JP2003328111A - Thin film and method of deposition - Google Patents

Thin film and method of deposition

Info

Publication number
JP2003328111A
JP2003328111A JP2002133779A JP2002133779A JP2003328111A JP 2003328111 A JP2003328111 A JP 2003328111A JP 2002133779 A JP2002133779 A JP 2002133779A JP 2002133779 A JP2002133779 A JP 2002133779A JP 2003328111 A JP2003328111 A JP 2003328111A
Authority
JP
Japan
Prior art keywords
film
thin film
crystal
film formation
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002133779A
Other languages
Japanese (ja)
Other versions
JP4412526B2 (en
JP2003328111A5 (en
Inventor
Masakazu Hirata
雅一 平田
Kazuyoshi Furuta
一吉 古田
Tokuo Chiba
徳男 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2002133779A priority Critical patent/JP4412526B2/en
Publication of JP2003328111A publication Critical patent/JP2003328111A/en
Publication of JP2003328111A5 publication Critical patent/JP2003328111A5/ja
Application granted granted Critical
Publication of JP4412526B2 publication Critical patent/JP4412526B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thin film of arbitrary film thickness having decreased internal stress and also to provide its manufacturing method. <P>SOLUTION: The thin film consists of crystal groups of a material which is characterized in that internal stress of film changes from tensile stress into compressive stress or from compressive stress into tensile stress with respect to the increase of film thickness, and the internal stress is made to ≤100 MPa by the balance between the tensile stress and the compressive stress in the film deposition of prescribed film thickness under prescribed conditions. Further, the thin film is constituted of a plurality of thin films, and the part between the respective thin films is a region of discontinuous crystal growth. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、内部応力の小さ
い薄膜及びその成膜方法に関する。
TECHNICAL FIELD The present invention relates to a thin film having a small internal stress and a film forming method thereof.

【0002】[0002]

【従来の技術】基板上に薄膜を堆積させる際、その膜の
内部応力が薄膜素子の製造および、その性能に及ぼす影
響が大きな問題となる。従来、この問題に対して、膜の
内部応力を軽減させる様々な手法がとられてきた。
2. Description of the Related Art When depositing a thin film on a substrate, the influence of the internal stress of the film on the production of the thin film element and its performance becomes a serious problem. Conventionally, various methods for reducing the internal stress of the film have been taken against this problem.

【0003】例えば、スパッタリングによる金属膜の成
膜ではカソード電流、アルゴン圧力といった成膜条件を
適切に設定することにより、膜の内部応力の小さい膜を
成膜する事ができる。しかし、成膜条件が等しい場合で
も、成膜する膜厚によっては成膜条件にかかわらず膜の
内部応力を小さくすることができなかった。
For example, in forming a metal film by sputtering, a film having a small internal stress can be formed by appropriately setting film forming conditions such as cathode current and argon pressure. However, even when the film forming conditions are the same, depending on the film thickness to be formed, the internal stress of the film cannot be reduced regardless of the film forming conditions.

【0004】図4は従来の薄膜の構成を表した断面図で
ある。図4は基板1上に結晶群2、3から構成される膜
を成膜した工程後の状態を示している。スパッタリング
によるチタン膜の成膜においてカソード電流4A、アル
ゴン圧力0.5Pa前後の条件での成膜では、膜厚10
0nmから200nm程度までは核の成長による半球状
もしくは円錐状の結晶からなる結晶群2が形成され、こ
の結晶群は圧縮応力を発生する。
FIG. 4 is a sectional view showing the structure of a conventional thin film. FIG. 4 shows a state after the step of forming a film composed of the crystal groups 2 and 3 on the substrate 1. When a titanium film is formed by sputtering under the conditions of a cathode current of 4 A and an argon pressure of about 0.5 Pa, the film thickness is 10
From 0 nm to about 200 nm, a crystal group 2 composed of hemispherical or conical crystals is formed by the growth of nuclei, and this crystal group generates compressive stress.

【0005】さらに膜厚を増加させることで核の成長に
よる結晶形成が限界に達すると、円柱状の結晶からなる
結晶群3が形成されるようになる。この円柱状の結晶か
らなる結晶群3は引張応力を発生する。チタン膜厚さ
1.0μmをスパッタリングにより成膜した場合、円柱
状の結晶からなる結晶群3は成膜する膜厚が適当な値よ
り大きいと、膜厚方向に大きく成長する。このため結晶
群3による引張応力が卓越し、薄膜全体の内部応力は大
きいものとなる。カソード電流4A、アルゴン圧力0.
5Pa前後においてチタン膜厚さ1.0μmをスパッタ
リングにより成膜した場合、膜の内部応力は200MP
a以上となる。
When the crystal formation due to the growth of nuclei reaches the limit by further increasing the film thickness, the crystal group 3 composed of columnar crystals is formed. The crystal group 3 composed of this columnar crystal generates a tensile stress. When a titanium film having a thickness of 1.0 μm is formed by sputtering, the crystal group 3 composed of columnar crystals grows greatly in the film thickness direction when the film thickness to be formed is larger than an appropriate value. Therefore, the tensile stress due to the crystal group 3 is excellent, and the internal stress of the entire thin film is large. Cathode current 4A, argon pressure 0.
When a titanium film thickness of 1.0 μm is formed by sputtering at around 5 Pa, the internal stress of the film is 200 MP.
It becomes a or more.

【0006】[0006]

【発明が解決しようとする課題】しかし、薄膜の内部応
力が大きい場合、薄膜が自立した構造部では、これを形
成すると同時に薄膜が自身の内部応力により変形または
破損することがある。
However, when the internal stress of the thin film is large, the thin film may be deformed or damaged by its own internal stress at the same time when it is formed in a structure where the thin film is self-supporting.

【0007】また、引張強さ等の薄膜の機械的性質を測
定したい場合、内部応力の値が荷重による応力データに
影響を与えることになり、正しい測定結果を得ることが
できない。
Further, when it is desired to measure the mechanical properties of a thin film such as tensile strength, the value of the internal stress affects the stress data due to the load, and a correct measurement result cannot be obtained.

【0008】また、薄膜の内部応力が大きくなるにつれ
て基板の湾曲が大きくなり、基板自体の材料強度を超え
ると、基板が破損する。材料強度を超えなくても基板が
割れやすい状態にあるため、衝撃を与えないように取り
扱う必要がある。
Further, as the internal stress of the thin film increases, the curvature of the substrate increases, and when the material strength of the substrate itself is exceeded, the substrate is damaged. Even if the material strength is not exceeded, the substrate is fragile and must be handled so as not to give an impact.

【0009】一般に薄膜素子の製造工程で用いられる、
フォトファブリケーション工程では、露光する前に基板
とマスクの相対位置を調整する必要がある。この調整は
アライナやステッパを用いて、基板外周部に設けたアラ
イメントマークと、マスク側の対応する箇所に設けたア
ライメントマークをあわせることによって行う。ここで
基板の湾曲がある場合、基板とマスクが接触しないため
には、湾曲がない場合に比べて基板とマスクの間隔を大
きくとる必要がある。通常湾曲のない場合、基板とマス
クの間隔は5〜30μm程度であるが、湾曲が大きい場
合はこれを50μm以上とすることがある。その結果基
板側とマスク側のアライメントマークに同時に焦点を合
わせることができず、位置合わせ精度が低下し、製品の
寸法精度が低下する。
Generally used in the manufacturing process of thin film elements,
In the photofabrication process, it is necessary to adjust the relative position between the substrate and the mask before exposure. This adjustment is performed by using an aligner or stepper to align the alignment mark provided on the outer peripheral portion of the substrate with the alignment mark provided at the corresponding position on the mask side. When the substrate is curved, the distance between the substrate and the mask needs to be set larger than that when the substrate is not curved so that the substrate and the mask do not come into contact with each other. Normally, when there is no curvature, the distance between the substrate and the mask is about 5 to 30 μm, but when the curvature is large, it may be 50 μm or more. As a result, it is not possible to focus on the alignment marks on the substrate side and the mask side at the same time, so that the positioning accuracy is lowered and the dimensional accuracy of the product is lowered.

【0010】また、露光時において、基板の湾曲がある
ために基板とマスクの間隔を基板全面にわたって均一に
することができず、基板の場所によっては基板とマスク
の間隔が設定した値より大きくなる場所が生じる。そこ
では光の回折現象の影響が大きくなるため、露光精度が
低下し、結果として製品の寸法精度が低下する。
Further, at the time of exposure, due to the curvature of the substrate, the distance between the substrate and the mask cannot be made uniform over the entire surface of the substrate, and the distance between the substrate and the mask becomes larger than the set value depending on the place of the substrate. A place arises. There, the influence of the light diffraction phenomenon increases, so that the exposure accuracy decreases, and as a result, the dimensional accuracy of the product decreases.

【0011】基板に湾曲が生じるような応力の大きい膜
をパターニングすると、パターンのエッジ部分で応力集
中が生じ、膜の剥離や損傷を生じさせることがある。
When patterning a film having a large stress such that the substrate is curved, stress concentration occurs at the edge portion of the pattern, which may cause peeling or damage of the film.

【0012】さらに、基板に湾曲があると、製造過程で
アライナ、レジストコータ、成膜装置等に付随する自動
搬送装置が使用できないことがあり、この場合、作業効
率が著しく低下する。これを使用できない理由の第一
は、湾曲があるために基板と自動搬送装置の周辺部が干
渉することがあげられる。第二の理由としては、自動搬
送装置の基板把持機構が、変形している基板に対して正
確に位置決めできない、もしくはバキューム式の把持機
構の場合は把持機構と変形した基板の間でリークが発生
する、などの理由から基板を把持できないことがあげら
れる。
Further, if the substrate is curved, the automatic transfer device associated with the aligner, the resist coater, the film forming device, and the like may not be used in the manufacturing process, in which case the working efficiency is significantly reduced. The first reason why it cannot be used is that the substrate and the peripheral portion of the automatic carrier interfere with each other due to the curvature. The second reason is that the substrate gripping mechanism of the automatic carrier cannot accurately position on the deformed substrate, or in the case of the vacuum gripping mechanism, a leak occurs between the gripping mechanism and the deformed substrate. The reason is that the substrate cannot be gripped due to reasons such as

【0013】また、光学顕微鏡、電子顕微鏡もしくは原
子間力顕微鏡を用いて、製造過程中もしくは製造完了後
に視覚的に検査する場合、基板の湾曲があると、検査す
る基板の位置によって、その度ごとに顕微鏡の焦点を合
わせ直す必要があり、電子顕微鏡を用いる場合、さらに
非点収差も調節する必要があり、検査の作業効率が低下
する。また、原子間力顕微鏡を用いる場合、基板の湾曲
のために高さ方向の測定レンジを広くとる必要があり、
この場合基板が湾曲していない場合に比べて高さ方向の
分解能が低下する。
When visually inspecting using an optical microscope, an electron microscope or an atomic force microscope during the manufacturing process or after the completion of the manufacturing, if there is a curvature of the substrate, it may occur depending on the position of the substrate to be inspected. It is necessary to refocus the microscope, and when an electron microscope is used, it is also necessary to adjust astigmatism, which reduces the work efficiency of inspection. Also, when using an atomic force microscope, it is necessary to take a wide measurement range in the height direction due to the curvature of the substrate,
In this case, the resolution in the height direction is lower than that in the case where the substrate is not curved.

【0014】一般的に内部応力は100MPa以下であ
れば上述の問題点は生じないため、この発明は、大きな
内部応力を伴う薄膜とその製造方法を改良することによ
って、薄膜の内部応力を100MPa以下として、上述
のような問題点を取り除くことを課題とする。
In general, if the internal stress is 100 MPa or less, the above problems do not occur. Therefore, the present invention improves the internal stress of the thin film to 100 MPa or less by improving the thin film with large internal stress and the manufacturing method thereof. Therefore, it is an object to eliminate the above problems.

【0015】[0015]

【課題を解決するための手段】上記薄膜の課題を解決す
るため、本発明は、膜厚の増加に対して、膜の内部応力
が引張応力から圧縮応力、または圧縮応力から引張応力
に変化する性質を持つ材料の結晶群からなり、所定の条
件で所定の膜厚の成膜における引張応力と圧縮応力の釣
り合いにより、内部応力が100MPa以下である薄膜
とする。
In order to solve the above-mentioned problems of the thin film, according to the present invention, the internal stress of the film changes from tensile stress to compressive stress or from compressive stress to tensile stress as the film thickness increases. A thin film made of a crystal group of materials having properties and having an internal stress of 100 MPa or less is obtained by balancing tensile stress and compressive stress in forming a film having a predetermined thickness under predetermined conditions.

【0016】また、複数の薄膜で構成され、各薄膜の間
が結晶成長不連続部分である薄膜とする。即ち、薄膜の
膜厚方向に結晶成長不連続部分を持たせることによっ
て、任意の膜厚をもつ薄膜の内部応力を低減させるもの
である。
Further, the thin film is composed of a plurality of thin films, and there are crystal growth discontinuities between the thin films. That is, by providing a crystal growth discontinuity in the film thickness direction of the thin film, the internal stress of the thin film having an arbitrary film thickness is reduced.

【0017】また、略同一の膜厚を有する複数の薄膜で
構成され、各薄膜の間が結晶成長不連続部分である薄膜
とする。
Further, it is assumed that the thin film is composed of a plurality of thin films having substantially the same film thickness, and a gap between the respective thin films is a discontinuous portion of crystal growth.

【0018】また、結晶成長不連続部分の界面に薄膜と
異なる材料を付着させる。よって、効果的に結晶成長を
不連続にすることができ、内部応力を低減させることが
できる。
Further, a material different from the thin film is attached to the interface of the discontinuous crystal growth portion. Therefore, the crystal growth can be effectively discontinuous, and the internal stress can be reduced.

【0019】さらに本発明は、薄膜の結晶成長を膜厚方
向に不連続とする結晶連続成長阻害工程を含む薄膜の成
膜方法とする。
Further, the present invention provides a method for forming a thin film, which includes a crystal continuous growth inhibiting step for making the crystal growth of the thin film discontinuous in the film thickness direction.

【0020】また、結晶成長不連続部分を形成するため
の結晶連続成長阻害工程として、成膜中に一旦成膜を停
止させその上で再度成膜を開始させる。
Further, as a crystal continuous growth inhibiting step for forming a crystal growth discontinuous portion, the film formation is once stopped during the film formation and then the film formation is restarted.

【0021】また、結晶連続成長阻害工程において成膜
を停止させた際に、基板を冷却する、成膜を停止させた
膜の表面表層を除去する、または異なる材料を、成膜を
停止させた膜の表面に付着させることを、それぞれ単
独、もしくは任意に組み合わせる。
Further, when the film formation is stopped in the crystal continuous growth inhibiting step, the substrate is cooled, the surface layer of the film whose film formation is stopped is removed, or the film formation of a different material is stopped. Adhering to the surface of the membrane is used individually or in any combination.

【0022】[0022]

【発明の実施の形態】以下に、この発明の実施の形態を
図面に基づいて説明する。 (実施の形態1)図1は本発明の実施の形態1にかかわ
る薄膜の構成を示す断面図である。図1は基板1上に結
晶群2、3から構成される膜を成膜した工程後の状態を
示している。スパッタリングによるチタン膜の成膜にお
いてカソード電流4A、アルゴン圧力0.5Pa前後の
条件での成膜では、膜厚100μmから200μm程度
までは核の成長による半球状もしくは円錐状の結晶から
なる結晶群2が形成され、この結晶群は圧縮応力を発生
する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. (Embodiment 1) FIG. 1 is a sectional view showing the structure of a thin film according to Embodiment 1 of the present invention. FIG. 1 shows a state after the step of forming a film composed of the crystal groups 2 and 3 on the substrate 1. When a titanium film is formed by sputtering under the conditions of a cathode current of 4 A and an argon pressure of about 0.5 Pa, a crystal group 2 consisting of hemispherical or conical crystals due to nucleus growth is formed up to a film thickness of 100 μm to 200 μm. Are formed, and this crystal group generates compressive stress.

【0023】さらに膜厚を増加させることで核の成長に
よる結晶形成が限界に達すると、円柱状の結晶からなる
結晶群3が形成されるようになる。この円柱状の結晶か
らなる結晶群3は引張応力を発生する。カソード電流4
A、アルゴン圧力0.5Pa前後において厚さ約0.5
μmを成膜した場合、結晶群2と結晶群3の発生応力が
釣り合って、チタン膜全体の内部応力を100MPa以
下に抑えることができる。
When the crystal formation due to the growth of nuclei reaches the limit by further increasing the film thickness, the crystal group 3 composed of columnar crystals is formed. The crystal group 3 composed of this columnar crystal generates a tensile stress. Cathode current 4
A, thickness about 0.5 at argon pressure around 0.5Pa
When μm is deposited, the stresses generated in the crystal groups 2 and 3 are balanced, and the internal stress of the entire titanium film can be suppressed to 100 MPa or less.

【0024】一般的に、薄膜の内部応力が100MPa
以下であれば、薄膜素子において薄膜自体の内部応力で
薄膜が破損する問題を避けることができ、薄膜の機械的
特性を正確に測定することができ、また、薄膜の内部応
力による基板の湾曲を低減し、基板の破損を防止し、フ
ォトファブリケーション工程の精度の向上、検査工程の
精度向上が得られるため、上述した課題を十分に解決で
きる。
Generally, the internal stress of a thin film is 100 MPa.
It is possible to avoid the problem that the thin film is damaged by the internal stress of the thin film itself, to accurately measure the mechanical properties of the thin film, and to prevent the curvature of the substrate due to the internal stress of the thin film if Since the damage is reduced, the substrate is prevented from being damaged, the accuracy of the photofabrication process is improved, and the accuracy of the inspection process is improved, the above-mentioned problems can be sufficiently solved.

【0025】上記図1に関する説明では膜応力を小さく
する対象がスパッタリングによるチタン膜である場合に
ついて説明を行った。さらに、膜厚の増加に対して膜の
内部応力が引張応力から圧縮応力、または圧縮応力から
引張応力に変化する性質を持つ材料または成膜法に対し
ても、上記手法のように、所定の条件で所定の膜厚を成
膜することにより、膜応力を100MPa以下に抑える
ことができる。例えば、スパッタリング法によるニオブ
膜においても上記効果が得られる。 (実施の形態2)図2(a)に示すように、結晶群2、
3から構成される内部応力の小さい膜を成膜し、一旦成
膜を停止させる。スパッタリングによるチタン膜の成膜
においてカソード電流4A、アルゴン圧力0.5Pa前
後の条件での成膜では、膜厚100nmから200nm
程度までは核の成長による半球状もしくは円錐状の結晶
からなる結晶群2が形成され、この結晶群は圧縮応力を
発生する。
In the above description with reference to FIG. 1, the case where the target for reducing the film stress is the titanium film formed by sputtering has been described. Further, even for a material or a film forming method in which the internal stress of the film changes from tensile stress to compressive stress or from compressive stress to tensile stress as the film thickness increases, as in the above method, By forming a predetermined film thickness under the conditions, the film stress can be suppressed to 100 MPa or less. For example, the above effect can be obtained also in a niobium film formed by a sputtering method. (Embodiment 2) As shown in FIG.
A film having a small internal stress composed of 3 is formed, and the film formation is once stopped. When a titanium film is formed by sputtering under the conditions of a cathode current of 4 A and an argon pressure of about 0.5 Pa, the film thickness is 100 nm to 200 nm.
To a certain extent, a crystal group 2 consisting of hemispherical or conical crystals is formed by the growth of nuclei, and this crystal group generates compressive stress.

【0026】さらに膜厚を増加させることで核の成長に
よる結晶形成が限界に達すると、円柱状の結晶からなる
結晶群3が形成されるようになる。この円柱状の結晶か
らなる結晶群3は引張応力を発生する。ここで厚さ約
0.5μmまで成膜した場合、結晶群2と結晶群3の発
生応力が釣り合って、チタン膜全体の内部応力を100
MPa以下に抑えることができる。
When the crystal formation due to the growth of nuclei reaches the limit by further increasing the film thickness, the crystal group 3 composed of columnar crystals is formed. The crystal group 3 composed of this columnar crystal generates a tensile stress. When the film is formed to a thickness of about 0.5 μm, the stresses generated in the crystal groups 2 and 3 are balanced, and the internal stress of the entire titanium film is 100%.
It can be suppressed to MPa or less.

【0027】その後、結晶連続成長阻害工程として、結
晶群2、3から構成される膜の成膜を結晶群2と結晶群
3の発生応力が釣り合う膜厚で一旦停止させた後、結晶
群2、3から構成される膜上に、結晶群2、3と同材料
の結晶群4、5から構成される膜を、結晶群2、3から
構成される膜と等しい膜厚で成膜する。これにより、結
晶成長不連続部分として結晶群3と結晶群4の境界を発
生させることができる。ここで結晶群4は結晶群2と同
様に半球状もしくは円錐状の結晶から構成され、圧縮応
力を生じる。また、結晶群5は結集群3と同様の円柱状
の結晶から構成され、引張応力を生じる。結晶群2と3
でそれぞれ発生する応力が釣り合い、また結晶群4と5
でそれぞれ発生する応力が釣り合うため、従来の技術で
は膜の内部応力を100MPa以下に抑えることができ
ない膜厚にもかかわらず、本実施の形態においては結晶
群2、3、4、5から構成される膜の内部応力は100
MPa以下に抑えられる。
Thereafter, as a crystal continuous growth inhibiting step, the film formation of the crystal groups 2 and 3 is once stopped at a film thickness at which the stresses generated in the crystal groups 2 and 3 are balanced, and then the crystal group 2 is formed. A film composed of the crystal groups 4 and 5 made of the same material as the crystal groups 2 and 3 is formed on the film composed of 3 in the same film thickness as the film composed of the crystal groups 2 and 3. As a result, a boundary between the crystal groups 3 and 4 can be generated as a crystal growth discontinuous portion. Here, the crystal group 4 is composed of hemispherical or conical crystals similarly to the crystal group 2, and generates compressive stress. Further, the crystal group 5 is composed of a columnar crystal similar to the aggregate group 3 and generates tensile stress. Crystal groups 2 and 3
, The stresses generated in each are balanced, and crystal groups 4 and 5
Since the stresses generated in the respective films are balanced, the conventional technique does not allow the internal stress of the film to be suppressed to 100 MPa or less, but in the present embodiment, it is composed of crystal groups 2, 3, 4, and 5. The internal stress of the film is 100
It can be kept below MPa.

【0028】より効果的に結晶群4を発生させ膜応力を
小さく抑えるために、結晶連続成長阻害工程として、膜
2、3の成膜後、一度成膜を停止している際に、基板が
成膜前の温度まで冷却されるのを待ってから、膜4、5
を成膜することもできる。また、膜2、3の表面を逆ス
パッタすることによって表層を除去した上で、その上に
膜4、5を成膜することによっても、より効果的に結晶
群4を発生させ膜応力を100MPa以下に抑えること
ができる。
In order to more effectively generate the crystal group 4 and suppress the film stress to be small, as a crystal continuous growth inhibiting step, when the film formation is stopped once after the films 2 and 3 are formed, the substrate is Wait for the film to cool to the temperature before film formation and then
Can also be formed into a film. Further, by removing the surface layer by performing reverse sputtering on the surfaces of the films 2 and 3, and then forming the films 4 and 5 thereon, the crystal group 4 is more effectively generated and the film stress is 100 MPa. It can be suppressed to the following.

【0029】さらに図2(b)に示すように、結晶群
2、3から構成される膜の成膜後に、結晶群2、3、
4、5とは異なる材料の核形成因子6を、結晶群2、
3、4、5から構成される膜の機械的、電気的等の性質
に影響を与えない程度わずかに、例えば原子数個から数
十個分の厚みで、付着させ、その後に核形成因子6上に
結晶群4、5から構成される膜を成膜することで、より
効果的に前記結晶群4を発生させ結晶群2、3、4、5
から構成される膜全体の内部応力を100MPa以下に
抑えることができる。結晶群2、3、4、5から構成さ
れる膜をスパッタリングによるチタン膜とした場合、金
をカソード電流0.4A、アルゴン圧力1.1Paで1
秒間スパッタすることで核形成因子6として形成するこ
とができる。
Further, as shown in FIG. 2B, after the formation of the film composed of the crystal groups 2 and 3, the crystal groups 2 and 3,
The nucleation factor 6 made of a material different from that of 4, 5
The nucleation factor 6 is made to adhere to the film composed of 3, 4, and 5 so as not to affect the mechanical and electrical properties of the film, for example, with a thickness of several atoms to several tens of atoms. By forming a film composed of the crystal groups 4 and 5 on the above, the crystal group 4 is more effectively generated and the crystal groups 2, 3, 4, and 5 are generated.
The internal stress of the entire film composed of can be suppressed to 100 MPa or less. When the film composed of the crystal groups 2, 3, 4, and 5 is a titanium film formed by sputtering, gold is 1 at a cathode current of 0.4 A and an argon pressure of 1.1 Pa.
It can be formed as the nucleation factor 6 by sputtering for a second.

【0030】上記図2に関する説明では膜応力を小さく
する対象がスパッタリングによるチタン膜である場合に
ついて説明を行った。膜厚の増加に対して膜の内部応力
が引張応力から圧縮応力、または圧縮応力から引張応力
に変化する性質を持つ材料または成膜法に対しても、上
記手法により膜応力を100MPa以下に抑えることが
できる。例えば、スパッタリング法によるニオブ膜にお
いても上記効果が得られる。
In the above description with reference to FIG. 2, the case where the target for reducing the film stress is the titanium film formed by sputtering has been described. Even for materials or film forming methods in which the internal stress of the film changes from tensile stress to compressive stress or from compressive stress to tensile stress as the film thickness increases, the film stress is suppressed to 100 MPa or less by the above method. be able to. For example, the above effect can be obtained also in a niobium film formed by a sputtering method.

【0031】上記のような構造の薄膜によれば、従来の
手法では内部応力を小さく抑えることができない比較的
膜厚の大きい薄膜も、内部応力を100Pa以下に抑え
ることができる。これにより、薄膜素子において薄膜自
体の内部応力で薄膜が破損する問題を避けることがで
き、薄膜の機械的特性を正確に測定することができる効
果がある。また、薄膜の内部応力による基板の湾曲を低
減し、基板の破損を防止し、フォトファブリケーション
工程の精度の向上、検査工程の精度向上が得られるとい
う効果がある。 (実施の形態3)図3は本発明の実施の形態3にかかわ
る薄膜の構成を示す断面図である。
According to the thin film having the above structure, the internal stress can be suppressed to 100 Pa or less even for the thin film having a relatively large film thickness, which cannot be suppressed by the conventional method. Accordingly, it is possible to avoid the problem that the thin film is damaged by the internal stress of the thin film itself in the thin film element, and it is possible to accurately measure the mechanical characteristics of the thin film. Further, there is an effect that the curvature of the substrate due to the internal stress of the thin film is reduced, the substrate is prevented from being damaged, the accuracy of the photofabrication process is improved, and the accuracy of the inspection process is improved. (Embodiment 3) FIG. 3 is a sectional view showing the structure of a thin film according to Embodiment 3 of the present invention.

【0032】図3(a)は、基板1上に結晶群2、3か
ら構成される膜を成膜した工程後の状態を示している。
スパッタリングによるチタン膜の成膜では、まず核の成
長による半球状もしくは円錐状の結晶からなる結晶群2
が形成され、この結晶群で構成される膜は圧縮応力を発
生する。さらに膜厚を増加させることで核の成長による
結晶形成が限界に達すると、円柱状の結晶からなる結晶
群3が形成されるようになる。この円柱状結晶からなる
結晶群3は引張応力を発生する。適切な成膜条件と膜厚
を選ぶことによって結晶群2と結晶群3の発生応力が釣
り合って、チタン膜全体の内部応力を100MPa以下
に抑えることができる。
FIG. 3A shows a state after the step of forming a film composed of the crystal groups 2 and 3 on the substrate 1.
In forming a titanium film by sputtering, first, a crystal group 2 consisting of hemispherical or conical crystals formed by the growth of nuclei
Are formed, and the film composed of this crystal group generates compressive stress. When the crystal formation due to the growth of nuclei reaches the limit by further increasing the film thickness, the crystal group 3 composed of columnar crystals is formed. The crystal group 3 composed of this columnar crystal generates a tensile stress. By selecting appropriate film forming conditions and film thicknesses, the stresses generated in the crystal groups 2 and 3 are balanced, and the internal stress of the entire titanium film can be suppressed to 100 MPa or less.

【0033】図3(b)は、図3(a)の結晶群3上に
結晶群4、5、7、8から構成される膜を成膜した工程
後の状態を示している。結晶連続成長阻害工程として、
結晶群2、3から構成される膜の成膜を結晶群2と結晶
群3の発生応力が釣り合う膜厚で、一旦停止させた後、
結晶群2、3から構成される膜上に、結晶群2、3と同
材料の結晶群4、5から構成される膜を結晶群2、3か
ら構成される膜と等しい膜厚で成膜する。これにより、
結晶成長不連続部分として結晶群3と結晶群4の境界を
発生させることができる。ここで結晶群4は結晶群2と
同様に半球状もしくは円錐状の結晶から構成され、圧縮
応力を生じる。また、結晶群5は結集群3と同様の円柱
状の結晶から構成され、引張応力を生じる。結晶群2と
3でそれぞれ発生する応力が釣り合い、また結晶群4、
5でそれぞれ発生する応力が釣り合う。
FIG. 3B shows a state after the step of forming a film composed of the crystal groups 4, 5, 7, and 8 on the crystal group 3 of FIG. 3A. As a continuous crystal growth inhibition process,
After temporarily stopping the formation of the film composed of the crystal groups 2 and 3 at a film thickness at which the stresses generated in the crystal groups 2 and 3 are balanced,
A film composed of the crystal groups 4 and 5 made of the same material as the crystal groups 2 and 3 is formed on the film composed of the crystal groups 2 and 3 in the same film thickness as the film composed of the crystal groups 2 and 3. To do. This allows
A boundary between the crystal groups 3 and 4 can be generated as a crystal growth discontinuous portion. Here, the crystal group 4 is composed of hemispherical or conical crystals similarly to the crystal group 2, and generates compressive stress. Further, the crystal group 5 is composed of a columnar crystal similar to the aggregate group 3 and generates tensile stress. The stresses generated in the crystal groups 2 and 3 are balanced, and the crystal group 4 and
The stresses generated at 5 are balanced.

【0034】さらに、結晶連続成長阻害工程として、結
晶群4、5から構成される膜の成膜を結晶群4と結晶群
5の発生応力が釣り合う膜厚で、一旦停止させた後、結
晶群2、3、4、5から構成される膜上に結晶群2、
3、4、5と同材料の結晶群7、8から構成される膜
を、結晶群2、3から構成される膜と等しい膜厚で成膜
する。これにより、結晶成長不連続部分として結晶群5
と結晶群7の境界を発生させることができる。ここで結
晶群7は結晶群2と同様に半球状もしくは円錐状の結晶
から構成され、圧縮応力を生じる。また、結晶群8は結
集群3と同様の円柱状の結晶から構成され、引張応力を
生じる。結晶群2と3でそれぞれ発生する応力が釣り合
い、結晶群4、5でそれぞれ発生する応力が釣り合い、
さらに結晶群7、8でそれぞれ発生する応力が釣り合
う。結局、結晶群2、3、4、5、7、8から構成され
る膜全体の内部応力は100MPa以下に抑えられる。
Further, as the crystal continuous growth inhibiting step, the film formation of the crystal groups 4 and 5 is once stopped at a film thickness at which the generated stresses of the crystal groups 4 and 5 are balanced, and then the crystal groups are formed. Crystal group 2, on a film composed of 2, 3, 4, 5
A film composed of crystal groups 7 and 8 made of the same material as 3, 4 and 5 is formed with the same film thickness as the film composed of crystal groups 2 and 3. As a result, the crystal group 5 is regarded as a crystal growth discontinuous portion.
And the boundary of the crystal group 7 can be generated. Here, the crystal group 7 is composed of hemispherical or conical crystals similarly to the crystal group 2, and generates compressive stress. Further, the crystal group 8 is composed of a columnar crystal similar to the aggregate group 3 and generates tensile stress. The stresses generated in the crystal groups 2 and 3 are balanced, the stresses generated in the crystal groups 4 and 5 are balanced,
Furthermore, the stresses generated in the crystal groups 7 and 8 are balanced. After all, the internal stress of the entire film composed of the crystal groups 2, 3, 4, 5, 7, and 8 can be suppressed to 100 MPa or less.

【0035】上記の説明では膜応力を小さくする対象が
スパッタリングによるチタン膜である場合について説明
を行った。膜厚の増加に対して膜の内部応力が引張応力
から圧縮応力、または圧縮応力から引張応力に変化する
性質を持つ材料または成膜法に対しても、上記手法によ
り膜応力を100MPa以下に抑えることができる。例
えば、スパッタリング法によるニオブ膜においても上記
効果が得られる。
In the above description, the case where the target for reducing the film stress is the titanium film formed by sputtering has been described. Even for materials or film forming methods in which the internal stress of the film changes from tensile stress to compressive stress or from compressive stress to tensile stress as the film thickness increases, the film stress is suppressed to 100 MPa or less by the above method. be able to. For example, the above effect can be obtained also in a niobium film formed by a sputtering method.

【0036】また、上記図3に関する説明では結晶連続
成長阻害工程を2回実施する場合について説明を行っ
た。さらに、結晶連続成長阻害工程を3回以上実施する
ことにより、膜厚の大きい膜においても本実施の形態と
同様の作用及び効果が得られる。
Further, in the above description with reference to FIG. 3, the case where the continuous crystal growth inhibiting step is performed twice has been described. Furthermore, by performing the crystal continuous growth inhibiting step three times or more, the same action and effect as in the present embodiment can be obtained even in a film having a large film thickness.

【0037】上記のような構造の薄膜によれば、従来の
手法では内部応力を100MPa以下に抑えることがで
きない比較的膜厚の大きい薄膜も任意の膜厚で、内部応
力を100MPa以下に抑えることができる。これによ
り、薄膜素子において薄膜自体の内部応力で薄膜が破損
する問題を避けることができ、薄膜の機械的特性を正確
に測定することができる効果がある。また、薄膜の内部
応力による基板の湾曲を低減し、基板の破損を防止し、
フォトファブリケーション工程の精度の向上、検査工程
の精度向上が得られるという効果がある。
According to the thin film having the above structure, the internal stress can be suppressed to 100 MPa or less even if the thin film having a relatively large film thickness cannot be suppressed to 100 MPa or less by the conventional method. You can Accordingly, it is possible to avoid the problem that the thin film is damaged by the internal stress of the thin film itself in the thin film element, and it is possible to accurately measure the mechanical characteristics of the thin film. In addition, the curvature of the substrate due to the internal stress of the thin film is reduced, the damage of the substrate is prevented,
There is an effect that the precision of the photofabrication process and the precision of the inspection process can be improved.

【0038】[0038]

【発明の効果】以上説明したように、上記のような構造
の薄膜によれば、従来の手法では内部応力を小さく抑え
ることができない比較的膜厚の大きい薄膜も、内部応力
を100MPa以下に抑えることができる。これによ
り、薄膜素子において薄膜自体の内部応力で薄膜が破損
する問題を避けることができ、薄膜の機械的特性を正確
に測定することができる効果がある。また、薄膜の内部
応力による基板の湾曲を低減し、基板の破損を防止し、
フォトファブリケーション工程の精度の向上、検査工程
の精度向上が得られるという効果がある。
As described above, according to the thin film having the above-mentioned structure, the internal stress is suppressed to 100 MPa or less even for the thin film having a relatively large film thickness which cannot be suppressed by the conventional method. be able to. Accordingly, it is possible to avoid the problem that the thin film is damaged by the internal stress of the thin film itself in the thin film element, and it is possible to accurately measure the mechanical characteristics of the thin film. In addition, the curvature of the substrate due to the internal stress of the thin film is reduced, the damage of the substrate is prevented,
There is an effect that the precision of the photofabrication process and the precision of the inspection process can be improved.

【0039】また、本発明によれば、従来法では膜の内
部応力が大きくなってしまう場合でも、内部応力が10
0MPa以下となるある膜厚で一旦成膜を止め、または
一旦成膜を止めた際に基板冷却、膜表層の除去、または
膜表面に核形成因子を付着させる作業をおこない、その
後再度、前記膜厚と等しい膜厚で成膜を実施すること
で、膜の内部応力を100MPa以下に抑えることがで
きる。
Further, according to the present invention, even when the internal stress of the film is increased by the conventional method, the internal stress is reduced to 10%.
The film formation is temporarily stopped at a certain film thickness of 0 MPa or less, or when the film formation is once stopped, the substrate is cooled, the film surface layer is removed, or a nucleation factor is attached to the film surface, and then the film is again formed. By performing film formation with a film thickness equal to the thickness, the internal stress of the film can be suppressed to 100 MPa or less.

【0040】また、本発明によれば、従来法では膜の内
部応力が大きくなってしまう場合でも、内部応力が小さ
くなるある膜厚で一旦成膜を止め、または一旦成膜を止
めた際に基板冷却、膜表層の除去、または膜表面に核形
成因子を付着させる結晶連続成長阻害工程を実施し、そ
の後再度成膜し、前記膜厚と等しい膜厚で成膜を止め、
さらに結晶連続成長阻害工程を実施して前記膜厚と等し
い膜厚で成膜を実施することで膜の内部応力を抑える効
果がある。結晶連続成長阻害工程を複数回繰り返すこと
で、任意膜厚の膜の内部応力を抑えることができる。
Further, according to the present invention, even when the internal stress of the film is increased by the conventional method, when the film formation is once stopped or once the film formation is stopped at a certain film thickness where the internal stress becomes small. Substrate cooling, removal of the film surface layer, or a crystal continuous growth inhibition step of attaching a nucleation factor to the film surface is performed, and then film formation is again performed, and film formation is stopped at a film thickness equal to the above film thickness.
Further, the continuous crystal growth inhibiting step is performed to form a film having a film thickness equal to the above-mentioned film thickness, which has an effect of suppressing the internal stress of the film. By repeating the continuous crystal growth inhibiting step a plurality of times, the internal stress of a film having an arbitrary film thickness can be suppressed.

【0041】さらに、この発明は以上説明したように、
薄膜の内部応力を100MPa以下に抑えることができ
る。これにより、薄膜素子において薄膜自体の内部応力
で薄膜が破損する問題を避けることができ、薄膜の機械
的特性を正確に測定することができる効果がある。ま
た、薄膜の内部応力による基板の湾曲を低減し、基板の
破損を防止し、フォトファブリケーション工程の精度の
向上、検査工程の精度向上が可能である。
Further, the present invention, as explained above,
The internal stress of the thin film can be suppressed to 100 MPa or less. Accordingly, it is possible to avoid the problem that the thin film is damaged by the internal stress of the thin film itself in the thin film element, and it is possible to accurately measure the mechanical characteristics of the thin film. Further, it is possible to reduce the curvature of the substrate due to the internal stress of the thin film, prevent the substrate from being damaged, improve the accuracy of the photofabrication process, and improve the accuracy of the inspection process.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態1にかかわる薄膜の構成を
示す断面図である。
FIG. 1 is a cross-sectional view showing the structure of a thin film according to a first embodiment of the present invention.

【図2】本発明の実施の形態2にかかわる薄膜の構成を
示す断面図である。
FIG. 2 is a sectional view showing a structure of a thin film according to a second embodiment of the present invention.

【図3】本発明の実施の形態3にかかわる薄膜の構成を
示す断面図である。
FIG. 3 is a sectional view showing a configuration of a thin film according to a third embodiment of the present invention.

【図4】本発明における従来の薄膜の構成を表した断面
図である。
FIG. 4 is a sectional view showing a configuration of a conventional thin film in the present invention.

【符号の説明】[Explanation of symbols]

1・・・基板 2・・・結晶群 3・・・結晶群 4・・・結晶群 5・・・結晶群 6・・・核形成因子 7・・・結晶群 8・・・結晶群 1 ... Substrate 2 ... Crystal group 3 ... Crystal group 4 ... Crystal group 5 ... Crystal group 6 ... Nucleation factor 7 ... Crystal group 8 ... Crystal group

フロントページの続き (72)発明者 千葉 徳男 千葉県千葉市美浜区中瀬1丁目8番地 セ イコーインスツルメンツ株式会社内 Fターム(参考) 4K029 BB02 BC00 CA00 CA05 EA02 EA08 Continued front page    (72) Inventor Tokuo Chiba             1-8 Nakase, Nakase, Mihama-ku, Chiba City, Chiba Prefecture             Ico Instruments Co., Ltd. F-term (reference) 4K029 BB02 BC00 CA00 CA05 EA02                       EA08

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 膜厚の増加に対して、膜の内部応力が引
張応力から圧縮応力、または圧縮応力から引張応力に変
化する性質を持つ材料の結晶群からなり、 所定の条件で所定の膜厚の成膜における前記引張応力と
前記圧縮応力の釣り合いにより、前記内部応力が100
MPa以下である薄膜。
1. A film comprising a crystal group of materials having a property that the internal stress of the film changes from tensile stress to compressive stress or from compressive stress to tensile stress as the film thickness increases. The internal stress is 100 due to the balance between the tensile stress and the compressive stress in thick film formation.
A thin film having a pressure of MPa or less.
【請求項2】 複数の請求項1記載の薄膜で構成され、
各薄膜の間が結晶成長不連続部分である薄膜。
2. A plurality of thin films according to claim 1,
A thin film in which the crystal growth discontinuity is between each thin film.
【請求項3】 略同一の膜厚を有する複数の請求項1記
載の薄膜で構成され、各薄膜の間が結晶成長不連続部分
である薄膜。
3. A thin film comprising a plurality of thin films according to claim 1, which have substantially the same film thickness, and the discontinuity of crystal growth is between the thin films.
【請求項4】 請求項2または3に記載の薄膜であっ
て、前記結晶成長不連続部分の界面に、前記薄膜の材料
とは異なる材料を、原子数個から数十個分の厚みで前記
薄膜の全面または一部に付着させた薄膜。
4. The thin film according to claim 2, wherein a material different from the material of the thin film is formed at the interface of the crystal growth discontinuity in a thickness of several atoms to several tens of atoms. A thin film deposited on all or part of a thin film.
【請求項5】 請求項2から4のいずれか一項に記載の
薄膜の成膜であって、前記薄膜の結晶成長を膜厚方向に
不連続とする結晶連続成長阻害工程を含む薄膜の成膜方
法。
5. The film formation of the thin film according to any one of claims 2 to 4, comprising a crystal continuous growth inhibiting step of making the crystal growth of the thin film discontinuous in the film thickness direction. Membrane method.
【請求項6】 前記結晶連続成長阻害工程は、成膜中に
一旦成膜を停止させ、その後前記成膜時と同一材料を成
膜する作業を一回または複数回おこなう工程である請求
項5記載の薄膜の成膜方法。
6. The step of inhibiting continuous crystal growth is a step of temporarily stopping the film formation during the film formation and then performing the operation of forming the same material as the film formation once or a plurality of times. A method for forming a thin film as described.
【請求項7】 前記結晶連続成長阻害工程は、成膜中に
一旦成膜を停止させ、基板を冷却し、その後前記成膜時
と同一材料を成膜する作業を一回または複数回おこなう
工程である請求項5記載の薄膜の成膜方法。
7. The continuous crystal growth inhibiting step is a step in which film formation is temporarily stopped during film formation, the substrate is cooled, and then the same material as in the film formation is formed once or a plurality of times. The method for forming a thin film according to claim 5, wherein
【請求項8】 前記結晶連続成長阻害工程は、成膜中に
一旦成膜を停止させ、膜表面表層を結晶の連続成長が十
分阻害できる程度に除去し、その後前記成膜時と同一材
料を成膜する作業を一回または複数回おこなう工程であ
る請求項5記載の薄膜の成膜方法。
8. The crystal continuous growth inhibiting step stops the film formation during film formation, removes the surface layer of the film to an extent enough to prevent continuous crystal growth, and thereafter removes the same material as the film formation. The thin film forming method according to claim 5, which is a step of performing the film forming operation once or a plurality of times.
【請求項9】 前記結晶連続成長阻害工程は、成膜中に
一旦成膜を停止させ、前記成膜時と異なる材料を付着さ
せ、その後前記成膜時と同一材料を成膜する作業を一回
または複数回おこなう工程である請求項5記載の薄膜の
成膜方法。
9. The continuous crystal growth inhibiting step comprises a step of temporarily stopping film formation during film formation, depositing a material different from that during the film formation, and then forming the same material as during the film formation. The method for forming a thin film according to claim 5, wherein the method is performed once or a plurality of times.
【請求項10】 請求項5記載の薄膜の成膜方法であっ
て、前記結晶連続成長阻害工程として、請求項6から9
記載の作業を任意に組み合わせる薄膜の成膜方法。
10. The method of forming a thin film according to claim 5, wherein the step of inhibiting continuous crystal growth comprises steps 6 to 9.
A method for forming a thin film, which is a combination of the operations described above.
JP2002133779A 2002-05-09 2002-05-09 Thin film and method for forming the same Expired - Fee Related JP4412526B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002133779A JP4412526B2 (en) 2002-05-09 2002-05-09 Thin film and method for forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002133779A JP4412526B2 (en) 2002-05-09 2002-05-09 Thin film and method for forming the same

Publications (3)

Publication Number Publication Date
JP2003328111A true JP2003328111A (en) 2003-11-19
JP2003328111A5 JP2003328111A5 (en) 2005-09-29
JP4412526B2 JP4412526B2 (en) 2010-02-10

Family

ID=29696639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002133779A Expired - Fee Related JP4412526B2 (en) 2002-05-09 2002-05-09 Thin film and method for forming the same

Country Status (1)

Country Link
JP (1) JP4412526B2 (en)

Also Published As

Publication number Publication date
JP4412526B2 (en) 2010-02-10

Similar Documents

Publication Publication Date Title
US10910328B2 (en) Silicon wafer manufacturing method
JP5760990B2 (en) Method for producing reflective mask blanks for EUV lithography, and method for producing a substrate with a functional film for the mask blanks
KR101304811B1 (en) Photomask blank and photomask
KR20040095658A (en) Mask, mask blank, and methods of producing these
US9927693B2 (en) Reflective mask blank and process for producing the reflective mask blank
US20080153010A1 (en) Method for depositing reflective multilayer film of reflective mask blank for euv lithography and method for producing reflective mask blank for euv lithography
JP2003328111A (en) Thin film and method of deposition
JP4208686B2 (en) Manufacturing method of semiconductor device
JP2007067329A (en) Soi substrate, and mask and mask blanks for charged particle beam exposure
TWI816034B (en) Method for processing semiconductor wafer
JP4726935B2 (en) Focus measurement method and apparatus
WO2004044967A1 (en) Method for manufacturing transfer mask substrate, transfer mask substrate, and transfer mask
JP4788249B2 (en) Stencil mask blank, stencil mask, and charged particle beam pattern exposure method using the same
JP4333107B2 (en) Transfer mask and exposure method
JP4983313B2 (en) Transfer mask and manufacturing method thereof
WO2007055401A1 (en) Method for depositing reflective multilayer film of reflective mask blank for euv lithography and method for producing reflective mask blank for euv lithography
JPH0345526B2 (en)
JP3119237B2 (en) X-ray mask, method of manufacturing the same, semiconductor device and method of manufacturing the same
JP2003115483A (en) Method of manufacturing thin film laminate element for reducing warp of substrate
JP5332776B2 (en) Method for manufacturing transfer mask
JP5003321B2 (en) Mask blank and mask blank manufacturing method
Connors et al. Impact of Film Stress and Film Thickness Process Control on GaAs-TiAu Metal Adhesion
JP3354900B2 (en) X-ray mask and manufacturing method thereof
JP3097646B2 (en) Alloy, method of manufacturing the same, X-ray mask, method of manufacturing the same, and method of manufacturing a semiconductor device
JPH03219506A (en) Accumulation method for thin film

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050428

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091104

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees