JP2003326250A - Water treatment method - Google Patents

Water treatment method

Info

Publication number
JP2003326250A
JP2003326250A JP2002135661A JP2002135661A JP2003326250A JP 2003326250 A JP2003326250 A JP 2003326250A JP 2002135661 A JP2002135661 A JP 2002135661A JP 2002135661 A JP2002135661 A JP 2002135661A JP 2003326250 A JP2003326250 A JP 2003326250A
Authority
JP
Japan
Prior art keywords
water
treatment
treated
separation
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002135661A
Other languages
Japanese (ja)
Inventor
Hideaki Kitsu
英明 岐津
Akihiro Wakasugi
明弘 若杉
Keisuke Muratani
圭輔 村谷
Iichiro Takahashi
威一郎 高橋
Toru Sekiya
透 関谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OITA ICHI
OOITA ICHI
Organo Corp
Original Assignee
OITA ICHI
OOITA ICHI
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OITA ICHI, OOITA ICHI, Organo Corp, Japan Organo Co Ltd filed Critical OITA ICHI
Priority to JP2002135661A priority Critical patent/JP2003326250A/en
Publication of JP2003326250A publication Critical patent/JP2003326250A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water treatment method which enables the rising of pH of treated water subjected to the pH drop due to flocculation and separation using an acid-type inorganic flocculant conveniently without using chemicals. <P>SOLUTION: The flocculation and separation of water to be treated using the acid-type flocculant is performed, thereafter, decarbonation of the water treated by the flocculation and separation is performed, and thereby, the pH of the water treated by the flocculation and separation is made to rise. For example, an aluminium-base or iron-base flocculant 4 is charged into water to be treated, the flocculation and separation of the water to be treated is performed in a rapid agitation tank 2, a slow agitation tank 7 and a sedimentation tank 9, and thereafter, the treatment of aerating the air from a diffuser pipe 14 to the water treated by the flocculation and separation is performed in a clarifying tank 12 as the decarbonation. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、凝集分離処理を行
う水処理分野、例えば上水道、一般産業用水、排水処理
等の分野における水処理方法に関し、さらに詳述する
と、酸系の無機凝集剤を用いた凝集分離処理によってp
Hが低下した処理水のpHを上昇させる方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water treatment method in the field of water treatment for performing coagulation separation treatment, for example, in the fields of water supply, general industrial water, wastewater treatment, and the like. P by the coagulation separation treatment used
The present invention relates to a method for increasing the pH of treated water in which H is lowered.

【0002】[0002]

【従来の技術】酸系の無機凝集剤、例えば鉄系やアルミ
ニウム系の凝集剤は、水の凝集分離処理に広く使用され
ている。このような酸系の無機凝集剤は、被処理水中に
含まれるアルカリ分を消費して処理水のpHを低下させ
る。
2. Description of the Related Art Acid-based inorganic coagulants, such as iron-based and aluminum-based coagulants, are widely used in the coagulation and separation treatment of water. Such an acid-based inorganic coagulant consumes the alkali content contained in the water to be treated and lowers the pH of the treated water.

【0003】上述した凝集分離処理水のpHの低下は、
処理水を送るポンプや配管等の機材の腐食を進行させた
り、上記機材からの鉛等の有害重金属の溶出を引き起こ
したりすることがある。また、有害重金属の溶出の結
果、水道水では水質基準に達しない水質になることがあ
る。
The above-mentioned decrease in pH of the coagulation / separation-treated water is caused by
It may promote the corrosion of equipment such as pumps and pipes that send treated water, and may cause the leaching of harmful heavy metals such as lead from the equipment. Also, as a result of elution of harmful heavy metals, tap water may have a water quality that does not reach the water quality standard.

【0004】そのため、従来より、pHが低下した凝集
分離処理水のpHを上昇させるために、凝集分離処理水
に水酸化ナトリウムや水酸化カルシウム等の薬剤(アル
カリ剤)を添加することが行われている。
Therefore, conventionally, in order to raise the pH of the coagulated separation-treated water whose pH has decreased, a chemical agent (alkali agent) such as sodium hydroxide or calcium hydroxide is added to the coagulated separation-treated water. ing.

【0005】[0005]

【発明が解決しようとする課題】しかし、前述のように
pHが低下した凝集分離処理水に水酸化ナトリウムや水
酸化カルシウム等の薬剤を添加してそのpHを上昇させ
ようとすると、薬剤の消費量が多くなって処理コストの
上昇を招くものであった。
However, as described above, when a chemical such as sodium hydroxide or calcium hydroxide is added to the coagulation / separation-treated water having a lowered pH to increase the pH, the consumption of the chemical is reduced. The large amount leads to an increase in processing cost.

【0006】本発明は、前述した事情に鑑みてなされた
もので、酸系の無機凝集剤を用いた凝集分離処理によっ
てpHが低下した処理水のpHを、薬剤を用いることな
く簡便に上昇させることができる水処理方法を提供する
ことを目的とする。
The present invention has been made in view of the above-mentioned circumstances, and easily raises the pH of treated water whose pH has been lowered by the coagulation separation treatment using an acid-based inorganic coagulant without using a chemical. It aims at providing the water treatment method which can be performed.

【0007】[0007]

【課題を解決するための手段】本発明者は、前記目的を
達成するために種々検討を行った結果、以下に述べる知
見を得た。すなわち、凝集分離処理に使用される鉄系や
アルミニウム系の凝集剤は、薬液としては酸性を示し、
凝集反応においては下記の反応でそれぞれ水酸化物を生
成し、この水酸化物が凝集フロックとなっている。 Al3+ + 3OH- = Al(OH)3 …(1) Fe3+ + 3OH- = Fe(OH)3 …(2)
Means for Solving the Problems As a result of various studies to achieve the above-mentioned object, the present inventor has obtained the following findings. That is, the iron-based or aluminum-based coagulant used in the coagulation separation treatment shows acidity as a chemical solution,
In the agglutination reaction, hydroxides are produced by the following reactions, and the hydroxides are flocs. Al 3+ + 3OH = Al (OH) 3 (1) Fe 3+ + 3OH = Fe (OH) 3 (2)

【0008】上記反応で消費される(OH)-は、水に
含まれる重炭酸イオンHCO3 -から供給される。すなわ
ち、HCO3 -は下記のように(OH)-を放出し、二酸
化炭素を生成する。放出された(OH)-はアルミニウ
ムイオン、鉄イオン、酸と反応するため、二酸化炭素C
2が残る結果となる。
The (OH) consumed in the above reaction is supplied from bicarbonate ion HCO 3 contained in water. That is, HCO 3 releases (OH) to generate carbon dioxide as described below. Released (OH) - is to react with aluminum ions, iron ions, acids, carbon dioxide C
This results in O 2 remaining.

【0009】[0009]

【化1】 [Chemical 1]

【0010】また、凝集剤に含まれる酸性成分や、凝集
反応の最適な状態を出現保持させるために凝集剤の添加
と共に添加された酸も、中和反応により(OH)-と反
応し(3)式の反応を促進する。生成した二酸化炭素
は、水中では一部が下記反応により炭酸となり、弱酸と
しての性質を持ちpHを低下させる。
[0010] and acid components contained in the coagulant, also added acid with the addition of flocculant in order to emerge retain optimum condition for agglutination reaction, neutralization reaction (OH) - reacted with (3 ) Promote the reaction of the equation. Part of the generated carbon dioxide in water becomes carbonic acid by the following reaction, has a property as a weak acid, and lowers pH.

【0011】[0011]

【化2】 [Chemical 2]

【0012】上述した水中の炭酸濃度は、炭酸ガス濃度
を低くすることにより下がり、炭酸ガス濃度を低くすれ
ばpHを低下させるH+の生成量も小さくなる。したが
って、(3)式の反応で生成した炭酸ガスを除去すれ
ば、(4)式、(5)式の反応が右から左に移行し、一
旦低下したpHが上昇する。
The above-mentioned carbon dioxide concentration in water is lowered by lowering the carbon dioxide concentration, and when the carbon dioxide concentration is lowered, the amount of H + which lowers the pH is also reduced. Therefore, if the carbon dioxide gas generated in the reaction of the equation (3) is removed, the reactions of the equations (4) and (5) shift from right to left, and the once lowered pH rises.

【0013】本発明者は、上記事項に基づいてさらに検
討を行った結果、凝集分離処理水の脱炭酸処理を行うこ
とにより、凝集分離処理によってpHが一旦低下した処
理水のpHを上昇させることができること、特に脱炭酸
処理として空気を曝気する処理を採用した場合には炭酸
ガスを効果的に除去できること、したがって凝集分離処
理によってpHが低下した処理水のpHを上昇させる方
法としては、脱炭酸処理、特に空気曝気が簡便かつ有効
であることを見出したものである。
As a result of further investigation based on the above matters, the present inventor can increase the pH of the treated water whose pH has once decreased by the coagulation separation treatment by performing the decarbonation treatment of the coagulation separation treatment water. It is possible to effectively remove carbon dioxide gas when a treatment for aerating air is adopted as the decarbonation treatment. Therefore, as a method of increasing the pH of the treated water whose pH has been lowered by the coagulation separation treatment, decarbonation is It has been found that the treatment, particularly air aeration, is simple and effective.

【0014】また、本発明者は、上記のように凝集分離
処理水の脱炭酸処理を行った場合、凝集分離処理水中に
含まれているトリハロメタン類が低減することを見出し
た。
The present inventor has also found that the dehalogenation treatment of the coagulation / separation-treated water as described above reduces the amount of trihalomethanes contained in the coagulation / separation-treated water.

【0015】本発明は、上記知見に基づいてなされたも
ので、酸系の無機凝集剤を用いて被処理水の凝集分離処
理を行った後、凝集分離処理水の脱炭酸処理を行って凝
集分離処理水のpHを上昇させることを特徴とする水処
理方法を提供する。
The present invention has been made on the basis of the above-mentioned findings. After the coagulation / separation treatment of the water to be treated is carried out using an acid type inorganic coagulant, the coagulation / separation treatment water is subjected to a decarbonation treatment to coagulate. Provided is a water treatment method characterized by increasing the pH of separated treated water.

【0016】本発明において、凝集分離処理に用いる酸
系の無機凝集剤としては、例えば、ポリ塩化アルミニウ
ム、硫酸アルミニウム等のアルミニウム系凝集剤や、塩
化第二鉄、硫酸第一鉄、硫酸第二鉄等の鉄系凝集剤など
を挙げることができる。
In the present invention, examples of the acid-based inorganic coagulant used in the coagulation separation treatment include aluminum-based coagulants such as polyaluminum chloride and aluminum sulfate, ferric chloride, ferrous sulfate and ferric sulfate. An iron-based coagulant such as iron can be used.

【0017】本発明において、凝集分離処理水の脱炭酸
処理とは、凝集分離処理水から炭酸ガス(二酸化炭素)
を除去する処理を言う。脱炭酸処理としては、凝集分離
処理水に空気を曝気する処理を好適に採用することがで
き、これにより凝集分離処理水のpHを簡便かつ効果的
に上昇させることができる。この場合、凝集分離処理水
に空気を曝気する処理とは、凝集分離処理水に空気を接
触させる処理全般を言う。なお、脱炭酸処理として空気
曝気を使用する場合、曝気量と曝気時間により凝集分離
処理水のpH上昇をコントロールすることが可能であ
る。
In the present invention, the decarbonation treatment of the coagulation / separation-treated water means the conversion of the coagulation / separation-treated water into carbon dioxide gas (carbon dioxide).
Is the process of removing. As the decarbonation treatment, a treatment of aerating the coagulation / separation-treated water with air can be preferably adopted, and thereby the pH of the coagulation / separation-treated water can be easily and effectively increased. In this case, the process of aerating the coagulation-separation-treated water with air refers to all the processes of bringing air into contact with the coagulation-separation-treated water. When air aeration is used as the decarbonation treatment, it is possible to control the pH rise of the coagulation / separation-treated water by the aeration amount and the aeration time.

【0018】また、本発明では、後述する実施形態に示
すように、酸系の無機凝集剤の一部または全部として酸
汚泥を用いることができ、これにより凝集剤の使用量を
削減することができる。ここで酸汚泥とは、凝集分離処
理によって生じた汚泥と酸とを混合したものを言う。
Further, in the present invention, as shown in the embodiment described later, acid sludge can be used as a part or all of the acid-based inorganic coagulant, whereby the amount of coagulant used can be reduced. it can. Here, the acid sludge refers to a mixture of sludge generated by coagulation separation treatment and acid.

【0019】さらに、本発明では、後述する実施形態に
示すように、酸系の無機凝集剤を用いて被処理水の凝集
分離処理を行うに当たり、被処理水に酸を添加すること
ができ、これによって凝集時のpHを使用する凝集剤に
最適なpHに調整し、処理水質をより良好にすることが
できる。
Further, in the present invention, as shown in the embodiment described later, when the coagulation separation treatment of the water to be treated is carried out using the acid type inorganic coagulant, an acid can be added to the water to be treated, As a result, the pH at the time of aggregation can be adjusted to the optimum pH for the aggregating agent used, and the quality of treated water can be improved.

【0020】[0020]

【発明の実施の形態】次に、図面を参照して本発明の実
施の形態を説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described with reference to the drawings.

【0021】(実施形態1)図1は本発明の実施に用い
る水処理装置の一例を示すフロー図である。図1の装置
において、1は原水流入管、2は急速攪拌槽、3は急速
攪拌機、4は凝集剤貯留タンク、5は凝集剤注入配管、
6は凝集剤注入ポンプ、7は緩速攪拌槽、8は緩速攪拌
機、9は沈殿槽、10は沈殿汚泥排泥配管、11は濾過
槽、12は浄水槽、13は曝気ブロワ、14は散気管、
15は排気管、16は配水管、17は配水ポンプを示
す。
(Embodiment 1) FIG. 1 is a flow chart showing an example of a water treatment apparatus used for implementing the present invention. In the apparatus of FIG. 1, 1 is a raw water inflow pipe, 2 is a rapid stirring tank, 3 is a rapid stirrer, 4 is a coagulant storage tank, 5 is a coagulant injection pipe,
6 is a flocculant injection pump, 7 is a slow stirring tank, 8 is a slow stirring machine, 9 is a sedimentation tank, 10 is a sludge sludge drainage pipe, 11 is a filtration tank, 12 is a water purification tank, 13 is an aeration blower, and 14 is Air diffuser,
Reference numeral 15 is an exhaust pipe, 16 is a water distribution pipe, and 17 is a water distribution pump.

【0022】本装置では、原水流入管1および凝集剤貯
留タンク4から急速攪拌槽2に原水および凝集剤(酸系
の無機凝集剤)がそれぞれ導入されるとともに、急速攪
拌槽2において原水と凝集剤との急速混合攪拌が行われ
る。急速攪拌槽2の後段には、凝集反応で生じたフロッ
クの成長反応を促進させるための緩速攪拌槽7、凝集フ
ロックを沈降させるための沈殿槽9が設置されている。
また、凝集沈殿処理が広く行われている上水道における
浄水処理では、沈殿槽9の後段にさらに水質の向上を図
るための濾過槽11が設置されている。この濾過槽11
の後段には浄水槽12が設置され、さらに配水管16に
より需要先に給水がなされる。
In this apparatus, raw water and a flocculant (acid-based inorganic flocculant) are introduced into the rapid stirring tank 2 from the raw water inflow pipe 1 and the flocculant storage tank 4, respectively. Rapid mixing and stirring with the agent is performed. In the subsequent stage of the rapid stirring tank 2, a slow stirring tank 7 for accelerating the growth reaction of flocs generated by the agglutination reaction and a settling tank 9 for settling the flocs of agglomerates are installed.
Further, in the water purification treatment in waterworks in which the coagulation sedimentation treatment is widely performed, a filtration tank 11 for further improving the water quality is installed after the sedimentation tank 9. This filtration tank 11
The water purification tank 12 is installed in the latter stage, and water is further supplied to the demand destination by the water distribution pipe 16.

【0023】本装置において、凝集沈殿処理により低下
した処理水のpHは、濾過処理の前で上昇させることも
考えられる。しかし、濾過処理前にpH上昇の手段とし
て空気曝気を行った場合、沈殿処理で除去しきれなかっ
た残留フロックを破壊し、濾過処理での補足効率を低下
させることや、pHが上昇することにより残留フロック
と濾過材との電気的な付着力を弱め、補足効率を低下さ
せることが予想されるため、濾過処理後にpHを上昇さ
せる手段を採ることが好ましい。そのため、本装置で
は、浄水槽12に曝気ブロワ13により空気曝気を行う
散気管14を設置し、浄水槽12内の水に空気を吹き込
み曝気をすることにより、処理水のpHを上昇させるよ
うにしている。吹き込んだ空気は水と接触を行うことに
より炭酸ガスを空気側に放出し、この炭酸ガスは水中よ
り除去され水のpHが上昇する。炭酸ガスを含んだ空気
は排気管15より大気に放出される。
In this apparatus, the pH of the treated water lowered by the coagulating sedimentation treatment may be increased before the filtration treatment. However, when air aeration is performed as a means of increasing the pH before the filtration treatment, residual flocs that could not be completely removed by the precipitation treatment are destroyed, which lowers the capture efficiency in the filtration treatment and increases the pH. Since it is expected that the electric adhesion between the residual flocs and the filter material will be weakened and the trapping efficiency will be lowered, it is preferable to employ a means for increasing the pH after the filtration treatment. Therefore, in the present apparatus, the water purifying tank 12 is provided with an air diffuser 14 for performing air aeration by the aeration blower 13, and the pH of the treated water is increased by blowing air into the water in the water purifying tank 12 for aeration. ing. The blown air releases carbon dioxide gas to the air side by contacting with water, and this carbon dioxide gas is removed from the water and the pH of the water rises. The air containing carbon dioxide is discharged to the atmosphere through the exhaust pipe 15.

【0024】本実施形態1は、pHの低い酸性の凝集剤
を単独で用いた場合を示したものである。凝集剤として
は、アルミニウム系ではポリ塩化アルミニウムや硫酸ア
ルミニウム、鉄系では塩化鉄や硫酸鉄が用いられる。こ
れらの凝集剤は酸性が強いため処理水のpH低下が著し
いが、凝集沈殿処理を行い、さらに濾過処理の後段の浄
水槽で処理水に空気を吹き込み曝気を行うことにより、
処理水のpHを原水より若干低いpHまで回復させるこ
とができる。
The first embodiment shows a case where an acidic coagulant having a low pH is used alone. As the coagulant, polyaluminum chloride or aluminum sulfate is used in the aluminum system, and iron chloride or iron sulfate is used in the iron system. These coagulants have strong acidity, resulting in a significant decrease in pH of the treated water, but by performing coagulation-precipitation treatment and further aeration by blowing air into the treated water in a water purification tank after the filtration treatment,
The pH of the treated water can be recovered to a pH slightly lower than that of the raw water.

【0025】(実施形態2)図2は本発明の実施に用い
る水処理装置の他の例を示すフロー図である。図2の装
置において、20は酸貯留タンク、21は酸注入配管、
22は酸注入ポンプを示す。本装置では、原水流入管1
を流れる原水に酸貯留タンク20から酸が添加されるよ
うになっている。図2の装置の他の部分は図1の装置と
同じであるので、図2において図1と同一の部分には同
一の参照符号を付してその説明を省略する。
(Embodiment 2) FIG. 2 is a flow chart showing another example of the water treatment apparatus used for implementing the present invention. In the apparatus of FIG. 2, 20 is an acid storage tank, 21 is an acid injection pipe,
22 is an acid injection pump. In this device, raw water inflow pipe 1
Acid is added from the acid storage tank 20 to the raw water flowing through the tank. Since the other parts of the device of FIG. 2 are the same as those of the device of FIG. 1, the same parts in FIG. 2 as those in FIG. 1 are designated by the same reference numerals and the description thereof will be omitted.

【0026】本実施形態2は、凝集剤の添加に先立ち被
処理水のpHを弱酸性にするため、被処理水への酸注入
設備を設けたものである。すなわち、ポリ塩化アルミニ
ウムや硫酸バンド等のアルミニウム系凝集剤の場合、凝
集時の被処理水のpHをやや酸性に保つことにより、処
理水質を良好にすることができるため、凝集剤の添加前
に被処理水に酸を注入して、被処理水のpHを6.0〜
7.2程度に調整している。本例では、酸を使用してい
るため凝集処理後のpHは低下しやすいが、実施形態1
と同様に凝集沈殿処理後に空気曝気を行うことにより、
処理水のpHを回復させることができる。
The second embodiment is provided with an acid injection facility for the water to be treated in order to make the pH of the water to be treated weakly acidic prior to the addition of the coagulant. That is, in the case of an aluminum-based coagulant such as polyaluminum chloride or a sulfuric acid band, it is possible to improve the quality of treated water by keeping the pH of the water to be treated at the time of coagulation slightly acidic. An acid is injected into the water to be treated to adjust the pH of the water to be treated to 6.0.
It is adjusted to about 7.2. In this example, since the acid is used, the pH after the coagulation treatment is likely to decrease,
By performing air aeration after the coagulation-sedimentation process,
The pH of the treated water can be restored.

【0027】(実施形態3)図3は本発明の実施に用い
る水処理装置のさらに他の例を示すフロー図である。図
3の装置において、30は汚泥濃縮槽、31は汚泥処理
引抜配管、32は汚泥再利用引抜配管、33は汚泥貯留
曝気槽、34は汚泥曝気ブロワ、35は汚泥散気管、3
6は汚泥注入配管、37は汚泥注入ポンプ、38は酸貯
留タンク、39は酸注入配管、40は酸注入ポンプ、4
1は酸汚泥混合兼注入配管を示す。図3の装置の他の部
分は図1の装置と同じであるので、図3において図1と
同一の部分には同一の参照符号を付してその説明を省略
する。
(Embodiment 3) FIG. 3 is a flow chart showing still another example of the water treatment apparatus used for implementing the present invention. In the apparatus of FIG. 3, 30 is a sludge thickening tank, 31 is a sludge treatment drawing pipe, 32 is a sludge reuse drawing pipe, 33 is a sludge aeration tank, 34 is a sludge aeration blower, and 35 is a sludge diffuser pipe.
6 is a sludge injection pipe, 37 is a sludge injection pump, 38 is an acid storage tank, 39 is an acid injection pipe, 40 is an acid injection pump, 4
Reference numeral 1 denotes an acid sludge mixing / injection pipe. Since the other parts of the device of FIG. 3 are the same as those of the device of FIG. 1, the same parts in FIG. 3 as those in FIG. 1 are designated by the same reference numerals and the description thereof will be omitted.

【0028】本実施形態3は、汚泥を再利用することに
よって凝集剤の使用量を削減しつつ、処理水質の向上を
図る例であり、処理水質の向上と凝集剤の削減により、
前記反応式(1)、(2)の水酸化アルミニウムや水酸
化鉄の凝集剤からの発生を抑制するプロセスにおける例
である。
The third embodiment is an example in which the amount of coagulant used is reduced by reusing sludge to improve the quality of treated water. By improving the quality of treated water and reducing the amount of coagulant,
This is an example of a process of suppressing the generation of aluminum hydroxide or iron hydroxide of the reaction formulas (1) and (2) from the aggregating agent.

【0029】本装置では、凝集剤の削減を行うために、
沈殿槽9で発生した凝集沈殿汚泥を沈殿汚泥排泥配管1
0より汚泥濃縮槽30に導入し、沈降濃縮操作を行った
後、汚泥貯留曝気槽33に汚泥再利用引抜配管32より
汚泥を引き抜き、汚泥散気管35により空気曝気を行
い、腐敗汚泥の改善を行う。その後に汚泥注入配管36
と酸注入配管39とを接続し、酸汚泥混合兼注入配管4
1で汚泥と酸との配管内混合を行い、酸汚泥を調製す
る。酸としては例えば硫酸、塩酸等が使用される。この
酸汚泥混合兼注入配管41を原水流入管1に接続し、原
水流入管1を流れる原水に酸汚泥を添加する。その後、
実施形態1と同様の処理を行う。
In this apparatus, in order to reduce the coagulant,
Coagulated sediment sludge generated in the sedimentation tank 9 is settled sludge drainage pipe 1
From 0 to the sludge thickening tank 30, after performing sedimentation and concentration operation, sludge is drawn from the sludge reuse drawing pipe 32 to the sludge storage aeration tank 33, and air is aerated by the sludge diffuser pipe 35 to improve the spoilage sludge. To do. After that, sludge injection pipe 36
And acid injection pipe 39 are connected, and acid sludge mixing and injection pipe 4
In step 1, sludge and acid are mixed in a pipe to prepare acid sludge. As the acid, for example, sulfuric acid, hydrochloric acid or the like is used. The acid sludge mixing / injection pipe 41 is connected to the raw water inflow pipe 1, and the acid sludge is added to the raw water flowing in the raw water inflow pipe 1. afterwards,
The same processing as that of the first embodiment is performed.

【0030】上述のように、本実施形態3は、凝集沈殿
処理により発生した汚泥を利用し、凝集剤使用量の削減
と凝集処理の改善を行うために、汚泥の循環ラインを設
け、その汚泥に酸を加えて凝集反応で生成した水酸化物
(水酸化アルミニウムや水酸化鉄)を溶解させることに
より、凝集剤の再利用を図るものである。本例では、汚
泥の再利用を行うため酸を使用するので、酸の使用分と
併用する凝集剤のアルカリ分消費により凝集沈殿処理後
に処理水のpHの低下が生じる。この場合、酸を使用し
ているため凝集処理後のpHは低下しやすいが、実施形
態1と同様に凝集沈殿処理後に空気曝気を行うことによ
り、処理水のpHを回復させることができる。
As described above, in the third embodiment, the sludge generated by the coagulation-sedimentation treatment is used, and in order to reduce the amount of the coagulant used and improve the coagulation treatment, a sludge circulation line is provided and the sludge is It is intended to reuse the flocculant by adding an acid to and dissolving the hydroxide (aluminum hydroxide or iron hydroxide) produced by the flocculation reaction. In this example, since the acid is used to reuse the sludge, the pH of the treated water is lowered after the coagulation-sedimentation treatment due to the consumption of the alkali component of the coagulant used together with the used amount of the acid. In this case, since the acid is used, the pH after the coagulation treatment is likely to decrease, but the pH of the treated water can be recovered by performing aeration with air after the coagulation-precipitation treatment as in the first embodiment.

【0031】なお、上記実施形態では、処理水のpHを
回復させるための空気との接触手段として、水槽内で処
理水に空気を吹き込む方法を採用したが、上記接触手段
はこれに限られるものではなく、例えば充填塔内で処理
水と空気とを接触させる方法、配管内で処理水と空気と
を接触させる方法、処理水表面を攪拌することにより処
理水と空気とを接触させる方法等を採用してもよい。ま
た、濾過処理を必要としない場合は、沈殿処理の直後に
処理水への空気曝気を行ってもよい。
In the above embodiment, a method of blowing air into the treated water in the water tank is adopted as the contact means with the air for recovering the pH of the treated water, but the contact means is not limited to this. Instead, for example, a method of contacting the treated water with air in the packed tower, a method of contacting the treated water with air in the pipe, a method of contacting the treated water with air by stirring the surface of the treated water, etc. May be adopted. Further, when the filtration treatment is not required, the aeration of the treated water may be performed immediately after the precipitation treatment.

【0032】[0032]

【実施例】実施形態3の装置を用い、空気曝気による凝
集分離処理水のpH上昇結果を調べた。この場合、凝集
分離処理の被処理水(原水)のpHは約8、凝集分離処
理水のpHは7.05であった。また、浄水槽12にお
ける空気曝気量は1.56L/分、水温は12.8℃で
あった。結果を図4に示す。図4より、凝集沈殿処理に
よって7.05に低下した処理水のpHが、30分の空
気曝気で7.65まで回復していることがわかる。
[Example] Using the apparatus of the third embodiment, the pH rise result of the coagulation / separation treated water by aeration was examined. In this case, the pH of the treated water (raw water) in the coagulation separation treatment was about 8, and the pH of the coagulation separation treatment water was 7.05. The amount of air aerated in the water purification tank 12 was 1.56 L / min, and the water temperature was 12.8 ° C. The results are shown in Fig. 4. From FIG. 4, it can be seen that the pH of the treated water, which has been lowered to 7.05 by the coagulation sedimentation treatment, has recovered to 7.65 after 30 minutes of air aeration.

【0033】実施形態3の装置を用い、空気曝気による
凝集分離処理水のトリハロメタン濃度低減結果を調べ
た。この場合、凝集分離処理水のpHは6.99、総ト
リハロメタン濃度は13μg/Lであった。また、浄水
槽12における空気曝気量は0.84L/分、水温は2
0.3℃であった。その結果、空気曝気開始前にpH
6.99、総トリハロメタン濃度13μg/Lであった
処理水は、曝気時間20分ではpH7.32、総トリハ
ロメタン濃度13μg/L、曝気時間30分ではpH
7.48、総トリハロメタン濃度12μg/L、曝気時
間40分ではpH7.65、総トリハロメタン濃度10
μg/L、曝気時間120分ではpH8.11、総トリ
ハロメタン濃度5μg/Lとなっており、空気曝気によ
り凝集分離処理水のトリハロメタン濃度が低減すること
が確認された。
Using the apparatus of the third embodiment, the results of reducing the concentration of trihalomethane in the coagulated and separated treated water by air aeration were examined. In this case, the pH of the aggregated separation-treated water was 6.99 and the total trihalomethane concentration was 13 μg / L. Further, the air aeration rate in the water purification tank 12 is 0.84 L / min, and the water temperature is 2
It was 0.3 ° C. As a result, the pH before starting air aeration
The treated water having a concentration of 6.99 and a total trihalomethane concentration of 13 μg / L had a pH of 7.32 at an aeration time of 20 minutes, a pH of 13 μg / L at a total trihalomethane concentration, and a pH of 30 minutes at an aeration time.
7.48, total trihalomethane concentration 12 μg / L, pH 7.65 at aeration time of 40 minutes, total trihalomethane concentration 10
At ag / L and aeration time of 120 minutes, the pH was 8.11, and the total trihalomethane concentration was 5 μg / L. It was confirmed that the aeration of air reduced the trihalomethane concentration of the coagulated and separated treated water.

【0034】[0034]

【発明の効果】以上のように、本発明の水処理方法によ
れば、酸系の無機凝集剤を用いた凝集分離処理によって
pHが低下した処理水のpHを、薬剤を用いることなく
簡便に上昇させることができる。したがって、本発明に
よれば、凝集分離処理水への薬剤(アルカリ剤)の添加
を不要としたり、薬剤の添加量を低減したりすることが
可能である。
As described above, according to the water treatment method of the present invention, the pH of the treated water whose pH has been lowered by the coagulation separation treatment using the acid type inorganic coagulant can be easily carried out without using any chemical. Can be raised. Therefore, according to the present invention, it is possible to eliminate the need to add a chemical agent (alkali agent) to the coagulation / separation-treated water or to reduce the amount of the chemical agent added.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施に用いる水処理装置の一例を示す
フロー図である。
FIG. 1 is a flow chart showing an example of a water treatment device used for carrying out the present invention.

【図2】本発明の実施に用いる水処理装置の他の例を示
すフロー図である。
FIG. 2 is a flowchart showing another example of the water treatment device used for implementing the present invention.

【図3】本発明の実施に用いる水処理装置のさらに他の
例を示すフロー図である。
FIG. 3 is a flowchart showing still another example of the water treatment device used for carrying out the present invention.

【図4】空気曝気による凝集分離処理水のpH上昇結果
の一例を示すグラフである。
FIG. 4 is a graph showing an example of a pH increase result of coagulation separation treatment water by aeration with air.

【符号の説明】[Explanation of symbols]

1 原水流入管 2 急速攪拌槽 4 凝集剤貯留タンク 7 緩速攪拌槽 9 沈殿槽 10 沈殿汚泥排泥配管 11 濾過槽 12 浄水槽 14 散気管 20 酸貯留タンク 30 汚泥濃縮槽 33 汚泥貯留曝気槽 36 汚泥注入配管 38 酸貯留タンク 41 酸汚泥混合兼注入配管 1 Raw water inflow pipe 2 Rapid stirring tank 4 Flocculant storage tank 7 Slow stirring tank 9 settling tank 10 Settled sludge drainage pipe 11 filtration tank 12 water purification tank 14 Air diffuser 20 Acid storage tank 30 sludge thickening tank 33 Sludge storage aeration tank 36 Sludge injection piping 38 Acid Storage Tank 41 Acid sludge mixing and injection piping

───────────────────────────────────────────────────── フロントページの続き (72)発明者 若杉 明弘 大分県大分市城崎町1丁目5番20号 大分 市水道局内 (72)発明者 村谷 圭輔 大分県大分市城崎町1丁目5番20号 大分 市水道局内 (72)発明者 高橋 威一郎 大分県大分市城崎町1丁目5番20号 大分 市水道局内 (72)発明者 関谷 透 東京都江東区新砂1丁目2番8号 オルガ ノ株式会社内 Fターム(参考) 4D011 AA15 AD03 4D015 BA15 BA23 BB05 CA14 DA04 DA05 DA13 DA15 DC02 EA07 EA13 EA16 EA32 FA02 FA25 4D037 AA01 AA11 AB11 BA23 BB05 CA06 CA08    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Akihiro Wakasugi             1-5-20 Kinosaki-cho, Oita-shi, Oita Oita             Municipal Waterworks Bureau (72) Inventor Keisuke Muratani             1-5-20 Kinosaki-cho, Oita-shi, Oita Oita             Municipal Waterworks Bureau (72) Inventor, Takeichiro Takahashi             1-5-20 Kinosaki-cho, Oita-shi, Oita Oita             Municipal Waterworks Bureau (72) Inventor Toru Sekiya             Olga 1-2-8 Shinsuna, Koto-ku, Tokyo             Within the corporation F-term (reference) 4D011 AA15 AD03                 4D015 BA15 BA23 BB05 CA14 DA04                       DA05 DA13 DA15 DC02 EA07                       EA13 EA16 EA32 FA02 FA25                 4D037 AA01 AA11 AB11 BA23 BB05                       CA06 CA08

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 酸系の無機凝集剤を用いて被処理水の凝
集分離処理を行った後、凝集分離処理水の脱炭酸処理を
行って凝集分離処理水のpHを上昇させることを特徴と
する水処理方法。
1. A method of performing coagulation separation treatment of water to be treated using an acid-based inorganic coagulant, and then performing decarboxylation treatment of the coagulation separation treatment water to raise the pH of the coagulation separation treatment water. Water treatment method.
【請求項2】 凝集分離処理水の脱炭酸処理が、凝集分
離処理水に空気を曝気する処理であることを特徴とする
請求項1に記載の水処理方法。
2. The water treatment method according to claim 1, wherein the decarbonation treatment of the coagulation-separation-treated water is a treatment of aerating the coagulation-separation-treated water with air.
【請求項3】 酸系の無機凝集剤の一部または全部が酸
汚泥であることを特徴とする請求項1または2に記載の
水処理方法。
3. The water treatment method according to claim 1, wherein a part or all of the acid-based inorganic coagulant is acid sludge.
【請求項4】 酸系の無機凝集剤を用いて被処理水の凝
集分離処理を行うに当たり、被処理水に酸を添加するこ
とを特徴とする請求項1〜3のいずれか1項に記載の水
処理方法。
4. The acid is added to the water to be treated when the coagulation separation treatment of the water to be treated is carried out using an acid-based inorganic coagulant. Water treatment method.
JP2002135661A 2002-05-10 2002-05-10 Water treatment method Pending JP2003326250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002135661A JP2003326250A (en) 2002-05-10 2002-05-10 Water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002135661A JP2003326250A (en) 2002-05-10 2002-05-10 Water treatment method

Publications (1)

Publication Number Publication Date
JP2003326250A true JP2003326250A (en) 2003-11-18

Family

ID=29697935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002135661A Pending JP2003326250A (en) 2002-05-10 2002-05-10 Water treatment method

Country Status (1)

Country Link
JP (1) JP2003326250A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007090266A (en) * 2005-09-29 2007-04-12 Kurita Water Ind Ltd Water treatment method and water treatment apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007090266A (en) * 2005-09-29 2007-04-12 Kurita Water Ind Ltd Water treatment method and water treatment apparatus
JP4661503B2 (en) * 2005-09-29 2011-03-30 栗田工業株式会社 Water treatment method and apparatus

Similar Documents

Publication Publication Date Title
CN111498960A (en) Defluorination medicament and application thereof
JP2014233699A (en) Method and apparatus for removing silica from treatment target water
JP2007252969A (en) Purification method of steel production drainage
JP2007209886A (en) Fluorine removing agent, and method and apparatus for treating drain containing fluorine using the agent
JP4508600B2 (en) Method and apparatus for treating fluorine-containing wastewater
JP2007075780A (en) Method and apparatus for treating manganese-containing water
JP4879590B2 (en) Method and apparatus for concentration and volume reduction of sludge
JP6731261B2 (en) Heavy metal-containing water treatment device and treatment method
JP2000140861A (en) Treatment of waste water incorporating fine abrasive grains-dispersed polishing liquid
JP3793937B2 (en) Silicon wafer polishing wastewater treatment method
JP2006167631A (en) Treatment method and treatment equipment for fluorine-containing waste water including phosphoric acid
JP3642516B2 (en) Method and apparatus for removing COD components in water
JP2003326250A (en) Water treatment method
JP6187507B2 (en) Waste liquid treatment method and waste liquid treatment system
JP4531823B2 (en) Waste water treatment apparatus and waste water treatment method for reusing chemicals for waste water treatment
JP2004121948A (en) Fluorine or phosphorus removing method
JP2010075928A (en) Treatment method and treatment device for fluorine-containing waste water
JPH1133561A (en) Flocculation and sedimentation treatment equipment
JP2001286875A (en) Method for treating arsenic-containing waste water
JPH0141110B2 (en)
US10442715B2 (en) Chromium-containing water treatment method
JP4591641B2 (en) Method for coagulating and precipitating iron hydroxide in wastewater containing concentrated inorganic components
JP4524796B2 (en) Method and apparatus for treating fluorine-containing wastewater
JPH1076275A (en) Wastewater treatment agent
JP3913843B2 (en) Coagulation sedimentation processing equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050222

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050222

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050222

A977 Report on retrieval

Effective date: 20061130

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070417