JP2003322516A - Shape measuring method and shape measuring device - Google Patents

Shape measuring method and shape measuring device

Info

Publication number
JP2003322516A
JP2003322516A JP2002127753A JP2002127753A JP2003322516A JP 2003322516 A JP2003322516 A JP 2003322516A JP 2002127753 A JP2002127753 A JP 2002127753A JP 2002127753 A JP2002127753 A JP 2002127753A JP 2003322516 A JP2003322516 A JP 2003322516A
Authority
JP
Japan
Prior art keywords
moire
phase
fringe
shape
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002127753A
Other languages
Japanese (ja)
Other versions
JP2003322516A5 (en
JP4087146B2 (en
Inventor
Terumi Kamata
照己 鎌田
Ryuji Sakida
隆二 崎田
Osamu Nakayama
攻 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2002127753A priority Critical patent/JP4087146B2/en
Publication of JP2003322516A publication Critical patent/JP2003322516A/en
Publication of JP2003322516A5 publication Critical patent/JP2003322516A5/ja
Application granted granted Critical
Publication of JP4087146B2 publication Critical patent/JP4087146B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/952Inspecting the exterior surface of cylindrical bodies or wires
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the phase-shift error quantity when measuring the shape of a cylindrical article to be measured such as a roller part by applying a phase shift method. <P>SOLUTION: The cylindrical article to 1 is rotated, and moire fringes having a specific fringe order are shifted accurately as much as a desired phase, and a measuring region is limited near the fringe order, and the shape is measured from phase-shifted moire fringe data acquired by a two-dimensional area sensor 13. At that time, a spot image 24 of spot light 23 is projected onto an area where the moire fringes of the same image as the phase-shifted moire fringe data are not generated, and the position change of the cylindrical article to be measured 1 is detected from the position of the spot image 24, and the position relation between the two-dimensional area sensor 13 and the cylindrical article to be measured 1 is fixed. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、例えば円筒状被
検物等の表面形状や、キズや膨らみ,うねり,へこみ等
の欠陥を検出する形状測定方法及び形状測定装置に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a shape measuring method and a shape measuring apparatus for detecting the surface shape of a cylindrical test object or the like and defects such as scratches, bulges, undulations and dents.

【0002】[0002]

【従来の技術】感光体ドラムなどの円筒状被検物の欠陥
検査方法として、例えば特開平2−201142号公報及び特
開平4−169840号公報が開示されている。特開平2−20
1142号公報に示された異常検出方法は、図17に示すよ
うに、光源31からのレーザ光ビーム32を回転多面鏡
36を介して感光体ドラム33の軸方向に走査するよう
に照射し、この走査光はドラム30の感光層表面にて反
射し、正常な表面からの反射光は、ほぼ受光器35に進
入して反射光の強度が検出され、受光器5の出力は所定
の演算処理部等に入力される。ここでの処理で検出値が
異常に低下したときに、表面状態の異常として検出す
る。また、特開平4−169840号公報に示された円周表面
傷検査方法は、図18に示すように、ハロゲン光源等を
備えた投光器41から感光体ドラム43へ向けてスリッ
ト光42を投射し、感光体ドラム43の表面欠陥によっ
て散乱された散乱光をレンズ44によって集光してライ
ンセンサ45で受光して欠陥による散乱光により異常を
検出している。
2. Description of the Related Art As a method of inspecting a cylindrical test object such as a photosensitive drum for defects, for example, JP-A-2-201142 and JP-A-4-169840 are disclosed. Japanese Patent Laid-Open No. 2-20
In the abnormality detection method disclosed in Japanese Patent No. 1142, as shown in FIG. 17, a laser light beam 32 from a light source 31 is irradiated via a rotary polygon mirror 36 so as to scan in an axial direction of a photosensitive drum 33, The scanning light is reflected by the surface of the photosensitive layer of the drum 30, and the light reflected from the normal surface almost enters the photodetector 35, the intensity of the reflected light is detected, and the output of the photodetector 5 is subjected to a predetermined arithmetic processing. It is input to the department. When the detected value is abnormally lowered by the processing here, it is detected as an abnormal surface state. Further, in the circumferential surface flaw inspection method disclosed in Japanese Patent Laid-Open No. 4-169840, as shown in FIG. 18, a slit light 42 is projected from a projector 41 equipped with a halogen light source or the like toward a photosensitive drum 43. The scattered light scattered by the surface defect of the photoconductor drum 43 is condensed by the lens 44 and received by the line sensor 45, and the abnormality is detected by the scattered light due to the defect.

【0003】[0003]

【発明が解決しようとする課題】感光体にはピンホール
や打痕,擦り傷,気泡の巻き込み,クラック,ゴミ等の
付着による欠陥及び感光層の膜厚のムラや液ダレ,支持
体の傷等多種多様な欠陥が生ずる可能性がある。上記の
ような光学式検査装置による場合は、ピンホールや打
痕,擦り傷,ゴミ等の付着による欠陥のように、表面の
凹凸の変化率の大きな欠陥は精度良く検出できるが、感
光層の膜厚ムラ等の如く凹凸の変化率の小さい欠陥ある
いは支持体の傷のように感光体表面に凹凸の変化のない
欠陥に対しては検出精度に問題があった。
Problems such as pinholes, dents, scratches, inclusion of air bubbles, cracks, dust, and other defects on the photoconductor, unevenness in the film thickness of the photosensitive layer, liquid sagging, and scratches on the support are considered. A wide variety of defects can occur. In the case of using the optical inspection device as described above, a defect having a large rate of change in surface irregularities, such as a defect caused by a pinhole, a dent, a scratch, dust, or the like, can be accurately detected. There is a problem in detection accuracy for a defect having a small rate of change in unevenness such as thickness unevenness or a defect having no change in unevenness on the surface of the photoconductor such as a scratch on the support.

【0004】一方、三次元測定法の1手法としてモアレ
法が挙げられる。モアレ法には、実体格子型と格子投影
型があり、様々な分野において広く利用されている。格
子投影型のモアレ法とは、図19に示すように、投影用
と観察用とに、それぞれ小さな格子G1,G2を配置
し、G1をレンズL1により物体に投影し、物体形状に
応じて変形した格子線をレンズL2を通じてもう一つの
格子G2上に結像させ、縞等高線を基準面から所定距離
のところに生じさせるようにしたものである。実体格子
型のモアレ法は、図20に示すように、基準面に一つの
格子Gを設置し、図21に示すように、レンズL1の位
置に点光源S1を置き、レンズL2の位置に観察眼eを
置いて、格子Gの光源S1による影を物体上に落し、物
体形状に応じて変形した格子Gの影を形成させ、これを
格子Gを通して観察し、格子Gと変形した格子の影とに
よって生じるモアレ縞を観測する方法である。
On the other hand, one of the three-dimensional measurement methods is the moire method. The Moire method includes a physical lattice type and a lattice projection type, which are widely used in various fields. As shown in FIG. 19, the lattice projection type moire method is such that small lattices G1 and G2 are arranged for projection and observation, respectively, and G1 is projected onto an object by a lens L1 and deformed according to the object shape. This grid line is imaged on another grid G2 through the lens L2 so that the fringe contour line is generated at a predetermined distance from the reference plane. In the physical lattice type moire method, as shown in FIG. 20, one lattice G is installed on the reference surface, and as shown in FIG. 21, the point light source S1 is placed at the position of the lens L1 and the observation is made at the position of the lens L2. With the eye e placed, a shadow of the light source S1 of the grid G is cast on the object to form a shadow of the grid G deformed according to the shape of the object. This shadow is observed through the grid G, and the shadow of the grid G and the deformed grid is observed. This is a method of observing moire fringes caused by and.

【0005】この実体格子型のモアレ法をさらに詳しく
説明する。図21に示すように、光源S1及び観測点S
2と物体Oとの間の同一平面に格子G1,G2を配置
し、光源S1と観察点S2の距離をd、光源S1及び観
察点S2から格子G1,G1までの距離をL、格子G
1,G2から物体Oまでの距離をh、格子G1,G2は
いずれもピッチsをもつが、格子G1、G2は面内で互
いにεだけずれている(格子ピッチの位相でいえば2π
ε/s)とすると、下記(1)式で表せる。 cos(2π/s)・[{dh−ε(h+L)}/(h+L)] (1) 形成されるモアレ縞(等高線)は、格子面を基準(0
次)として、格子面から離れるに従い、順に1次、2次
とカウントされる次数を持つ。そこで縞次数Nのモアレ
縞をcos2πNと置くことによって得られる。その結
果、第N次のモアレ等高線は基準面からhだけ離れた
下記(2)式で示される位置に形成される。 h={(Ns+ε)L}/(d−Ns−ε) (2) これは位置の座標xを含んでおらず、縞次数Nによって
定める固有の値となっている。すなわち等高線が形成さ
れていることを示す。
The actual lattice type moire method will be described in more detail. As shown in FIG. 21, the light source S1 and the observation point S
2 and the object O, the gratings G1 and G2 are arranged on the same plane, the distance between the light source S1 and the observation point S2 is d, the distance from the light source S1 and the observation point S2 to the gratings G1 and G1 is L, and the grating G is
1 and G2 is the distance from the object O to h, and the gratings G1 and G2 both have a pitch s, but the gratings G1 and G2 are offset from each other by ε in the plane (2π in terms of the phase of the grating pitch).
ε / s) can be expressed by the following equation (1). cos (2π / s) · [{dh−ε (h + L)} / (h + L)] (1) The moire fringes (contour lines) formed are based on the lattice plane (0
The second order has the orders that are sequentially counted as the first order and the second order with increasing distance from the lattice plane. Therefore, it is obtained by setting the moire fringe of the fringe order N as cos2πN. As a result, the Nth-order moiré contour line is formed at the position indicated by the following equation (2), which is separated from the reference surface by h N. h N = {(Ns + ε ) L} / (d-Ns-ε) (2) which do not contain the coordinate x of the position, and has a unique value determined by the fringe order N. That is, it indicates that contour lines are formed.

【0006】図22に示す実体格子型のモアレ法は、図
21に示す格子G1,G2を1枚の連続した格子Gとし
たものに相当し、ε=0となる。(2)式から下記
(3)式が成り立つ。 h=(NsL)/(d−Ns) (3) 但し、等高線といいながら、その間隔ΔhN=hN+1−h
Nは一定ではなく、次数Nによって異なってしまう。
The actual lattice type moire method shown in FIG. 22 corresponds to one in which the gratings G1 and G2 shown in FIG. 21 are made into one continuous grating G, and ε = 0. From the equation (2), the following equation (3) is established. h N = (NsL) / (d−Ns) (3) However, although it is called a contour line, the interval Δh N = h N + 1 −h
N is not constant and varies depending on the order N.

【0007】従来、モアレ法による三次元形状測定法は
対象物を直観的に把握することはできるが、(1)凹凸
の判定がし難い、(2)高感度の三次元測定には不向き
(現時点ではモアレ縞等高線の間隔は10μm程度が限界
とされている)、(3)モアレ縞のビジビリティーが縞
ごとに均一でないためモアレ像を画像処理の対象として
扱いにくい等々の問題が指摘されている。この問題は、
格子投影型の場合、2枚の格子を利用しているために、
その一方を移動させて縞走査すなわちモアレ縞の位相を
シフトさせることによって、等高線間隔を等価的に細か
く分割するとともに対象の凹凸判定や測定感度の向上が
可能である。
Conventionally, the three-dimensional shape measuring method based on the moire method can intuitively grasp an object, but (1) it is difficult to judge unevenness, and (2) it is not suitable for highly sensitive three-dimensional measurement ( At present, the distance between contours of moire fringes is limited to about 10 μm), and (3) the visibility of moire fringes is not uniform for each fringe, which makes it difficult to handle moire images as image processing targets. . This problem,
In the case of the grid projection type, since two grids are used,
By moving one of them to shift the fringe scanning, that is, the phase of the moire fringes, it is possible to equivalently finely divide the contour line interval and determine the target unevenness and improve the measurement sensitivity.

【0008】この位相シフト法の原理を説明する。位相
変調された縞画像は、図23に示すように、バイアスを
a、振幅をb、操作可能な位相をθ、高さに相当する位
相値をΦとすると、下記式で表せる。 I=I(θ)=a(x,y)+b(x,y)cos{Φ(x、y)+
θ} ここで求めたいのは各点(x、y)における位相Φ
(x、y)である。バイアスaや振幅bは、表面の反射
率や汚れなどで変化する未知数成分なので、位相θを
0、π/2、πと変化させた下記式で示される3つの縞
画像を生成する。 I=I(0)=a(x,y)+b(x,y)cos{Φ(x、y)+
θ} I=I(π/2)=a(x,y)+b(x,y)cos{Φ(x、
y)+θ} I=I(π)=a(x,y)+b(x,y)cos{Φ(x、y)+
θ} そして下記(4)式で位相Φ(x、y)を算出すれば反
射率や汚れ成分を除去して、各点の位相Φ(x、y)を
求めることができる。 Φ(x、y)=tan−1{(I3−I2)/(I1−I2)}+π/4 (4)
The principle of this phase shift method will be described. As shown in FIG. 23, the phase-modulated fringe image can be expressed by the following equation, where the bias is a, the amplitude is b, the operable phase is θ, and the phase value corresponding to the height is Φ. I = I (θ) = a (x, y) + b (x, y) cos {Φ (x, y) +
θ} What we want to find here is the phase Φ at each point (x, y).
(X, y). Since the bias a and the amplitude b are unknown components that change due to the reflectance and dirt of the surface, three fringe images represented by the following equations are generated by changing the phase θ to 0, π / 2, π. I = I (0) = a (x, y) + b (x, y) cos {Φ (x, y) +
θ} I = I (π / 2) = a (x, y) + b (x, y) cos {Φ (x,
y) + θ} I = I (π) = a (x, y) + b (x, y) cos {Φ (x, y) +
θ} Then, if the phase Φ (x, y) is calculated by the following equation (4), the reflectance and the dirt component can be removed to obtain the phase Φ (x, y) at each point. Φ (x, y) = tan −1 {(I3-I2) / (I1-I2)} + π / 4 (4)

【0009】しかし、実体格子型の場合には格子Gが一
枚であるため、格子投影型のモアレ法のような位相シフ
トを行っても、すべての次数の縞等高線の位相を揃えな
がら位相を変えることはできない。このような問題点に
対して、例えば特許第2887517号公報に示す高感度三次
元測定法では、格子面の垂直移動と光源又は観察点の水
平移動を同時に行うことにより、各次数のモアレ縞の位
相にほぼ大きな変化をきたすことなく、各次数の縞の位
相がほぼ揃った状態で測定対象に対する縞位相のシフト
ができるので、複数枚の縞画像から位相シフト法の原理
に基いて処理することができ、これによって測定対象に
対するモアレ縞による測定点の密度が増大するととも
に、モアレ縞1周期について約1/40〜1/100程度の物理
的な分割が可能となり、実体格子型のモアレ法では困難
とされていた面の凹凸の判定や測定感度の向上を図るこ
とができる。
However, in the case of the real lattice type, since the number of the lattice G is one, even if the phase shift such as the lattice projection type moire method is performed, the phases of the fringe contours of all orders are made uniform. It cannot be changed. For such a problem, for example, in the high-sensitivity three-dimensional measurement method shown in Japanese Patent No. 2887517, the vertical movement of the lattice plane and the horizontal movement of the light source or the observation point are performed at the same time, so that the moire fringes of each order are formed. Since the fringe phase can be shifted with respect to the measurement target in a state where the phases of the fringes of each order are almost the same without causing a large change in the phase, it is necessary to process from multiple fringe images based on the principle of the phase shift method. This makes it possible to increase the density of measurement points due to moire fringes on the object to be measured, and to physically divide about 1/40 to 1/100 per cycle of moire fringes. It is possible to determine the unevenness of the surface, which was considered difficult, and improve the measurement sensitivity.

【0010】このように位相シフト法を適用して円筒状
被検物等の全面測定を行う場合、少なくとも被検物を3
回転以上させて位相シフトさせるために格子移動とモア
レ縞の撮像を繰り返す必要があり測定に時間がかかる。
また、格子を複数方向(平行と回転)に移動させる必要
があるため、装置構成が複雑になる等の問題がある。
When the entire surface of a cylindrical test object or the like is measured by applying the phase shift method as described above, at least three test objects are tested.
Since it is necessary to repeat the movement of the grating and the imaging of the moire fringes in order to make the phase shift by rotating or more, it takes a long time to measure.
Further, since it is necessary to move the grating in a plurality of directions (parallel and rotational), there is a problem that the device configuration becomes complicated.

【0011】特開平7−332956号公報に示された表面形
状測定装置や文献「位相シフトによる実体格子型モアレ
法」(1991年度精密工学会秋季大会学術講演会講演論文
集)、「液晶ガラスのフラットネス計測」(O plus E 19
96年9月)では、平行光を与えることにより、縞次数に
よる縞間隔の違いをなくしているため、全ての縞の位相
を揃えながらシフトさせている。これらの方法では格子
運動のみにより位相シフトさせることが可能である。
The surface shape measuring device disclosed in Japanese Unexamined Patent Publication No. 7-332956 and the document "Physical lattice type moire method by phase shift" (Proceedings of the 1991 Precision Engineering Society Autumn Meeting, Academic Lecture Meeting), "Liquid Crystal Glass Flatness measurement ”(O plus E 19
(September 1996), the parallel light is applied to eliminate the difference in the fringe spacing due to the fringe order, so all the fringes are shifted in phase. In these methods, it is possible to shift the phase only by the lattice movement.

【0012】しかし依然として円筒状被検物等の全面測
定を行う場合、位相シフトした画像を得るために、格子
移動と撮像という動作を繰り返し被検物を3回転以上さ
せる必要があるため測定時間の増大を招く。また、特開
平10−54711号公報に示された表面形状測定方法では、
被検物の高さを変えることにより位相シフトさせてい
る。この場合においても被検物の移動と撮像を複数回繰
り返す必要があるため測定時間の増大を招く。また、凹
凸形状の定量化に関しては明確な方法が充分に説明され
てない。
However, when the entire surface of a cylindrical test object or the like is measured, it is necessary to repeat the operation of moving the grating and imaging in order to obtain a phase-shifted image, and the test object must be rotated three times or more. Cause an increase. Further, in the surface shape measuring method shown in JP-A-10-54711,
The phase is shifted by changing the height of the test object. Even in this case, it is necessary to repeat the movement and the imaging of the object to be inspected a plurality of times, which causes an increase in measurement time. In addition, a clear method for quantifying the uneven shape is not sufficiently explained.

【0013】この発明は上述した問題点を解消し、ロー
ラ部品等の円柱状被検物を対象とし、実体格子型のモア
レ法に位相シフト法を適用し、1系統の画像撮像装置に
よる1回の1連の撮像により位相シフトした画像を得る
ことにより、高速に形状測定を行い、その定量的な形状
データから被検物表面の検査を行うとともに被検物の移
動量誤差を計測することができる形状測定方法及び形状
測定装置を提供することを目的とするものである。
The present invention solves the above-mentioned problems, and applies to a cylindrical test object such as a roller component, the phase shift method is applied to the real lattice type moire method, and it is performed once by one system image pickup apparatus. By obtaining a phase-shifted image by a series of image pickups, the shape measurement can be performed at high speed, the surface of the object to be inspected can be inspected from the quantitative shape data, and the movement amount error of the object can be measured. It is an object of the present invention to provide a shape measuring method and a shape measuring device that can be performed.

【0014】[0014]

【課題を解決するための手段】この発明に係る形状測定
方法は、被検物を回転させ、特定の縞次数のモアレ縞を
所望の位相だけ正確にシフトさせ、測定領域をその縞次
数近辺に限定し、2次元エリアセンサによって得られる
位相シフトしたモアレ縞データから形状測定を行い、形
状測定中に位相シフトしたモアレ縞データと同一画像中
から位相シフトモアレ法と異なる方式にて被検物の位置
変動検出を行うことを特徴とする。
A shape measuring method according to the present invention comprises rotating a test object to accurately shift a moire fringe of a specific fringe order by a desired phase, and setting a measurement region near the fringe order. For example, the shape is measured from the phase-shifted moire fringe data obtained by the two-dimensional area sensor, and the position of the object is measured from the same image as the phase-shifted moire fringe data during the shape measurement by a method different from the phase-shift moire method. It is characterized in that fluctuation detection is performed.

【0015】前記形状測定中に位相シフトしたモアレ縞
データと同一画像のモアレ縞の発生していない領域に規
則性のあるパターン光を投影し、その位置又はパターン
形状から被検物の位置変動を検出したり、位相シフトし
たモアレ縞データと同一画像のモアレ縞の発生していな
い領域に形成されたモアレ縞を形成するための格子パタ
ーン端部のモアレを形成しない部分のパターンの変化か
ら被検物の位置変動を検出して、位置変動検出用のセン
サを使用せずに、位相シフトしたモアレ縞データと同一
画像を画像処理することにより、形状測定中の位置変動
を検出する。
Pattern light having regularity is projected onto a region of the same image as the moiré fringe data phase-shifted during the shape measurement, in which moiré fringes are not generated, and the position or pattern shape is used to change the position of the test object. Detected or phase-shifted Moire fringe data The same image as the moiré fringes in the same image. The position variation is detected during the shape measurement by detecting the position variation of the object and image-processing the same image as the phase-shifted moire fringe data without using the position variation detection sensor.

【0016】また、形状測定中に位相シフトしないモア
レ縞画像から被検物の位置変動を検出しても良い。
It is also possible to detect the position variation of the object to be inspected from the moire fringe image which does not phase shift during the shape measurement.

【0017】さらに、被検物の位置変動検出データに応
じて形状測定に利用する位相シフト算出領域を変更して
位相シフト演算を行い、位相シフト誤差を低減させる。
Further, the phase shift calculation area used for the shape measurement is changed according to the position variation detection data of the object to be subjected to the phase shift calculation to reduce the phase shift error.

【0018】また、被検物の位置変動に応じて測定ヘッ
ドと被検物の位置関係が一定になるように制御して、回
転振れの影響を抑制し位相シフト誤差を低減させる。
Further, the positional relationship between the measuring head and the test object is controlled to be constant according to the position variation of the test object to suppress the influence of the rotational shake and reduce the phase shift error.

【0019】この発明に係る形状測定装置は、2次元エ
リアセンサを有する実体格子型のモアレ光学系を有する
測定ヘッドと、被検物を保持して回転させる把持回転機
構とを有し、被検物を回転させ、特定の縞次数のモアレ
縞を所望の位相だけ正確にシフトさせ、測定領域をその
縞次数近辺に限定し、前記2次元エリアセンサによって
得られる位相シフトしたモアレ縞データから形状測定を
行い、形状測定中に位相シフトしたモアレ縞データと同
一画像中から位相シフトモアレ法と異なる方式にて被検
物の位置変動検出を行うことを特徴とする。
The shape measuring apparatus according to the present invention has a measuring head having a body lattice type moire optical system having a two-dimensional area sensor, and a grip rotating mechanism for holding and rotating an object to be inspected. The object is rotated, the moire fringes of a specific fringe order are accurately shifted by a desired phase, the measurement area is limited to the vicinity of the fringe order, and the shape is measured from the phase-shifted moire fringe data obtained by the two-dimensional area sensor. The position variation of the object to be detected is detected from the same image as the moiré fringe data phase-shifted during shape measurement by a method different from the phase-shift moiré method.

【0020】[0020]

【発明の実施の形態】図1はこの発明の形状測定装置の
構成を示す斜視図である。図に示すように、円筒状被検
物1の形状や欠陥を検出する形状測定装置2は、例えば
電子写真方式の画像形成に使用する感光体等の円筒状被
検物1を固定する把持冶具3と、把持冶具3を回転する
回転モータ4と、自動ステージ5に設けられた測定ヘッ
ド6を有する。把持冶具3は、例えば三つ爪チャック等
を有し、円筒状被検物1を芯出しして固定する。自動ス
テージ5は、円筒状被検物1の軸方向であるx方向と、
x方向と直交するy方向及びz方向に移動自在である。
そして円筒状被検物1を把持冶具3で固定し、回転モー
タ4により把持冶具3を回転しながら、測定ヘッド6を
円筒状被検物1の軸方向であるx方向に移動させて、円
筒状被検物1の全面の測定を行う。
1 is a perspective view showing the configuration of a shape measuring apparatus according to the present invention. As shown in the figure, a shape measuring device 2 for detecting the shape and defects of a cylindrical test object 1 is, for example, a gripping jig for fixing the cylindrical test object 1 such as a photoconductor used for electrophotographic image formation. 3, a rotary motor 4 for rotating the holding jig 3, and a measuring head 6 provided on the automatic stage 5. The gripping jig 3 has, for example, a three-claw chuck, and centers and fixes the cylindrical test object 1. The automatic stage 5 has an x direction, which is an axial direction of the cylindrical test object 1,
It is movable in the y and z directions orthogonal to the x direction.
Then, the cylindrical test object 1 is fixed by the gripping jig 3, and the measuring head 6 is moved in the x direction, which is the axial direction of the cylindrical test object 1, while rotating the gripping jig 3 by the rotation motor 4. The entire surface of the test object 1 is measured.

【0021】測定ヘッド6は、図2の斜視図に示すよう
に、光源10と、光源10より円筒状被検物1側に設け
られた格子パターン11と、格子パターン11に対して
円筒状被検物1と反対側で、格子パターン11に対して
光源10と同じ距離を隔てて設けられたレンズ12と、
レンズ12に対して格子パターン11とは反対側に設け
られた2次元エリアセンサ13を有する。2次元エリア
センサ13は、光源10から格子パターン11を介して
円筒状被検物1に投影されたモアレ縞を撮像するモアレ
縞撮像領域131と、それ以外の部分を撮像する背景撮
像領域132を有する。モアレ縞撮像領域131は少な
くとも任意の3ラインの画素列でモアレ縞を撮像する。
ここでは3ラインの場合に関して説明する。モアレ縞撮
像領域131の各ラインを、図3に示すように、A列と
B列とC列とし、モアレ縞撮像領域131と格子パター
ン11と円筒状被検物1の位置関係は、図3及び図4に
示すように被検物1が円筒状であることを利用して、画
素列A,B,Cの視野に対応する高さを変化させてや
る。また、画素列A,B,Cはy方向に並んでいる。こ
こで所望のステップ量が与えられるように、円筒状被検
物1の回転スピードと2次元エリアセンサ13の走査周
期と撮像倍率と画素列A,B,C間の距離を調節してや
る。
As shown in the perspective view of FIG. 2, the measuring head 6 includes a light source 10, a grid pattern 11 provided on the cylindrical object 1 side of the light source 10, and a cylindrical pattern with respect to the grid pattern 11. A lens 12 provided on the side opposite to the inspection object 1 at the same distance as the light source 10 with respect to the grid pattern 11,
It has a two-dimensional area sensor 13 provided on the opposite side of the lens 12 from the grid pattern 11. The two-dimensional area sensor 13 includes a moire fringe image pickup area 131 for picking up a moire fringe projected from the light source 10 through the lattice pattern 11 on the cylindrical object 1, and a background image pickup area 132 for picking up an image of other portions. Have. The moire fringe image capturing area 131 captures moire fringes with at least an arbitrary 3-line pixel row.
Here, the case of three lines will be described. As shown in FIG. 3, each line of the moire fringe imaging area 131 is set to rows A, B, and C, and the positional relationship among the moire fringe imaging area 131, the lattice pattern 11, and the cylindrical object 1 is as shown in FIG. Also, as shown in FIG. 4, the height corresponding to the visual fields of the pixel rows A, B, and C is changed by utilizing the fact that the test object 1 has a cylindrical shape. The pixel rows A, B, C are arranged in the y direction. Here, the rotation speed of the cylindrical object 1, the scanning cycle of the two-dimensional area sensor 13, the imaging magnification, and the distance between the pixel rows A, B, and C are adjusted so that a desired step amount is given.

【0022】このモアレ縞撮像領域131の画素列A,
B,Cで円筒状被検物1を撮像するときは、まず、図4
に示すように、時刻tにおいてA列で円筒状被検物1
の領域3(ステップ0面)を、B列で領域2(ステップ
1面)を、C列で領域1(ステップ2面)撮像する。次
に時刻tにおいては、A列で領域4(ステップ0面)
を、B列で領域3(ステップ1面)を、C列で領域2
(ステップ2面)を撮像する。さらに、時刻tではA
列で領域5(ステップ0面)を、B列で領域4(ステッ
プ1面)を、C列で領域3(ステップ2面)を撮像す
る。これを繰り返すことにより、画像メモリ上に、図5
に示すように、各時刻ごとの画素列A,B,Cによる検
出データが得られる。そこで、時刻t1のA列のデータ
と時刻tのB列のデータと時刻tのC列のデータを
下記(4)式 Φ(x、y)=tan−1{(I3−I2)/(I1−I2)}+π/4 (4) から領域3の形状測定を行うことができる。この定量的
な形状データをもとに円筒状被検物1の表面に生じるう
ねりやへこみ等の欠陥検査や平坦度の検査を行う。
The pixel row A in the moire fringe image pickup area 131,
When imaging the cylindrical test object 1 with B and C, first, as shown in FIG.
As shown in the cylindrical test object in row A at time t 1 1
Area 3 (step 0 surface), area 2 (step 1 surface) in row B, and area 1 (step 2 surface) in row C are imaged. Next, at time t 2, the area 4 in column A (step plane 0)
, Area 3 (step 1) in row B, area 2 in row C
(Step 2 surface) is imaged. Furthermore, at time t 3 , A
Area 5 (step 0 surface) is imaged in the row, area 4 (step 1 surface) is imaged in the row B, and region 3 (step 2 surface) is imaged in the row C. By repeating this, the image shown in FIG.
As shown in, detection data by the pixel rows A, B, and C at each time is obtained. Therefore, the data of the column A at the time t 1 , the data of the column B at the time t 2 and the data of the column C at the time t 3 are expressed by the following equation (4) Φ (x, y) = tan −1 {(I3-I2) The shape of the region 3 can be measured from / (I1-I2)} + π / 4 (4). Based on this quantitative shape data, defect inspection such as undulations and dents generated on the surface of the cylindrical object 1 and flatness inspection are performed.

【0023】厳密には、縞次数により縞間隔が異なるの
で、測定する縞次数によりステップ量が異なり測定誤差
が生じるが、レンズ12から格子パターン11までの距
離L=200mm、光源10とレンズ12の距離70mm、
格子パターン11の格子間隔s=83.3μm(12本/m
m)とした場合、下記(3)式 h=(NsL)/(d−Ns) (3) によりモアレ等高線縞hは、図6に示すようになる。
ここで、円筒状被検物1の基準高さを縞次数n=3の位
置に、測定範囲をn=2〜4の約480μmの範囲に設定
したとすると、Δh=239.423μm、Δh=239.995
μmの差は0.572μmとわずかであり、高低差が数μm程
度のうねりやへこみを測定するには問題のないレベルで
ある。
Strictly speaking, since the fringe spacing varies depending on the fringe order, the step amount varies depending on the fringe order to be measured, and a measurement error occurs. However, the distance L from the lens 12 to the grid pattern 11 is 200 mm, and the distance between the light source 10 and the lens 12 is large. Distance 70mm,
The lattice spacing of the lattice pattern 11 is 83.3 μm (12 / m
m), the moire contour fringes h N are as shown in FIG. 6 by the following equation (3) h N = (NsL) / (d−Ns) (3).
Here, assuming that the reference height of the cylindrical test object 1 is set to the position of the stripe order n = 3 and the measurement range is set to a range of about 480 μm with n = 2 to 4, Δh 2 = 239.423 μm, Δh 3 = 239.995
The difference in μm is as small as 0.572 μm, which is a level that does not pose a problem in measuring undulations or dents whose height difference is about several μm.

【0024】以上の方法においては、円筒状被検物1と
2次元エリアセンサ13の画素列A,B,Cの位置関係
が非常に重要となってくる。すなわち、円筒状被検物1
が回転振れの影響でy方向に移動した場合、所望のステ
ップ量からずれてしまうので形状データに誤差が生じ
る。一方、円筒状被検物1が2次元エリアセンサ13の
光軸方向zに振れた場合は、ステップ量は変わらないた
め回転振れを含めた形状データが得られるが、円筒状被
検物1の1周に対応する周波数成分を取り除く等の周波
数処理により取り除くことができる。すなわち、位相シ
フトモアレ法を用いた円筒状被検物1の形状測定におい
て、常に測定ヘッド6と円筒状被検物1の位置関係がy
方向において一定となるように制御し、位相シフト誤差
量を低減させることが必要である。
In the above method, the positional relationship between the cylindrical object 1 and the pixel rows A, B and C of the two-dimensional area sensor 13 becomes very important. That is, the cylindrical test object 1
When is moved in the y direction due to the influence of rotational runout, it deviates from the desired step amount, and thus an error occurs in the shape data. On the other hand, when the cylindrical test object 1 is shaken in the optical axis direction z of the two-dimensional area sensor 13, the step data does not change, and thus shape data including rotational shake is obtained. It can be removed by frequency processing such as removing the frequency component corresponding to one round. That is, in the shape measurement of the cylindrical test object 1 using the phase shift moire method, the positional relationship between the measuring head 6 and the cylindrical test object 1 is always y.
It is necessary to reduce the amount of phase shift error by controlling so as to be constant in the direction.

【0025】そこで、図2に示すように、モアレ縞撮像
領域131とそれ以外の部分の背景撮像領域132を有
する2次元エリアセンサ13で撮像した同一画像から形
状情報と位置情報を得る。この2次元エリアセンサ13
で円筒状被被検物1に投影したモアレ縞を撮像した画像
の典型的な例を図7に示す。図7に示す画像20の外側
矩形が2次元エリアセンサ13の撮像領域を示す。この
画像20の中心領域21には円筒状被検物1の被測定部
の縞状の像があり、それ以外の無地部は被測定部が存在
しない背景部分のため反射光がなく一様な画像22とな
る。ここで円筒状被検物1の回転に伴い、図7に示すy
方向のずれは一様な画像22の距離dyに相当し、z方
向のずれは撮像倍率の変動となるので中心領域21の距
離wyに相当する。このため距離dyと距離wyを求め
ることにより、2次元エリアセンサ13で撮像した同一
画像20を画像処理することによりずれ量を求めること
ができ、同一画像20からずれ量と表面形状を同時に検
出することができる。
Therefore, as shown in FIG. 2, the shape information and the position information are obtained from the same image picked up by the two-dimensional area sensor 13 having the moire fringe image pickup region 131 and the background image pickup region 132 of the other portion. This two-dimensional area sensor 13
FIG. 7 shows a typical example of an image obtained by capturing the moire fringes projected on the cylindrical test object 1. The outer rectangle of the image 20 shown in FIG. 7 indicates the imaging area of the two-dimensional area sensor 13. In the central area 21 of this image 20, there is a striped image of the measured portion of the cylindrical test object 1, and the other solid areas are uniform because there is no reflected light because of the background portion where the measured portion does not exist. The image 22 is obtained. Here, as the cylindrical test object 1 rotates, y shown in FIG.
The displacement in the direction corresponds to the uniform distance dy of the image 22, and the displacement in the z direction corresponds to the distance wy of the central region 21 because the imaging magnification changes. Therefore, by obtaining the distance dy and the distance wy, the shift amount can be obtained by performing image processing on the same image 20 captured by the two-dimensional area sensor 13, and the shift amount and the surface shape can be simultaneously detected from the same image 20. be able to.

【0026】ここで位相シフトモアレにより測定する領
域が円筒状被検物1の中心軸近辺であることを考慮する
と、y方向のずれとしては(dy+wy)/2を利用す
ることもできる。さらに、よりコントラストの大きな画
像とするために、円筒状被検物1の下方からの透過光を
2次元エリアセンサ13に入射しても良い。
Considering that the region measured by the phase shift moire is near the central axis of the cylindrical object 1, (dy + wy) / 2 can be used as the displacement in the y direction. Further, the transmitted light from below the cylindrical object 1 may be incident on the two-dimensional area sensor 13 in order to obtain an image with a larger contrast.

【0027】このようにして検出したずれ量により測定
ヘッド6の位置を自動ステージ5で制御することによ
り、円筒状被検物1に対する測定ヘッド6の位置を一定
に保つことができ、位相シフト誤差を低減することがで
きる。また、検出したy方向のずれ量に応じて2次元エ
リアセンサ13の位相シフトに使用するラインを選択す
ることにより、正確な位相シフトを行うことができる。
By controlling the position of the measuring head 6 with the automatic stage 5 according to the amount of deviation detected in this way, the position of the measuring head 6 with respect to the cylindrical object 1 can be kept constant and the phase shift error can be maintained. Can be reduced. Further, by selecting the line used for the phase shift of the two-dimensional area sensor 13 according to the detected shift amount in the y direction, it is possible to perform accurate phase shift.

【0028】また、高精度な測定を行うときは、高倍率
でモアレ縞を撮像する必要があり、図7に示すように背
景部分を取り込むことは難しい。このため測定ヘッド6
に、図8に示すように、レーザポインタ等のスポット光
源14を設け、このスポット光源14から、図9に示す
ように、円筒状被検物1の表面にスポット光23を投射
し、2次元エリアセンサ13はモアレ縞撮像領域131
でモレア縞を撮像するとともに背景撮像領域132でス
ポット光23によりスポット像24を撮像する。この2
次元エリアセンサ13で撮像した画像20を図10に示
す。この画像20のスポット像24の位置dyから三角
測量の原理で円筒状被検物1の位置を検出することがで
きる。このようにして円筒状被検物1の外形を利用して
距離センサでy方向のずれ量を測定することなしにy方
向のずれ量を検出することができる。
Further, when performing a highly accurate measurement, it is necessary to image the moire fringes at a high magnification, and it is difficult to capture the background portion as shown in FIG. Therefore, the measuring head 6
8, a spot light source 14 such as a laser pointer is provided, and the spot light 23 is projected from the spot light source 14 onto the surface of the cylindrical test object 1 as shown in FIG. The area sensor 13 is a moire fringe image pickup area 131.
The image of the moire fringe is picked up, and the spot image 24 is picked up by the spot light 23 in the background image pickup area 132. This 2
An image 20 taken by the dimensional area sensor 13 is shown in FIG. The position of the cylindrical object 1 can be detected from the position dy of the spot image 24 of this image 20 by the principle of triangulation. In this way, the displacement amount in the y direction can be detected without measuring the displacement amount in the y direction by the distance sensor using the outer shape of the cylindrical test object 1.

【0029】ここで円筒状被検物1に投射するスポット
光23は一点に限らず、複数の点であっても良い。ま
た、スポット光23の代わりに円や矩形等の形状を画像
として投影し、その像を2次元エリアセンサ13で撮像
して、その形状変化や面積変化あるいは重心等を用いる
ことにより円筒状被検物1の傾きや位置等も検出するこ
とができる。
The spot light 23 projected on the cylindrical object 1 is not limited to one point, but may be a plurality of points. In addition, instead of the spot light 23, a shape such as a circle or a rectangle is projected as an image, the image is picked up by the two-dimensional area sensor 13, and the shape change, the area change, the center of gravity, or the like is used to detect the cylindrical shape. The inclination and position of the object 1 can also be detected.

【0030】また、図11の模式図に示すように、格子
パターン11の2次元エリアセンサ13の観測点側の格
子端部においては、円筒状被検物1からの反射光が再度
通過しない端部パターン部分111があり、この端部パ
ターン部分111においてはモアレ縞は形成されず、2
次元エリアセンサ13で格子パターン11がそのまま撮
像され、撮像された画像20には、図12に示すよう
に、円弧状の格子模様25が形成される。この円弧状の
格子模様25から円筒状被検物1の中心軸を求めること
により、円弧状被検物1の回転に伴うずれ量を検出する
ことができる。
Further, as shown in the schematic view of FIG. 11, at the end of the lattice of the two-dimensional area sensor 13 of the lattice pattern 11 on the observation point side, the end where the reflected light from the cylindrical object 1 does not pass again. There is a partial pattern portion 111, and moire fringes are not formed in this end portion pattern portion 111.
The lattice pattern 11 is captured by the dimensional area sensor 13 as it is, and an arc-shaped lattice pattern 25 is formed in the captured image 20, as shown in FIG. By obtaining the central axis of the cylindrical test object 1 from the arc-shaped lattice pattern 25, it is possible to detect the deviation amount due to the rotation of the arc-shaped test object 1.

【0031】また、格子パターン11の端部パターン部
分111を2次元エリアセンサ13に直接取り込まない
で、モアレ縞のみを撮像するように、2次元エリアセン
サ13の解像度を格子パターン11の幅に対して充分細
かくない条件で画像取り込む場合は、端部パターン部分
111で生ずる円弧状の格子模様25は細かすぎて観測
できなくなる。このような場合は、図13(a)に示す
ように、端部パターン部分111だけ周期を大きくした
り、(b)に示すように、格子パターン11を形成して
いるガラス等の格子パターン基板112の端面に光が通
過しないようにしたずれ量測定パターン113を形成す
ることにより円弧状の格子模様25を有する画像20を
得ることができる。
Further, the resolution of the two-dimensional area sensor 13 is set with respect to the width of the lattice pattern 11 so that only the moire fringes are imaged without directly capturing the end pattern portion 111 of the lattice pattern 11 into the two-dimensional area sensor 13. When capturing an image under a condition that is not sufficiently fine, the arc-shaped lattice pattern 25 generated in the end pattern portion 111 is too fine to be observed. In such a case, as shown in FIG. 13A, only the end pattern portion 111 has a longer period, or as shown in FIG. 13B, a lattice pattern substrate such as glass on which the lattice pattern 11 is formed. The image 20 having the arc-shaped lattice pattern 25 can be obtained by forming the shift amount measurement pattern 113 on the end surface of 112 so that light does not pass therethrough.

【0032】また、位相シフトを行うためには、少なく
とも同一個所において3枚の画像データを取得する必要
がある。そこで通常のモアレ法を用い円筒状被検物1を
撮像し、図14に示すように、位相をシフトした3枚の
形状測定用の画像26a,26b,26cを撮像して円
筒状被検物1の凹凸情報を得て、この凹凸情報から画像
縦方向である円周方向の列毎に位相シフト処理を行い最
も凸な部分を求め、直線近似を行い位相つなぎを行った
画像27a〜27cから円筒状被検物1の軸28を検出
しても良い。この場合は位相シフトを行わないため、円
筒状被検物1の形状等の精度は劣るが、軸28を表すラ
インからy方向の位置変動を検出することができる。こ
の際、モアレ法から求まる凹凸データを円筒状被検物1
の円筒形状にフィッティングを行うことによって、より
高精度な位置を検出することができる。また、図14に
示すように、位相とびが発生している部分をつないで、
円周方向により広い範囲でフィッティングを行うことに
より高精度化を図ったり、中心部分の1周期のみを用い
てフィッティングを行うことにより、位相つなぎ処理を
省き演算時間を短縮することもできる。さらに、モアレ
処理を図15に示すように、限定した領域29において
のみ行い、直線近似を行うことによって、円筒状被検物
1の中心軸位置算出を行うための処理量を減らすことが
でき、計算コストを低減することができる。
Further, in order to perform the phase shift, it is necessary to acquire three pieces of image data at least at the same place. Therefore, the cylindrical test object 1 is imaged by using a normal moire method, and as shown in FIG. 14, three phase-shifted images 26a, 26b, and 26c for shape measurement are imaged and the cylindrical test object 1 is taken. From the images 27a to 27c obtained by obtaining the unevenness information of No. 1 and performing the phase shift processing for each column in the circumferential direction which is the vertical direction of the image from this unevenness information to obtain the most convex portion, and performing the linear approximation and performing the phase connection. The axis 28 of the cylindrical test object 1 may be detected. In this case, since the phase shift is not performed, the accuracy of the shape of the cylindrical test object 1 is inferior, but the position variation in the y direction can be detected from the line representing the axis 28. At this time, the concavo-convex data obtained from the moire method is used as the cylindrical test object 1
It is possible to detect a position with higher accuracy by performing fitting on the cylindrical shape. In addition, as shown in FIG. 14, by connecting the portions where phase skipping occurs,
The accuracy can be improved by performing fitting in a wider range in the circumferential direction, and the fitting process using only one cycle of the central portion can be omitted to shorten the calculation time by omitting the phase connecting process. Further, as shown in FIG. 15, the moire processing is performed only in the limited area 29 and the linear approximation is performed, whereby the processing amount for calculating the central axis position of the cylindrical object 1 can be reduced, The calculation cost can be reduced.

【0033】また、図4に示すように、順次移動する円
筒状被検物1と同期することによって位相シフトを行う
ような場合も、形状測定を行う処理は異なる時間で取り
込んだデータから位相シフト処理を行うが、円筒状被検
物1の軸位置を算出するためのモアレ法において使用す
る画像データは同一時間の画像データを用いて、時間ご
とに求めることができる。さらに、このように順次移動
する被被検物表面と同期することによって位相シフトを
行うような場合においては、検出した円筒被検物1の軸
の位置から、図16に示すように、位相シフトを行うラ
インを変更することによって、軸ずれに伴うy方向の位
置変動の誤差を低減することができる。図16において
は、位相シフトを行うラインとして、軸28の最も凸な
ラインから上下にそれぞれ一定幅のラインを示している
が、実際は上下ではなく検出した中心からの相対位置と
して規定することになるので、求めた軸をそのまま利用
するとは限らないし、位相シフトを行うそれぞれのライ
ンの間隔も、円筒状被検物1の径にばらつきがある場合
などには適宜変更を行うことにより、より精度を向上す
ることができる。
Further, as shown in FIG. 4, even in the case where the phase shift is performed by synchronizing with the cylindrical object 1 to be sequentially moved, the process of performing the shape measurement uses the phase shift from the data acquired at different times. Although the processing is performed, the image data used in the moire method for calculating the axial position of the cylindrical test object 1 can be obtained for each time using the image data of the same time. Further, in the case where the phase shift is performed by synchronizing with the surface of the test object that moves sequentially in this way, the phase shift is performed from the detected axial position of the cylindrical test object 1 as shown in FIG. By changing the line for performing the, it is possible to reduce the error in the position variation in the y direction due to the axis deviation. In FIG. 16, as the lines for phase shifting, lines with a constant width are shown above and below the most convex line of the shaft 28, but in reality, the lines are defined not as the top and bottom but as the relative position from the detected center. Therefore, the calculated axis is not always used as it is, and the accuracy of the accuracy can be improved by appropriately changing the interval between the lines for performing the phase shift when the diameter of the cylindrical test object 1 varies. Can be improved.

【0034】また、軸の直線近似により求まる2次元エ
リアセンサ13となす角度を用い、2次元カメラ・光源
・格子パターンからなる光学系と、被被検物の軸方向を
一定に制御して位相シフトを行うラインデータを正確に
軸方向と平行にすることにより、回転に伴い測定個所ご
とに異なってしまう位相シフト量を一定にすることがで
きる。
Further, by using the angle formed by the two-dimensional area sensor 13 obtained by linear approximation of the axis, the optical system consisting of the two-dimensional camera, the light source, and the grating pattern, and the axis direction of the object to be inspected are controlled to be constant. By accurately setting the line data to be shifted in parallel with the axial direction, it is possible to make the amount of phase shift, which is different at each measurement point due to rotation, constant.

【0035】さらに、図14にに示す1枚の位相シフト
を行わないモアレ縞画像において、円周方向、すなわち
画像26の高さ変化を円筒状被検物1の円弧にフィッテ
ィングすることによって求めた軸位置情報によって、位
相シフトして求めた形状データを補正することができ
る。なお、位相シフト画像が格子投影条件を変化させる
ようにして行う従来の方法では、各画像においてπ/2
のオフセットが順次生ずるので、これを合わせて補正す
る必要があるが、図4に示すように、回転に同期して位
置で位相シフトを行う方法においては、この補正をしな
いですむ。
Further, in one moiré fringe image without phase shift shown in FIG. 14, it was obtained by fitting the change in height of the image 26 in the circumferential direction to the circular arc of the cylindrical test object 1. The shape data obtained by phase shifting can be corrected by the axial position information. It should be noted that in the conventional method in which the phase shift image is changed by changing the grid projection condition, π / 2 is set for each image.
Since the offsets of 1 occur sequentially, it is necessary to correct them together, but in the method of performing the phase shift at the position in synchronization with the rotation as shown in FIG. 4, this correction need not be performed.

【0036】[0036]

【発明の効果】この発明は以上説明したように、2次元
エリアセンサによって得られる位相シフトしたモアレ縞
データから形状測定中に、位相シフトしたモアレ縞デー
タと同一画像中から位相シフトモアレ法と異なる方式に
て被検物の位置変動検出を行うようにしたから、位相シ
フトしたモアレ縞データと同一画像からすることによ
り、位置変動検出用のセンサを使用せずに、形状測定中
の位置変動を検出することができ、位置変動検出用のセ
ンサのキャリブレーション等を不要にすることができ、
形状測定の簡易化を図るとともに、測定精度を向上させ
ることができる。
As described above, the present invention is different from the phase shift moire method in the same image as the phase-shifted moire fringe data during shape measurement from the phase-shifted moire fringe data obtained by the two-dimensional area sensor. Since the position variation detection of the test object is performed by using the same image as the phase-shifted moire fringe data, the position variation during shape measurement can be detected without using the position variation detection sensor. It is possible to eliminate the need for calibration of the sensor for detecting the position change,
The shape measurement can be simplified and the measurement accuracy can be improved.

【0037】形状測定中に位相シフトしたモアレ縞デー
タと同一画像のモアレ縞の発生していない領域に規則性
のあるパターン光を投影し、その位置又はパターン形状
から被検物の位置変動を検出することにより、形状測定
中の位置変動を容易に検出することができる。
A pattern light having regularity is projected onto a region of the same image as the moiré fringe data phase-shifted during shape measurement, in which moiré fringes are not generated, and the position variation of the test object is detected from the position or the pattern shape. By doing so, it is possible to easily detect the position variation during shape measurement.

【0038】また、位相シフトしたモアレ縞データと同
一画像のモアレ縞の発生していない領域に形成されたモ
アレ縞を形成するための格子パターン端部のモアレを形
成しない部分のパターンの変化から被検物の位置変動を
検出することにより、より簡単な構成で形状測定中の位
置変動を検出することができる。
Further, due to the change in the pattern of the non-moiré pattern portion at the end of the lattice pattern for forming the moiré fringes formed in the region of the same image as the phase-shifted moiré fringe data, where the moiré fringes are not generated. By detecting the position variation of the specimen, the position variation during the shape measurement can be detected with a simpler configuration.

【0039】また、形状測定中に位相シフトしないモア
レ縞画像から被検物の位置変動を検出することにより、
一度に検出可能な形状の領域を大きくできるとともに被
検物の回転振れも検出することができる。
Further, by detecting the position variation of the object to be inspected from the moire fringe image which does not phase-shift during the shape measurement,
It is possible to increase the area of the shape that can be detected at one time and also to detect the rotational shake of the test object.

【0040】さらに、被検物の位置変動検出データに応
じて形状測定に利用する位相シフト算出領域を変更して
位相シフト演算を行うことにより、位相シフト誤差を低
減させることができる。
Furthermore, the phase shift error can be reduced by changing the phase shift calculation region used for shape measurement according to the position variation detection data of the object to be subjected to the phase shift calculation.

【0041】また、被検物の位置変動に応じて測定ヘッ
ドと被検物の位置関係が一定になるように制御すること
により、回転振れの影響を抑制して位相シフト誤差を低
減させることができる。
Further, by controlling so that the positional relationship between the measuring head and the test object becomes constant according to the position variation of the test object, the influence of rotational shake can be suppressed and the phase shift error can be reduced. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の形状測定装置の構成を示す斜視図で
ある。
FIG. 1 is a perspective view showing a configuration of a shape measuring apparatus of the present invention.

【図2】測定ヘッドの構成を示す斜視図である。FIG. 2 is a perspective view showing a configuration of a measuring head.

【図3】2次元エリアセンサと格子パターンと円筒状被
検物の位置関係を示す配置図である。
FIG. 3 is a layout diagram showing a positional relationship between a two-dimensional area sensor, a lattice pattern, and a cylindrical test object.

【図4】2次元エリアセンサのモアレ縞撮像領域の画素
列の測定領域を示す配置図である。
FIG. 4 is an arrangement diagram showing a measurement region of a pixel row in a moire fringe image pickup region of a two-dimensional area sensor.

【図5】モアレ縞撮像領域の画素列の時刻毎の測定デー
タを示す説明図である。
FIG. 5 is an explanatory diagram showing measurement data for each time of a pixel row in a moire fringe image pickup area.

【図6】モアレ縞撮像領域の画素列の測定データを示す
説明図である。
FIG. 6 is an explanatory diagram showing measurement data of pixel rows in a moire fringe image pickup area.

【図7】モアレ縞を撮像した画像を示す図である。FIG. 7 is a diagram showing an image obtained by capturing moire fringes.

【図8】スポット光源を有する測定ヘッドの構成を示す
斜視図である。
FIG. 8 is a perspective view showing a configuration of a measuring head having a spot light source.

【図9】2次元エリアセンサでモアレ縞とスポット像を
撮像するときの配置図である。
FIG. 9 is an arrangement diagram when a moire fringe and a spot image are picked up by a two-dimensional area sensor.

【図10】モアレ縞とスポット像の画像を示す図であ
る。
FIG. 10 is a diagram showing images of moire fringes and spot images.

【図11】格子パターンの円筒状被検物からの反射光が
再度通過しない端部パターン部分を示す模式図である。
FIG. 11 is a schematic view showing an end pattern portion through which reflected light from a cylindrical test object having a lattice pattern does not pass again.

【図12】端部パターン部分による円弧状の格子模様を
含む画像を示す図である。
FIG. 12 is a diagram showing an image including an arc-shaped lattice pattern formed by end pattern portions.

【図13】円弧状の格子模様を含む画像を形成する他の
格子パターンの構成図である。
FIG. 13 is a configuration diagram of another lattice pattern forming an image including an arc-shaped lattice pattern.

【図14】通常のモアレ法を用い円筒状被検物を撮像し
た画像を示す図である。
FIG. 14 is a diagram showing an image obtained by capturing an image of a cylindrical test object by using a normal moire method.

【図15】モアレ処理を行う限定した領域を示す模式図
である。
FIG. 15 is a schematic diagram showing a limited area where moiré processing is performed.

【図16】位相シフトを行うラインを示す模式図であ
る。
FIG. 16 is a schematic diagram showing lines for performing a phase shift.

【図17】従来の構成を示す配置図である。FIG. 17 is a layout diagram showing a conventional configuration.

【図18】他の従来例の構成を示す配置図である。FIG. 18 is a layout diagram showing the configuration of another conventional example.

【図19】格子投影型のモアレ法の説明図である。FIG. 19 is an explanatory diagram of a lattice projection type moire method.

【図20】実体格子型のモアレ法の説明図である。FIG. 20 is an explanatory diagram of a real lattice type moire method.

【図21】モアレ法による光源と観測点と格子及び物体
の配置図である。
FIG. 21 is a layout diagram of a light source, an observation point, a grid, and an object by the moire method.

【図22】実体格子型のモアレ法の光源と観測点と格子
及び物体の配置図である。
FIG. 22 is a layout diagram of a light source, an observation point, a lattice, and an object of a real lattice type moire method.

【図23】位相変調された縞画像の光強度特性図であ
る。
FIG. 23 is a light intensity characteristic diagram of a phase-modulated fringe image.

【符号の説明】[Explanation of symbols]

1;円筒状被検物、2;形状測定装置、3;把持冶具、
4;回転モータ、5;自動ステージ、6;測定ヘッド、
10;光源、11;格子パターン、12;レンズ、1
3;2次元エリアセンサ、14;スポット光源。
1; cylindrical test object, 2; shape measuring device, 3; gripping jig,
4; rotary motor, 5; motorized stage, 6; measuring head,
10; light source, 11; lattice pattern, 12; lens, 1
3; two-dimensional area sensor, 14; spot light source.

フロントページの続き (72)発明者 中山 攻 東京都大田区中馬込1丁目3番6号 株式 会社リコー内 Fターム(参考) 2F065 AA06 AA47 AA49 BB05 FF08 GG04 HH04 HH06 JJ03 JJ26 MM04 MM07 PP02 PP18 QQ00 QQ17 QQ24 Continued front page    (72) Inventor Osamu Nakayama             1-3-3 Nakamagome, Ota-ku, Tokyo Stocks             Company Ricoh F term (reference) 2F065 AA06 AA47 AA49 BB05 FF08                       GG04 HH04 HH06 JJ03 JJ26                       MM04 MM07 PP02 PP18 QQ00                       QQ17 QQ24

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 被検物を回転させ、特定の縞次数のモア
レ縞を所望の位相だけ正確にシフトさせ、測定領域をそ
の縞次数近辺に限定し、2次元エリアセンサによって得
られる位相シフトしたモアレ縞データから形状測定を行
い、形状測定中に位相シフトしたモアレ縞データと同一
画像中から位相シフトモアレ法と異なる方式にて被検物
の位置変動検出を行うことを特徴とする形状測定方法。
1. A test object is rotated to accurately shift a moire fringe of a specific fringe order by a desired phase, a measurement region is limited to the vicinity of the fringe order, and a phase shift obtained by a two-dimensional area sensor is performed. A shape measuring method characterized in that a shape is measured from moire fringe data, and a position variation of an object to be detected is detected from the same image as the moiré fringe data phase-shifted during the shape measurement by a method different from the phase shift moire method.
【請求項2】 前記形状測定中に位相シフトしたモアレ
縞データと同一画像のモアレ縞の発生していない領域に
規則性のあるパターン光を投影し、その位置又はパター
ン形状から被検物の位置変動を検出する請求項1記載の
表面形状測定方法。
2. A pattern light having regularity is projected onto a region of the same image as the moire fringe data phase-shifted during the shape measurement, in which no moire fringes are generated, and the position or the pattern shape is used to determine the position of the object to be inspected. The surface shape measuring method according to claim 1, wherein fluctuations are detected.
【請求項3】 前記形状測定中に位相シフトしたモアレ
縞データと同一画像のモアレ縞の発生していない領域に
形成された、モアレ縞を形成するための格子パターン端
部のモアレを形成しない部分のパターンの変化から被検
物の位置変動を検出する請求項1記載の表面形状測定方
法。
3. A portion of the same pattern as the moire fringe data phase-shifted during the shape measurement, where moire fringes are not formed in an area of the same image, where moire fringes are not formed. The surface shape measuring method according to claim 1, wherein the position variation of the object is detected from the change of the pattern.
【請求項4】 被検物を回転させ、特定の縞次数のモア
レ縞を所望の位相だけ正確にシフトさせ、測定領域をそ
の縞次数近辺に限定し、2次元エリアセンサによって得
られる位相シフトしたモアレ縞データから形状測定を行
い、位相シフトしないモアレ縞画像から被検物の位置変
動を検出することを特徴とする表面形状測定方法。
4. An object to be measured is rotated to accurately shift a moire fringe of a specific fringe order by a desired phase, a measurement region is limited to the vicinity of the fringe order, and a phase shift obtained by a two-dimensional area sensor is performed. A surface shape measuring method characterized in that a shape is measured from moire fringe data, and a position variation of an object to be inspected is detected from a moire fringe image without phase shift.
【請求項5】 前記被検物の位置変動検出データに応じ
て形状測定に利用する位相シフト算出領域を変更して位
相シフト演算を行う請求項1乃至4のいずれかに記載の
表面形状測定方法。
5. The surface shape measuring method according to claim 1, wherein a phase shift calculation region used for shape measurement is changed in accordance with position variation detection data of the object to be subjected to phase shift calculation. .
【請求項6】 前記被検物の位置変動に応じて測定ヘッ
ドと被検物の位置関係が一定になるように制御する請求
項1乃至5のいずれかに記載の形状測定装置。
6. The shape measuring apparatus according to claim 1, wherein control is performed so that the positional relationship between the measuring head and the test object becomes constant according to the position variation of the test object.
【請求項7】 2次元エリアセンサを有する実体格子型
のモアレ光学系を有する測定ヘッドと、被検物を保持し
て回転させる把持回転機構とを有し、 被検物を回転させ、特定の縞次数のモアレ縞を所望の位
相だけ正確にシフトさせ、測定領域をその縞次数近辺に
限定し、前記2次元エリアセンサによって得られる位相
シフトしたモアレ縞データから形状測定を行い、形状測
定中に位相シフトしたモアレ縞データと同一画像中から
位相シフトモアレ法と異なる方式にて被検物の位置変動
検出を行うことを特徴とする形状測定装置。
7. A measuring head having a physical lattice type moire optical system having a two-dimensional area sensor, and a gripping and rotating mechanism for holding and rotating an object to be inspected. The moire fringes of the fringe order are accurately shifted by a desired phase, the measurement area is limited to the vicinity of the fringe order, shape measurement is performed from the phase-shifted moiré fringe data obtained by the two-dimensional area sensor, and the shape is measured during shape measurement. A shape measuring device characterized by detecting a position variation of an object to be inspected in the same image as the phase-shifted moire fringe data by a method different from the phase-shift moire method.
【請求項8】 前記形状測定中に位相シフトしたモアレ
縞データと同一画像のモアレ縞の発生していない領域に
規則性のあるパターン光を投影し、その位置又はパター
ン形状から被検物の位置変動を検出する請求項7記載の
表面形状測定装置。
8. The pattern light having regularity is projected onto a region of the same image as the moiré fringe data phase-shifted during the shape measurement, in which no moiré fringes are generated, and the position or the pattern shape is used to determine the position of the object to be inspected. The surface profile measuring apparatus according to claim 7, which detects fluctuations.
【請求項9】 前記形状測定中に位相シフトしたモアレ
縞データと同一画像のモアレ縞の発生していない領域に
形成された、モアレ縞を形成するための格子パターン端
部のモアレを形成しない部分のパターンの変化から被検
物の位置変動を検出する請求項7記載の表面形状測定装
置。
9. A portion of a lattice pattern end portion for forming moire fringes, which is formed in a region where no moire fringes are generated in the same image as the moire fringe data phase-shifted during the shape measurement, where moire is not formed. The surface profile measuring apparatus according to claim 7, wherein the position variation of the object to be inspected is detected from the change of the pattern.
【請求項10】 2次元エリアセンサを有する実体格子
型のモアレ光学系を有する測定ヘッドと、被検物を保持
して回転させる把持回転機構とを有し、 被検物を回転させ、特定の縞次数のモアレ縞を所望の位
相だけ正確にシフトさせ、測定領域をその縞次数近辺に
限定し、前記2次元エリアセンサによって得られる位相
シフトしたモアレ縞データから形状測定を行い、位相シ
フトしないモアレ縞画像から被検物の位置変動を検出す
ることを特徴とする表面形状測定装置。
10. A measuring head having a physical lattice type moire optical system having a two-dimensional area sensor, and a grip rotating mechanism for holding and rotating an object to be inspected. The moire fringes of the fringe order are accurately shifted by a desired phase, the measurement area is limited to the vicinity of the fringe order, the shape measurement is performed from the phase-shifted moiré fringe data obtained by the two-dimensional area sensor, and the moiré without the phase shift is obtained. A surface shape measuring device characterized by detecting a positional variation of a test object from a fringe image.
JP2002127753A 2002-04-30 2002-04-30 Shape measuring method and shape measuring apparatus Expired - Fee Related JP4087146B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002127753A JP4087146B2 (en) 2002-04-30 2002-04-30 Shape measuring method and shape measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002127753A JP4087146B2 (en) 2002-04-30 2002-04-30 Shape measuring method and shape measuring apparatus

Publications (3)

Publication Number Publication Date
JP2003322516A true JP2003322516A (en) 2003-11-14
JP2003322516A5 JP2003322516A5 (en) 2005-08-25
JP4087146B2 JP4087146B2 (en) 2008-05-21

Family

ID=29541721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002127753A Expired - Fee Related JP4087146B2 (en) 2002-04-30 2002-04-30 Shape measuring method and shape measuring apparatus

Country Status (1)

Country Link
JP (1) JP4087146B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003097928A (en) * 2001-09-25 2003-04-03 Ricoh Co Ltd Method and device for shape measurement
JP2008032727A (en) * 2006-07-31 2008-02-14 Mitsutoyo Corp Measuring probe and method for controlling it
JP2008256616A (en) * 2007-04-06 2008-10-23 Nippon Steel Corp Surface defect inspection system, method and program
CN105044048A (en) * 2015-07-01 2015-11-11 武汉科技大学 Small roller surface flaw detection device and method
EP2851677B1 (en) * 2013-09-23 2020-02-05 Gerresheimer Bünde GmbH Multi-line scanning method
CN112859189A (en) * 2020-12-31 2021-05-28 广东美的白色家电技术创新中心有限公司 Workpiece detection device, detection method, and computer-readable storage medium
CN114757917A (en) * 2022-04-08 2022-07-15 湘潭大学 High-precision shaft offset and deflection measurement and correction method thereof
CN117364584A (en) * 2023-12-05 2024-01-09 山西晋北高速公路养护有限公司 Asphalt surface layer construction quality nondestructive testing device
JP7587461B2 (en) 2021-04-02 2024-11-20 株式会社キーエンス 3D shape measuring device
JP7606392B2 (en) 2021-04-02 2024-12-25 株式会社キーエンス 3D shape measuring device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003097928A (en) * 2001-09-25 2003-04-03 Ricoh Co Ltd Method and device for shape measurement
JP4675011B2 (en) * 2001-09-25 2011-04-20 株式会社リコー Shape measuring method and shape measuring apparatus
JP2008032727A (en) * 2006-07-31 2008-02-14 Mitsutoyo Corp Measuring probe and method for controlling it
JP2008256616A (en) * 2007-04-06 2008-10-23 Nippon Steel Corp Surface defect inspection system, method and program
EP2851677B1 (en) * 2013-09-23 2020-02-05 Gerresheimer Bünde GmbH Multi-line scanning method
CN105044048A (en) * 2015-07-01 2015-11-11 武汉科技大学 Small roller surface flaw detection device and method
CN112859189A (en) * 2020-12-31 2021-05-28 广东美的白色家电技术创新中心有限公司 Workpiece detection device, detection method, and computer-readable storage medium
JP7587461B2 (en) 2021-04-02 2024-11-20 株式会社キーエンス 3D shape measuring device
JP7606392B2 (en) 2021-04-02 2024-12-25 株式会社キーエンス 3D shape measuring device
CN114757917A (en) * 2022-04-08 2022-07-15 湘潭大学 High-precision shaft offset and deflection measurement and correction method thereof
CN114757917B (en) * 2022-04-08 2024-04-16 湘潭大学 High-precision shaft deflection and deflection measurement and correction method thereof
CN117364584A (en) * 2023-12-05 2024-01-09 山西晋北高速公路养护有限公司 Asphalt surface layer construction quality nondestructive testing device
CN117364584B (en) * 2023-12-05 2024-02-23 山西晋北高速公路养护有限公司 Asphalt surface layer construction quality nondestructive testing device

Also Published As

Publication number Publication date
JP4087146B2 (en) 2008-05-21

Similar Documents

Publication Publication Date Title
JPH0610694B2 (en) Automatic focusing method and device
JP2004109106A (en) Surface defect inspection method and surface defect inspection device
JP4384737B2 (en) Inspection equipment for high-speed defect analysis
KR20180021132A (en) Interference roll-off measurements using static fringe patterns
JP4087146B2 (en) Shape measuring method and shape measuring apparatus
JP3937024B2 (en) Detection of misalignment, pattern rotation, distortion, and misalignment using moiré fringes
JP2008070273A (en) Apparatus and method for detecting surface defect
JP2003042734A (en) Method and apparatus for measurement of surface shape
JP3845286B2 (en) Shape measuring apparatus and shape measuring method
JP4859127B2 (en) Cylindrical automatic inspection method
JP4680640B2 (en) Image input apparatus and image input method
JP4675011B2 (en) Shape measuring method and shape measuring apparatus
JP3921432B2 (en) Shape measuring apparatus and shape measuring method using moire optical system
JP2002148029A (en) Apparatus and method of inspecting cylindrical object surface irregularities
JP2003057191A (en) Apparatus for measuring shape of cylindrical article to be measured and method of adjusting the apparatus for measuring shape of cylindrical article to be measured, as well as method for processing signal
US6940608B2 (en) Method and apparatus for surface configuration measurement
JP4402849B2 (en) Surface shape measuring method and surface shape measuring apparatus
JPH0886631A (en) Instrument and method for measuring attitude of object, attitude controller, and device for inspecting surface of object
JP4216062B2 (en) Defect inspection method
JP4258401B2 (en) Surface defect inspection system for uneven surfaces
JPH05223541A (en) Shape measuring method and shape measuring system
JP4011205B2 (en) Sample inspection equipment
JP3848586B2 (en) Surface inspection device
JP3863408B2 (en) Magnetic head slider inspection device
JP5950760B2 (en) Calibration method of interference shape measuring mechanism

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050223

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140228

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees