JP2003324963A - Power-converting device - Google Patents

Power-converting device

Info

Publication number
JP2003324963A
JP2003324963A JP2002134283A JP2002134283A JP2003324963A JP 2003324963 A JP2003324963 A JP 2003324963A JP 2002134283 A JP2002134283 A JP 2002134283A JP 2002134283 A JP2002134283 A JP 2002134283A JP 2003324963 A JP2003324963 A JP 2003324963A
Authority
JP
Japan
Prior art keywords
transformer
capacitor
switch element
auxiliary winding
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002134283A
Other languages
Japanese (ja)
Inventor
Masakazu Gekito
政和 鷁頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2002134283A priority Critical patent/JP2003324963A/en
Publication of JP2003324963A publication Critical patent/JP2003324963A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the switching loss of switching elements, and to reduce the heat generation of the switching elements so as to improve the conversion efficiency of a power-converting device, by regenerating energy accumulated in dv/dt controlling capacitors. <P>SOLUTION: A switching element series circuit comprising first and second switching elements is connected parallel to DC power sources connected in series. The primary winding of a transformer is connected between the series connection point of the DC power sources and that of the switching elements, and the secondary winding of the transformer to a load. The first and the second switching elements are each connected parallel to a first capacitor- auxiliary winding series circuit comprising a first capacitor and a first auxiliary winding of the transformer, and to a second capacitor-auxiliary winding series circuit comprising a second capacitor and a second auxiliary winding of the transformer respectively. A dt/dv value at the time when the switching elements are turned on is controlled and simultaneously the energy accumulated in the first and the second capacitors is regenerated to the power sources or the load. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、直流電源からス
イッチ回路と変圧器を介して別の任意の出力を得る電力
変換装置において、スイッチ素子のオン・オフ動作で電
力変換を行う際に、このスイッチ素子のターンオフ時に
発生するスイッチング損失を低減するとともに、スナバ
コンデンサに蓄積されるエネルギーを回生する機能を有
する電力変換装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power converter that obtains another arbitrary output from a DC power supply via a switch circuit and a transformer when performing power conversion by turning on / off a switch element. The present invention relates to a power conversion device having a function of reducing switching loss that occurs when a switch element is turned off and regenerating energy stored in a snubber capacitor.

【0002】[0002]

【従来の技術】図7にハーフブリッジ形電力変換装置の
従来例を示す。図示のように、直流電源41と直流電源42
からなる直流電源直列回路に対し、スイッチ素子11とス
イッチ素子12からなるスイッチ素子直列回路が並列に接
続され、スイッチ素子11とスイッチ素子12との直列接続
点と、直流電源41と直流電源42との直列接続点の間に変
圧器3の一次巻線31が接続され、変圧器3の二次巻線32に
負荷5が並列接続された構成である。
2. Description of the Related Art FIG. 7 shows a conventional example of a half-bridge type power converter. As shown, DC power supply 41 and DC power supply 42
A DC power supply series circuit composed of a switch element 11 and a switch element 12 is connected in parallel to the switch element series circuit, the switch element 11 and the switch element 12 series connection point, a DC power supply 41 and a DC power supply 42. The primary winding 31 of the transformer 3 is connected between the series connection points of, and the load 5 is connected in parallel to the secondary winding 32 of the transformer 3.

【0003】図7の構成における動作を図8に示す。直
流電源41の電圧をE/2、直流電源42の電圧をE/2とする
と、スイッチ素子11をオンしている期間aに変圧器一次
巻線31を正極性にE/2の電圧で励磁し、変圧器二次巻線3
2を介して負荷5に電力を供給し、スイッチ素子12をオン
している期間fに変圧器一次巻線31を負極性にE/2の電
圧で励磁し、変圧器二次巻線32を介して負荷5に電力を
供給する。このような動作を繰り返すことにより、直流
電源41および直流電源42から負荷5に電力を供給する。
The operation in the configuration of FIG. 7 is shown in FIG. When the voltage of the DC power supply 41 is E / 2 and the voltage of the DC power supply 42 is E / 2, the transformer primary winding 31 is positively excited by the voltage of E / 2 during the period a in which the switch element 11 is turned on. Transformer secondary winding 3
Power is supplied to the load 5 via 2 and the transformer primary winding 31 is excited by the voltage of E / 2 in the negative polarity during the period f in which the switch element 12 is turned on, and the transformer secondary winding 32 is turned on. Power to the load 5 via. By repeating such an operation, electric power is supplied from the DC power supply 41 and the DC power supply 42 to the load 5.

【0004】[0004]

【発明が解決しようとする課題】図7に示す従来の実施
例の場合、期間b〜cおよび期間g〜hのスイッチング
過程おいて、スイッチ素子の電圧波形と電流波形とに重
なり期間が生じ、これがスイッチング損失となる。この
損失はスイッチ素子の発熱となり、ひいては電力変換装
置の変換効率が低下することになる。
In the case of the conventional embodiment shown in FIG. 7, in the switching process of the periods b to c and the periods g to h, an overlapping period occurs between the voltage waveform and the current waveform of the switch element, This becomes switching loss. This loss causes heat generation in the switch element, which in turn reduces the conversion efficiency of the power conversion device.

【0005】スイッチング損失を低減させるためスイッ
チ素子と並列にコンデンサを接続することもできるが、
コンデンサの蓄積エネルギーを抵抗などで消費すれば、
スイッチ素子は発熱しないが抵抗が発熱することとなり
電力変換効率を向上させることはできない。
A capacitor can be connected in parallel with the switch element to reduce switching loss.
If the stored energy of the capacitor is consumed by a resistor,
The switch element does not generate heat, but the resistor generates heat, and the power conversion efficiency cannot be improved.

【0006】この発明の課題は、スイッチ素子のスイッ
チング損失を小さくすると同時にコンデンサの蓄積エネ
ルギーを回生することにより、スイッチ素子の発熱を低
減し電力変換装置の変換効率を向上させることにある。
An object of the present invention is to reduce the switching loss of the switch element and at the same time regenerate the stored energy of the capacitor, thereby reducing the heat generation of the switch element and improving the conversion efficiency of the power conversion device.

【0007】[0007]

【課題を解決するための手段】このような課題を解決す
べく、請求項1の発明では、直流電源から、少なくとも
スイッチ素子と変圧器を介して別の任意の出力を得る電
力変換装置において、前記直流電源に対し、第1のスイ
ッチ素子と第2のスイッチ素子を直列に接続し、前記変
圧器の一次巻線の一方の端子を、前記第1のスイッチ素
子と前記第2のスイッチ素子との直列接続点に接続し、
第1のコンデンサと前記変圧器の第1の補助巻線とから
なる第1のコンデンサ・補助巻線直列回路を前記第1の
スイッチ素子と並列に接続し、第2のコンデンサと前記
変圧器の第2の補助巻線とからなる第2のコンデンサ・
補助巻線直列回路を前記第2のスイッチ素子と並列に接
続する。
In order to solve such a problem, according to the invention of claim 1, in a power converter which obtains another arbitrary output from a DC power source through at least a switch element and a transformer, A first switch element and a second switch element are connected in series to the DC power supply, and one terminal of the primary winding of the transformer is connected to the first switch element and the second switch element. Connected to the series connection point of
A first capacitor / auxiliary winding series circuit including a first capacitor and a first auxiliary winding of the transformer is connected in parallel with the first switch element, and a second capacitor and a transformer are connected in parallel. A second capacitor consisting of a second auxiliary winding,
An auxiliary winding series circuit is connected in parallel with the second switch element.

【0008】請求項2の発明では、前記第1のスイッチ
素子、前記第2のスイッチ素子、前記第1のコンデン
サ、前記第2のコンデンサ、前記変圧器の第1の補助巻
線および前記変圧器の第2の補助巻線を、複数個組合せ
て構成する。
According to a second aspect of the present invention, the first switch element, the second switch element, the first capacitor, the second capacitor, the first auxiliary winding of the transformer, and the transformer. 2nd auxiliary winding of this is combined and comprised.

【0009】[0009]

【発明の実施の形態】図1はこの発明の第1の実施の形
態を示す回路図である。なお、この実施形態は請求項1
の発明に相当する。
FIG. 1 is a circuit diagram showing a first embodiment of the present invention. It should be noted that this embodiment is defined by claim 1.
Corresponds to the invention of.

【0010】直流電源41と直流電源42からなる直流電源
直列回路に対し、スイッチ素子11とスイッチ素子12から
なるスイッチ素子直列回路を並列接続し、スイッチ素子
11とスイッチ素子12との直列接続点と、直流電源41と直
流電源42との直列接続点との間に変圧器3の一次巻線31
を接続し、コンデンサ21と変圧器3の補助巻線33からな
る第1のコンデンサ・補助巻線直列回路をスイッチ素子1
1と並列に接続し、コンデンサ22と変圧器3の補助巻線34
からなる第2のコンデンサ・補助巻線直列回路をスイッ
チ素子12と並列接続し、変圧器3の二次巻線32と並列に
負荷5を接続した構成である。
A switch element series circuit including a switch element 11 and a switch element 12 is connected in parallel to a DC power source series circuit including a DC power source 41 and a DC power source 42 to form a switch element.
The primary winding 31 of the transformer 3 is connected between the series connection point of the switch 11 and the switch element 12 and the series connection point of the DC power supply 41 and the DC power supply 42.
And a first capacitor / auxiliary winding series circuit consisting of the capacitor 21 and the auxiliary winding 33 of the transformer 3 is connected to the switching element 1
1 in parallel with the capacitor 22 and the auxiliary winding 34 of the transformer 3
The second capacitor / auxiliary winding series circuit consisting of is connected in parallel with the switch element 12, and the load 5 is connected in parallel with the secondary winding 32 of the transformer 3.

【0011】図1の構成における回路動作を図2に示
す。直流電源41の電圧をE/2、直流電源42の電圧をE/2、
変圧器一次巻線31の巻数をN1、変圧器補助巻線33および
変圧器補助巻線34の巻数をN3とすると、スイッチ素子11
をオンしている期間aに変圧器一次巻線31を正方向にE/
2の電圧で励磁し、変圧器二次巻線32を介して負荷5に電
力を供給し、スイッチ素子12をオンしている期間fに変
圧器一次巻線31を負方向にE/2の電圧で励磁し、変圧器
二次巻線32を介して負荷5に電力を供給する。
The circuit operation in the configuration of FIG. 1 is shown in FIG. DC power supply 41 voltage is E / 2, DC power supply 42 voltage is E / 2,
If the number of turns of the transformer primary winding 31 is N1, and the number of turns of the transformer auxiliary winding 33 and the transformer auxiliary winding 34 is N3, the switching element 11
During the period a when the power is turned on, the transformer primary winding 31 is moved in the positive direction E /
It is excited by the voltage of 2 and supplies power to the load 5 through the transformer secondary winding 32, and the transformer primary winding 31 is moved in the negative direction to E / 2 during the period f in which the switch element 12 is turned on. It is excited by a voltage and supplies power to the load 5 via the transformer secondary winding 32.

【0012】このような動作を繰り返すことにより、直
流電源41および直流電源42から負荷5に電力を供給す
る。これらの動作は従来の実施例と同様である。
By repeating such operations, electric power is supplied from the DC power supply 41 and the DC power supply 42 to the load 5. These operations are similar to those of the conventional embodiment.

【0013】以下に図2におけるa〜jの各期間の動作
を説明する。期間aにおいて変圧器補助巻線33および変
圧器補助巻線34には(E/2)×(N3/N1)の電圧が、コンデン
サ21には-(E/2)・(N3/N1)の電圧が、コンデンサ22にはE+
(E/2)・(N3/N1)の電圧がそれぞれ印加されている。
The operation in each period of a to j in FIG. 2 will be described below. In the period a, the voltage of (E / 2) × (N3 / N1) is applied to the transformer auxiliary winding 33 and the transformer auxiliary winding 34, and the voltage of − (E / 2) · (N3 / N1) is applied to the capacitor 21. Voltage is E + across capacitor 22
The voltages of (E / 2) and (N3 / N1) are applied respectively.

【0014】期間bにおいて、スイッチ素子11がオフす
ると、直流電源41→スイッチ素子11→変圧器一次巻線31
の経路で流れていた電流が、直流電源41→コンデンサ21
→変圧器補助巻線33→変圧器一次巻線31の経路に徐々に
転流する。この動作によりスイッチ素子11の電圧上昇率
が抑制され、スイッチ素子11の電圧波形と電流波形との
重なり期間が短くなり、スイッチング損失が低減する。
また同時にコンデンサ22→変圧器補助巻線34→変圧器一
次巻線31→直流電源42の経路で電流が流れ、コンデンサ
22に蓄積されていた電荷は直流電源42に回生される。
During the period b, when the switch element 11 is turned off, the DC power source 41 → switch element 11 → transformer primary winding 31
The current flowing in the path of DC power supply 41 → capacitor 21
→ Transformer auxiliary winding 33 → Transmuted gradually to the path of the transformer primary winding 31. By this operation, the voltage increase rate of the switch element 11 is suppressed, the overlapping period of the voltage waveform and the current waveform of the switch element 11 is shortened, and the switching loss is reduced.
At the same time, current flows in the path of capacitor 22 → transformer auxiliary winding 34 → transformer primary winding 31 → DC power supply 42
The electric charge accumulated in 22 is regenerated by the DC power supply 42.

【0015】期間cにおいて、スイッチ素子11に流れて
いた電流は零となるが、直流電源41→コンデンサ21→変
圧器補助巻線33→変圧器一次巻線31の経路およびコンデ
ンサ22→変圧器補助巻線34→変圧器一次巻線31→直流電
源42の経路で電流は流れ続け、スイッチ素子11、スイッ
チ素子12、コンデンサ21およびコンデンサ22の電圧がE/
2、変圧器補助巻線33および変圧器補助巻線34が零電圧
になると期間cが完了し、スイッチ素子11およびスイッ
チ素子12ともオフの状態の期間dへと移行する。
In the period c, the current flowing through the switch element 11 becomes zero, but the DC power supply 41 → capacitor 21 → transformer auxiliary winding 33 → transformer primary winding 31 path and capacitor 22 → transformer auxiliary The current continues to flow in the path of the winding 34 → the transformer primary winding 31 → the DC power supply 42, and the voltage of the switch element 11, the switch element 12, the capacitor 21, and the capacitor 22 becomes E /
2. When the transformer auxiliary winding 33 and the transformer auxiliary winding 34 reach zero voltage, the period c is completed, and the switch element 11 and the switch element 12 are both turned off to the period d.

【0016】期間eにおいて、スイッチ素子12がオンす
ると、直流電源42→変圧器一次巻線31→スイッチ素子12
の経路で電流が流れ、変圧器二次巻線32を介して負荷5
に電力を供給するとともに、コンデンサ22→変圧器補助
巻線34→スイッチ素子12の経路で電流が流れ、コンデン
サ22に蓄積されていた電荷を変圧器補助巻線34および変
圧器二次巻線32を介して負荷5に放出し、さらにコンデ
ンサ22の電圧を-(E/2)・(N3/N1)まで逆充電する。またこ
の時、変圧器補助巻線33に-(E/2)・(N3/N1)の電圧が印加
されることにより、直流電源41→コンデンサ21→変圧器
補助巻線33→変圧器一次巻線31の経路で電流が流れ、コ
ンデンサ21をE+(E/2)・(N3/N1)まで充電する。
During the period e, when the switch element 12 is turned on, the DC power source 42 → the transformer primary winding 31 → the switch element 12
Current flows through the path of the
While supplying electric power to the capacitor 22, the current flows through the path of the capacitor 22 → transformer auxiliary winding 34 → switch element 12, and the charge accumulated in the capacitor 22 is transferred to the transformer auxiliary winding 34 and the transformer secondary winding 32. It is discharged to the load 5 via and the voltage of the capacitor 22 is reversely charged to − (E / 2) · (N3 / N1). At this time, a voltage of-(E / 2) ・ (N3 / N1) is applied to the transformer auxiliary winding 33, so that the DC power supply 41 → the capacitor 21 → the transformer auxiliary winding 33 → the primary winding of the transformer. A current flows in the path of the line 31 and charges the capacitor 21 to E + (E / 2) · (N3 / N1).

【0017】期間gにおいて、スイッチ素子12がオフす
ると、直流電源42→変圧器一次巻線31→スイッチ素子12
の経路で流れていた電流が、直流電源42→変圧器一次巻
線31→変圧器補助巻線34→コンデンサ22の経路に徐々に
転流する。この動作によりスイッチ素子12の電圧上昇率
が抑制され、スイッチ素子12の電圧波形と電流波形との
重なり期間が短くなり、スイッチング損失が低減する。
また同時にコンデンサ21→直流電源41→変圧器一次巻線
31→変圧器補助巻線33の経路で電流が流れ、コンデンサ
21に蓄積されていた電荷は直流電源41に回生される。
During the period g, when the switch element 12 is turned off, the DC power source 42 → the transformer primary winding 31 → the switch element 12
The current flowing in the path of is gradually commutated to the path of the DC power supply 42, the transformer primary winding 31, the transformer auxiliary winding 34, and the capacitor 22. By this operation, the voltage increase rate of the switch element 12 is suppressed, the overlapping period of the voltage waveform and the current waveform of the switch element 12 is shortened, and the switching loss is reduced.
At the same time, the capacitor 21 → DC power supply 41 → transformer primary winding
31 → Transformer Auxiliary winding 33
The electric charge accumulated in 21 is regenerated to the DC power supply 41.

【0018】期間hにおいて、スイッチ素子12に流れて
いた電流は零となるが、直流電源42→変圧器一次巻線31
→変圧器補助巻線34→コンデンサ22の経路およびコンデ
ンサ21→直流電源41→変圧器一次巻線31→変圧器補助巻
線33の経路で電流は流れ続け、スイッチ素子11、スイッ
チ素子12、コンデンサ21およびコンデンサ22の電圧がE/
2、変圧器補助巻線33および変圧器補助巻線34の電圧が
零電圧となると期間hが完了し、スイッチ素子11および
スイッチ素子12ともオフの状態の期間iへと移行する。
During the period h, the current flowing through the switch element 12 becomes zero, but the DC power source 42 → transformer primary winding 31
→ Transformer auxiliary winding 34 → Capacitor 22 path and capacitor 21 → DC power supply 41 → Transformer primary winding 31 → Transformer auxiliary winding 33 path, current continues to flow, and switch element 11, switch element 12, capacitor 21 and capacitor 22 voltage is E /
2. When the voltage of the transformer auxiliary winding 33 and the transformer auxiliary winding 34 becomes zero voltage, the period h is completed, and the period i in which both the switch element 11 and the switch element 12 are in the off state is entered.

【0019】期間jにおいて、スイッチ素子11がオンす
ると、直流電源41→スイッチ素子11→変圧器一次巻線31
の経路で電流が流れ、変圧器二次巻線32を介して負荷5
に電力を供給するとともに、コンデンサ21→スイッチ素
子11→変圧器補助巻線33の経路で電流が流れ、コンデン
サ21に蓄積されていた電荷を変圧器補助巻線33および変
圧器二次巻線32を介して負荷5に放出し、さらにコンデ
ンサ21の電圧を-(E/2)・(N3/N1)まで逆充電する。またこ
の時、変圧器補助巻線34に(E/2)・(N3/N1)の電圧が印加
されることにより、直流電源42→変圧器一次巻線31→変
圧器補助巻線34→コンデンサ22の経路で電流が流れ、コ
ンデンサ22をE+(E/2)・(N3/N1)まで充電する。
During the period j, when the switch element 11 is turned on, the DC power source 41 → switch element 11 → transformer primary winding 31
Current flows through the path of the
While supplying power to the capacitor 21, the current flows through the path of the capacitor 21 → the switch element 11 → the transformer auxiliary winding 33, and the charge accumulated in the capacitor 21 is transferred to the transformer auxiliary winding 33 and the transformer secondary winding 32. It is discharged to the load 5 via and further reversely charges the voltage of the capacitor 21 to − (E / 2) · (N3 / N1). At this time, the voltage (E / 2) / (N3 / N1) is applied to the transformer auxiliary winding 34, so that the DC power supply 42 → the transformer primary winding 31 → the transformer auxiliary winding 34 → the capacitor A current flows through the path of 22 and charges the capacitor 22 to E + (E / 2) · (N3 / N1).

【0020】以上の動作を繰り返すことにより、コンデ
ンサ21およびコンデンサ22に蓄積されていたエネルギー
は無駄に消費されることなく、直流電源41、直流電源42
あるいは負荷5に回生される。
By repeating the above operation, the energy stored in the capacitors 21 and 22 is not wasted, and the DC power supply 41 and the DC power supply 42 are not consumed.
Or it is regenerated to load 5.

【0021】図3はこの発明の第2の実施の形態の変形
例を示す回路図である。なお、この実施形態は請求項1
の発明に相当する。図1との相違点は変圧器3の一次巻
線31、補助巻線33および補助巻線34における極性が逆に
なっていることであり、それ以外は同様である。また動
作原理も図1と同様であるためその説明は省略する。
FIG. 3 is a circuit diagram showing a modification of the second embodiment of the present invention. It should be noted that this embodiment is defined by claim 1.
Corresponds to the invention of. The difference from FIG. 1 is that the polarities of the primary winding 31, the auxiliary winding 33, and the auxiliary winding 34 of the transformer 3 are reversed, and the other points are the same. The principle of operation is also the same as in FIG.

【0022】図4はこの発明の第3の実施の形態を示す
回路図である。なお、この実施形態は請求項2の発明に
相当する。
FIG. 4 is a circuit diagram showing a third embodiment of the present invention. This embodiment corresponds to the invention of claim 2.

【0023】直流電源4に対し、スイッチ素子11aとスイ
ッチ素子12aからなる第1のスイッチ素子直列回路と、
スイッチ素子11bとスイッチ素子12bからなる第2のスイ
ッチ素子直列回路を、それぞれ並列接続し、スイッチ素
子11aとスイッチ素子12aとの直列接続点と、スイッチ素
子11bとスイッチ素子12bとの直列接続点との間に変圧器
3の一次巻線31を接続し、コンデンサ21aと変圧器3の補
助巻線33aとからなる第1のコンデンサ・補助巻線直列
回路をスイッチ素子11aと、コンデンサ22aと変圧器3の
補助巻線34aとからなる第2のコンデンサ・補助巻線直
列回路をスイッチ素子12aと、コンデンサ21bと変圧器3
の補助巻線33bとからなる第3のコンデンサ・補助巻線
直列回路をスイッチ素子11bと、コンデンサ22bと変圧器
3の補助巻線34bとからなる第4のコンデンサ・補助巻線
直列回路をスイッチ素子12bと、それぞれ並列接続し、
変圧器3の二次巻線32と並列に負荷5を接続した構成であ
る。
For the DC power source 4, a first switch element series circuit including a switch element 11a and a switch element 12a,
A second switch element series circuit including a switch element 11b and a switch element 12b is connected in parallel, and a series connection point between the switch element 11a and the switch element 12a and a series connection point between the switch element 11b and the switch element 12b. During the transformer
3 is connected to the primary winding 31, and the first capacitor-auxiliary winding series circuit consisting of the capacitor 21a and the auxiliary winding 33a of the transformer 3 is connected to the switch element 11a, the capacitor 22a and the auxiliary winding of the transformer 3. The second capacitor / auxiliary winding series circuit including the switch 34a and the switch element 12a, the capacitor 21b and the transformer 3
The third capacitor-auxiliary winding series circuit including the auxiliary winding 33b of the switch element 11b, the capacitor 22b and the transformer.
A fourth capacitor / auxiliary winding series circuit composed of three auxiliary windings 34b is connected in parallel with each switch element 12b,
The load 5 is connected in parallel with the secondary winding 32 of the transformer 3.

【0024】図4の構成における回路動作を図5に示
す。直流電源4の電圧をE、変圧器一次巻線31の巻数をN
1、変圧器補助巻線33a,33b,34a,34bの巻数をN3と
し、その動作を説明する。
The circuit operation in the configuration of FIG. 4 is shown in FIG. The voltage of the DC power supply 4 is E, the number of turns of the transformer primary winding 31 is N
1, the number of turns of the transformer auxiliary windings 33a, 33b, 34a, 34b is N3, and its operation will be described.

【0025】期間aにおいて、スイッチ素子11a,12bが
オンしており、変圧器一次巻線31を正方向に直流電源電
圧Eで励磁し、変圧器二次巻線32を介して負荷5に電力を
供給する。またこの時、変圧器補助巻線33a,33b,34
a,34bにE・N3/N1の電圧が、コンデンサ21a,22bに-E・N3
/N1の電圧が、コンデンサ21b,22aにE+E・N3/N1の電圧が
それぞれ印加されている。
During the period a, the switch elements 11a and 12b are turned on, the transformer primary winding 31 is excited in the positive direction by the DC power supply voltage E, and the load 5 is supplied with power via the transformer secondary winding 32. To supply. At this time, the transformer auxiliary windings 33a, 33b, 34
The voltage of E ・ N3 / N1 is applied to a and 34b, and -E ・ N3 is applied to capacitors 21a and 22b.
The voltage of / N1 and the voltage of E + E · N3 / N1 are applied to the capacitors 21b and 22a, respectively.

【0026】期間bにおいて、スイッチ素子11a,12bが
オフすると、直流電源4→スイッチ素子11a→変圧器一次
巻線31→スイッチ素子12bの経路で流れていた電流が、
直流電源4→コンデンサ21a→変圧器補助巻線33a→変圧
器一次巻線31→変圧器補助巻線34b→コンデンサ22bの経
路に徐々に転流する。
When the switch elements 11a and 12b are turned off in the period b, the current flowing in the path of the DC power source 4 → switch element 11a → transformer primary winding 31 → switch element 12b becomes
The DC power source 4 → the capacitor 21a → the transformer auxiliary winding 33a → the transformer primary winding 31 → the transformer auxiliary winding 34b → the capacitor 22b is gradually commutated.

【0027】この動作によりスイッチ素子11a,12bの電
圧上昇率が抑制され、スイッチ素子11a,12bの電圧波形
と電流波形との重なり期間が短くなり、スイッチング損
失が低減する。また同時にコンデンサ22a→変圧器補助
巻線34a→変圧器一次巻線31→変圧器補助巻線33b→コン
デンサ21b→直流電源4の経路で電流が流れ、コンデンサ
22a,21bに蓄積されていた電荷は直流電源4に回生され
る。
By this operation, the voltage rising rate of the switch elements 11a, 12b is suppressed, the overlapping period of the voltage waveform and the current waveform of the switch elements 11a, 12b is shortened, and the switching loss is reduced. At the same time, current flows in the path of capacitor 22a → transformer auxiliary winding 34a → transformer primary winding 31 → transformer auxiliary winding 33b → capacitor 21b → DC power supply 4
The charges accumulated in 22a and 21b are regenerated by the DC power supply 4.

【0028】期間cにおいて、スイッチ素子11a,12bに
流れていた電流は零となるが、直流電源4→コンデンサ2
1a→変圧器補助巻線33a→変圧器一次巻線31→変圧器補
助巻線34b→コンデンサ22bの経路およびコンデンサ22a
→変圧器補助巻線34a→変圧器一次巻線31→変圧器補助
巻線33b→コンデンサ21b→直流電源4の経路で電流は流
れ続け、スイッチ素子11a,12a,11b,12bとコンデンサ
21a,22a,21b,22bの電圧がE/2、変圧器補助巻線33a,
34a,33b,34bの電圧が零電圧となると期間cが完了
し、全てのスイッチ素子がオフ状態となる期間dへと移
行する。
In the period c, the current flowing through the switch elements 11a and 12b becomes zero, but the DC power source 4 → the capacitor 2
1a → transformer auxiliary winding 33a → transformer primary winding 31 → transformer auxiliary winding 34b → capacitor 22b path and capacitor 22a
→ transformer auxiliary winding 34a → transformer primary winding 31 → transformer auxiliary winding 33b → capacitor 21b → current continues to flow in the path of the DC power supply 4 and switch elements 11a, 12a, 11b, 12b and capacitors
21a, 22a, 21b, 22b voltage is E / 2, transformer auxiliary winding 33a,
When the voltages of 34a, 33b, and 34b become zero voltage, the period c is completed, and the period shifts to the period d in which all the switch elements are in the off state.

【0029】期間eにおいて、スイッチ素子11b,22aが
オンすると、直流電源4→スイッチ素子11b→変圧器一次
巻線31→スイッチ素子22aの経路で電流が流れ、変圧器
二次巻線32を介して負荷5に電力を供給するとともに、
コンデンサ21b→スイッチ素子11b→変圧器補助巻線33b
の経路と、コンデンサ22a→変圧器補助巻線34a→スイッ
チ素子12aの経路に電流が流れ、コンデンサ21b,22aに
蓄積されていた電荷を変圧器補助巻線33b,34a、および
変圧器二次巻線32を介して負荷5に放出し、さらにコン
デンサ21b,22aの電圧を-E・N3/N1まで逆充電する。
During the period e, when the switching elements 11b and 22a are turned on, a current flows through the path of the DC power supply 4 → the switching element 11b → the transformer primary winding 31 → the switching element 22a and passes through the transformer secondary winding 32. Powers the load 5 and
Capacitor 21b → Switch element 11b → Transformer auxiliary winding 33b
And a path of the capacitor 22a → the transformer auxiliary winding 34a → the switching element 12a, current is stored in the capacitors 21b and 22a, and the charge is accumulated in the capacitors 21b and 22a. It is discharged to the load 5 through the line 32, and the voltages of the capacitors 21b and 22a are further reverse-charged to −E · N3 / N1.

【0030】またこの時、変圧器補助巻線33a,34bに-E
・N3/N1の電圧が印加されることにより直流電源4→コン
デンサ21a→変圧器補助巻線33a→変圧器一次巻線31→変
圧器補助巻線34b→コンデンサ22bの経路で電流が流れ、
コンデンサ21a,22bを電圧E+E・N3/N1まで充電する。
At this time, -E is added to the transformer auxiliary windings 33a and 34b.
・ When the voltage of N3 / N1 is applied, current flows in the route of DC power supply 4 → capacitor 21a → transformer auxiliary winding 33a → transformer primary winding 31 → transformer auxiliary winding 34b → capacitor 22b,
The capacitors 21a and 22b are charged to the voltage E + E · N3 / N1.

【0031】期間gにおいて、スイッチ素子11b,12aが
オフすると、直流電源4→スイッチ素子11b→変圧器一次
巻線31→スイッチ素子12aの経路で流れていた電流が、
直流電源4→コンデンサ21b→変圧器補助巻線33b→変圧
器一次巻線31→変圧器補助巻線34a→コンデンサ22aの経
路に徐々に転流する。
When the switching elements 11b and 12a are turned off in the period g, the current flowing in the path of the DC power source 4 → the switching element 11b → the primary winding 31 of the transformer → the switching element 12a becomes
The DC power source 4 → capacitor 21b → transformer auxiliary winding 33b → transformer primary winding 31 → transformer auxiliary winding 34a → capacitor 22a is gradually commutated in the route.

【0032】この動作によりスイッチ素子11b,12aの電
圧上昇率が抑制され、スイッチ素子11b,12aの電圧波形
と電流波形との重なり期間が短くなり、スイッチング損
失が低減する。また同時にコンデンサ22b→変圧器補助
巻線34b→変圧器一次巻線31→変圧器補助巻線33a→コン
デンサ21a→直流電源4の経路で電流が流れ、コンデンサ
22b,21aに蓄積されていた電荷を直流電源4に回生す
る。
By this operation, the voltage rising rate of the switch elements 11b and 12a is suppressed, the overlapping period of the voltage waveform and the current waveform of the switch elements 11b and 12a is shortened, and the switching loss is reduced. At the same time, current flows in the path of capacitor 22b → transformer auxiliary winding 34b → transformer primary winding 31 → transformer auxiliary winding 33a → capacitor 21a → DC power supply 4
The electric charges accumulated in 22b and 21a are regenerated to the DC power supply 4.

【0033】期間hにおいて、スイッチ素子11b,12aに
流れていた電流は零となるが、直流電源4→コンデンサ2
1b→変圧器補助巻線33b→変圧器一次巻線31→変圧器補
助巻線34a→コンデンサ22aの経路およびコンデンサ22b
→変圧器補助巻線34b→変圧器一次巻線31→変圧器補助
巻線33a→コンデンサ21a→直流電源4の経路で電流は流
れ続け、スイッチ素子11a,12a,11b,12bおよびコンデ
ンサ21a,22a,21b,22bの電圧がE/2、変圧器補助巻線3
3a,34a,33b,34bの電圧が零電圧となると期間hが完
了し、全てのスイッチ素子がオフ状態となる期間iに移
行する。
In the period h, the current flowing through the switch elements 11b and 12a becomes zero, but the DC power supply 4 → the capacitor 2
1b → transformer auxiliary winding 33b → transformer primary winding 31 → transformer auxiliary winding 34a → capacitor 22a path and capacitor 22b
→ transformer auxiliary winding 34b → transformer primary winding 31 → transformer auxiliary winding 33a → capacitor 21a → current continues to flow in the path of the DC power supply 4 and switch elements 11a, 12a, 11b, 12b and capacitors 21a, 22a , 21b, 22b voltage is E / 2, transformer auxiliary winding 3
When the voltages of 3a, 34a, 33b, and 34b become zero voltage, the period h is completed, and the period is shifted to the period i in which all the switch elements are in the off state.

【0034】期間jにおいて、スイッチ素子11a,12bが
オンすると、直流電源4→スイッチ素子11a→変圧器一次
巻線31→スイッチ素子12bの経路で電流が流れ、変圧器
二次巻線32を介して負荷5に電力供給するとともに、コ
ンデンサ21a→スイッチ素子11a→変圧器補助巻線33aの
経路と、コンデンサ22b→変圧器補助巻線34b→スイッチ
素子12bの経路に電流が流れ、コンデンサ21a,22bに蓄
積されていた電荷を変圧器補助巻線33a,34bおよび変圧
器二次巻線32を介して負荷5に放出し、さらにコンデン
サ21a,22bの電圧を-E・N3/N1まで逆充電する。
During the period j, when the switch elements 11a and 12b are turned on, a current flows through the path of the DC power source 4 → switch element 11a → transformer primary winding 31 → switch element 12b, and the secondary winding 32 passes through the transformer secondary winding 32. Power is supplied to the load 5 and the current flows through the path of the capacitor 21a → switch element 11a → transformer auxiliary winding 33a and the path of the capacitor 22b → transformer auxiliary winding 34b → switch element 12b. The charge stored in the capacitor is discharged to the load 5 through the transformer auxiliary windings 33a and 34b and the transformer secondary winding 32, and the voltage of the capacitors 21a and 22b is reversely charged to -E · N3 / N1. .

【0035】またこの時、変圧器補助巻線33b,34aに-E
・N3/N1の電圧が印加されることにより、直流電源4→コ
ンデンサ21b→変圧器補助巻線33b→変圧器一次巻線31→
変圧器補助巻線34a→コンデンサ22aの経路で電流が流
れ、コンデンサ21b,22aをE+E・N3/N1の電圧まで充電す
る。
At this time, -E is added to the transformer auxiliary windings 33b and 34a.
・ By applying the voltage of N3 / N1, DC power supply 4 → Capacitor 21b → Transformer auxiliary winding 33b → Transformer primary winding 31 →
A current flows in the path from the transformer auxiliary winding 34a to the capacitor 22a to charge the capacitors 21b and 22a to the voltage of E + E · N3 / N1.

【0036】以上の動作を繰り返すことにより、コンデ
ンサ21a,22a,21b,22bに蓄積されていたエネルギーは
無駄に消費されることなく、直流電源4あるいは負荷5に
回生される。
By repeating the above operation, the energy stored in the capacitors 21a, 22a, 21b and 22b is regenerated by the DC power source 4 or the load 5 without being wasted.

【0037】図6はこの発明の第3の実施の形態の変形
例を示す回路図である。なお、この実施形態は請求項2
の発明に相当する。図4との相違点は変圧器3の一次巻
線31、補助巻線33a,33b,34a,34bにおける極性が逆に
なっていることであり、それ以外は同様である。また動
作原理はスイッチ素子11a,12a,11b,12bの動作と負荷
5への電力供給の極性が逆になる点が違うだけで、それ
以外は図5と同様となる。
FIG. 6 is a circuit diagram showing a modification of the third embodiment of the present invention. In addition, this embodiment is claimed in claim 2.
Corresponds to the invention of. The difference from FIG. 4 is that the polarities of the primary winding 31 and the auxiliary windings 33a, 33b, 34a, 34b of the transformer 3 are opposite, and the other points are the same. The operation principle is the same as that of FIG. 5 except that the operation of the switch elements 11a, 12a, 11b and 12b and the polarity of the power supply to the load 5 are reversed.

【0038】[0038]

【発明の効果】この発明によれば、スイッチ素子のスイ
ッチング損失が低減し、コンデンサに蓄積されていたエ
ネルギーを電源または負荷へ回生できる。従ってスイッ
チ素子の発熱が低減でき、さらに電力変換装置の変換効
率が向上する。
According to the present invention, the switching loss of the switch element is reduced, and the energy stored in the capacitor can be regenerated to the power supply or the load. Therefore, heat generation of the switch element can be reduced, and the conversion efficiency of the power conversion device can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施形態を示す回路構成図であ
る。
FIG. 1 is a circuit configuration diagram showing a first embodiment of the present invention.

【図2】本発明の第1実施形態を示す回路構成の動作波
形である。
FIG. 2 is an operation waveform of a circuit configuration showing the first embodiment of the present invention.

【図3】本発明の第2実施形態を示す回路構成図であ
る。
FIG. 3 is a circuit configuration diagram showing a second embodiment of the present invention.

【図4】本発明の第3実施形態を示す回路構成図であ
る。
FIG. 4 is a circuit configuration diagram showing a third embodiment of the present invention.

【図5】本発明の第3実施形態を示す回路構成の動作波
形である。
FIG. 5 is an operation waveform of the circuit configuration showing the third embodiment of the present invention.

【図6】本発明の第4実施形態を示す回路構成図であ
る。
FIG. 6 is a circuit configuration diagram showing a fourth embodiment of the present invention.

【図7】従来技術を示す回路構成図である。FIG. 7 is a circuit configuration diagram showing a conventional technique.

【図8】従来技術を示す回路構成の動作波形である。FIG. 8 is an operation waveform of a circuit configuration showing a conventional technique.

【符号の説明】[Explanation of symbols]

11,11a,11b,12,12a,12b ・・・・・ スイッチ素子 21,21a,21b,22,22a,22b ・・・・・ コンデンサ 3 ・・・・・ 変圧器 31 ・・・・・ 変圧器一次巻線、 32 ・・・・・ 変圧
器二次巻線 33,33a,33b,34,34a,34b ・・・・・ 変圧器補助巻
線 4,41,42 ・・・・・ 直流電源、 5 ・・・・・ 負
11, 11a, 11b, 12, 12a, 12b ・ ・ ・ ・ ・ Switch element 21, 21a, 21b, 22, 22a, 22b ・ ・ ・ ・ ・ Capacitor 3 ・ ・ ・ ・ ・ Transformer 31 ・ ・ ・ ・ ・ Transformer Transformer primary winding, 32 ・ ・ ・ ・ ・ Transformer secondary winding 33, 33a, 33b, 34, 34a, 34b ・ ・ ・ ・ ・ Transformer auxiliary winding 4, 41, 42 ・ ・ ・ ・ ・ DC power supply , 5 ・ ・ ・ ・ ・ Load

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】直流電源から、少なくともスイッチ回路と
変圧器を介して別の任意の出力を得る電力変換装置にお
いて、前記直流電源に対し、第1のスイッチ素子と第2
のスイッチ素子とからなるスイッチ素子直列回路を並列
接続し、前記変圧器の一次巻線の一方の端子を、前記第
1のスイッチ素子と前記第2のスイッチ素子との直列接
続点に接続し、第1のコンデンサと前記変圧器の第1の
補助巻線とからなる第1のコンデンサ・補助巻線直列回
路を前記第1のスイッチ素子と並列に接続し、第2のコ
ンデンサと前記変圧器の第2の補助巻線とからなる第2
のコンデンサ・補助巻線直列回路を前記第2のスイッチ
素子と並列に接続したことを特徴とする電力変換装置。
1. A power conversion device for obtaining another arbitrary output from a DC power supply via at least a switch circuit and a transformer, wherein a first switch element and a second switch are provided for the DC power supply.
Connecting in parallel a switch element series circuit consisting of a switch element, and connecting one terminal of the primary winding of the transformer to a series connection point of the first switch element and the second switch element, A first capacitor / auxiliary winding series circuit including a first capacitor and a first auxiliary winding of the transformer is connected in parallel with the first switch element, and a second capacitor and a transformer are connected in parallel. Second consisting of a second auxiliary winding
A power conversion device, wherein the capacitor / auxiliary winding series circuit is connected in parallel with the second switch element.
【請求項2】請求項1に記載の電力変換装置において、
前記第1のスイッチ素子、前記第2のスイッチ素子、前
記第1のコンデンサ、前記第2のコンデンサ、前記変圧
器の第1の補助巻線および前記変圧器の第2の補助巻線
を、複数個組合せて構成したことを特徴とする電力変換
装置。
2. The power conversion device according to claim 1, wherein:
A plurality of the first switch element, the second switch element, the first capacitor, the second capacitor, the first auxiliary winding of the transformer and the second auxiliary winding of the transformer, A power converter characterized by being configured by combining them.
JP2002134283A 2002-05-09 2002-05-09 Power-converting device Pending JP2003324963A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002134283A JP2003324963A (en) 2002-05-09 2002-05-09 Power-converting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002134283A JP2003324963A (en) 2002-05-09 2002-05-09 Power-converting device

Publications (1)

Publication Number Publication Date
JP2003324963A true JP2003324963A (en) 2003-11-14

Family

ID=29544844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002134283A Pending JP2003324963A (en) 2002-05-09 2002-05-09 Power-converting device

Country Status (1)

Country Link
JP (1) JP2003324963A (en)

Similar Documents

Publication Publication Date Title
Koo et al. New zero-voltage-switching phase-shift full-bridge converter with low conduction losses
US20080304292A1 (en) Isolated high power bi-directional dc-dc converter
JP4958715B2 (en) Power converter
JP2008048483A (en) Dc-ac converter
JP2011130521A (en) Dc-dc converter
JP2016189636A (en) Resonant multilevel converter
US20060279968A1 (en) DC/AC converter circuit and DC/AC conversion method
JP2014075943A (en) Converter and bidirectional converter
JP6140007B2 (en) Power converter
JP6482009B2 (en) Multi-input converter and bidirectional converter
JP2001224172A (en) Power converter
US8363432B2 (en) DC-DC converter circuit
JP6803993B2 (en) DC voltage converter and how to operate the DC voltage converter
JP2013027124A (en) Switching power supply circuit
JP2008048484A (en) Driving method of dc/ac converter
JP2003324963A (en) Power-converting device
JP2004074258A (en) Power device for arc working
JP4873009B2 (en) DC-DC converter
JP2020145810A (en) Switching power supply
JP3495295B2 (en) DC-DC converter
JPH09252576A (en) Sunbber circuit of dc-dc converter
JP2012178952A (en) Switching power supply circuit
JP4340967B2 (en) Multiphase voltage rectifier
JP2017153205A (en) Snubber circuit and switching circuit
JP2017163691A (en) Three-phase bridge inverter circuit