JP2008070273A - Apparatus and method for detecting surface defect - Google Patents

Apparatus and method for detecting surface defect Download PDF

Info

Publication number
JP2008070273A
JP2008070273A JP2006250162A JP2006250162A JP2008070273A JP 2008070273 A JP2008070273 A JP 2008070273A JP 2006250162 A JP2006250162 A JP 2006250162A JP 2006250162 A JP2006250162 A JP 2006250162A JP 2008070273 A JP2008070273 A JP 2008070273A
Authority
JP
Japan
Prior art keywords
imaging
inspection object
defect detection
unit
illumination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006250162A
Other languages
Japanese (ja)
Inventor
Terumi Kamata
照己 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2006250162A priority Critical patent/JP2008070273A/en
Publication of JP2008070273A publication Critical patent/JP2008070273A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To identify surface defects such as very small irregularities and protrusions and defects involving surface concentration changes of objects to be inspected by a simple constitution. <P>SOLUTION: Two illuminating means 2a and 2b irradiate approximately parallel line beams having different optical characteristics to a surface of an object to be inspected 4, and two imaging means 3a and 3b distinguishably receive reflected light having different optical characteristics of the illuminating means 2a and 2b. The amount of displacement between actual imaging locations of the imaging means 3a and 3b and assumed imaging locations, imaging conditions previously set for detecting defects, is computed on the basis of luminosity changes in signals from the imaging means 3a and 3b to shorten reading intervals when the imaging means 3a images lines in the surface of the object to be inspected 4 projected by the illuminating means 2a and 2b and inexpensively implement corrections of locational displacements of the imaging means 3a and 3b by a simple constitution. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、被測定物の微小な凹凸や突起等の表面欠陥及び表面の濃度変化を伴う欠陥を検出する表面欠陥検出装置及び表面欠陥検出方法に関するものである。   The present invention relates to a surface defect detection apparatus and a surface defect detection method for detecting a surface defect such as minute irregularities and protrusions of a measurement object and a defect accompanied by a change in surface concentration.

一様な照明手段からの投射光を被測定物表面に照射し、その反射光分布から得られる画像に対して、物体表面の傷や凹凸および汚れ等を検出もしくは検査することは、従来一般的に行われている方法である。特に、ロール紙やシート等の平面状に広がる物体や円筒状の物体においては、特許文献1や特許文献2あるいは特許文献3に示すように、撮像素子としてラインセンサを用い、物体の相対的な移動や回転によって副走査して表面画像を得る方法が一般的である。   Conventionally, it has been common to irradiate the surface of an object to be measured with light projected from a uniform illumination means and detect or inspect scratches, irregularities, dirt, etc. on the surface of an object from an image obtained from the reflected light distribution. Is the method that has been done. In particular, in the case of a flat object such as roll paper or a sheet or a cylindrical object, as shown in Patent Document 1, Patent Document 2, or Patent Document 3, a line sensor is used as an image sensor, and relative objects are relative to each other. A general method is to obtain a surface image by sub-scanning by movement or rotation.

このライン状の光を被検査物に照射するとともに被検査物を回転して被検査物により反射されるライン状の光をラインセンサで検出し、ラインセンサで得られる画像処理して欠陥処理を行う方法では、正反射光により近い位置で画像を取得したほうが、表面形状による光量の変化が激しくなり微小な凹凸に対する検出感度が高くなる。しかしながら、被検査物の形状の歪みや回転のムラや振動によって反射光とラインセンサの相対位置関係が変化するため、従来の表面欠陥検出装置では高感度な位置で検出できなかった。   The line-shaped light is irradiated to the inspection object, the inspection object is rotated, the line-shaped light reflected by the inspection object is detected by the line sensor, and the defect processing is performed by image processing obtained by the line sensor. In the method to be performed, when the image is acquired at a position closer to the specularly reflected light, the change in the amount of light due to the surface shape becomes more intense, and the detection sensitivity for minute irregularities becomes higher. However, since the relative positional relationship between the reflected light and the line sensor changes due to distortion of the shape of the object to be inspected, uneven rotation, or vibration, the conventional surface defect detection apparatus cannot detect the position with high sensitivity.

このような問題を解決するため、特許文献3に示された表面欠陥検査装置は、ライン型照明手段により光を被検査物表面に位置方向から照射し、その反射あるいは拡散する光をラインセンサで検出するとともに、被検査物表面にて反射する反射分布をエリアセンサで検出し、エリアセンサで検出した情報をもとに、ラインセンサと被検査物の観測表面とライン型照明手段の相対位置を調整して、反射光の位置に対してラインセンサが常に一定位置になるように制御している。
特許第3341963号公報 特許第3585225号公報 特開2004−279367号公報
In order to solve such a problem, the surface defect inspection apparatus disclosed in Patent Document 3 irradiates light on the surface of an object to be inspected from a position direction by a line-type illumination unit, and reflects or diffuses the light with a line sensor. In addition to detecting the reflection distribution reflected by the surface of the inspection object, the area sensor detects the relative position of the line sensor, the observation surface of the inspection object, and the line illumination means based on the information detected by the area sensor. Adjustment is made so that the line sensor is always at a fixed position with respect to the position of the reflected light.
Japanese Patent No. 3341963 Japanese Patent No. 3585225 JP 2004-279367 A

特許文献3に示すように、エリアセンサにより反射光分布を検出する方法では、追従精度を高精度化するには、画像を高精細化し、撮像フレームレートを高くする必要がある。しかしながら、高解像度で高フレームレートのエリアセンサは高価であり、また、画像処理量も膨大となるためシステムの価格が高くなってしまう。   As shown in Patent Document 3, in the method of detecting the reflected light distribution by the area sensor, in order to increase the tracking accuracy, it is necessary to increase the definition of the image and increase the imaging frame rate. However, an area sensor with a high resolution and a high frame rate is expensive, and the amount of image processing becomes enormous, which increases the price of the system.

また、複数センサ間の相対位置関係の調整やキャリブレーションを行う必要があり、相対位置のずれによる検出精度低下やメンテナンス工数の増加要因となっていた。   In addition, it is necessary to adjust or calibrate the relative positional relationship between a plurality of sensors, which causes a decrease in detection accuracy and an increase in maintenance man-hours due to a relative position shift.

さらに、光量変化率が高いところにセンサを配置することにより、微小形状変化に対しても、高感度に信号の変化を検出することが可能となるが、その信号変化が発生する原因が、突起部であるか微小な濃度ムラであるかの区別ができない等の問題が生じていた。このような突起と濃度ムラの判別は、欠陥発生時の製品の製造工程チェックを行い、安定した製品を送り出すためには大変重要であるため、その検出と区別が非常に切望されている。   Furthermore, it is possible to detect a signal change with high sensitivity even for a minute shape change by arranging a sensor at a place where the light quantity change rate is high. In other words, there is a problem that it is impossible to discriminate whether it is a part or a minute density unevenness. Such distinction between protrusions and density unevenness is very important for checking a manufacturing process of a product when a defect occurs and sending out a stable product, and thus detection and distinction are highly desired.

この発明は、このような問題を解消し、簡単な構成でコストを低減して複数センサの相対位置の変化等による検出性能のばらつきや低下を抑えるとともに、被測定物の微小な凹凸や突起等の表面欠陥及び表面の濃度変化を伴う欠陥を識別して検出する表面欠陥検出装置及び表面欠陥検出方法を提供することを目的とするものである。   The present invention eliminates such problems, reduces the cost with a simple configuration, suppresses variations in detection performance due to changes in the relative position of multiple sensors, etc., and reduces unevenness, protrusions, etc. of the object to be measured. It is an object of the present invention to provide a surface defect detection apparatus and a surface defect detection method for identifying and detecting surface defects and defects with surface density changes.

この発明の表面欠陥検出装置は、撮像手段に対し相対移動する被検査物の表面に照明手段から光を照射し、その反射光を撮像手段に順次取り込み被検査物表面画像を入力する表面欠陥検出装置であって、複数の照明手段と複数の撮像手段及び欠陥検出処理部を有し、前記複数の照明手段は、互いに分離可能な異なる光学特性で、かつ、前記撮像手段の主走査方向に対して略平行なライン状光源により構成され、前記複数の撮像手段は、前記複数の照明手段の異なる光学特性の反射光を区別して受光するラインセンサで構成され、前記欠陥検出処理部は、前記複数の撮像手段からの信号の明度変化から、前記複数の撮像手段の実撮像位置と欠陥検出をするためにあらかじめ設定された撮像条件となる想定撮像位置とのずれ量を演算する撮像位置ずれ量演算手段と、前記撮像位置ずれ量演算手段で演算した前記複数の撮像手段のずれ量を前記想定撮像位置となるように制御する撮像位置補正制御手段とを有することを特徴とする。   The surface defect detection apparatus of this invention irradiates light from the illumination means onto the surface of the inspection object that moves relative to the imaging means, sequentially captures the reflected light into the imaging means, and inputs the inspection object surface image. The apparatus includes a plurality of illumination means, a plurality of imaging means, and a defect detection processing unit, and the plurality of illumination means have different optical characteristics that are separable from each other and with respect to a main scanning direction of the imaging means. And the plurality of imaging means are constituted by line sensors that distinguish and receive reflected light having different optical characteristics of the plurality of illumination means, and the defect detection processing unit includes the plurality of imaging means. An imaging position that calculates a deviation amount between an actual imaging position of the plurality of imaging means and an assumed imaging position that is a preset imaging condition for detecting a defect from a change in brightness of a signal from the imaging means And is amount calculation means, and having an imaging position correction control means for controlling so that the deviation amount becomes the assumption imaging positions of the plurality of imaging means which is calculated by the imaging position deviation amount calculating means.

この発明の他の表面欠陥検出装置は、撮像手段に対し相対移動する被検査物の表面に照明手段から光を照射し、その反射光を撮像手段に順次取り込み被検査物表面画像を入力する表面欠陥検出装置であって、複数の照明手段と複数の撮像手段及び欠陥検出処理手段を有し、前記複数の照明手段は、互いに分離可能な異なる光学特性で、かつ、被検査物と前記複数の撮像手段の光軸がなす平面の異なる側に配置され、前記撮像手段の主走査方向に対して略平行なライン状光源により構成され、前記複数の撮像手段は、前記複数の照明手段の異なる光学特性の反射光を区別して受光するラインセンサで構成され、前記欠陥検出処理手段は、前記複数の撮像手段からの信号の低周波成分から、前記複数の撮像手段の実撮像位置と欠陥検出をするためにあらかじめ設定された撮像条件となる想定撮像位置とのずれ量を演算する撮像位置ずれ量演算手段と、前記撮像位置ずれ量演算手段で演算した前記複数の撮像手段のずれ量を前記想定撮像位置となるように制御する撮像位置補正制御手段と、前記1又は複数の撮像手段からの信号の高周波成分から被検査物表面の局所的な傾きを検出する表面傾き検出手段と、前記表面傾き検出手段で検出した被検査物表面の局所的な傾きから被検査物の表面欠陥と濃度欠陥を検出する欠陥検出手段とを有することを特徴とする。   According to another surface defect detection apparatus of the present invention, the surface of the inspection object that moves relative to the imaging means is irradiated with light from the illumination means, the reflected light is sequentially taken into the imaging means, and the surface of the inspection object surface is input. A defect detection apparatus comprising a plurality of illumination means, a plurality of imaging means, and a defect detection processing means, wherein the plurality of illumination means have different optical characteristics that are separable from each other, and the inspection object and the plurality of Arranged by line-shaped light sources arranged on different sides of the plane formed by the optical axis of the image pickup means and substantially parallel to the main scanning direction of the image pickup means, the plurality of image pickup means are different optical elements of the plurality of illumination means. The defect detection processing means detects defects and the actual imaging positions of the plurality of imaging means from the low frequency components of the signals from the plurality of imaging means. For Imaging position deviation amount calculating means for calculating a deviation amount from an assumed imaging position that is a preset imaging condition, and deviation amounts of the plurality of imaging means calculated by the imaging position deviation amount calculating means as the assumed imaging position. An imaging position correction control unit that controls the surface, a surface tilt detection unit that detects a local tilt of the surface of the object to be inspected from a high-frequency component of a signal from the one or more imaging units, and the surface tilt detection unit. It has a defect detection means for detecting a surface defect and a density defect of the inspection object from a local inclination of the detected inspection object surface.

前記撮像位置補正制御手段は、前記撮像位置ずれ量演算手段で演算した主走査方向全体に分布するずれ量の平均値成分から前記撮像手段の副走査方向の位置ずれを修正する位置制御を行い、主走査方向全体に分布するずれ量の傾き成分から前記撮像手段と被検査物の傾きのずれを修正する角度制御を行う。   The imaging position correction control means performs position control for correcting the positional deviation in the sub-scanning direction of the imaging means from the average value component of the deviation amount distributed in the entire main scanning direction calculated by the imaging position deviation amount calculation means, Angle control is performed to correct the deviation of the inclination between the imaging means and the inspection object from the inclination component of the deviation amount distributed in the entire main scanning direction.

また、前記欠陥検出手段は、前記表面傾き検出手段で検出した被検査物表面の局所的な傾きから被検査物の表面の凹凸とその高さを検出する。   Further, the defect detection means detects the unevenness of the surface of the inspection object and its height from the local inclination of the surface of the inspection object detected by the surface inclination detection means.

さらに、前記複数の照明手段を、被検査物と前記撮像手段の光軸とのなす平面に対して同じ側又は異なる側に設ける。   Further, the plurality of illumination units are provided on the same side or different sides with respect to a plane formed by the object to be inspected and the optical axis of the imaging unit.

この発明の表面欠陥検出方法は、撮像手段に対し相対移動する被検査物の表面に照明手段から光を照射し、その反射光を撮像手段に順次取り込み被検査物表面画像を入力する表面欠陥検出方法であって、複数の照明手段から互いに分離可能な異なる光学特性で、かつ、前記撮像手段の主走査方向に対して略平行なラインビームを被検査物表面に照射し、複数の撮像手段で前記複数の照明手段の異なる光学特性の反射光を区別して受光し、前記複数の撮像手段からの信号の明度変化から、前記複数の撮像手段の実撮像位置と欠陥検出をするためにあらかじめ設定された撮像条件となる想定撮像位置とのずれ量を演算し、演算した前記複数の撮像手段のずれ量を前記想定撮像位置となるように制御して被検査物の欠陥を検出することを特徴とする。   According to the surface defect detection method of the present invention, surface defect detection is performed by irradiating light from the illumination unit onto the surface of the object to be inspected that moves relative to the image capturing unit, sequentially inputting the reflected light into the image capturing unit, and inputting the object surface image. A method of irradiating a surface of an inspection object with a line beam having different optical characteristics that are separable from a plurality of illumination units and substantially parallel to a main scanning direction of the imaging unit. The reflected light having different optical characteristics of the plurality of illuminating means is received in a distinguishing manner, and preset in order to detect defects and the actual imaging positions of the plurality of imaging means from the change in brightness of signals from the plurality of imaging means. Calculating an amount of deviation from an assumed imaging position serving as an imaging condition, and controlling the calculated deviation amounts of the plurality of imaging means to be the assumed imaging position to detect a defect in the inspection object. Do

この発明の他の表面欠陥検出方法は、撮像手段に対し相対移動する被検査物の表面に照明手段から光を照射し、その反射光を撮像手段に順次取り込み被検査物表面画像を入力する表面欠陥検出方法であって、複数の照明手段から互いに分離可能な異なる光学特性で、かつ、前記撮像手段の主走査方向に対して略平行なラインビームを被検査物表面に照射し、複数の撮像手段で前記複数の照明手段の異なる光学特性の反射光を区別して受光し、前記複数の撮像手段からの信号の低周波成分から、前記複数の撮像手段の実撮像位置と欠陥検出をするためにあらかじめ設定された撮像条件となる想定撮像位置とのずれ量を演算し、演算した前記複数の撮像手段のずれ量を前記想定撮像位置となるように制御し、前記撮像手段からの信号の高周波成分から被検査物表面の局所的な傾きを検出し、検出した被検査物表面の局所的な傾きから被検査物の表面欠陥と濃度欠陥を検出することを特徴とする。   According to another surface defect detection method of the present invention, the surface of the inspection object that moves relative to the imaging means is irradiated with light from the illumination means, the reflected light is sequentially taken into the imaging means, and the surface of the inspection object surface is input. A defect detection method, wherein a plurality of images are obtained by irradiating a surface of an inspection object with a line beam having different optical characteristics that are separable from each other from a plurality of illumination units and substantially parallel to the main scanning direction of the imaging unit. In order to detect reflected light of different optical characteristics of the plurality of illuminating means by means, and detect defects of the actual imaging positions of the plurality of imaging means from low frequency components of signals from the plurality of imaging means A deviation amount from an assumed imaging position that is a preset imaging condition is calculated, and the calculated deviation amounts of the plurality of imaging means are controlled to be the assumed imaging position, and a high-frequency component of a signal from the imaging means Luo detect a local tilt of the object to be inspected surface, and detecting surface defects and density defect of the object from the local slope of the detected object to be inspected surface.

前記演算した主走査方向全体に分布するずれ量の平均値成分から前記撮像手段の副走査方向の位置ずれを修正する位置制御を行い、主走査方向全体に分布するずれ量の傾き成分から前記撮像手段と被検査物との傾きを修正する角度制御を行う。   Position control is performed to correct the positional deviation in the sub-scanning direction of the imaging unit from the calculated average component of the deviation amount distributed in the entire main scanning direction, and the imaging is performed from the slope component of the deviation amount distributed in the entire main scanning direction. Angle control for correcting the inclination between the means and the inspection object is performed.

また、前記検出した被検査物表面の局所的な傾きから被検査物の表面の凹凸とその高さを検出する。   Further, the unevenness and the height of the surface of the inspection object are detected from the detected local inclination of the surface of the inspection object.

さらに、前記被検査物の表面が曲面で形成されている場合、その曲率に応じて前記複数の照明手段の位置を可変する。   Further, when the surface of the object to be inspected is formed with a curved surface, the positions of the plurality of illumination means are varied according to the curvature.

この発明は、複数の照明手段から異なる光学特性で略平行なラインビームを被検査物表面に照射し、複数の撮像手段で複数の照明手段の異なる光学特性の反射光を区別して受光し、複数の撮像手段からの信号の明度変化から、複数の撮像手段の実撮像位置と欠陥検出をするためにあらかじめ設定された撮像条件となる想定撮像位置とのずれ量を演算するようにしたから、複数の照明手段で投射された被検査物表面のラインを複数の撮像手段で撮像するときの読み出し間隔が短くて済むとともに、1次元のデータのため、撮像手段の位置ずれ修正を簡単な構成で安価に実現することができる。   The present invention irradiates a surface of an object to be inspected with a substantially parallel line beam with different optical characteristics from a plurality of illumination means, distinguishes and receives reflected light of different optical characteristics of a plurality of illumination means by a plurality of imaging means, The amount of deviation between the actual imaging position of the plurality of imaging means and the assumed imaging position that is a preset imaging condition for detecting a defect is calculated from the change in brightness of the signal from the imaging means. The readout interval when the lines on the surface of the object projected by the illuminating means are imaged by a plurality of imaging means can be shortened, and the positional deviation of the imaging means can be corrected with a simple configuration and inexpensive because of one-dimensional data. Can be realized.

また、被検査物個々の部品や一部品内で反射率が異なっても、撮像手段の位置を安定して想定撮像位置になるように修正することができ、被検査物表面の欠陥を精度良く検出することができる。   In addition, even if the reflectance of each part to be inspected is different or within one part, it is possible to correct the position of the imaging means so that it is stably at the assumed imaging position, and to accurately detect defects on the surface of the inspected object. Can be detected.

また、複数の撮像手段からの信号を低周波成分と高周波成分に分離し、低周波成分で撮像手段の位置ずれ量を演算し、演算した位置ずれ量で撮像手段の位置を制御し、高周波成分で被検査物表面の局所的な傾きを検出して被検査物の欠陥を検出することにより、簡単な構成で被検査物表面の欠陥を精度良く検出することができる。   Further, the signals from the plurality of imaging means are separated into a low frequency component and a high frequency component, the positional deviation amount of the imaging means is calculated with the low frequency component, the position of the imaging means is controlled with the calculated positional deviation amount, and the high frequency component is calculated. By detecting the local inclination of the surface of the inspection object and detecting the defect of the inspection object, it is possible to accurately detect the defect of the surface of the inspection object with a simple configuration.

さらに、主走査方向全体に分布するずれ量の平均値成分から撮像手段の副走査方向の位置ずれを修正する位置制御を行い、主走査方向全体に分布するずれ量の傾き成分から撮像手段と被検査物の傾きのずれを修正する角度制御を行うことにより、被検査物が回転ぶれ等により全体が傾いても、被検査物表面の欠陥を精度良く検出することができる。   Further, position control is performed to correct the positional deviation in the sub-scanning direction of the imaging unit from the average component of the deviation amount distributed in the entire main scanning direction, and the imaging unit and the target are detected from the inclination component of the deviation amount distributed in the entire main scanning direction. By performing angle control for correcting the deviation of the tilt of the inspection object, it is possible to accurately detect defects on the surface of the inspection object even when the entire inspection object is tilted due to rotational shake or the like.

また、被検査物表面の局所的な傾きから被検査物の表面の凹凸とその高さを検出することにより、被検査物の表面の凹凸欠陥を高精度に検出することができる。   Further, by detecting the unevenness and the height of the surface of the inspection object from the local inclination of the surface of the inspection object, the unevenness defect on the surface of the inspection object can be detected with high accuracy.

また、被検査物の表面が曲面で形成されている場合、その曲率に応じて複数の照明手段の位置を可変することにより、表面が曲面で形成されている被検査物表面の欠陥を精度良く検出することができる。   In addition, when the surface of the inspection object is formed with a curved surface, the surface of the inspection object surface with a curved surface can be accurately detected by changing the positions of the plurality of illumination means according to the curvature. Can be detected.

図1は、この発明の表面欠陥検出装置の光学系の構成図である。図に示すように、表面欠陥検出装置は、例えば電子写真方式の画像形成装置に使用する感光体等の円筒状の物体表面や平面状に広がる物体表面の各種欠陥を検出するものであり、光学系1は複数、例えば2つの照明手段2a,2bと2つの撮像手段3a,3bを有する。照明手段2a,2bはそれぞれライン状光源により構成され、互いに分離可能な異なる光学特性を有し、例えば円筒状をして回転する被検査物4の表面にラインビームを投射する。この2つの撮像手段3a,3bはラインセンサからなり、照明手段2a,照明手段2bで被検査物4に照射したラインビームの反射光を受光する。   FIG. 1 is a configuration diagram of an optical system of a surface defect detection apparatus according to the present invention. As shown in the figure, the surface defect detection device detects various defects on the surface of a cylindrical object such as a photosensitive member used in an electrophotographic image forming apparatus or an object surface spreading in a plane. The system 1 has a plurality of, for example, two illumination means 2a and 2b and two imaging means 3a and 3b. Each of the illumination means 2a and 2b is composed of a line light source, has different optical characteristics that can be separated from each other, and projects a line beam onto the surface of the inspection object 4 that rotates in a cylindrical shape, for example. The two imaging means 3a and 3b are composed of line sensors, and receive the reflected light of the line beam irradiated on the inspection object 4 by the illumination means 2a and illumination means 2b.

照明手段2a,2bは、撮像手段3a,3bの主走査方向に対して略平行に配置されている。この照明手段2a,2bの光学特性を異ならせる方法としては、例えば異なる波長の光と対応した波長を透過するフィルタや、偏向状態の異なる投射光と偏向フィルタ、若しくは時分割して投射しそのタイミングと同期して撮像する等がある。最も簡単な方法としては、各撮像手段3a,3bにカラーのラインセンサを用い、各照明手段2a,2bをそれぞれ撮像手段3a,3bの対応色にする方法がある。撮像手段3a,3bは、主走査方向と直交するX方向に移動するとともに撮像手段3aの光軸を中心にして回動する撮像手段移動装置5に搭載されている。   The illumination means 2a and 2b are arranged substantially parallel to the main scanning direction of the imaging means 3a and 3b. As a method of making the optical characteristics of the illumination means 2a and 2b different, for example, filters that transmit wavelengths corresponding to light of different wavelengths, projection light and deflection filters with different deflection states, or time division and project timing And so on. As the simplest method, there is a method in which color line sensors are used for the image pickup means 3a and 3b, and the illumination means 2a and 2b are made to correspond to the colors of the image pickup means 3a and 3b, respectively. The imaging means 3a and 3b are mounted on an imaging means moving device 5 that moves in the X direction orthogonal to the main scanning direction and rotates around the optical axis of the imaging means 3a.

この表面欠陥検出装置の欠陥検出処理部は、図2のブロック図に示すように、画像処理部6a,6bと撮像位置制御部7を有する。画像処理部6aは、撮像手段3aからの信号を処理する。画像処理部6bは、撮像手段3bからの信号を処理する。撮像位置制御部7は、撮像位置ずれ量演算部8と撮像位置補正制御部9を有する。撮像位置ずれ量演算部8は、画像処理部6aから入力する撮像手段3aの信号と画像処理部6bから入力する撮像手段3bの信号により、被検査物4の表面の撮像条件となっている撮像手段3a,3bの実撮像位置と欠陥検出をするためにあらかじめ設定された撮像条件となる想定撮像位置との位置ずれ量を算出する。撮像位置補正制御部9は、撮像位置ずれ量演算部8で算出した撮像手段3a,3bの位置ずれ量により撮像手段3a,3bの実撮像位置が欠陥検出をするために設定された撮像条件となる想定撮像位置になるように撮像手段移動装置5を制御する。   The defect detection processing unit of the surface defect detection apparatus includes image processing units 6a and 6b and an imaging position control unit 7, as shown in the block diagram of FIG. The image processing unit 6a processes a signal from the imaging unit 3a. The image processing unit 6b processes a signal from the imaging unit 3b. The imaging position control unit 7 includes an imaging position deviation amount calculation unit 8 and an imaging position correction control unit 9. The imaging position deviation amount calculation unit 8 is an imaging condition that is an imaging condition of the surface of the inspection object 4 based on the signal of the imaging unit 3a input from the image processing unit 6a and the signal of the imaging unit 3b input from the image processing unit 6b. A positional deviation amount between the actual imaging positions of the means 3a and 3b and an assumed imaging position which is an imaging condition set in advance to detect a defect is calculated. The imaging position correction control unit 9 includes the imaging conditions set in order to detect defects in the actual imaging positions of the imaging units 3 a and 3 b based on the positional deviation amounts of the imaging units 3 a and 3 b calculated by the imaging position deviation amount calculation unit 8. The imaging means moving device 5 is controlled so that the assumed imaging position becomes.

前記のように構成した表面欠陥検出装置で、照明手段2a,2bから投射して被検査物4の表面で反射した光を撮像手段3a,3bで検出して、撮像手段3a,3bの実撮像位置と欠陥検出をするために設定された撮像条件となる想定撮像位置との位置ずれ量を検出する原理を説明する。   With the surface defect detection apparatus configured as described above, the light that is projected from the illumination means 2a and 2b and reflected by the surface of the inspection object 4 is detected by the imaging means 3a and 3b, and the actual imaging of the imaging means 3a and 3b. The principle of detecting the positional deviation amount between the position and the assumed imaging position that is the imaging condition set for detecting the defect will be described.

例えば1つの照明手段2aから被検査物4に光を投射して1つの撮像手段3aで反射光を受光する場合、撮像手段3aの設定基準位置は、図3(a)の反射光の輝度分布に示すように、被検査物4表面からの反射光の分布Aのもっとも輝度が高いところからの偏差量dで規定している。この基準位置に撮像手段3aを設けて撮像しているとき、被検査物4の回転ぶれ等が生じて被検査物4表面の輝線の位置がずれると、図3(b)に示すように、により、被検査物4からの反射光の分布Aがずれて、もっとも輝度の高いところからの偏差量dが偏差量d1と変化して撮像手段3aの検出感度が変わってしまう。この反射光の輝度分布を特許文献3ではエリアセンサで検出して補正するようにしている。   For example, when light is projected from one illumination unit 2a onto the inspection object 4 and reflected light is received by one imaging unit 3a, the setting reference position of the imaging unit 3a is the luminance distribution of the reflected light in FIG. As shown in FIG. 6, the distribution amount A of the reflected light from the surface of the inspection object 4 is defined by the deviation d from the highest luminance. When imaging is performed by providing the imaging means 3a at the reference position, if the rotational blur of the inspection object 4 occurs and the position of the bright line on the surface of the inspection object 4 is shifted, as shown in FIG. As a result, the distribution A of the reflected light from the inspection object 4 shifts, and the deviation amount d from the place with the highest luminance changes to the deviation amount d1 to change the detection sensitivity of the imaging means 3a. In Patent Document 3, the luminance distribution of the reflected light is detected and corrected by an area sensor.

これに対して、この発明の表面欠陥検出装置では、光学系1に2つの照明手段2a,2bと2つの撮像手段3a,3bを設け、照明手段2a,2bから略平行な光を被検査物4表面に投射し、照明手段2aの投射光による反射光を撮像手段3aで受光し、照明手段2bの投射光による反射光を撮像手段3bで受光する。このときの撮像手段3a,3bの設定基準位置は、図4(a)の反射光の輝度分布に示すように、照明手段2aの投射光による反射光の分布Aと照明手段2bの投射光による反射光の分布Bのもっとも輝度が高いところの中間位置に規定している。この基準位置に撮像手段3a,3bを設けておくと、撮像手段3a,3bによる輝度の観測量は同じである。この状態で被検査物4の回転ぶれ等が生じて被検査物4表面の各輝線の位置がずれると、図4(b)に示すように、照明手段2aの投射光による反射光の分布Aと照明手段2bの投射光による反射光の分布Bが変化して、例えば撮像手段3aによる輝度の観測量が低くなり、撮像手段3bによる輝度の観測量が高くなる。この撮像手段3a,3bによる輝度の観測量が同じになるように撮像手段移動装置5を制御する。   On the other hand, in the surface defect detection apparatus of the present invention, the optical system 1 is provided with two illumination means 2a and 2b and two imaging means 3a and 3b, and substantially parallel light is emitted from the illumination means 2a and 2b. 4 is projected onto the surface, reflected light by the projection light of the illumination means 2a is received by the imaging means 3a, and reflected light by the projection light of the illumination means 2b is received by the imaging means 3b. At this time, the setting reference positions of the imaging units 3a and 3b are based on the reflected light distribution A by the projection light of the illumination unit 2a and the projection light of the illumination unit 2b as shown in the luminance distribution of the reflected light in FIG. The reflected light distribution B is defined at an intermediate position where the luminance is highest. If the imaging means 3a and 3b are provided at the reference position, the amount of luminance observed by the imaging means 3a and 3b is the same. In this state, if the rotational shake of the inspection object 4 occurs and the position of each bright line on the surface of the inspection object 4 shifts, as shown in FIG. 4B, the distribution A of the reflected light due to the projection light of the illumination means 2a. The distribution B of the reflected light due to the projection light of the illumination unit 2b changes, for example, the luminance observation amount by the imaging unit 3a decreases, and the luminance observation amount by the imaging unit 3b increases. The image pickup means moving device 5 is controlled so that the luminance observation amounts by the image pickup means 3a and 3b are the same.

この表面欠陥検出装置で被検査物4の欠陥を検出しているときに、撮像位置制御部7で撮像手段3a,3bの撮像位置を修正するときの動作を図5のフローチャートを参照して説明する。   The operation when the imaging position control unit 7 corrects the imaging positions of the imaging means 3a and 3b when the surface defect detection apparatus detects a defect of the inspection object 4 will be described with reference to the flowchart of FIG. To do.

被検査物4を回転しながら、照明手段2a,2bから略平行な光を被検査物4表面に投射して被検査物4の欠陥を検出しているとき、2つの撮像手段3a,3bは被検査物4からの反射光を検出して、反射光による信号をそれぞれ画像処理部6a,6bに出力する(ステップS1)。画像処理部6a,6bは、それぞれ入力した信号を処理して撮像位置制御部7の撮像位置ずれ量演算部8に輝度信号を出力する。撮像位置ずれ量演算部8は入力した2つの輝度信号を比較し、2つの輝度信号の強度から被検査物4の表面の撮像条件となっている撮像手段3a,3bの実撮像位置と欠陥検出をするためにあらかじめ設定された撮像条件となる想定撮像位置との位置ずれ量を算出して撮像位置補正制御部9に出力する(ステップS2)。撮像位置補正制御部9は、入力した撮像手段3a,3bの位置ずれ量により撮像手段3a,3bの実撮像位置が欠陥検出をするために設定された撮像条件となる想定撮像位置になるように撮像手段移動装置5を制御して撮像手段3a,3bの位置を修正する(ステップS3)。このように撮像手段3a,3bの位置を撮像条件となる想定撮像位置になるように修正した後、欠陥検出処理を実行する(ステップS4)。   When rotating the inspection object 4 and projecting substantially parallel light from the illumination means 2a, 2b onto the surface of the inspection object 4 to detect defects in the inspection object 4, the two imaging means 3a, 3b The reflected light from the inspection object 4 is detected, and signals from the reflected light are output to the image processing units 6a and 6b, respectively (step S1). The image processing units 6 a and 6 b process the input signals, respectively, and output luminance signals to the imaging position deviation amount calculation unit 8 of the imaging position control unit 7. The imaging position deviation amount calculation unit 8 compares the two input luminance signals, and detects the actual imaging positions of the imaging means 3a and 3b that are imaging conditions of the surface of the inspection object 4 and the defect detection from the intensity of the two luminance signals. In order to perform this, a positional deviation amount with respect to an assumed imaging position, which is an imaging condition set in advance, is calculated and output to the imaging position correction control unit 9 (step S2). The imaging position correction control unit 9 causes the actual imaging positions of the imaging units 3a and 3b to become the assumed imaging positions that are the imaging conditions set for detecting a defect based on the input positional deviation amounts of the imaging units 3a and 3b. The position of the image pickup means 3a, 3b is corrected by controlling the image pickup means moving device 5 (step S3). Thus, after correcting the position of the imaging means 3a, 3b to be the assumed imaging position as the imaging condition, the defect detection process is executed (step S4).

このように照明手段2a,2bから略平行な光を被検査物4表面に投射し、照明手段2aからの投射光の被検査物4からの反射光をラインセンサからなる撮像手段3aで検出し、照明手段2bからの投射光の被検査物4からの反射光をラインセンサからなる撮像手段3bで検出して撮像手段3a,3bで検出した輝度信号の強度により撮像手段3a,3bの位置ずれ量を算出して撮像手段3a,3bの位置を修正するとき、撮像手段3a,3bでは各ラインを撮像するたびにライン画像データを出力することにより、取り込み間隔が長いエリアセンサと比べて読み出し間隔が短くて済む。また、1次元のデータのためハードウエア化も容易であり、コスト的にも安価に実現できる。   In this way, light substantially parallel from the illumination means 2a and 2b is projected onto the surface of the inspection object 4, and the reflected light from the inspection object 4 of the projection light from the illumination means 2a is detected by the imaging means 3a comprising a line sensor. The positional deviation of the image pickup means 3a, 3b is detected by the intensity of the luminance signal detected by the image pickup means 3a, 3b by detecting the reflected light from the inspection object 4 of the projection light from the illumination means 2b by the image pickup means 3b comprising a line sensor. When correcting the position of the image pickup means 3a, 3b by calculating the amount, the image pickup means 3a, 3b outputs line image data every time each line is picked up, so that the read interval compared to the area sensor having a long capture interval Is short. In addition, since it is one-dimensional data, it can be easily implemented in hardware and can be realized at low cost.

また、例えば複写機やレーザープリンタ等で使用している感光体ドラムでは、塗膜部材の塗布量のばらつきや、工程の変化により個々の部品ごとに反射率が異なるため、一部品内で一定にできても、部品間を一定感度で検出することは難しい。また、定着ローラ等の部品では、一部品内でも反射率が異なるものもある。このような場合でも、照明手段2a,2bから光学特性が異なる投射光を投射した場合は、反射率の違いは双方に影響し、この反射率の違い影響した反射光の強度を撮像手段3a,3bで検出するから、個々の部品や一部品内で反射率が異なっても、撮像手段3a,3bの位置を安定して想定撮像位置になるように修正することができる。   Also, for example, in photoconductor drums used in copiers and laser printers, the reflectance varies depending on the individual parts due to variations in the coating amount of coating film members and changes in the process. Even if it is possible, it is difficult to detect between parts with constant sensitivity. In addition, some parts such as a fixing roller have different reflectances even within one part. Even in such a case, when projection light having different optical characteristics is projected from the illumination means 2a and 2b, the difference in reflectance affects both, and the intensity of the reflected light affected by the difference in reflectance is determined by the imaging means 3a, Since the detection is performed at 3b, the position of the image pickup means 3a and 3b can be corrected to be the stable image pickup position even if the reflectance differs among individual parts or within one part.

この被検査物4からの反射光分布のずれは、被検査物4の表面の傾きによっても発生する。例えば図6の模式図に示すように、照明手段2から投射光を被検査物4の表面4aに投射してその反射光の輝度を撮像手段3で検出するとき、図6(a)に示すように、撮像手段3の光軸が被検査物4の表面4aと直交している正常なときと比べて、図6(b),(c)に示すように、被検査物4の回転ぶれ等により被検査物4の全体が傾くと、その傾きの状態により撮像手段3に入射する光は明るくなったり暗くなったりする。また、被検査物4の表面の微小な凹凸や突起等による局所的に傾きがある場合も、その形状変化により撮像手段3に入射する光は明るくなったり暗くなったりする。   The deviation of the reflected light distribution from the inspection object 4 also occurs due to the inclination of the surface of the inspection object 4. For example, as shown in the schematic diagram of FIG. 6, when projection light is projected from the illumination unit 2 onto the surface 4 a of the inspection object 4 and the brightness of the reflected light is detected by the imaging unit 3, the image is shown in FIG. Thus, as shown in FIGS. 6B and 6C, as compared with the normal case where the optical axis of the imaging means 3 is orthogonal to the surface 4a of the inspection object 4, the rotational shake of the inspection object 4 When the entire inspection object 4 is tilted due to the above or the like, the light incident on the imaging means 3 becomes brighter or darker depending on the tilted state. Further, even when there is a local inclination due to minute irregularities or protrusions on the surface of the inspection object 4, the light incident on the imaging means 3 becomes brighter or darker due to the shape change.

このように被検査物4の回転ぶれ等により被検査物4の全体が傾いた状態で撮像手段3a,3bにより被検査物4からの反射光を検出すると正常な場合と比べてその強度が変動して欠陥を精度良く検出できなくなる。この被検査物4の全体の傾きも修正して欠陥を検出する第2の表面欠陥検出装置について説明する。   As described above, when the reflected light from the inspection object 4 is detected by the imaging means 3a and 3b in a state where the entire inspection object 4 is inclined due to the rotational shake of the inspection object 4 and the like, the intensity varies as compared with the normal case. As a result, the defect cannot be detected with high accuracy. A description will be given of a second surface defect detection apparatus that detects defects by correcting the overall inclination of the inspection object 4.

第2の表面欠陥検出装置の光学系1は、図7の構成図に示すように、照明手段2aに対して照明手段2bを撮像手段3a,3bの光軸に対して対称に配置している。この場合、照明手段2aで被検査物4に照射した反射した反射光は、図6に示すような分布になるがが、照明手段2bで被検査物4に照射した反射した反射光は、図8に示すような分布になり異なる。また、濃度変化が生ずる場合は、検出する値はともに増減するが、形状変化がある場合は増減方向が逆となる。   In the optical system 1 of the second surface defect detection apparatus, as shown in the block diagram of FIG. 7, the illumination unit 2b is arranged symmetrically with respect to the optical axis of the imaging units 3a and 3b with respect to the illumination unit 2a. . In this case, the reflected light reflected on the inspection object 4 by the illumination means 2a has a distribution as shown in FIG. 6, but the reflected light irradiated on the inspection object 4 by the illumination means 2b is shown in FIG. The distribution is different as shown in FIG. When the density change occurs, both the detected values increase or decrease, but when the shape changes, the increase / decrease direction is reversed.

この第2の表面欠陥検出装置の欠陥検出処理部10は、図9のブロック図に示すように、画像処理部6a,6bと撮像位置制御部7と表面傾き検出部11と欠陥検出部12及び出力部13を有する。画像処理部6aは、撮像手段3aからの信号を処理してフーリエ変換して得た空間周波数により低周波成分と高周波成分とに分離して、低周波成分を撮像位置制御部7に出力し、高周波成分を表面傾き検出部11に出力する。画像処理部6bは、撮像手段3bからの信号を処理してフーリエ変換して得た空間周波数により低周波成分と高周波成分とに分離して、低周波成分を撮像位置制御部7に出力する。撮像位置制御部7は、撮像位置ずれ量演算部8と撮像位置補正制御部9を有する。撮像位置ずれ量演算部8は、画像処理部6aから入力する撮像手段3aの信号の低周波成分と画像処理部6bから入力する撮像手段3bの信号の低周波成分により、被検査物4の表面の撮像条件となっている撮像手段3a,3bの実撮像位置と欠陥検出をするためにあらかじめ設定された撮像条件となる想定撮像位置との位置ずれ量を算出する。撮像位置補正制御部9は、撮像位置ずれ量演算部8で算出した撮像手段3a,3bの位置ずれ量の平均値成分から、その副走査方向にずれを修正するように撮像手段移動装置5の位置制御を行い、主走査方向全体に分布するずれ量の傾き成分から撮像手段3a,3bと被検査物4の傾きのずれを相殺するように撮像手段移動装置5の角度制御を行う。表面傾き検出部11は、画像処理部6aから入力する撮像手段3aの信号の高周波成分により被検査物4の表面の局部的な傾きを検出する。欠陥検出部12は、表面傾き検出部11で検出した被検査物4の局所的な傾きから、被検査物4の表面の微小な凹凸や突起等の表面欠陥や濃度欠陥を検出する。出力部13は、欠陥検出部12で検出した表面欠陥を表示装置14に表示するとともに外部記憶装置等に出力する。   As shown in the block diagram of FIG. 9, the defect detection processing unit 10 of the second surface defect detection apparatus includes image processing units 6a and 6b, an imaging position control unit 7, a surface inclination detection unit 11, a defect detection unit 12, and An output unit 13 is included. The image processing unit 6a separates the low frequency component and the high frequency component by the spatial frequency obtained by processing the signal from the imaging unit 3a and performing Fourier transform, and outputs the low frequency component to the imaging position control unit 7, The high frequency component is output to the surface tilt detection unit 11. The image processing unit 6 b separates the low frequency component and the high frequency component based on the spatial frequency obtained by processing the signal from the imaging unit 3 b and performing Fourier transform, and outputs the low frequency component to the imaging position control unit 7. The imaging position control unit 7 includes an imaging position deviation amount calculation unit 8 and an imaging position correction control unit 9. The imaging position deviation amount calculation unit 8 is configured to detect the surface of the inspection object 4 based on the low frequency component of the signal of the imaging unit 3a input from the image processing unit 6a and the low frequency component of the signal of the imaging unit 3b input from the image processing unit 6b. The amount of positional deviation between the actual imaging position of the imaging means 3a and 3b, which is the imaging condition, and the assumed imaging position that is an imaging condition set in advance to detect a defect is calculated. The imaging position correction control unit 9 uses the average value component of the positional deviation amounts of the imaging units 3a and 3b calculated by the imaging positional deviation amount calculation unit 8 so as to correct the deviation in the sub-scanning direction. The position control is performed, and the angle control of the image pickup means moving device 5 is performed so as to cancel the deviation of the inclination of the image pickup means 3a, 3b and the inspection object 4 from the inclination component of the shift amount distributed in the entire main scanning direction. The surface tilt detection unit 11 detects the local tilt of the surface of the inspection object 4 based on the high frequency component of the signal of the imaging means 3a input from the image processing unit 6a. The defect detection unit 12 detects surface defects such as minute irregularities and protrusions on the surface of the inspection object 4 and density defects from the local inclination of the inspection object 4 detected by the surface inclination detection unit 11. The output unit 13 displays the surface defects detected by the defect detection unit 12 on the display device 14 and outputs them to an external storage device or the like.

この第2の表面欠陥検出装置で撮像手段3a,3bの撮像位置を修正しながら被検査物4の欠陥を検出するときの動作を図10のフローチャートを参照して説明する。   The operation when the defect of the inspection object 4 is detected while correcting the imaging position of the imaging means 3a, 3b with the second surface defect detection device will be described with reference to the flowchart of FIG.

被検査物4を回転しながら、照明手段2a,2bから光を被検査物4表面に投射して被検査物4の欠陥を検出するとき、まず、2つの撮像手段3a,3bは被検査物4からの反射光を検出して、反射光による信号をそれぞれ画像処理部6a,6bに出力する(ステップS11)。画像処理部6aは、撮像手段3aからの信号を処理してフーリエ変換して得た空間周波数により低周波成分と高周波成分とに分離して、低周波成分を撮像位置制御部7の撮像位置ずれ量演算部8に出力し、高周波成分を表面傾き検出部11に出力する。画像処理部6bは、撮像手段3bからの信号を処理してフーリエ変換して得た空間周波数により低周波成分と高周波成分とに分離して、低周波成分を撮像位置ずれ量演算部8に出力する(ステップS12)。ここで示す高周波成分とは、主走査方向の検出輝度の空間分布を周波数変換したときの高周波数側の成分より構成される成分を示し、図11(a)に示す撮像手段3aからの信号Cを、図11(b)に示すように、低周波成分Dと高周波成分Eに分離すると、低周波成分Cは全体の変化に対応し、高周波成分Eは局所的な変化に対応する。   When detecting the defect of the inspection object 4 by projecting light from the illumination means 2a, 2b onto the surface of the inspection object 4 while rotating the inspection object 4, first, the two imaging means 3a, 3b are inspected. The reflected light from 4 is detected, and signals from the reflected light are output to the image processing units 6a and 6b, respectively (step S11). The image processing unit 6a separates the low frequency component into a low frequency component and a high frequency component based on the spatial frequency obtained by processing the signal from the imaging unit 3a and performing Fourier transform, and the low frequency component is captured by the imaging position control unit 7. It outputs to the quantity calculation part 8, and outputs a high frequency component to the surface inclination detection part 11. FIG. The image processing unit 6b separates the low frequency component and the high frequency component by the spatial frequency obtained by processing the signal from the imaging unit 3b and performing Fourier transform, and outputs the low frequency component to the imaging position deviation amount calculation unit 8. (Step S12). The high frequency component shown here is a component composed of a component on the high frequency side when the spatial distribution of the detected luminance in the main scanning direction is frequency-converted, and the signal C from the imaging means 3a shown in FIG. As shown in FIG. 11B, when the low frequency component D and the high frequency component E are separated, the low frequency component C corresponds to the entire change, and the high frequency component E corresponds to the local change.

撮像位置ずれ量演算部8は、画像処理部6a,6bから入力する撮像手段3a,3bから入力した低周波成分により、被検査物4の表面の撮像条件となっている撮像手段3a,3bの実撮像位置と欠陥検出をするためにあらかじめ設定された撮像条件となる想定撮像位置との位置ずれ量を算出して撮像位置補正制御部9に出力する(ステップS13)。撮像位置補正制御部9は、入力した位置ずれ量の平均値成分から、その副走査方向にずれを修正するように撮像手段移動装置5の位置制御を行い、主走査方向全体に分布するずれ量の傾き成分から撮像手段3a,3bと被検査物4の傾きのずれを相殺するように撮像手段移動装置5の角度制御を行う(ステップS14)。   The imaging position deviation amount calculation unit 8 includes the imaging units 3a and 3b, which are imaging conditions for the surface of the inspection object 4, based on the low frequency components input from the imaging units 3a and 3b input from the image processing units 6a and 6b. A positional deviation amount between the actual imaging position and an assumed imaging position that is an imaging condition set in advance to detect a defect is calculated and output to the imaging position correction control unit 9 (step S13). The imaging position correction control unit 9 performs position control of the imaging means moving device 5 so as to correct the deviation in the sub-scanning direction from the input average value component of the deviation amount, and the deviation amount distributed in the entire main scanning direction. The angle control of the image pickup means moving device 5 is performed so as to cancel the deviation of the inclination of the image pickup means 3a, 3b and the inspection object 4 from the inclination component (step S14).

撮像手段3a,3bの撮像位置を修正すると、修正した撮影位置で撮像手段3a,3bにより被検査物4からの反射光を検出し(ステップS15)、画像処理部6aで撮像手段3aからの信号を低周波成分と高周波成分とに分離して、高周波成分を表面傾き検出部11に出力する(ステップS16)。表面傾き検出部11は、入力した高周波成分により被検査物4表面の局部的な傾きを検出して欠陥検出部12に出力する(ステップS17)。欠陥検出部12は、入力した被検査物4の局所的な傾きの信号を積分して、被検査物4の表面の微小な凹凸や突起等の表面欠陥及び濃度欠陥を検出する。出力部13は、欠陥検出部12で検出した欠陥を表示装置14に表示するとともに外部記憶装置等に出力する(ステップS18)。   When the imaging positions of the imaging units 3a and 3b are corrected, the reflected light from the inspection object 4 is detected by the imaging units 3a and 3b at the corrected imaging positions (step S15), and the signal from the imaging unit 3a is detected by the image processing unit 6a. Are separated into a low frequency component and a high frequency component, and the high frequency component is output to the surface tilt detection unit 11 (step S16). The surface inclination detection unit 11 detects the local inclination of the surface of the inspection object 4 from the input high frequency component and outputs it to the defect detection unit 12 (step S17). The defect detection unit 12 integrates the input local inclination signal of the inspection object 4 to detect surface defects and density defects such as minute irregularities and protrusions on the surface of the inspection object 4. The output unit 13 displays the defects detected by the defect detection unit 12 on the display device 14 and outputs them to an external storage device or the like (step S18).

このようにラインセンサからなる照明手段2a,2bから被検査物4に投射した光の反射光により被検査物4と撮像手段3a,3bとの相対位置を修正して被検査物4の欠陥を検出するから、簡単な構成で被検査物4の各種欠陥を精度良く検出することができる。   In this way, the relative position between the inspection object 4 and the imaging means 3a, 3b is corrected by the reflected light of the light projected from the illumination means 2a, 2b composed of line sensors onto the inspection object 4, and defects in the inspection object 4 are corrected. Since it detects, various defects of the inspection object 4 can be accurately detected with a simple configuration.

前記説明では撮像手段3aで撮像した信号の高周波成分から被検査物4の表面の局部的な傾きを検出する場合について説明したが、撮像手段3aで撮像した信号の高周波成分と撮像手段3bで撮像した信号の高周波成分の両方を使用して被検査物4の表面の局部的な傾きを検出しても良い。この場合は、図12に示すように、撮像手段3aで撮像した信号の高周波成分Fに対して撮像手段3bで撮像した信号の高周波成分Gは逆位相になる。この場合、照明手段2a,2bあるいは撮像手段3a,3bが傾いている状態では、図13のように、撮像手段3aの主走査方向の傾きHと撮像手段3bの主走査方向の傾きIはで逆に傾く。このため、両信号の差分信号Jの傾き(1次)成分が零となるように傾きを補正することによって、傾き変化に対しても撮像位置を一定となるように制御することができる。   In the above description, the case where the local inclination of the surface of the inspection object 4 is detected from the high frequency component of the signal imaged by the imaging means 3a has been described. However, the high frequency component of the signal imaged by the imaging means 3a and the imaging means 3b are used for imaging. The local inclination of the surface of the inspection object 4 may be detected using both the high frequency components of the signal. In this case, as shown in FIG. 12, the high-frequency component G of the signal imaged by the imaging unit 3b is opposite in phase to the high-frequency component F of the signal imaged by the imaging unit 3a. In this case, when the illumination means 2a, 2b or the imaging means 3a, 3b are tilted, the inclination H in the main scanning direction of the imaging means 3a and the inclination I in the main scanning direction of the imaging means 3b are as shown in FIG. It leans in reverse. Therefore, by correcting the inclination so that the inclination (first-order) component of the difference signal J between the two signals becomes zero, the imaging position can be controlled to be constant even with respect to the inclination change.

前記説明では、照明手段2aに対して照明手段2bを撮像手段3a,3bの光軸に対して対称に配置して、撮像手段3a,3bからの信号の低周波成分で撮像手段3a,3bの位置と角度を修正し、高周波成分で被検査物4の局所的な傾きを検出して、被検査物4の欠陥を検出する場合について説明したが、照明手段2a,2bを撮像手段3a,3bの主走査方向に対して略平行に配置した場合も同様にして撮像手段3a,3bの位置と角度を修正し、被検査物4の局所的な傾きを検出して、被検査物4の欠陥を検出することができる。   In the above description, the illumination means 2b is arranged symmetrically with respect to the optical axis of the imaging means 3a and 3b with respect to the illumination means 2a, and the low frequency components of the signals from the imaging means 3a and 3b are used for the imaging means 3a and 3b. The case where the position and the angle are corrected and the local inclination of the inspection object 4 is detected with the high frequency component to detect the defect of the inspection object 4 has been described. However, the illumination means 2a and 2b are replaced with the imaging means 3a and 3b. In the same way, the positions and angles of the image pickup means 3a and 3b are corrected, the local inclination of the inspection object 4 is detected, and the defect of the inspection object 4 is detected. Can be detected.

また、照明手段2a,2bを撮像手段3a,3bの主走査方向に対して略平行に配置したて円筒状の被検査物4の欠陥を検出する場合、図14(a)に示すように、被検査物4の直径が小径の場合と、図14(b)に示すように、被検査物4の直径が大径の場合とで反射方向が異なり、照明手段2a,2bの投射光による反射光分布のずれ量も変化する。そこで照明手段2a,2bによる検出輝度を同じになる位置が、所定感度になるようにするために、被検査物4の直径に応じて照明手段2a,2bの間隔を変化させる等を行い最適な画像入力条件に調整すると良い。このように被検査物4の直径に応じて照明手段2a,2bの間隔を変化させることにより、最適な感度の位置で照明手段2a,2bの検出輝度を同じになるように調整することができる。   Further, when detecting the defect of the cylindrical inspection object 4 by arranging the illumination means 2a, 2b substantially parallel to the main scanning direction of the imaging means 3a, 3b, as shown in FIG. The reflection direction differs between the case where the diameter of the inspection object 4 is small and the case where the diameter of the inspection object 4 is large as shown in FIG. 14B, and reflection by the projection light of the illumination means 2a and 2b. The amount of deviation of the light distribution also changes. Therefore, in order to achieve a predetermined sensitivity at the position where the detection brightness by the illumination means 2a, 2b is the same, the interval between the illumination means 2a, 2b is changed according to the diameter of the object 4 to be examined. Adjust to image input conditions. In this way, by changing the interval between the illumination means 2a and 2b in accordance with the diameter of the object 4 to be inspected, the detection brightness of the illumination means 2a and 2b can be adjusted to be the same at the optimum sensitivity position. .

この発明の表面欠陥検出装置の光学系の構成図である。It is a block diagram of the optical system of the surface defect detection apparatus of this invention. 表面欠陥検出装置の撮像位置制御部の構成を示すブロック図である。It is a block diagram which shows the structure of the imaging position control part of a surface defect detection apparatus. 1つの照明手段による反射光の輝度分布を示す模式図である。It is a schematic diagram which shows the luminance distribution of the reflected light by one illumination means. 2つの照明手段による反射光の輝度分布を示す模式図である。It is a schematic diagram which shows the luminance distribution of the reflected light by two illumination means. 撮像手段の撮像位置を修正する制御動作を示すフローチャートである。It is a flowchart which shows the control operation | movement which corrects the imaging position of an imaging means. 被検査物が傾いた場合の反射光の輝度分布を示す模式図である。It is a schematic diagram which shows the luminance distribution of reflected light when a to-be-inspected object inclines. 第2の表面欠陥検出装置の光学系の構成図である。It is a block diagram of the optical system of the 2nd surface defect detection apparatus. 被検査物が傾いた場合の他の反射光の輝度分布を示す模式図である。It is a schematic diagram which shows the luminance distribution of the other reflected light when a to-be-inspected object inclines. 表面欠陥検出装置の欠陥検出処理部の構成を示すブロック図である。It is a block diagram which shows the structure of the defect detection process part of a surface defect detection apparatus. 被検査物の欠陥検出動作を示すフローチャートとである。It is a flowchart which shows the defect detection operation | movement of a to-be-inspected object. 撮像手段からの信号とその低周波成分と高周波成分を示す模式図である。It is a schematic diagram which shows the signal from an imaging means, its low frequency component, and a high frequency component. 2つの撮像手段からの信号の高周波成分を示す模式図である。It is a schematic diagram which shows the high frequency component of the signal from two imaging means. 2つの照明手段あるいは撮像手段が傾いている状態における撮像手段から出力する輝度信号の傾きを示す模式図である。It is a schematic diagram which shows the inclination of the luminance signal output from the image pickup means in a state where two illumination means or image pickup means are inclined. 直径が異なる円筒状の被検査物からの反射信号を示す模式図である。It is a schematic diagram which shows the reflected signal from the cylindrical to-be-inspected object from which a diameter differs.

符号の説明Explanation of symbols

1;光学系、2;照明手段、3;撮像手段、4;被検査物、5;撮像手段移動装置、
6;画像処理部、7;撮像位置制御部、8;撮像位置ずれ量演算部、
9;撮像位置補正制御部、10;欠陥検出処理部、11;表面傾き検出部、
12;欠陥検出部、13;出力部、14;表示装置。
DESCRIPTION OF SYMBOLS 1; Optical system, 2; Illuminating means, 3; Imaging means, 4;
6; Image processing unit, 7; Imaging position control unit, 8; Imaging position deviation amount calculation unit,
9; Imaging position correction control unit, 10; Defect detection processing unit, 11; Surface tilt detection unit,
12; Defect detection unit, 13; Output unit, 14; Display device.

Claims (11)

撮像手段に対し相対移動する被検査物の表面に照明手段から光を照射し、その反射光を撮像手段に順次取り込み被検査物表面画像を入力する表面欠陥検出装置であって、
複数の照明手段と複数の撮像手段及び欠陥検出処理部を有し、
前記複数の照明手段は、互いに分離可能な異なる光学特性で、かつ、前記撮像手段の主走査方向に対して略平行なライン状光源により構成され、
前記複数の撮像手段は、前記複数の照明手段の異なる光学特性の反射光を区別して受光するラインセンサで構成され、
前記欠陥検出処理部は、前記複数の撮像手段からの信号の明度変化から、前記複数の撮像手段の実撮像位置と欠陥検出をするためにあらかじめ設定された撮像条件となる想定撮像位置とのずれ量を演算する撮像位置ずれ量演算手段と、前記撮像位置ずれ量演算手段で演算した前記複数の撮像手段のずれ量を前記想定撮像位置となるように制御する撮像位置補正制御手段とを有することを特徴とする表面欠陥検出装置。
A surface defect detection device that irradiates light from an illumination unit on the surface of an inspection object that moves relative to an imaging unit, sequentially captures the reflected light into the imaging unit, and inputs an inspection object surface image.
Having a plurality of illumination means, a plurality of imaging means and a defect detection processing unit;
The plurality of illuminating units are constituted by linear light sources having different optical characteristics that are separable from each other and substantially parallel to the main scanning direction of the imaging unit,
The plurality of imaging units are configured by line sensors that distinguish and receive reflected light of different optical characteristics of the plurality of illumination units,
The defect detection processing unit detects a deviation between an actual imaging position of the plurality of imaging units and an assumed imaging position serving as an imaging condition set in advance for detecting a defect, based on a change in brightness of signals from the plurality of imaging units. An imaging position deviation amount calculating means for calculating an amount; and an imaging position correction control means for controlling the deviation amounts of the plurality of imaging means calculated by the imaging position deviation amount calculating means to be the assumed imaging position. A surface defect detection device characterized by the above.
撮像手段に対し相対移動する被検査物の表面に照明手段から光を照射し、その反射光を撮像手段に順次取り込み被検査物表面画像を入力する表面欠陥検出装置であって、
複数の照明手段と複数の撮像手段及び欠陥検出処理手段を有し、
前記複数の照明手段は、互いに分離可能な異なる光学特性で、かつ、被検査物と前記複数の撮像手段の光軸がなす平面の異なる側に配置され、前記撮像手段の主走査方向に対して略平行なライン状光源により構成され、
前記複数の撮像手段は、前記複数の照明手段の異なる光学特性の反射光を区別して受光するラインセンサで構成され、
前記欠陥検出処理手段は、前記複数の撮像手段からの信号の低周波成分から、前記複数の撮像手段の実撮像位置と欠陥検出をするためにあらかじめ設定された撮像条件となる想定撮像位置とのずれ量を演算する撮像位置ずれ量演算手段と、前記撮像位置ずれ量演算手段で演算した前記複数の撮像手段のずれ量を前記想定撮像位置となるように制御する撮像位置補正制御手段と、前記1又は複数の撮像手段からの信号の高周波成分から被検査物表面の局所的な傾きを検出する表面傾き検出手段と、前記表面傾き検出手段で検出した被検査物表面の局所的な傾きから被検査物の表面欠陥と濃度欠陥を検出する欠陥検出手段とを有することを特徴とする表面欠陥検出装置。
A surface defect detection device that irradiates light from an illumination unit on the surface of an inspection object that moves relative to an imaging unit, sequentially captures the reflected light into the imaging unit, and inputs an inspection object surface image.
Having a plurality of illumination means, a plurality of imaging means and defect detection processing means,
The plurality of illuminating means are arranged on different sides having different optical characteristics that are separable from each other and on the plane formed by the optical axis of the object to be inspected and the plurality of imaging means, with respect to the main scanning direction of the imaging means. Consists of a substantially parallel line light source,
The plurality of imaging units are configured by line sensors that distinguish and receive reflected light of different optical characteristics of the plurality of illumination units,
The defect detection processing means includes an actual imaging position of the plurality of imaging means and an assumed imaging position serving as an imaging condition set in advance for detecting a defect from low frequency components of signals from the plurality of imaging means. An imaging position deviation amount calculating means for calculating a deviation amount; an imaging position correction control means for controlling the deviation amounts of the plurality of imaging means calculated by the imaging position deviation amount calculating means to be the assumed imaging position; A surface inclination detecting means for detecting a local inclination of the surface of the object to be inspected from a high-frequency component of a signal from one or a plurality of imaging means; a surface inclination detecting means detected from the local inclination of the surface of the inspecting object detected by the surface inclination detecting means; A surface defect detection apparatus comprising a defect detection means for detecting a surface defect and a density defect of an inspection object.
前記撮像位置補正制御手段は、前記撮像位置ずれ量演算手段で演算した主走査方向全体に分布するずれ量の平均値成分から前記撮像手段の副走査方向の位置ずれを修正する位置制御を行い、主走査方向全体に分布するずれ量の傾き成分から前記撮像手段と被検査物との傾きを修正する角度制御を行う請求項2記載の表面欠陥検出装置。   The imaging position correction control means performs position control for correcting the positional deviation in the sub-scanning direction of the imaging means from the average value component of the deviation amount distributed in the entire main scanning direction calculated by the imaging position deviation amount calculation means, The surface defect detection apparatus according to claim 2, wherein angle control is performed to correct an inclination between the imaging unit and the inspection object based on an inclination component of a deviation amount distributed in the entire main scanning direction. 前記欠陥検出手段は、前記表面傾き検出手段で検出した被検査物表面の局所的な傾きから被検査物の表面の凹凸とその高さを検出する請求項2又は3記載の表面欠陥検出装置。   The surface defect detection device according to claim 2 or 3, wherein the defect detection means detects the unevenness and the height of the surface of the inspection object from the local inclination of the surface of the inspection object detected by the surface inclination detection means. 前記複数の照明手段は、被検査物と前記撮像手段の光軸とのなす平面に対して同じ側に設けられている請求項1乃至4のいずれかに記載の表面欠陥検出装置。   5. The surface defect detection device according to claim 1, wherein the plurality of illumination units are provided on the same side with respect to a plane formed by an object to be inspected and an optical axis of the imaging unit. 前記複数の照明手段は、被検査物と前記撮像手段の光軸とのなす平面に対して異なる側に設けられている請求項1乃至5のいずれかに記載の表面欠陥検出装置。   The surface defect detection device according to claim 1, wherein the plurality of illumination units are provided on different sides with respect to a plane formed by an object to be inspected and an optical axis of the imaging unit. 撮像手段に対し相対移動する被検査物の表面に照明手段から光を照射し、その反射光を撮像手段に順次取り込み被検査物表面画像を入力する表面欠陥検出方法であって、
複数の照明手段から互いに分離可能な異なる光学特性で、かつ、前記撮像手段の主走査方向に対して略平行なラインビームを被検査物表面に照射し、
複数の撮像手段で前記複数の照明手段の異なる光学特性の反射光を区別して受光し、
前記複数の撮像手段からの信号の明度変化から、前記複数の撮像手段の実撮像位置と欠陥検出をするためにあらかじめ設定された撮像条件となる想定撮像位置とのずれ量を演算し、演算した前記複数の撮像手段のずれ量を前記想定撮像位置となるように制御して被検査物の欠陥を検出することを特徴とする表面欠陥検出方法。
A surface defect detection method for irradiating light from an illuminating unit on a surface of an inspection object that moves relative to an imaging unit, sequentially capturing the reflected light into the imaging unit, and inputting an inspection target surface image,
Irradiate the surface of the object to be inspected with different optical characteristics separable from each other from a plurality of illumination means and substantially parallel to the main scanning direction of the imaging means,
A plurality of imaging means distinguishes and receives reflected light of different optical characteristics of the plurality of illumination means,
A deviation amount between an actual imaging position of the plurality of imaging units and an assumed imaging position that is a preset imaging condition for detecting a defect is calculated from a change in brightness of signals from the plurality of imaging units, and is calculated. A surface defect detection method, comprising: detecting a defect of an inspection object by controlling a shift amount of the plurality of imaging means to be the assumed imaging position.
撮像手段に対し相対移動する被検査物の表面に照明手段から光を照射し、その反射光を撮像手段に順次取り込み被検査物表面画像を入力する表面欠陥検出方法であって、
複数の照明手段から互いに分離可能な異なる光学特性で、かつ、前記撮像手段の主走査方向に対して略平行なラインビームを被検査物表面に照射し、
複数の撮像手段で前記複数の照明手段の異なる光学特性の反射光を区別して受光し、
前記複数の撮像手段からの信号の低周波成分から、前記複数の撮像手段の実撮像位置と欠陥検出をするためにあらかじめ設定された撮像条件となる想定撮像位置とのずれ量を演算し、演算した前記複数の撮像手段のずれ量を前記想定撮像位置となるように制御し、前記撮像手段からの信号の高周波成分から被検査物表面の局所的な傾きを検出し、検出した被検査物表面の局所的な傾きから被検査物の表面欠陥と濃度欠陥を検出することを特徴とする表面欠陥検出方法。
A surface defect detection method for irradiating light from an illuminating unit on a surface of an inspection object that moves relative to an imaging unit, sequentially capturing the reflected light into the imaging unit, and inputting an inspection target surface image,
Irradiate the surface of the object to be inspected with different optical characteristics separable from each other from a plurality of illumination means and substantially parallel to the main scanning direction of the imaging means,
A plurality of imaging means distinguishes and receives reflected light of different optical characteristics of the plurality of illumination means,
From the low-frequency components of the signals from the plurality of imaging means, calculate a deviation amount between the actual imaging positions of the plurality of imaging means and an assumed imaging position that is a preset imaging condition for detecting a defect. The amount of deviation of the plurality of imaging means is controlled to be the assumed imaging position, the local inclination of the surface of the inspection object is detected from the high frequency component of the signal from the imaging means, and the detected inspection object surface A surface defect detection method comprising detecting a surface defect and a density defect of an inspection object from a local inclination of the object.
前記演算した主走査方向全体に分布するずれ量の平均値成分から前記撮像手段の副走査方向の位置ずれを修正する位置制御を行い、主走査方向全体に分布するずれ量の傾き成分から前記撮像手段と被検査物との傾きを修正する角度制御を行う請求項8記載の表面欠陥検出方法。   Position control is performed to correct the positional deviation in the sub-scanning direction of the imaging unit from the calculated average component of the deviation amount distributed in the entire main scanning direction, and the imaging is performed from the slope component of the deviation amount distributed in the entire main scanning direction. 9. The surface defect detection method according to claim 8, wherein angle control is performed to correct the inclination between the means and the inspection object. 前記検出した被検査物表面の局所的な傾きから被検査物の表面の凹凸とその高さを検出する請求項8又は9記載の表面欠陥検出方法。   10. The surface defect detection method according to claim 8, wherein the surface irregularities and the height of the surface of the inspection object are detected from the detected local inclination of the surface of the inspection object. 前記被検査物の表面が曲面で形成されている場合、その曲率に応じて前記複数の照明手段の位置を可変する8乃至10のいずれかに記載の表面欠陥検出方法。   11. The surface defect detection method according to any one of 8 to 10, wherein when the surface of the object to be inspected is formed with a curved surface, the positions of the plurality of illumination means are varied according to the curvature thereof.
JP2006250162A 2006-09-15 2006-09-15 Apparatus and method for detecting surface defect Pending JP2008070273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006250162A JP2008070273A (en) 2006-09-15 2006-09-15 Apparatus and method for detecting surface defect

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006250162A JP2008070273A (en) 2006-09-15 2006-09-15 Apparatus and method for detecting surface defect

Publications (1)

Publication Number Publication Date
JP2008070273A true JP2008070273A (en) 2008-03-27

Family

ID=39291976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006250162A Pending JP2008070273A (en) 2006-09-15 2006-09-15 Apparatus and method for detecting surface defect

Country Status (1)

Country Link
JP (1) JP2008070273A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010060500A (en) * 2008-09-05 2010-03-18 Showa Denko Kk Device for inspecting surface of cylindrical body
KR101421941B1 (en) * 2012-09-21 2014-07-28 주식회사 씨케이앤비 Apparatus for detecting defect
JP2015225003A (en) * 2014-05-29 2015-12-14 フロンティアシステム株式会社 Appearance inspection device
JP2018146380A (en) * 2017-03-06 2018-09-20 Jfeスチール株式会社 Abnormality determination method of surface inspection device and surface inspection device thereof
JP2021067549A (en) * 2019-10-23 2021-04-30 株式会社野毛電気工業 Defect inspection device and defect inspection method
CN113466960A (en) * 2021-05-21 2021-10-01 山东威鼎航检测设备有限公司 Method, system and equipment for detecting foreign matters on airport road
WO2023181668A1 (en) * 2022-03-24 2023-09-28 富士フイルム株式会社 Image formation device, image formation method, and inspection method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010060500A (en) * 2008-09-05 2010-03-18 Showa Denko Kk Device for inspecting surface of cylindrical body
KR101421941B1 (en) * 2012-09-21 2014-07-28 주식회사 씨케이앤비 Apparatus for detecting defect
JP2015225003A (en) * 2014-05-29 2015-12-14 フロンティアシステム株式会社 Appearance inspection device
JP2018146380A (en) * 2017-03-06 2018-09-20 Jfeスチール株式会社 Abnormality determination method of surface inspection device and surface inspection device thereof
JP2021067549A (en) * 2019-10-23 2021-04-30 株式会社野毛電気工業 Defect inspection device and defect inspection method
JP7111370B2 (en) 2019-10-23 2022-08-02 株式会社野毛電気工業 Defect inspection method
CN113466960A (en) * 2021-05-21 2021-10-01 山东威鼎航检测设备有限公司 Method, system and equipment for detecting foreign matters on airport road
WO2023181668A1 (en) * 2022-03-24 2023-09-28 富士フイルム株式会社 Image formation device, image formation method, and inspection method

Similar Documents

Publication Publication Date Title
JP2008070273A (en) Apparatus and method for detecting surface defect
EP1959487B1 (en) Surface roughness tester
JP5682419B2 (en) Inspection method and inspection apparatus
JP2012078144A (en) Surface defect inspection device for transparent body sheet-like material
US8891135B2 (en) Detection of image quality defects in gloss
JP4680640B2 (en) Image input apparatus and image input method
EP2073067B1 (en) A calibration method for compensating for non-uniformity errors in sensors measuring specular reflection
JP6584454B2 (en) Image processing apparatus and method
JP2007327896A (en) Inspection device
WO2013140952A1 (en) Method for defect inspection
EP1703274B1 (en) Defect inspecting method
JP2004022797A (en) Device and method for detecting position of mark
JP2004279367A (en) Surface defect inspection device and control program recording medium
JP2006258663A (en) Surface flaw inspection device
JP4215473B2 (en) Image input method, image input apparatus, and image input program
JP4426386B2 (en) Surface defect inspection apparatus, surface defect inspection method, and program for causing computer to execute the method
JP2007071562A (en) Surface inspection device, surface inspection method, and manufacturing method of film
JPH08219999A (en) Method and apparatus for calibrating surface defect-inspection optical system
JP2008224546A (en) Automatic cylindrical body inspection method
JP4023295B2 (en) Surface inspection method and surface inspection apparatus
JP4216062B2 (en) Defect inspection method
JP2003322516A (en) Shape measuring method and shape measuring device
JP4549838B2 (en) Glossiness measuring method and apparatus
KR20150022359A (en) Inspection-Object Location estimation device using multi camera.
JP2006003168A (en) Measurement method for surface shape and device therefor