JP2003322007A - Hydraulic control device for internal combustion engine - Google Patents

Hydraulic control device for internal combustion engine

Info

Publication number
JP2003322007A
JP2003322007A JP2002131080A JP2002131080A JP2003322007A JP 2003322007 A JP2003322007 A JP 2003322007A JP 2002131080 A JP2002131080 A JP 2002131080A JP 2002131080 A JP2002131080 A JP 2002131080A JP 2003322007 A JP2003322007 A JP 2003322007A
Authority
JP
Japan
Prior art keywords
valve
hydraulic
oil passage
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002131080A
Other languages
Japanese (ja)
Other versions
JP4075448B2 (en
Inventor
Shigeru Sakuragi
茂 桜木
Shoji Yonetani
昭二 米谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002131080A priority Critical patent/JP4075448B2/en
Publication of JP2003322007A publication Critical patent/JP2003322007A/en
Application granted granted Critical
Publication of JP4075448B2 publication Critical patent/JP4075448B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Valve Device For Special Equipments (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve actuation responsiveness of a valve stopping mechanism 14 using working fluid discharged from a second phase changing mechanism 12. <P>SOLUTION: A V-type 8-cylinder internal combustion engine of a one-plane crankshaft type is composed in such a way that the cylinders on one bank can rest, a valve stopping mechanism 14 is provided, and the second phase changing mechanism 12 sharing an oil pump 10 is provided. When resting of the cylinders is started, the second phase changing mechanism 12 is simultaneously actuated to the advance side. A circulation oil passage 48 is provided to supply working fluid discharged from the second phase changing mechanism 12 at the time of this advance action to the valve stopping mechanism 14, thereby responsiveness of the valve stopping mechanism 14 is improved. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、油圧源を共用し
つつ互いに独立して機能する2種類の油圧作動機構、詳
しくは吸気弁の位相変更機構と弁停止機構とを備えた内
燃機関の油圧制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to two types of hydraulic actuating mechanisms that share a hydraulic power source and function independently of each other, and more specifically, the hydraulic pressure of an internal combustion engine provided with an intake valve phase changing mechanism and a valve stop mechanism. Regarding the control device.

【0002】[0002]

【従来の技術】内燃機関の分野では、潤滑油の循環用に
用いられるオイルポンプを油圧源として、各種の油圧作
動機構を作動させることが一般的に行われている。この
ような油圧作動機構として、例えば、機関運転条件に応
じて一部気筒の吸排気弁の開閉を一時的に停止させる弁
停止機構等が挙げられる。上記の弁停止機構は、部分負
荷時などに、一部気筒を休止させ一部気筒のみを稼働さ
せるようにした、いわゆる気筒数制御を行う多気筒内燃
機関に適用されるもので、一般に休止気筒となる気筒群
の吸排気弁、少なくとも吸気弁を停止させるように設け
られる。
2. Description of the Related Art In the field of internal combustion engines, it is common practice to operate various hydraulic operating mechanisms using an oil pump used for circulating lubricating oil as a hydraulic source. Examples of such a hydraulic actuating mechanism include a valve stop mechanism that temporarily stops the opening and closing of intake and exhaust valves of some cylinders in accordance with engine operating conditions. The above valve stop mechanism is applied to a multi-cylinder internal combustion engine that performs so-called cylinder number control, in which some cylinders are deactivated and only some cylinders are operated at the time of partial load, etc. The intake / exhaust valves, and at least the intake valves, of the cylinder group are set to stop.

【0003】また油圧作動機構として、機関運転条件に
応じて吸気弁や排気弁の開閉時期やバルブリフト量を変
化させる可変動弁機構も知られている。油圧式の可変動
弁機構として、特開平5−248217号公報には、低
速用ロッカーアームと高速用ロッカーアームとを切り換
えて使用することにより、吸気弁や排気弁の開閉時期を
2段階に切換可能な可変動弁機構が開示されているが、
吸排気弁の作動角の位相(クランクシャフトに対する位
相)を遅進させる位相変更機構も知られており、かつ既
に実用に供されている。
As a hydraulic actuating mechanism, there is also known a variable valve actuating mechanism which changes the opening / closing timing of the intake valve and the exhaust valve and the valve lift amount according to the engine operating conditions. As a hydraulic variable valve mechanism, in Japanese Patent Laid-Open No. 5-248217, by switching between a low-speed rocker arm and a high-speed rocker arm, the opening / closing timing of an intake valve or an exhaust valve is switched to two stages. A possible variable valve mechanism is disclosed,
A phase changing mechanism that retards the phase of the operating angle of the intake and exhaust valves (the phase with respect to the crankshaft) is also known and has already been put into practical use.

【0004】[0004]

【発明が解決しようとする課題】上記の弁停止機構は、
可変動弁機構例えば位相変更機構と組み合わせて用いる
ことができるが、このように弁停止機構と位相変更機構
とを備えた場合に、機関運転条件が変化して全気筒稼働
状態から一部気筒の休止状態へ移行すべく上記弁停止機
構を切換動作させる際に、通常は、同時に機関運転条件
の変化に伴って位相変更機構が動作する必要があるの
で、弁停止機構へ供給される油圧が不足して作動応答性
の低下を招くおそれがある。このような作動応答性の低
下を防止するために、専用のオイルポンプやアキュムレ
ータ等を設けることも考えられるが、この場合、油圧回
路の構成が複雑になり、重量の増加やコストの増加を招
くおそれがある。
The above-mentioned valve stop mechanism is
It can be used in combination with a variable valve mechanism, for example, a phase changing mechanism. However, when the valve stop mechanism and the phase changing mechanism are provided in this way, the engine operating conditions change and the operating state of all cylinders changes from a partial cylinder to a partial cylinder. When switching the valve stop mechanism to shift to the idle state, the phase change mechanism usually needs to operate at the same time as the engine operating conditions change, so the hydraulic pressure supplied to the valve stop mechanism is insufficient. As a result, the operation response may be deteriorated. A dedicated oil pump, accumulator, or the like may be provided in order to prevent such a decrease in operation responsiveness, but in this case, the configuration of the hydraulic circuit becomes complicated, resulting in an increase in weight and an increase in cost. There is a risk.

【0005】本発明は、このような課題に鑑みてなされ
たものであり、油圧源を共用した弁停止機構と位相変更
機構とを具備する場合に、簡素な構造で弁停止機構の作
動応答性の向上を図ることを目的としている。
The present invention has been made in view of the above problems, and when a valve stop mechanism and a phase changing mechanism sharing a hydraulic pressure source are provided, the operation response of the valve stop mechanism is simple. The purpose is to improve.

【0006】[0006]

【課題を解決するための手段】本発明においては、内燃
機関は、第1気筒群と第2気筒群から構成される。第1
気筒群は、吸気弁の作動角の位相を遅進させる第1位相
変更機構を備え、かつ該第1気筒群のみの稼働時に安定
した運転が可能なように、等間隔燃焼する複数気筒から
なる。また第2気筒群は、同じく吸気弁の作動角の位相
を遅進させる第2位相変更機構を備えるとともに、該第
2位相変更機構と共用する油圧源からの油圧供給により
吸気弁の開閉を一時的に停止させる弁停止機構を備えて
いる。従って、例えば部分負荷時などの所定の運転条件
時に、第2気筒群が休止状態となり、同時に、上記弁停
止機構によって第2気筒群の吸気弁の開閉が停止され
る。なお、上記弁停止機構は、吸気弁および排気弁の双
方を停止するものであってもよい。そして、本発明の油
圧制御装置では、上記第2気筒群の第2位相変更機構が
進角側に動作するときに該第2位相変更機構から排出さ
れる作動油が上記弁停止機構時へ供給されるように、上
記第2位相変更機構と上記弁停止機構との間に還流油路
が設けられている。
According to the present invention, an internal combustion engine is composed of a first cylinder group and a second cylinder group. First
The cylinder group includes a first phase changing mechanism that retards the phase of the operating angle of the intake valve, and is composed of a plurality of cylinders that burn at equal intervals so that stable operation can be performed when only the first cylinder group is operating. . In addition, the second cylinder group also includes a second phase changing mechanism that retards the phase of the operating angle of the intake valve, and temporarily opens and closes the intake valve by supplying hydraulic pressure from a hydraulic source shared with the second phase changing mechanism. It is equipped with a valve stop mechanism that stops it automatically. Therefore, for example, under a predetermined operating condition such as a partial load, the second cylinder group is in the idle state, and at the same time, the valve stop mechanism stops the opening and closing of the intake valve of the second cylinder group. The valve stop mechanism may stop both the intake valve and the exhaust valve. Further, in the hydraulic control device of the present invention, the hydraulic oil discharged from the second phase changing mechanism of the second cylinder group when the second phase changing mechanism of the second cylinder group operates toward the advance side is supplied to the valve stop mechanism. As described above, the return oil passage is provided between the second phase changing mechanism and the valve stop mechanism.

【0007】従って、弁停止機構が弁停止状態に切り換
えられる際に、ほぼ同時に第2位相変更機構が進角側へ
動作すれば、第2位相変更機構から排出される作動油が
弁停止機構へ供給されるので、油圧源からの油圧供給開
始に伴って直ちに弁停止機構が切換動作する。つまり、
通常はそのまま排出される作動油を利用して、弁停止機
構の作動応答性が向上する。
Therefore, if the second phase changing mechanism moves to the advance side almost at the same time when the valve stopping mechanism is switched to the valve stopped state, the hydraulic oil discharged from the second phase changing mechanism is sent to the valve stopping mechanism. Since the hydraulic pressure is supplied, the valve stop mechanism is switched immediately with the start of hydraulic pressure supply from the hydraulic pressure source. That is,
Normally, the operating oil discharged as it is is used to improve the operation response of the valve stop mechanism.

【0008】[0008]

【発明の効果】この発明によれば、弁停止への切換時
に、第2位相変更機構から排出される作動油を還流油路
を通して弁停止機構へ供給することにより、別途アキュ
ムレータ等の特別な油圧補助機器を用いることなく、弁
停止機構の作動応答性を高めることができる。
According to the present invention, at the time of switching to the valve stop, the hydraulic oil discharged from the second phase changing mechanism is supplied to the valve stop mechanism through the return oil passage, so that a special hydraulic pressure such as an accumulator is separately provided. The operation response of the valve stop mechanism can be improved without using an auxiliary device.

【0009】[0009]

【発明の実施の形態】以下、この発明をV型8気筒内燃
機関に適用した一実施例を図面に基づいて詳細に説明す
る。初めに、V型8気筒内燃機関の燃焼間隔等について
説明する。図6は、V型8気筒内燃機関の気筒配置を示
しており、左バンク1と右バンク2とが90°のバンク
角でV型に配置されている。左バンク1は、♯1気筒、
♯3気筒、♯5気筒、♯7気筒の4本の気筒を含んでお
り、右バンク2は、♯2気筒、♯4気筒、♯6気筒、♯
8気筒の4本の気筒を含んでいる。本実施例のV型8気
筒内燃機関は、特に、クランクピンが180°離れた点
に配置される所謂1プレーンクランクシャフト形式のも
のであって、8つの気筒の点火順序は、図7に示すよう
に、「♯1→♯4→♯5→♯2→♯7→♯6→♯3→♯
8→」となり、それぞれの燃焼間隔は90°である。こ
れを各バンク毎にみると、左バンク1では、180°の
燃焼間隔でもって「♯1→♯5→♯7→♯3→」とな
り、右バンク2では、同じく180°の燃焼間隔でもっ
て「♯4→♯2→♯6→♯8→」となる。つまり、いず
れのバンクも等間隔燃焼である。従って、本実施例で
は、一方のバンク例えば右バンク2の4つの気筒が常時
稼働する第1気筒群となり、他方のバンクつまり左バン
ク1の4つの気筒が運転条件により休止可能な第2気筒
群となっている。右バンクの第1気筒群のみで運転を行
う場合には、上記のように、「♯4→♯2→♯6→♯8
→」の順に180°毎の等間隔で点火される。従って、
左バンク1の気筒を休止させた状態で安定した運転が可
能であるとともに、排気干渉の低減による出力向上が可
能である。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment in which the present invention is applied to a V-type 8-cylinder internal combustion engine will be described in detail below with reference to the drawings. First, the combustion interval and the like of the V-type 8-cylinder internal combustion engine will be described. FIG. 6 shows a cylinder arrangement of a V-type 8-cylinder internal combustion engine, in which the left bank 1 and the right bank 2 are arranged in a V-shape with a bank angle of 90 °. Left bank 1 is cylinder # 1,
It includes four cylinders of # 3 cylinder, # 5 cylinder, and # 7 cylinder, and the right bank 2 includes # 2 cylinder, # 4 cylinder, # 6 cylinder, and # 6 cylinder.
It includes four cylinders, eight cylinders. The V-type 8-cylinder internal combustion engine of this embodiment is of the so-called 1-plane crankshaft type in which the crankpins are arranged at 180 ° apart, and the ignition sequence of the 8 cylinders is shown in FIG. 7. Thus, “# 1 → # 4 → # 5 → # 2 → # 7 → # 6 → # 3 → #
8 → ”, and the respective combustion intervals are 90 °. Looking at this for each bank, in the left bank 1, the combustion interval of 180 ° is “# 1 → # 5 → # 7 → # 3 →”, and in the right bank 2, the combustion interval is also 180 °. “# 4 → # 2 → # 6 → # 8 →”. In other words, both banks burn at equal intervals. Therefore, in the present embodiment, one bank, for example, the four cylinders of the right bank 2 becomes the first cylinder group that is always in operation, and the other bank, that is, the four cylinders of the left bank 1 is the second cylinder group that can be deactivated depending on the operating conditions. Has become. When only the first cylinder group in the right bank is operated, as described above, “# 4 → # 2 → # 6 → # 8
→ ”is ignited at regular intervals of 180 °. Therefore,
Stable operation is possible with the cylinders of the left bank 1 in a deactivated state, and output can be improved by reducing exhaust interference.

【0010】休止気筒となる左バンク1には、後述する
ように気筒休止時に吸排気弁の開閉を停止する弁停止機
構が設けられている。また、吸気弁の作動角の位相を運
転条件に応じて最適なものとするために、位相変更機構
が各バンク毎に設けられている。これらの機構は、いず
れも内燃機関の潤滑油の油圧を利用して駆動されてお
り、以下、その油圧制御装置について説明する。なお、
常時稼働する右バンク2の位相変更機構を第1位相変更
機構とし、休止可能な左バンク1の位相変更機構を第2
位相変更機構とするが、これらは、基本的に同一の構成
である。
The left bank 1, which is a deactivated cylinder, is provided with a valve stop mechanism for stopping the opening and closing of intake and exhaust valves when the cylinder is deactivated, as will be described later. Further, a phase changing mechanism is provided for each bank in order to optimize the phase of the operating angle of the intake valve according to the operating conditions. All of these mechanisms are driven by utilizing the hydraulic pressure of the lubricating oil of the internal combustion engine, and the hydraulic control device will be described below. In addition,
The phase changing mechanism of the right bank 2 that is always operating is the first phase changing mechanism, and the phase changing mechanism of the left bank 1 that can be paused is the second phase changing mechanism.
These are phase changing mechanisms, but they have basically the same configuration.

【0011】図1は、本発明に係る油圧制御装置を示す
概略構成図であり、特に、休止可能な左バンク1側の構
成を示している。図示するように、この油圧制御装置
は、第2位相変更機構12と弁停止機構14とに必要に
応じて油圧供給を行うものであり、内燃機関各部に潤滑
油を循環させるオイルポンプ10を油圧源として共用し
ている。そして、オイルポンプ10から第2位相変更機
構12へ供給される油圧を切換制御する位相変更用油圧
制御弁16と、オイルポンプ10から第2油圧作動機構
14へ供給される油圧を切換制御する弁停止用油圧制御
弁18と、が設けられている。
FIG. 1 is a schematic configuration diagram showing a hydraulic control device according to the present invention, and particularly shows a configuration on the left bank 1 side which can be stopped. As shown in the figure, this hydraulic control device supplies hydraulic pressure to the second phase changing mechanism 12 and the valve stop mechanism 14 as necessary, and controls the oil pump 10 that circulates lubricating oil to each part of the internal combustion engine. It is shared as a source. Then, a phase changing hydraulic control valve 16 for switching and controlling the hydraulic pressure supplied from the oil pump 10 to the second phase changing mechanism 12, and a valve for switching and controlling the hydraulic pressure supplied from the oil pump 10 to the second hydraulic pressure operating mechanism 14. A stop hydraulic control valve 18 is provided.

【0012】第2位相変更機構12の構造については公
知であり、図2を参照して簡単に説明すると、位相変更
機構12は、クランクシャフトと同期して回転するカム
スプロケット21と一体的に回転する外周側ギヤ部22
と、この外周側ギヤ部22の内側に同軸状に配置され、
吸気弁駆動用のインテークカムシャフト23と一体的に
回転する内周側ギヤ部24と、これら外周側ギヤ部22
および内周側ギヤ部24の内外周面にヘリカルスプライ
ンを介して噛合する略環状のピストン25と、このピス
トン25を遅角側へ付勢するリターンスプリング26
と、を備えている。
The structure of the second phase changing mechanism 12 is well known, and briefly described with reference to FIG. 2, the phase changing mechanism 12 rotates integrally with the cam sprocket 21 that rotates in synchronization with the crankshaft. Outer gear part 22
And is arranged coaxially inside the outer peripheral side gear portion 22,
An inner peripheral side gear part 24 which rotates integrally with an intake cam shaft 23 for driving an intake valve, and an outer peripheral side gear part 22 thereof.
And a substantially annular piston 25 that meshes with the inner and outer peripheral surfaces of the inner peripheral side gear portion 24 via a helical spline, and a return spring 26 that biases the piston 25 toward the retard side.
And are equipped with.

【0013】ピストン25の軸方向両端面には遅角側油
圧室27と進角側油圧室28とが臨んでおり、これら油
圧室27,28の油圧に応じてピストン25が軸方向へ
移動することにより、カムスプロケット21に対するイ
ンテークカムシャフト23の位相が変化して、吸気弁の
作動角位相が連続的に変更される。
A retard angle side hydraulic chamber 27 and an advance angle side hydraulic chamber 28 face both end surfaces of the piston 25 in the axial direction, and the piston 25 moves in the axial direction according to the hydraulic pressure of these hydraulic chambers 27, 28. As a result, the phase of the intake camshaft 23 relative to the cam sprocket 21 changes, and the operating angle phase of the intake valve changes continuously.

【0014】弁停止機構14の構造についても公知であ
り、図3を参照して簡単に説明すると、弁停止用油圧室
31の油圧が低い状態では、図示せぬスプリングのバネ
力により棒状のカップリング33がローラ型カムフォロ
ア34を有する補助ロッカアーム36aと係合する位置
まで突出しており、カム35の押圧力が補助ロッカアー
ム36a,カップリング33およびロッカアーム36を
介して吸排気弁37(吸気弁37aおよび排気弁37
b)に伝達され、通常の開閉動作が行われる。一方、弁
停止用油圧室31へ所定の作動油圧が供給されると、ピ
ストン38がスプリングのバネ力に抗してカップリング
33を補助ロッカアーム36aから離脱する後退方向へ
押圧し、補助ロッカアーム36aとロッカアーム36と
が実質的に分離する。従って、カム35からロッカアー
ム36への動力伝達が遮断されて、吸排気弁37が停止
する。つまり、左バンク1の気筒群の休止時には、この
弁停止機構14に油圧が供給され、吸排気弁37が閉じ
たままに保持される。
The structure of the valve stop mechanism 14 is also known, and will be briefly described with reference to FIG. 3. When the oil pressure in the valve stop hydraulic chamber 31 is low, the spring force of a spring (not shown) causes a rod-shaped cup. The ring 33 projects to a position where the ring 33 engages with the auxiliary rocker arm 36a having the roller type cam follower 34, and the pressing force of the cam 35 passes through the auxiliary rocker arm 36a, the coupling 33 and the rocker arm 36, and the intake / exhaust valve 37 (the intake valve 37a and the intake valve 37a Exhaust valve 37
Then, the normal opening / closing operation is performed. On the other hand, when a predetermined operating hydraulic pressure is supplied to the valve stop hydraulic chamber 31, the piston 38 pushes the coupling 33 in the backward direction in which the coupling 33 is separated from the auxiliary rocker arm 36a against the spring force of the spring, and the auxiliary rocker arm 36a The rocker arm 36 is substantially separated. Therefore, the power transmission from the cam 35 to the rocker arm 36 is cut off, and the intake / exhaust valve 37 is stopped. That is, when the cylinder group of the left bank 1 is inactive, hydraulic pressure is supplied to the valve stop mechanism 14 and the intake / exhaust valve 37 is held closed.

【0015】次に、図1〜4を参照して、この油圧制御
装置の回路構成について説明する。この回路には、オイ
ルポンプ10から位相変更用油圧制御弁16へ油圧を供
給する第1油圧供給油路41と、オイルポンプ10から
弁停止用油圧制御弁18へ油圧を供給する第2油圧供給
油路42と、位相変更用油圧制御弁16と遅角側油圧室
27とを接続する遅角側制御油路43と、位相変更用油
圧制御弁16と進角側油圧室28とを接続する進角側制
御油路44と、弁停止用油圧制御弁18と弁停止用油圧
室31とを接続する弁停止用制御油路45と、遅角動作
時に位相変更用油圧制御弁16からオイルパン11へ作
動油を排出する遅角側ドレーン油路46と、弁停止用油
圧制御弁18からオイルパン11へ作動油を排出する弁
停止用ドレーン油路47と、が設けられている。
Next, with reference to FIGS. 1 to 4, the circuit configuration of this hydraulic control device will be described. This circuit includes a first hydraulic pressure supply oil passage 41 for supplying hydraulic pressure from the oil pump 10 to the phase changing hydraulic control valve 16, and a second hydraulic pressure supply for supplying hydraulic pressure from the oil pump 10 to the valve stop hydraulic control valve 18. The oil passage 42, the retarding side control oil passage 43 connecting the phase changing hydraulic control valve 16 and the retard side hydraulic chamber 27, and the phase changing hydraulic control valve 16 connecting the advance side hydraulic chamber 28. The advance side control oil passage 44, the valve stop control oil passage 45 connecting the valve stop hydraulic control valve 18 and the valve stop hydraulic chamber 31, and the phase change hydraulic control valve 16 to the oil pan during the retard operation. A retard side drain oil passage 46 for discharging hydraulic oil to 11 and a valve stop drain oil passage 47 for discharging hydraulic oil from the valve-stop hydraulic control valve 18 to the oil pan 11 are provided.

【0016】そして、第2位相変更機構12の遅角側油
圧室27と弁停止機構14の弁停止用油圧室31とに連
通して、進角動作時に遅角側油圧室27から排出される
作動油を弁停止用油圧室31へ供給する還流油路48が
設けられている。この還流油路48は、上記の遅角側制
御油路43を含む形となっており、かつ、下流側で弁停
止用制御油路45へ合流している。つまり、還流油路4
8の先端は、弁停止用油圧制御弁18と弁停止用油圧室
31との間の弁停止用制御油路45に接続されており、
弁停止用油圧制御弁18の開閉状態に拘わらず、弁停止
用制御油路45へ作動油を供給し得る構成となってい
る。
The retard angle side hydraulic chamber 27 of the second phase changing mechanism 12 and the valve stop hydraulic chamber 31 of the valve stop mechanism 14 communicate with each other and are discharged from the retard angle side hydraulic chamber 27 during the advancing operation. A return oil passage 48 for supplying hydraulic oil to the valve stop hydraulic chamber 31 is provided. The recirculation oil passage 48 has a shape including the retard angle side control oil passage 43 and joins the valve stop control oil passage 45 on the downstream side. That is, the return oil passage 4
The tip of 8 is connected to a valve stop control oil passage 45 between the valve stop hydraulic control valve 18 and the valve stop hydraulic chamber 31.
Regardless of the opened / closed state of the valve stop hydraulic control valve 18, hydraulic oil can be supplied to the valve stop control oil passage 45.

【0017】この還流油路48には、弁停止機構14か
ら第2位相変更機構12へ向かう方向の作動油の逆流を
阻止する逆止弁49が配設されている。また、還流油路
48における逆止弁49よりも上流側(位相変更機構1
2側)で分岐してオイルパン11へ延びる進角側ドレー
ン分岐油路50が設けられているとともに、この進角側
ドレーン分岐油路50に、逆止弁からなる制御弁51が
配設されている。逆止弁49の開弁荷重は制御弁51の
開弁荷重よりも低く設定されており、例えば逆止弁49
の開弁荷重が約0.1kgf/cm2に、制御弁51の
開弁荷重が約0.3kgf/cm2に設定される。
A check valve 49 is disposed in the return oil passage 48 to prevent the reverse flow of the hydraulic oil in the direction from the valve stop mechanism 14 to the second phase changing mechanism 12. Further, in the return oil passage 48, the upstream side of the check valve 49 (the phase changing mechanism 1
(2 side) is provided with an advance side drain branch oil passage 50 that extends to the oil pan 11, and a control valve 51, which is a check valve, is provided in the advance side drain branch oil passage 50. ing. The opening load of the check valve 49 is set lower than the opening load of the control valve 51.
Opening a load of about 0.1 kgf / cm 2, the valve opening force of the control valve 51 is set to about 0.3 kgf / cm 2.

【0018】図8は、常時稼働する右バンク2側の回路
構成を示している。この右バンク2側には、前述したよ
うに、第1位相変更機構12’が設けられているが、こ
の第1位相変更機構12’自体は、第2位相変更機構1
2と全く同一の構成であり、また油圧回路の構成も、還
流油路48の部分を除き、変わりがないので、前述した
構成と同一の箇所には同一符号を付してある。この実施
例では、油圧源となるオイルポンプ10を左バンク1側
の油圧回路と共用しており、前述した左バンク1側の構
成と同様に、オイルポンプ10から位相変更用油圧制御
弁16へ油圧を供給する第1油圧供給油路41と、位相
変更用油圧制御弁16と遅角側油圧室27とを接続する
遅角側制御油路43と、位相変更用油圧制御弁16と進
角側油圧室28とを接続する進角側制御油路44と、遅
角動作時に位相変更用油圧制御弁16からオイルパン1
1へ作動油を排出する遅角側ドレーン油路46と、が設
けられている。そして、右バンク2側は還流油路48を
具備しておらず、進角動作時に進角側油圧室28から押
し出された作動油が、進角側ドレーン油路52を通して
位相変更用油圧制御弁16からオイルパン11へ排出さ
れるようになっている。
FIG. 8 shows a circuit configuration on the right bank 2 side which is always operating. As described above, the first phase changing mechanism 12 ′ is provided on the right bank 2 side. However, the first phase changing mechanism 12 ′ itself is the second phase changing mechanism 1 ′.
The configuration is exactly the same as that of No. 2 and the configuration of the hydraulic circuit is the same except for the portion of the return oil passage 48, and therefore, the same parts as those described above are designated by the same reference numerals. In this embodiment, the oil pump 10 serving as a hydraulic pressure source is shared with the hydraulic circuit on the left bank 1 side. From the oil pump 10 to the phase changing hydraulic control valve 16 as in the configuration on the left bank 1 side described above. A first hydraulic pressure supply oil passage 41 for supplying hydraulic pressure, a retard side control oil passage 43 connecting the phase change hydraulic control valve 16 and the retard side hydraulic chamber 27, a phase change hydraulic control valve 16 and an advance angle. The advance side control oil passage 44 connecting the side hydraulic chamber 28 and the phase changing hydraulic control valve 16 from the oil pan 1 during the retard operation.
1, a retard side drain oil passage 46 for discharging hydraulic oil is provided. The right bank 2 side does not have the return oil passage 48, and the hydraulic oil pushed out from the advance side hydraulic chamber 28 during the advance operation is passed through the advance side drain oil passage 52 and the phase changing hydraulic control valve. The oil is discharged from 16 to the oil pan 11.

【0019】次に、上記のように構成された実施例の作
用について説明する。
Next, the operation of the embodiment configured as described above will be described.

【0020】第1,第2位相変更機構12’,12で
は、位相変更用油圧制御弁16のスプール16aを駆動
するソレノイドへ与えられるパルス信号のデューティ比
を可変制御することにより、スプール16aの位置を制
御し、それぞれの位相変更機構12’,12に作用する
油圧の方向を切り換えて、ピストン25の位置を変化さ
せ、これに対応する吸気弁の作動角位相を制御してい
る。
In the first and second phase changing mechanisms 12 'and 12, the position of the spool 16a is controlled by variably controlling the duty ratio of the pulse signal given to the solenoid for driving the spool 16a of the phase changing hydraulic control valve 16. Is controlled to switch the direction of the hydraulic pressure acting on each of the phase changing mechanisms 12 ', 12 to change the position of the piston 25 and control the operating angle phase of the intake valve corresponding thereto.

【0021】具体的には、吸気弁の作動角位相を遅角側
に変更する遅角動作時には、位相変更用油圧制御弁16
のスプール16aが図2(a)に示す位置とされ、オイ
ルポンプ10からの油圧が第1油圧供給油路41および
遅角側制御油路43を経由して遅角側油圧室27へ供給
される一方、進角側制御油路44および遅角側ドレーン
油路46を通して進角側油圧室28内の作動油がオイル
パン11へ排出される。この結果、ピストン25が遅角
側(図2の左側)へ押圧,移動される。なお、図2
(a)には最遅角状態における吸気弁および排気弁のリ
フト特性を示してある。
Specifically, during the retarding operation for changing the operating angle phase of the intake valve to the retarding side, the phase changing hydraulic control valve 16 is used.
2A, the hydraulic pressure from the oil pump 10 is supplied to the retard side hydraulic chamber 27 via the first hydraulic pressure supply oil passage 41 and the retard side control oil passage 43. On the other hand, the hydraulic oil in the advance side hydraulic chamber 28 is discharged to the oil pan 11 through the advance side control oil passage 44 and the retard side drain oil passage 46. As a result, the piston 25 is pushed and moved to the retard side (left side in FIG. 2). Note that FIG.
(A) shows the lift characteristics of the intake valve and the exhaust valve in the most retarded state.

【0022】吸気弁の作動角位相を進角側に変更する進
角動作時には、図2(b)に示すスプール位置とされ、
第1油圧供給油路41および進角側制御油路44を通し
て進角側油圧室28へ油圧が供給される一方、遅角側制
御油路43を通して遅角側油圧室27内の作動油が排出
される。この作動油は、左バンク1側では還流油路48
を介して弁停止用制御油路45へ排出され、右バンク2
側では進角側ドレーン油路52によってオイルパン11
へ排出される。この結果、ピストン25が進角側(図2
の右側)へ押圧,移動される。なお、図2(b)には最
進角状態における吸気弁および排気弁のリフト特性を示
してある。
During the advancing operation for changing the operating angle phase of the intake valve to the advancing side, the spool position shown in FIG.
While the hydraulic pressure is supplied to the advance side hydraulic chamber 28 through the first hydraulic pressure supply oil passage 41 and the advance side control oil passage 44, the hydraulic oil in the retard side hydraulic chamber 27 is discharged through the retard side control oil passage 43. To be done. This hydraulic oil flows through the return oil passage 48 on the left bank 1 side.
Is discharged to the valve stop control oil passage 45 via the right bank 2
On the side, the oil pan 11 is connected by the advance side drain oil passage 52.
Is discharged to. As a result, the piston 25 is advanced (see FIG. 2).
To the right side of) and moved. Note that FIG. 2B shows the lift characteristics of the intake valve and the exhaust valve in the most advanced state.

【0023】吸気弁の作動角位相を現在の位相に保持す
るときには、図2(c)に示すスプール位置とされ、こ
のスプール16aにより遅角側制御油路43および進角
側制御油路44に接続する双方のポートが閉塞され、両
油圧室27,28内の油圧がロックされて、ピストン2
5が現在位置に保持される。
When the operating angle phase of the intake valve is maintained at the current phase, the spool position is set as shown in FIG. 2 (c), and the spool 16a causes the retard side control oil passage 43 and the advance side control oil passage 44 to move. Both ports to be connected are closed, the hydraulic pressures in the hydraulic chambers 27 and 28 are locked, and the piston 2
5 is held at the current position.

【0024】このように位相変更用油圧制御弁16を介
して位相変更機構12’,12に供給する油圧を切り換
えることによって、吸気弁の作動角位相を機関運転条件
に応じた特性にフィードバック制御することができる。
By switching the hydraulic pressure supplied to the phase changing mechanisms 12 ', 12 via the phase changing hydraulic control valve 16 in this way, the operating angle phase of the intake valve is feedback-controlled to a characteristic according to the engine operating conditions. be able to.

【0025】一方、左バンク1側に設けられた弁停止機
構14では、図1および図4に示すように、機関運転条
件に応じて弁停止用油圧制御弁18のスプール18aの
位置を切り換えることにより、左バンク1側の気筒群の
稼働および休止の切換に伴う弁開閉運動の一時的な停止
が行われる。つまり、左バンク1側の気筒群の稼働時に
は、図4(a)に示すスプール位置とされ、弁停止用油
圧室31内の作動油が弁停止用制御油路45および弁停
止用ドレーン油路47を通してオイルパン11へ排出さ
れる。一方、左バンク1側の気筒群の休止時には、図4
(b)に示すスプール位置とされ、第2油圧供給油路4
2および弁停止用制御油路45を経由してオイルポンプ
10の油圧が弁停止用油圧室31へ供給される。これに
より、前述したように、吸気弁および排気弁の開閉が停
止する。
On the other hand, in the valve stop mechanism 14 provided on the left bank 1 side, as shown in FIGS. 1 and 4, the position of the spool 18a of the valve stop hydraulic control valve 18 is switched according to the engine operating conditions. As a result, the valve opening / closing motion is temporarily stopped when the cylinder group on the left bank 1 side is switched between active and inactive. That is, when the cylinder group on the left bank 1 side is in operation, the spool is in the spool position shown in FIG. 4A, and the working oil in the valve stop hydraulic chamber 31 is controlled by the valve stop control oil passage 45 and the valve stop drain oil passage. It is discharged to the oil pan 11 through 47. On the other hand, when the cylinder group on the left bank 1 side is inactive, as shown in FIG.
In the spool position shown in (b), the second hydraulic oil supply passage 4
The oil pressure of the oil pump 10 is supplied to the valve stop hydraulic chamber 31 via the valve 2 and the valve stop control oil passage 45. As a result, the opening and closing of the intake valve and the exhaust valve are stopped, as described above.

【0026】ここで、本実施例では、上記のように左バ
ンク1側の気筒群で弁停止が行われる際に、左バンク1
側の気筒群の第2位相変更機構12が、同時に進角側へ
動作する。このように第2位相変更機構12が進角動作
していると、ピストン25の進角側への移動に伴って遅
角側油圧室27から還流油路48へ作動油が排出される
ので、弁停止用制御油路45内の油圧がある程度高くな
っている。そのため、このような状況下で、弁停止機構
14へ油圧を供給するように弁停止用油圧制御弁18が
切り換えられると、弁停止機構14へ導入される油圧が
速やかに高くなり、直ちに弁停止状態に切り換えられ
る。つまり、オイルポンプ10から第2油圧供給油路4
2,弁停止用油圧制御弁18および弁停止用制御油路4
5を経由して弁停止用油圧室31へ供給される作動油と
は別に、遅角側油圧室27側からも還流油路48を経由
して作動油が供給される。従って、遅角側油圧室27が
一種の油圧アキュムレータとして機能する形となり、別
途アキュムレータ等を設けることなく、弁停止機構14
の作動応答性を向上させることができる。
Here, in this embodiment, when the valve stop is performed in the cylinder group on the left bank 1 side as described above, the left bank 1
The second phase changing mechanism 12 of the cylinder group on the side simultaneously operates toward the advance side. When the second phase changing mechanism 12 is thus advanced, the working oil is discharged from the retard side hydraulic chamber 27 to the return oil passage 48 as the piston 25 moves toward the advance side. The hydraulic pressure in the control oil passage 45 for valve stop is high to some extent. Therefore, under such a circumstance, when the valve stop hydraulic control valve 18 is switched so as to supply the hydraulic pressure to the valve stop mechanism 14, the hydraulic pressure introduced into the valve stop mechanism 14 quickly increases and the valve stop immediately. It is switched to the state. That is, from the oil pump 10 to the second hydraulic pressure supply oil passage 4
2. Valve stop hydraulic control valve 18 and valve stop control oil passage 4
In addition to the hydraulic oil supplied to the valve stop hydraulic chamber 31 via 5, the hydraulic oil is also supplied from the retard side hydraulic chamber 27 side via the return oil passage 48. Therefore, the retard angle side hydraulic chamber 27 functions as a kind of hydraulic accumulator, and the valve stop mechanism 14 can be provided without separately providing an accumulator or the like.
It is possible to improve the operation response of the.

【0027】特に、機関低速時には、オイルポンプ10
からの供給油圧自体が低いため、作動応答性が低下する
傾向にあるが、本実施例によれば、遅角側油圧室27か
らも作動油が供給されるため、このような供給圧が低い
運転領域でも、良好な作動応答性を得ることが可能であ
る。
Particularly, when the engine speed is low, the oil pump 10
Since the hydraulic pressure supplied from the engine is low, the operating response tends to decrease. However, according to the present embodiment, the hydraulic oil is also supplied from the retard side hydraulic chamber 27, so that the supplied pressure is low. It is possible to obtain good actuation response even in the operating region.

【0028】更に言えば、還流油路48は、弁停止用油
圧制御弁18と弁停止用油圧室31とを結ぶ弁停止用制
御油路45に合流しており、弁停止用油圧制御弁18を
通過することなく直接的に弁停止用油圧室31へ作動油
を供給する形となっている。そのため、作動応答性が確
実に向上する。
Furthermore, the return oil passage 48 joins with the valve stop control oil passage 45 connecting the valve stop hydraulic control valve 18 and the valve stop hydraulic chamber 31, and the valve stop hydraulic control valve 18 is joined. The hydraulic oil is directly supplied to the valve stop hydraulic chamber 31 without passing through the valve. Therefore, the operation response is surely improved.

【0029】ここで、本実施例では、左バンク1側の気
筒群は、弁停止時には休止気筒となるので、本来は、第
2位相変更機構12を動かす必要はないが、稼働気筒で
ある右バンク2側の気筒群と同じ位相制御を積極的に継
続することで、弁停止の切換時に、第1位相変更機構1
2が進角側へ動作するようにしている。すなわち、図5
は、第1,第2位相変更機構12’,12が進角位置に
制御される進角領域H1と、左バンク1側の気筒群を休
止させる気筒休止領域H2と、の関係を示しており、気
筒休止領域H2は進角領域H1の内側に含まれる形とな
る。つまり、この実施例では、部分負荷領域において、
一部気筒を休止させるとともに、稼働気筒の吸気弁の作
動角位相を進角させて、内部EGRを拡大し、燃費向上
やNOxの低減を図っている。
Here, in the present embodiment, the cylinder group on the left bank 1 side becomes a deactivated cylinder when the valve is stopped. Therefore, it is not necessary to move the second phase changing mechanism 12 originally, but the right cylinder which is an operating cylinder. By positively continuing the same phase control as that of the cylinder group on the bank 2 side, the first phase changing mechanism 1 is operated at the time of switching the valve stop.
2 moves toward the advance side. That is, FIG.
Shows a relationship between an advance area H1 in which the first and second phase changing mechanisms 12 ', 12 are controlled to advance positions, and a cylinder stop area H2 in which the cylinder group on the left bank 1 side is stopped. The cylinder deactivation region H2 is included inside the advance region H1. That is, in this embodiment, in the partial load region,
While some of the cylinders are deactivated, the operating angle phase of the intake valves of the operating cylinders is advanced to expand the internal EGR, thereby improving fuel efficiency and reducing NOx.

【0030】従って、例えば図5の矢印A1に示すよう
に、アイドル近傍の低回転低負荷域から回転数が上昇す
るような状況では、左バンク1側の気筒群の休止(弁停
止)とほぼ同時に第1,第2位相変更機構12’,12
が進角側へ変化しようとする。また、矢印A2に示すよ
うに、全気筒が稼働している高回転低負荷域から回転数
が低下するような状況では、やはり、第1,第2位相変
更機構12’,12が進角側へ変化しつつある間に、気
筒休止運転への切換が開始する。更に、矢印A3に示す
ように、高負荷域からトルクが低下するような状況で
は、第1,第2位相変更機構12’,12の制御特性と
して、基本的には進角領域H1内にあるが、中負荷領域
に比べて高負荷側の方が相対的に遅角した特性に位相制
御の特性が設定されているので、矢印A3の変化に伴っ
て、第1,第2位相変更機構12’,12は、僅かでは
あるが進角側へ変化する。従って、やはり第1,第2位
相変更機構12’,12が進角側へ徐々に変化している
際に、気筒休止(弁停止)への切換が開始することとな
る。
Therefore, for example, as shown by the arrow A1 in FIG. 5, in a situation where the rotation speed increases from the low rotation and low load region near the idle, the cylinder group on the left bank 1 side is almost stopped (valve stop). At the same time, the first and second phase changing mechanisms 12 ′, 12
Tries to change to the advance side. Further, as shown by an arrow A2, in a situation where the rotation speed decreases from the high rotation and low load range in which all the cylinders are operating, the first and second phase changing mechanisms 12 ′, 12 are also advanced. Switching to the cylinder deactivation operation is started while changing to. Further, as shown by the arrow A3, in a situation where the torque decreases from the high load range, the control characteristics of the first and second phase changing mechanisms 12 ', 12 are basically within the advance angle region H1. However, since the phase control characteristic is set to a characteristic in which the high load side is relatively retarded as compared with the medium load region, the first and second phase changing mechanisms 12 are associated with the change of the arrow A3. ', 12 changes slightly to the advance side. Therefore, also when the first and second phase changing mechanisms 12 ', 12 are gradually changing to the advance side, the switching to the cylinder deactivation (valve stop) is started.

【0031】このように、休止気筒となる左バンク1側
を右バンク2側と同様に位相制御することで、弁停止状
態に切り換える際に、同時に第2位相変更機構12が進
角側へ動作していることになり、つまり、作動油が還流
油路48を通して弁停止用油圧室31へ供給されること
になるため、簡素な構造でありながら、気筒休止運転開
始時の作動応答性を効果的に向上させることができる。
In this way, by controlling the phase of the left bank 1 side, which is a deactivated cylinder, in the same manner as the right bank 2 side, the second phase changing mechanism 12 simultaneously moves to the advance side when the valve is stopped. That is, since the operating oil is supplied to the valve stop hydraulic chamber 31 through the return oil passage 48, the operating responsiveness at the time of starting the cylinder deactivation operation is effective despite the simple structure. Can be improved.

【0032】なお、気筒休止運転を継続して行っている
場合のように、逆止弁49の下流側の油圧が高く逆止弁
49が開弁できない状況で、第2位相変更機構12が進
角側へ動作した場合には、制御弁51が開弁し、遅角側
油圧室27内の作動油を進角側ドレーン分岐油路50を
経由して確実にオイルパン11へ排出できるようになっ
ている。
When the cylinder deactivation operation is continued, the second phase changing mechanism 12 is operated in a situation where the hydraulic pressure on the downstream side of the check valve 49 is high and the check valve 49 cannot be opened. When operating to the angle side, the control valve 51 is opened so that the hydraulic oil in the retard side hydraulic chamber 27 can be reliably discharged to the oil pan 11 via the advance side drain branch oil passage 50. Has become.

【0033】また、全気筒稼働状態にあるときには、逆
止弁49の開弁荷重が制御弁(逆止弁)51の開弁荷重
よりも低く、逆止弁49の下流側の油圧が低いため、位
相変更機構12が進角側へ動作すると、逆止弁49のみ
が開弁する。したがって、遅角側油圧室27の作動油
は、還流油路48,弁停止用制御油路45および弁停止
用ドレーン油路47を経てオイルパン11へ排出される
こととなる。
When all cylinders are operating, the valve opening load of the check valve 49 is lower than the valve opening load of the control valve (check valve) 51, and the hydraulic pressure on the downstream side of the check valve 49 is low. When the phase changing mechanism 12 moves to the advance side, only the check valve 49 opens. Therefore, the hydraulic oil in the retard side hydraulic chamber 27 is discharged to the oil pan 11 via the return oil passage 48, the valve stop control oil passage 45 and the valve stop drain oil passage 47.

【0034】以上のように本発明を好適な一実施形態に
基づいて説明してきたが、本発明はこの実施形態に限定
されるものではなく、種々の変形,変更を含むものであ
る。例えば、上記の制御弁51に代えて、圧力差を発生
させるオリフィスを設ける構成としても良い。
The present invention has been described above based on a preferred embodiment, but the present invention is not limited to this embodiment and includes various modifications and changes. For example, instead of the above control valve 51, an orifice for generating a pressure difference may be provided.

【0035】また上記実施例では、左バンク1側の気筒
群の吸気弁の位相制御を常に右バンク2側と同様に行う
ようにしているが、休止運転への切換時に、左バンク1
側の第2位相変更機構12のみを積極的に進角側へ動か
して、弁停止機構14の作動応答性をより確実に高める
ようにすることもできる。
In the above embodiment, the phase control of the intake valve of the cylinder group on the left bank 1 side is always performed in the same manner as on the right bank 2 side.
It is also possible to positively move only the second phase changing mechanism 12 on the side toward the advance side so as to more reliably enhance the operation response of the valve stop mechanism 14.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の油圧制御装置における左バ
ンク側の回路構成を示す構成図。
FIG. 1 is a configuration diagram showing a circuit configuration on a left bank side in a hydraulic control device according to an embodiment of the present invention.

【図2】位相変更機構およびその油圧制御弁の作用説明
図。
FIG. 2 is an operation explanatory view of a phase changing mechanism and its hydraulic control valve.

【図3】弁停止機構を示す斜視図。FIG. 3 is a perspective view showing a valve stop mechanism.

【図4】弁停止用油圧制御弁を模式的に示す作用説明
図。
FIG. 4 is an operation explanatory view schematically showing a valve stop hydraulic control valve.

【図5】位相変更機構の進角領域および気筒休止領域を
示す特性図。
FIG. 5 is a characteristic diagram showing an advance region and a cylinder deactivation region of the phase changing mechanism.

【図6】V型8気筒内燃機関の気筒配置を示す説明図。FIG. 6 is an explanatory diagram showing a cylinder arrangement of a V-type 8-cylinder internal combustion engine.

【図7】1プレーンクランクシャフト形式の点火順序の
説明図。
FIG. 7 is an explanatory diagram of a 1-plane crankshaft type ignition sequence.

【図8】右バンク側の回路構成を示す構成図。FIG. 8 is a configuration diagram showing a circuit configuration on the right bank side.

【符号の説明】[Explanation of symbols]

10…オイルポンプ(油圧源) 12…第2位相変更機構 14…弁停止機構 48…還流油路 49…逆止弁 50…進角側ドレーン分岐油路 51…制御弁 10 ... Oil pump (hydraulic power source) 12 ... Second phase changing mechanism 14 ... Valve stop mechanism 48 ... Return oil passage 49 ... Check valve 50 ... Advance side drain branch oil passage 51 ... Control valve

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3G018 AA07 AB03 BA09 BA10 BA12 BA32 CA06 DA52 DA57 DA59 DA70 EA35 FA01 FA12 GA02 GA03 GA07 GA08 3G092 AA11 AA14 AA15 CA04 CA08 DA09 DA10 DA11 FA06 FA11 FB01 FB06 HA11Z HA13X HE01Z HE03Z    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 3G018 AA07 AB03 BA09 BA10 BA12                       BA32 CA06 DA52 DA57 DA59                       DA70 EA35 FA01 FA12 GA02                       GA03 GA07 GA08                 3G092 AA11 AA14 AA15 CA04 CA08                       DA09 DA10 DA11 FA06 FA11                       FB01 FB06 HA11Z HA13X                       HE01Z HE03Z

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 吸気弁の作動角の位相を遅進させる第1
位相変更機構を備え、かつ等間隔燃焼する複数気筒から
なる第1気筒群と、同じく吸気弁の作動角の位相を遅進
させる第2位相変更機構を備えるとともに、該第2位相
変更機構と共用する油圧源からの油圧供給により吸気弁
の開閉を一時的に停止させる弁停止機構を備える第2気
筒群と、を含む内燃機関の油圧制御装置であって、 上記第2気筒群の第2位相変更機構が進角側に動作する
ときに該第2位相変更機構から排出される作動油が上記
弁停止機構時へ供給されるように、上記第2位相変更機
構と上記弁停止機構との間に還流油路が設けられている
ことを特徴とする内燃機関の油圧制御装置。
1. A first device for delaying the phase of an operating angle of an intake valve.
A first cylinder group including a plurality of cylinders that burns at equal intervals and a second phase changing mechanism that retards the phase of the operating angle of the intake valve, and is shared with the second phase changing mechanism. And a second cylinder group having a valve stop mechanism for temporarily stopping the opening and closing of the intake valve by the supply of hydraulic pressure from a hydraulic pressure source, the second phase of the second cylinder group. Between the second phase change mechanism and the valve stop mechanism, so that the hydraulic oil discharged from the second phase change mechanism is supplied to the valve stop mechanism when the change mechanism operates toward the advance side. A hydraulic control device for an internal combustion engine, characterized in that a return oil passage is provided in the.
【請求項2】 上記油圧源と上記弁停止機構との間に弁
停止用油圧制御弁が設けられており、上記還流油路の先
端は、上記弁停止用油圧制御弁と上記弁停止機構との間
の油路に接続されていることを特徴とする請求項1に記
載の内燃機関の油圧制御装置。
2. A valve stop hydraulic control valve is provided between the hydraulic source and the valve stop mechanism, and a tip of the return oil passage is provided with the valve stop hydraulic control valve and the valve stop mechanism. The hydraulic control device for an internal combustion engine according to claim 1, wherein the hydraulic control device is connected to an oil passage between the two.
【請求項3】 上記還流油路に、上記弁停止機構から上
記第2位相変更機構への作動油の逆流を阻止する逆止弁
が配設されていることを特徴とする請求項1または2に
記載の内燃機関の油圧制御装置。
3. A check valve for preventing backflow of hydraulic oil from the valve stop mechanism to the second phase changing mechanism is disposed in the return oil passage. A hydraulic control device for an internal combustion engine as set forth in.
【請求項4】 上記還流油路における上記逆止弁の上流
側で分岐して作動油を排出するドレーン分岐油路に制御
弁が設けられ、この制御弁の開弁荷重が上記逆止弁の開
弁荷重よりも高く設定されていることを特徴とする請求
項3に記載の内燃機関の油圧制御装置。
4. A control valve is provided in a drain branch oil passage branching upstream of the check valve in the return oil passage and discharging hydraulic oil, and a valve opening load of the control valve is equal to that of the check valve. The hydraulic control system for an internal combustion engine according to claim 3, wherein the hydraulic load is set to be higher than the valve opening load.
【請求項5】 上記第1位相変更機構と上記第2位相変
更機構と上記弁停止機構とが、同一の油圧源を共用して
いることを特徴とする請求項1〜4のいずれかに記載の
内燃機関の油圧制御装置。
5. The first hydraulic pressure changing mechanism, the second hydraulic pressure changing mechanism, and the valve stopping mechanism share the same hydraulic pressure source. Control system for internal combustion engine.
【請求項6】 内燃機関が1プレーンクランクシャフト
のV型8気筒内燃機関であり、一方のバンクの気筒が第
1気筒群を構成し、他方のバンクの気筒が第2気筒群を
構成していることを特徴とする請求項1〜5のいずれか
に記載の内燃機関の油圧制御装置。
6. The internal combustion engine is a V-cylinder internal combustion engine having one plain crankshaft, the cylinders of one bank constitute a first cylinder group, and the cylinders of the other bank constitute a second cylinder group. The hydraulic control device for an internal combustion engine according to any one of claims 1 to 5, characterized in that:
【請求項7】 上記弁停止機構が弁停止状態に切り換え
られるときに、上記第2位相変更機構が進角側へ変化す
るように制御されることを特徴とする請求項1〜6のい
ずれかに記載の内燃機関の油圧制御装置。
7. The second phase changing mechanism is controlled so as to change to an advance side when the valve stopping mechanism is switched to a valve stopped state. A hydraulic control device for an internal combustion engine as set forth in.
JP2002131080A 2002-05-07 2002-05-07 Hydraulic control device for internal combustion engine Expired - Lifetime JP4075448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002131080A JP4075448B2 (en) 2002-05-07 2002-05-07 Hydraulic control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002131080A JP4075448B2 (en) 2002-05-07 2002-05-07 Hydraulic control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2003322007A true JP2003322007A (en) 2003-11-14
JP4075448B2 JP4075448B2 (en) 2008-04-16

Family

ID=29543854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002131080A Expired - Lifetime JP4075448B2 (en) 2002-05-07 2002-05-07 Hydraulic control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4075448B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007162607A (en) * 2005-12-15 2007-06-28 Honda Motor Co Ltd Internal combustion engine
JP2009191705A (en) * 2008-02-13 2009-08-27 Toyota Motor Corp Variable valve gear of internal combustion engine
JP2014199012A (en) * 2013-03-29 2014-10-23 マツダ株式会社 Control device of multi-cylinder engine
JP2015045287A (en) * 2013-08-28 2015-03-12 マツダ株式会社 Control device for engine
JP2015151999A (en) * 2014-02-19 2015-08-24 マツダ株式会社 Control device of multi-cylinder engine
JP2015194132A (en) * 2014-03-31 2015-11-05 マツダ株式会社 Control device of engine
JP2016166613A (en) * 2016-04-01 2016-09-15 ボルボ テクノロジー コーポレイション Method for increasing temperature in at least part of internal combustion engine system and vehicle including the system
US9835065B2 (en) 2011-10-03 2017-12-05 Volvo Technology Corporation Internal combustion engine system and method for increasing the temperature in at least one part of the internal combustion engine system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007162607A (en) * 2005-12-15 2007-06-28 Honda Motor Co Ltd Internal combustion engine
JP4583297B2 (en) * 2005-12-15 2010-11-17 本田技研工業株式会社 Internal combustion engine
JP2009191705A (en) * 2008-02-13 2009-08-27 Toyota Motor Corp Variable valve gear of internal combustion engine
US9835065B2 (en) 2011-10-03 2017-12-05 Volvo Technology Corporation Internal combustion engine system and method for increasing the temperature in at least one part of the internal combustion engine system
JP2014199012A (en) * 2013-03-29 2014-10-23 マツダ株式会社 Control device of multi-cylinder engine
JP2015045287A (en) * 2013-08-28 2015-03-12 マツダ株式会社 Control device for engine
JP2015151999A (en) * 2014-02-19 2015-08-24 マツダ株式会社 Control device of multi-cylinder engine
JP2015194132A (en) * 2014-03-31 2015-11-05 マツダ株式会社 Control device of engine
JP2016166613A (en) * 2016-04-01 2016-09-15 ボルボ テクノロジー コーポレイション Method for increasing temperature in at least part of internal combustion engine system and vehicle including the system

Also Published As

Publication number Publication date
JP4075448B2 (en) 2008-04-16

Similar Documents

Publication Publication Date Title
US6230675B1 (en) Intake valve lift control system
US8095298B2 (en) Variable valve actuation system of internal combustion engine
US8061311B2 (en) Variable valve actuating apparatus for internal combustion engine
US7568458B2 (en) Valve event reduction through operation of a fast-acting camshaft phaser
WO2014155967A1 (en) Oil supply device for engine
EP2133516B1 (en) Internal combustion engine controller
JPH07109934A (en) Variable valve device for internal combustion engine
JP2009074414A (en) Variable valve gear system and variable valve device for internal combustion engine
US9068483B2 (en) Variable valve actuating apparatus for internal combustion engine, and controller for variable valve actuating apparatus
JP4058909B2 (en) Hydraulic control device for internal combustion engine
JP5966999B2 (en) Multi-cylinder engine controller
US20090159027A1 (en) Variable valve actuating apparatus for internal combustion engine, and controller for variable valve actuating apparatus
US9188030B2 (en) Internal combustion engine with variable valve opening characteristics
KR20110050385A (en) Variable valve device for an internal combustion engine
JP2009264133A (en) Variable cam phase type internal combustion engine
JP4075448B2 (en) Hydraulic control device for internal combustion engine
JP2010255584A (en) Cam phaser for internal combustion engine
EP0854273A1 (en) Variable valve timing and valve events mechanism for an internal combustion engine
JP6020307B2 (en) Multi-cylinder engine controller
JP2016104970A (en) Variable valve device of internal combustion engine
JP2009264231A (en) Lock control device for valve-timing adjusting device, and lock control system
JP5947751B2 (en) Variable valve operating device for multi-cylinder internal combustion engine and control device for the variable valve operating device
JP2011220349A (en) Variable valve system and variable valve device of internal combustion engine
JP4311813B2 (en) Intake system controller for spark ignition internal combustion engine
JP2010174742A (en) Control system for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080121

R150 Certificate of patent or registration of utility model

Ref document number: 4075448

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140208

Year of fee payment: 6

EXPY Cancellation because of completion of term