は海水に接する照合電極4と接続する。
照合電極としては、飽和KCl Ag/AgCl電極、
飽和甘コウ電極などを用いることができる。Further, another embodiment of the present invention will be described with reference to FIG. FIG. 2 is an explanatory view of a method capable of simultaneously adhering marine organisms to a titanium ship hull and preventing corrosion of a screw propeller and a shaft portion electrically insulated from the hull by an external power supply method. In the present invention, the part of the titanium ship hull that contacts seawater is unpainted. In order to prevent marine organisms from adhering to the parts of the hull that come into contact with seawater, the hull is made an anode by an external power supply method. It is desirable to use a battery capable of continuously supplying current for a long time as an external power source used for applying a potential. The positive electrode of the power supply is connected to the hull of a titanium ship. The negative electrode is connected to a stainless steel screw propeller and shaft. Also,
The negative electrode of the external power source is connected to the reference electrode 4 which is in contact with seawater.
As a reference electrode, a saturated KCl Ag / AgCl electrode,
For example, a saturated sweet ko electrode can be used.
【0020】以上のように、外部電源と船体、船体と電
気的に絶縁されたスクリュープロペラ、シャフト部5と
照合電極4を接続することにより、海水を通じて通電が
可能になる。海水中の照合電極4に対して船体を+1.
2〜+1.4V(飽和KClAg/AgCl基準)の電
位に保持することによって船体への海生生物の付着を防
止できると同時に、スクリュープロペラ、シャフト部の
防食効果が期待できる。なお、通電期間については、可
能な限り継続することが望ましいが、例えば大型海生生
物の付着が問題にならない冬季においては、停止して於
いて、春先の海生生物付着が激しくなり始める季節に合
わせて通電を行ってもよい。従って、通電により発生す
るコストと船体への生物付着状況を観察しながら、適
宜、通電期間を設定することが可能である。As described above, by connecting the external power source and the hull, the screw propeller electrically insulated from the hull, the shaft portion 5 and the reference electrode 4, it becomes possible to conduct electricity through seawater. Hull the vessel to the reference electrode 4 in seawater +1.
By keeping the potential of 2 to +1.4 V (saturated KClAg / AgCl standard), it is possible to prevent the adhesion of marine organisms to the hull and at the same time anticorrosive effect of the screw propeller and the shaft can be expected. Although it is desirable to continue the energization period as much as possible, for example, in winter when large marine organisms do not become a problem, in the spring, when the marine life begins to become violent in early spring You may energize together. Therefore, it is possible to appropriately set the energization period while observing the cost generated by energization and the state of organism attachment to the hull.
【0021】[0021]
【実施例】以下、実施例に基づいて本発明を説明する。
(実施例1)海水中に浸漬した無塗装チタンへの海生生
物付着に及ぼす電位印加の効果、エメリー#400研磨
した無塗装チタン試験片(海水浸漬部分が50mm×3
0mm長方形)を用意した。本試験片を海水中に浸漬し
て、同じく海水中に浸漬した飽和KCl Ag/AgC
l電極を照合電極として、また、白金板(海水浸漬部分
が50mm×30mm長方形)を不溶性陰極として 0
V、+0.2V、+0.4V、+0.6V、+0.8
V、+1.0V、+1.2V、+1.4V、+1.6V
の各電位に印加した。夏季3ヶ月間海水に浸漬した後、
表面の海生生物の付着状況を観察した。試験後、最大長
軸方向の長さが2mm以上の海生生物が付着が認められ
た場合を×、認められなかった場合を◎として表1に示
した。また、本試験によりチタンに変色が生じた場合を
×、生じなかった場合を○として表1に示した。EXAMPLES The present invention will be described below based on examples. (Example 1) Effect of application of electric potential on adhesion of marine organisms to unpainted titanium immersed in seawater, emery # 400 polished unpainted titanium test piece (seawater-immersed portion is 50 mm x 3)
0 mm rectangle) was prepared. Saturated KCl Ag / AgC obtained by immersing this test piece in seawater and also immersing it in seawater
0 electrode as a reference electrode, and a platinum plate (seawater immersion part is 50 mm × 30 mm rectangle) as an insoluble cathode 0
V, + 0.2V, + 0.4V, + 0.6V, +0.8
V, + 1.0V, + 1.2V, + 1.4V, + 1.6V
Was applied to each potential. After soaking in seawater for 3 months in summer,
The state of adhesion of marine organisms on the surface was observed. After the test, the marine organisms having a maximum major axis length of 2 mm or more were found to have adhesion, and the results are shown in Table 1. Further, in Table 1, Table 1 shows x when the discoloration of titanium occurred in this test, and ◯ when it did not occur.
【0022】[0022]
【表1】 [Table 1]
【0023】0Vから +1.0Vまでの設定電位では
海生生物付着が顕著であった。また、+1.6Vでも生
物付着自体は防止する効果があったものの、チタンの変
色が激しく、赤かっ色状に変色してしまい、チタン特有
の意匠性、光沢性を損なうことが判明した。+1.2
V、+1.4Vでは海生生物付着防止に良好な結果が得
られた。At a set potential of 0 V to +1.0 V, the attachment of marine organisms was remarkable. Further, even at +1.6 V, although it was effective in preventing biological attachment itself, it was found that the titanium discolored violently and turned into a reddish brown color, impairing the design and glossiness peculiar to titanium. +1.2
At V and +1.4 V, good results were obtained for preventing the adhesion of marine organisms.
【0024】(実施例2)海水中に浸漬した無塗装チタ
ンへの海生微生物付着に及ぼす電位印加の効果、冬季海
水では低温のためフジツボやイガイといった大型海生生
物の付着はほとんど観察されない。しかしながら、冬季
に於いても海水中に棲息する微生物がチタン表面に付着
する。これら微生物を捕食するためにより大型の海生生
物が付着してくるものと考えられる。そこで、冬季海水
に於いては、微生物付着の防止効果に関して試験を実施
した。実施例1と同様に海水中に浸漬した無塗装チタン
試験片を陽極、飽和KCl Ag/AgCl電極を照合
電極、白金板を不溶性陰極として、0V、+0.2V、
+0.4V、+0.6V、+0.8V、+1.0V、+
1.2V、+1.4V、+1.6Vの電位を印加した。
冬季2週間海水に浸漬した後、表面に付着している微生
物を蛍光色素DAPIを用いて微生物が持つDNAを染
色することで可視化した。蛍光顕微鏡によってチタン試
験片表面に付着した微生物を観察して、表面面積の10
%以上DAPI染色された場合は、微生物付着に対する
防止効果なしとして、×、表面面積の10%未満しかD
API染色されなかった場合は、微生物付着に対する防
止効果ありとして◎として表2に示した。(Example 2) The effect of potential application on the adhesion of marine microorganisms to unpainted titanium immersed in seawater, and the adhesion of large marine organisms such as barnacles and mussels is hardly observed in winter seawater due to the low temperature. However, even in winter, microorganisms living in seawater adhere to the titanium surface. Larger marine organisms are considered to attach to these microorganisms as they predate. Therefore, in winter seawater, a test was conducted for the effect of preventing microbial adhesion. As in Example 1, an unpainted titanium test piece immersed in seawater was used as an anode, a saturated KCl Ag / AgCl electrode was used as a reference electrode, and a platinum plate was used as an insoluble cathode.
+ 0.4V, + 0.6V, + 0.8V, + 1.0V, +
Electric potentials of 1.2V, + 1.4V and + 1.6V were applied.
After being soaked in seawater for 2 weeks in winter, the microorganisms adhering to the surface were visualized by staining the DNA of the microorganism with the fluorescent dye DAPI. By observing the microorganisms adhering to the surface of the titanium test piece with a fluorescence microscope,
% Or more, DAPI dyeing has no effect of preventing microbial adhesion, and D is less than 10% of surface area.
In the case where API staining was not carried out, it is shown in Table 2 as ⊚ as having a preventive effect against microbial adhesion.
【0025】[0025]
【表2】 [Table 2]
【0026】0Vから +1.0Vまでの設定電位では
海生生物付着が顕著であった。また、+1.6Vでは海
生微生物等の死骸などが表面に顕著に吸着した。このた
め、チタン表面に検出される微生物由来のDNA量は顕
著に多かった。+1.2V、+1.4Vで海生微生物の
付着防止にも良好な結果が得られた。At a set potential of 0 V to +1.0 V, the attachment of marine organisms was remarkable. At +1.6 V, carcasses such as marine microorganisms were remarkably adsorbed on the surface. Therefore, the amount of microorganism-derived DNA detected on the titanium surface was remarkably large. At +1.2 V and +1.4 V, good results were obtained for preventing the adhesion of marine microorganisms.
【0027】[0027]
【発明の効果】以上述べたように、本発明で定める電位
印加条件により、チタン製船舶での海生生物付着防止が
可能である。また、チタン製船舶のスクリュープロペ
ラ、シャフト部についても同時に防食が可能である。As described above, it is possible to prevent marine organisms from adhering to titanium vessels under the potential application conditions defined in the present invention. Further, the screw propeller and the shaft portion of a titanium ship can also be protected against corrosion at the same time.
【図1】外部電源と不溶性陰極を海水中へ吊架すること
によりチタン製船体への海生生物付着を防止する方法の
説明図である。FIG. 1 is an explanatory diagram of a method of preventing adhesion of marine organisms to a titanium hull by suspending an external power source and an insoluble cathode in seawater.
【図2】外部電源方式によりチタン製船舶船体への海生
生物付着および船体と電気的に絶縁したスクリュープロ
ペラ、シャフト部の防食を同時に可能とする方法の説明
図である。FIG. 2 is an explanatory view of a method capable of simultaneously adhering marine organisms to a ship made of titanium and preventing corrosion of a screw propeller and a shaft portion electrically insulated from the ship by an external power supply method.
1 絶縁樹脂アーム 2 船体と絶縁したエンジン 3 不溶性陰極 4 照合電極 5 船体と絶縁したスクリュープロペラ、シャフト部 1 Insulating resin arm 2 Engine insulated from the hull 3 Insoluble cathode 4 reference electrode 5 Screw propellers and shafts insulated from the hull
───────────────────────────────────────────────────── フロントページの続き (72)発明者 三木 理 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 (72)発明者 紀平 寛 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 Fターム(参考) 4K060 AA03 BA02 BA39 CA04 CA15 DA07 EA02 EB02 EB06 FA03 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Osamu Miki 20-1 Shintomi, Futtsu-shi, Chiba Nippon Steel shares Company Technology Development Division (72) Inventor Hiroshi Kihira 20-1 Shintomi, Futtsu-shi, Chiba Nippon Steel shares Company Technology Development Division F-term (reference) 4K060 AA03 BA02 BA39 CA04 CA15 DA07 EA02 EB02 EB06 FA03
Claims (3)
をチタン製の船体から電気的に絶縁した構造を有するチ
タン製船舶の海生生物付着防止方法であって、船体を海
水に接する照合電極に対して1.2〜1.4V(飽和K
Cl Ag/AgCl照合電極基準)の電位に保持する
ことを特徴とするチタン製船舶の海生生物付着防止方
法。1. A method for preventing marine organisms from adhering to a titanium ship, which has a structure in which a screw propeller and its shaft are electrically insulated from a titanium ship body, wherein: 1. 2 to 1.4V (saturated K
A method for preventing marine organisms from adhering to a titanium ship, which is characterized by holding the potential of Cl 2 Ag / AgCl reference electrode).
接する不溶性電極を陰極として照合電極と等しい電位に
接続することを特徴とするチタン製船舶の海生生物付着
防止方法。2. The method for preventing adhesion of marine organisms on a titanium ship according to claim 1, wherein an insoluble electrode in contact with seawater is used as a cathode and connected to the same potential as the reference electrode.
ュープロペラ、シャフトを陰極として照合電極と等しい
電位に接続することを特徴とするチタン製船舶の海生生
物付着防止方法およびスクリュープロペラ、シャフト部
の腐食防止方法。3. The method according to claim 1, wherein the screw propeller and the shaft are connected as a cathode to a potential equal to that of the reference electrode, and a method for preventing adhesion of marine organisms on a titanium ship, a screw propeller, and a shaft portion. Corrosion prevention method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002130398A JP2003328164A (en) | 2002-05-02 | 2002-05-02 | Method for preventing adhesion of marine organism to titanium ship |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002130398A JP2003328164A (en) | 2002-05-02 | 2002-05-02 | Method for preventing adhesion of marine organism to titanium ship |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003328164A true JP2003328164A (en) | 2003-11-19 |
Family
ID=29695801
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002130398A Withdrawn JP2003328164A (en) | 2002-05-02 | 2002-05-02 | Method for preventing adhesion of marine organism to titanium ship |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003328164A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006240319A (en) * | 2005-02-28 | 2006-09-14 | Central Res Inst Of Electric Power Ind | Ship |
EP4276342A1 (en) | 2022-05-13 | 2023-11-15 | Titanium Technology S.L. | Electrolytic system for defouling, structures comprising said system and method for defouling a submerged structure |
EP4353866A1 (en) | 2022-10-13 | 2024-04-17 | Titanium Technology S.L. | Mixed metal oxide coatings for titanium alloys |
-
2002
- 2002-05-02 JP JP2002130398A patent/JP2003328164A/en not_active Withdrawn
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006240319A (en) * | 2005-02-28 | 2006-09-14 | Central Res Inst Of Electric Power Ind | Ship |
JP4707051B2 (en) * | 2005-02-28 | 2011-06-22 | 財団法人電力中央研究所 | Ship |
EP4276342A1 (en) | 2022-05-13 | 2023-11-15 | Titanium Technology S.L. | Electrolytic system for defouling, structures comprising said system and method for defouling a submerged structure |
WO2023218090A2 (en) | 2022-05-13 | 2023-11-16 | Titanium Technology S.L. | Electrolytic system for defouling, structures comprising said system and method for defouling a submerged structure |
EP4353866A1 (en) | 2022-10-13 | 2024-04-17 | Titanium Technology S.L. | Mixed metal oxide coatings for titanium alloys |
WO2024079222A1 (en) | 2022-10-13 | 2024-04-18 | Titanium Technology S.L. | Mixed metal oxide coatings for protecting titanium alloys from biofouling |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5346598A (en) | Method for the prevention of fouling and/or corrosion of structures in seawater, brackish water and/or fresh water | |
CN103233260B (en) | One prepares the anti-fouling ceramic membrane electrolyte of titanium alloy surface and differential arc oxidation method | |
Wake et al. | Development of an electrochemical antifouling system for seawater cooling pipelines of power plants using titanium | |
US5009757A (en) | Electrochemical system for the prevention of fouling on steel structures in seawater | |
US5643424A (en) | Apparatus for the prevention of fouling and/or corrosion of structures in seawater, brackish water and/or fresh water | |
AU649246B2 (en) | Method and apparatus for the prevention of fouling and/or corrosion of structures in seawater, brackish water and/or fresh water | |
US5055165A (en) | Method and apparatus for the prevention of fouling and/or corrosion of structures in seawater, brackish water and fresh water | |
JP2003328164A (en) | Method for preventing adhesion of marine organism to titanium ship | |
GB1597305A (en) | Marine potentiometric antifouling and anticorrosion device | |
CN110461705B (en) | Method and apparatus for inhibiting biological adhesion | |
EP4353866A1 (en) | Mixed metal oxide coatings for titanium alloys | |
US20040112762A1 (en) | Method for protecting surfaces against biological macro-fouling | |
JP3491081B2 (en) | Electrochemical biological control or antifouling components | |
JPH11303041A (en) | Pollution preventing method for structure in contact with sea water | |
JP3668976B2 (en) | Electrochemical control method and antifouling method for aquatic organisms | |
JP4243066B2 (en) | Biofouling prevention material | |
JP3888756B2 (en) | Electrochemical control method, antifouling method and antifouling device for aquatic organisms | |
JPH11244861A (en) | Anti-fouling device for underwater structure and electrochemical control method of organism | |
Dhar | Electrochemical methods for the prevention of microbial fouling | |
JP2005185206A (en) | Stain-proof conductive member and method for electrochemically controlling the same member | |
Dürr et al. | Marine Biofouling | |
Ahmadi et al. | Microbiologically Influenced Corrosion of Anodized Aluminum with Alizarin Dye Coating | |
JP4438158B2 (en) | Antifouling method for concrete structure and antifouling device for seawater conduit of concrete structure | |
JP2001215188A (en) | Electric protection tester | |
JPH10158863A (en) | Member for electrochemical biological control for preventing fouling |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20050705 |