JP4075448B2 - Hydraulic control device for internal combustion engine - Google Patents

Hydraulic control device for internal combustion engine Download PDF

Info

Publication number
JP4075448B2
JP4075448B2 JP2002131080A JP2002131080A JP4075448B2 JP 4075448 B2 JP4075448 B2 JP 4075448B2 JP 2002131080 A JP2002131080 A JP 2002131080A JP 2002131080 A JP2002131080 A JP 2002131080A JP 4075448 B2 JP4075448 B2 JP 4075448B2
Authority
JP
Japan
Prior art keywords
valve
hydraulic
phase change
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002131080A
Other languages
Japanese (ja)
Other versions
JP2003322007A (en
Inventor
茂 桜木
昭二 米谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002131080A priority Critical patent/JP4075448B2/en
Publication of JP2003322007A publication Critical patent/JP2003322007A/en
Application granted granted Critical
Publication of JP4075448B2 publication Critical patent/JP4075448B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Valve Device For Special Equipments (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、油圧源を共用しつつ互いに独立して機能する2種類の油圧作動機構、詳しくは吸気弁の位相変更機構と弁停止機構とを備えた内燃機関の油圧制御装置に関する。
【0002】
【従来の技術】
内燃機関の分野では、潤滑油の循環用に用いられるオイルポンプを油圧源として、各種の油圧作動機構を作動させることが一般的に行われている。このような油圧作動機構として、例えば、機関運転条件に応じて一部気筒の吸排気弁の開閉を一時的に停止させる弁停止機構等が挙げられる。上記の弁停止機構は、部分負荷時などに、一部気筒を休止させ一部気筒のみを稼働させるようにした、いわゆる気筒数制御を行う多気筒内燃機関に適用されるもので、一般に休止気筒となる気筒群の吸排気弁、少なくとも吸気弁を停止させるように設けられる。
【0003】
また油圧作動機構として、機関運転条件に応じて吸気弁や排気弁の開閉時期やバルブリフト量を変化させる可変動弁機構も知られている。油圧式の可変動弁機構として、特開平5−248217号公報には、低速用ロッカーアームと高速用ロッカーアームとを切り換えて使用することにより、吸気弁や排気弁の開閉時期を2段階に切換可能な可変動弁機構が開示されているが、吸排気弁の作動角の位相(クランクシャフトに対する位相)を遅進させる位相変更機構も知られており、かつ既に実用に供されている。
【0004】
【発明が解決しようとする課題】
上記の弁停止機構は、可変動弁機構例えば位相変更機構と組み合わせて用いることができるが、このように弁停止機構と位相変更機構とを備えた場合に、機関運転条件が変化して全気筒稼働状態から一部気筒の休止状態へ移行すべく上記弁停止機構を切換動作させる際に、通常は、同時に機関運転条件の変化に伴って位相変更機構が動作する必要があるので、弁停止機構へ供給される油圧が不足して作動応答性の低下を招くおそれがある。このような作動応答性の低下を防止するために、専用のオイルポンプやアキュムレータ等を設けることも考えられるが、この場合、油圧回路の構成が複雑になり、重量の増加やコストの増加を招くおそれがある。
【0005】
本発明は、このような課題に鑑みてなされたものであり、油圧源を共用した弁停止機構と位相変更機構とを具備する場合に、簡素な構造で弁停止機構の作動応答性の向上を図ることを目的としている。
【0006】
【課題を解決するための手段】
本発明においては、内燃機関は、第1気筒群と第2気筒群から構成される。第1気筒群は、吸気弁の作動角の位相を遅進させる第1位相変更機構を備え、かつ該第1気筒群のみの稼働時に安定した運転が可能なように、等間隔燃焼する複数気筒からなる。また第2気筒群は、同じく吸気弁の作動角の位相を遅進させる第2位相変更機構を備えるとともに、該第2位相変更機構と共用する油圧源からの油圧供給により吸気弁の開閉を一時的に停止させる弁停止機構を備えている。従って、例えば部分負荷時などの所定の運転条件時に、第2気筒群が休止状態となり、同時に、上記弁停止機構によって第2気筒群の吸気弁の開閉が停止される。なお、上記弁停止機構は、吸気弁および排気弁の双方を停止するものであってもよい。そして、本発明の油圧制御装置では、上記第2気筒群の第2位相変更機構が進角側に動作するときに該第2位相変更機構から排出される作動油が上記弁停止機構へ供給されるように、上記第2位相変更機構と上記弁停止機構との間に還流油路が設けられている。
【0007】
従って、弁停止機構が弁停止状態に切り換えられる際に、ほぼ同時に第2位相変更機構が進角側へ動作すれば、第2位相変更機構から排出される作動油が弁停止機構へ供給されるので、油圧源からの油圧供給開始に伴って直ちに弁停止機構が切換動作する。つまり、通常はそのまま排出される作動油を利用して、弁停止機構の作動応答性が向上する。
【0008】
【発明の効果】
この発明によれば、弁停止への切換時に、第2位相変更機構から排出される作動油を還流油路を通して弁停止機構へ供給することにより、別途アキュムレータ等の特別な油圧補助機器を用いることなく、弁停止機構の作動応答性を高めることができる。
【0009】
【発明の実施の形態】
以下、この発明をV型8気筒内燃機関に適用した一実施例を図面に基づいて詳細に説明する。初めに、V型8気筒内燃機関の燃焼間隔等について説明する。図6は、V型8気筒内燃機関の気筒配置を示しており、左バンク1と右バンク2とが90°のバンク角でV型に配置されている。左バンク1は、♯1気筒、♯3気筒、♯5気筒、♯7気筒の4本の気筒を含んでおり、右バンク2は、♯2気筒、♯4気筒、♯6気筒、♯8気筒の4本の気筒を含んでいる。本実施例のV型8気筒内燃機関は、特に、クランクピンが180°離れた点に配置される所謂1プレーンクランクシャフト形式のものであって、8つの気筒の点火順序は、図7に示すように、「♯1→♯4→♯5→♯2→♯7→♯6→♯3→♯8→」となり、それぞれの燃焼間隔は90°である。これを各バンク毎にみると、左バンク1では、180°の燃焼間隔でもって「♯1→♯5→♯7→♯3→」となり、右バンク2では、同じく180°の燃焼間隔でもって「♯4→♯2→♯6→♯8→」となる。つまり、いずれのバンクも等間隔燃焼である。従って、本実施例では、一方のバンク例えば右バンク2の4つの気筒が常時稼働する第1気筒群となり、他方のバンクつまり左バンク1の4つの気筒が運転条件により休止可能な第2気筒群となっている。右バンクの第1気筒群のみで運転を行う場合には、上記のように、「♯4→♯2→♯6→♯8→」の順に180°毎の等間隔で点火される。従って、左バンク1の気筒を休止させた状態で安定した運転が可能であるとともに、排気干渉の低減による出力向上が可能である。
【0010】
休止気筒となる左バンク1には、後述するように気筒休止時に吸排気弁の開閉を停止する弁停止機構が設けられている。また、吸気弁の作動角の位相を運転条件に応じて最適なものとするために、位相変更機構が各バンク毎に設けられている。これらの機構は、いずれも内燃機関の潤滑油の油圧を利用して駆動されており、以下、その油圧制御装置について説明する。なお、常時稼働する右バンク2の位相変更機構を第1位相変更機構とし、休止可能な左バンク1の位相変更機構を第2位相変更機構とするが、これらは、基本的に同一の構成である。
【0011】
図1は、本発明に係る油圧制御装置を示す概略構成図であり、特に、休止可能な左バンク1側の構成を示している。図示するように、この油圧制御装置は、第2位相変更機構12と弁停止機構14とに必要に応じて油圧供給を行うものであり、内燃機関各部に潤滑油を循環させるオイルポンプ10を油圧源として共用している。そして、オイルポンプ10から第2位相変更機構12へ供給される油圧を切換制御する位相変更用油圧制御弁16と、オイルポンプ10から第2油圧作動機構14へ供給される油圧を切換制御する弁停止用油圧制御弁18と、が設けられている。
【0012】
第2位相変更機構12の構造については公知であり、図2を参照して簡単に説明すると、位相変更機構12は、クランクシャフトと同期して回転するカムスプロケット21と一体的に回転する外周側ギヤ部22と、この外周側ギヤ部22の内側に同軸状に配置され、吸気弁駆動用のインテークカムシャフト23と一体的に回転する内周側ギヤ部24と、これら外周側ギヤ部22および内周側ギヤ部24の内外周面にヘリカルスプラインを介して噛合する略環状のピストン25と、このピストン25を遅角側へ付勢するリターンスプリング26と、を備えている。
【0013】
ピストン25の軸方向両端面には遅角側油圧室27と進角側油圧室28とが臨んでおり、これら油圧室27,28の油圧に応じてピストン25が軸方向へ移動することにより、カムスプロケット21に対するインテークカムシャフト23の位相が変化して、吸気弁の作動角位相が連続的に変更される。
【0014】
弁停止機構14の構造についても公知であり、図3を参照して簡単に説明すると、弁停止用油圧室31の油圧が低い状態では、図示せぬスプリングのバネ力により棒状のカップリング33がローラ型カムフォロア34を有する補助ロッカアーム36aと係合する位置まで突出しており、カム35の押圧力が補助ロッカアーム36a,カップリング33およびロッカアーム36を介して吸排気弁37(吸気弁37aおよび排気弁37b)に伝達され、通常の開閉動作が行われる。一方、弁停止用油圧室31へ所定の作動油圧が供給されると、ピストン38がスプリングのバネ力に抗してカップリング33を補助ロッカアーム36aから離脱する後退方向へ押圧し、補助ロッカアーム36aとロッカアーム36とが実質的に分離する。従って、カム35からロッカアーム36への動力伝達が遮断されて、吸排気弁37が停止する。つまり、左バンク1の気筒群の休止時には、この弁停止機構14に油圧が供給され、吸排気弁37が閉じたままに保持される。
【0015】
次に、図1〜4を参照して、この油圧制御装置の回路構成について説明する。この回路には、オイルポンプ10から位相変更用油圧制御弁16へ油圧を供給する第1油圧供給油路41と、オイルポンプ10から弁停止用油圧制御弁18へ油圧を供給する第2油圧供給油路42と、位相変更用油圧制御弁16と遅角側油圧室27とを接続する遅角側制御油路43と、位相変更用油圧制御弁16と進角側油圧室28とを接続する進角側制御油路44と、弁停止用油圧制御弁18と弁停止用油圧室31とを接続する弁停止用制御油路45と、遅角動作時に位相変更用油圧制御弁16からオイルパン11へ作動油を排出する遅角側ドレーン油路46と、弁停止用油圧制御弁18からオイルパン11へ作動油を排出する弁停止用ドレーン油路47と、が設けられている。
【0016】
そして、第2位相変更機構12の遅角側油圧室27と弁停止機構14の弁停止用油圧室31とに連通して、進角動作時に遅角側油圧室27から排出される作動油を弁停止用油圧室31へ供給する還流油路48が設けられている。この還流油路48は、上記の遅角側制御油路43を含む形となっており、かつ、下流側で弁停止用制御油路45へ合流している。つまり、還流油路48の先端は、弁停止用油圧制御弁18と弁停止用油圧室31との間の弁停止用制御油路45に接続されており、弁停止用油圧制御弁18の開閉状態に拘わらず、弁停止用制御油路45へ作動油を供給し得る構成となっている。
【0017】
この還流油路48には、弁停止機構14から第2位相変更機構12へ向かう方向の作動油の逆流を阻止する逆止弁49が配設されている。また、還流油路48における逆止弁49よりも上流側(位相変更機構12側)で分岐してオイルパン11へ延びる進角側ドレーン分岐油路50が設けられているとともに、この進角側ドレーン分岐油路50に、逆止弁からなる制御弁51が配設されている。逆止弁49の開弁荷重は制御弁51の開弁荷重よりも低く設定されており、例えば逆止弁49の開弁荷重が約0.1kgf/cm2に、制御弁51の開弁荷重が約0.3kgf/cm2に設定される。
【0018】
図8は、常時稼働する右バンク2側の回路構成を示している。この右バンク2側には、前述したように、第1位相変更機構12’が設けられているが、この第1位相変更機構12’自体は、第2位相変更機構12と全く同一の構成であり、また油圧回路の構成も、還流油路48の部分を除き、変わりがないので、前述した構成と同一の箇所には同一符号を付してある。この実施例では、油圧源となるオイルポンプ10を左バンク1側の油圧回路と共用しており、前述した左バンク1側の構成と同様に、オイルポンプ10から位相変更用油圧制御弁16へ油圧を供給する第1油圧供給油路41と、位相変更用油圧制御弁16と遅角側油圧室27とを接続する遅角側制御油路43と、位相変更用油圧制御弁16と進角側油圧室28とを接続する進角側制御油路44と、遅角動作時に位相変更用油圧制御弁16からオイルパン11へ作動油を排出する遅角側ドレーン油路46と、が設けられている。そして、右バンク2側は還流油路48を具備しておらず、進角動作時に進角側油圧室28から押し出された作動油が、進角側ドレーン油路52を通して位相変更用油圧制御弁16からオイルパン11へ排出されるようになっている。
【0019】
次に、上記のように構成された実施例の作用について説明する。
【0020】
第1,第2位相変更機構12’,12では、位相変更用油圧制御弁16のスプール16aを駆動するソレノイドへ与えられるパルス信号のデューティ比を可変制御することにより、スプール16aの位置を制御し、それぞれの位相変更機構12’,12に作用する油圧の方向を切り換えて、ピストン25の位置を変化させ、これに対応する吸気弁の作動角位相を制御している。
【0021】
具体的には、吸気弁の作動角位相を遅角側に変更する遅角動作時には、位相変更用油圧制御弁16のスプール16aが図2(a)に示す位置とされ、オイルポンプ10からの油圧が第1油圧供給油路41および遅角側制御油路43を経由して遅角側油圧室27へ供給される一方、進角側制御油路44および遅角側ドレーン油路46を通して進角側油圧室28内の作動油がオイルパン11へ排出される。この結果、ピストン25が遅角側(図2の左側)へ押圧,移動される。なお、図2(a)には最遅角状態における吸気弁および排気弁のリフト特性を示してある。
【0022】
吸気弁の作動角位相を進角側に変更する進角動作時には、図2(b)に示すスプール位置とされ、第1油圧供給油路41および進角側制御油路44を通して進角側油圧室28へ油圧が供給される一方、遅角側制御油路43を通して遅角側油圧室27内の作動油が排出される。この作動油は、左バンク1側では還流油路48を介して弁停止用制御油路45へ排出され、右バンク2側では進角側ドレーン油路52によってオイルパン11へ排出される。この結果、ピストン25が進角側(図2の右側)へ押圧,移動される。なお、図2(b)には最進角状態における吸気弁および排気弁のリフト特性を示してある。
【0023】
吸気弁の作動角位相を現在の位相に保持するときには、図2(c)に示すスプール位置とされ、このスプール16aにより遅角側制御油路43および進角側制御油路44に接続する双方のポートが閉塞され、両油圧室27,28内の油圧がロックされて、ピストン25が現在位置に保持される。
【0024】
このように位相変更用油圧制御弁16を介して位相変更機構12’,12に供給する油圧を切り換えることによって、吸気弁の作動角位相を機関運転条件に応じた特性にフィードバック制御することができる。
【0025】
一方、左バンク1側に設けられた弁停止機構14では、図1および図4に示すように、機関運転条件に応じて弁停止用油圧制御弁18のスプール18aの位置を切り換えることにより、左バンク1側の気筒群の稼働および休止の切換に伴う弁開閉運動の一時的な停止が行われる。つまり、左バンク1側の気筒群の稼働時には、図4(a)に示すスプール位置とされ、弁停止用油圧室31内の作動油が弁停止用制御油路45および弁停止用ドレーン油路47を通してオイルパン11へ排出される。一方、左バンク1側の気筒群の休止時には、図4(b)に示すスプール位置とされ、第2油圧供給油路42および弁停止用制御油路45を経由してオイルポンプ10の油圧が弁停止用油圧室31へ供給される。これにより、前述したように、吸気弁および排気弁の開閉が停止する。
【0026】
ここで、本実施例では、上記のように左バンク1側の気筒群で弁停止が行われる際に、左バンク1側の気筒群の第2位相変更機構12が、同時に進角側へ動作する。このように第2位相変更機構12が進角動作していると、ピストン25の進角側への移動に伴って遅角側油圧室27から還流油路48へ作動油が排出されるので、弁停止用制御油路45内の油圧がある程度高くなっている。そのため、このような状況下で、弁停止機構14へ油圧を供給するように弁停止用油圧制御弁18が切り換えられると、弁停止機構14へ導入される油圧が速やかに高くなり、直ちに弁停止状態に切り換えられる。つまり、オイルポンプ10から第2油圧供給油路42,弁停止用油圧制御弁18および弁停止用制御油路45を経由して弁停止用油圧室31へ供給される作動油とは別に、遅角側油圧室27側からも還流油路48を経由して作動油が供給される。従って、遅角側油圧室27が一種の油圧アキュムレータとして機能する形となり、別途アキュムレータ等を設けることなく、弁停止機構14の作動応答性を向上させることができる。
【0027】
特に、機関低速時には、オイルポンプ10からの供給油圧自体が低いため、作動応答性が低下する傾向にあるが、本実施例によれば、遅角側油圧室27からも作動油が供給されるため、このような供給圧が低い運転領域でも、良好な作動応答性を得ることが可能である。
【0028】
更に言えば、還流油路48は、弁停止用油圧制御弁18と弁停止用油圧室31とを結ぶ弁停止用制御油路45に合流しており、弁停止用油圧制御弁18を通過することなく直接的に弁停止用油圧室31へ作動油を供給する形となっている。そのため、作動応答性が確実に向上する。
【0029】
ここで、本実施例では、左バンク1側の気筒群は、弁停止時には休止気筒となるので、本来は、第2位相変更機構12を動かす必要はないが、稼働気筒である右バンク2側の気筒群と同じ位相制御を積極的に継続することで、弁停止の切換時に、第1位相変更機構12が進角側へ動作するようにしている。すなわち、図5は、第1,第2位相変更機構12’,12が進角位置に制御される進角領域H1と、左バンク1側の気筒群を休止させる気筒休止領域H2と、の関係を示しており、気筒休止領域H2は進角領域H1の内側に含まれる形となる。つまり、この実施例では、部分負荷領域において、一部気筒を休止させるとともに、稼働気筒の吸気弁の作動角位相を進角させて、内部EGRを拡大し、燃費向上やNOxの低減を図っている。
【0030】
従って、例えば図5の矢印A1に示すように、アイドル近傍の低回転低負荷域から回転数が上昇するような状況では、左バンク1側の気筒群の休止(弁停止)とほぼ同時に第1,第2位相変更機構12’,12が進角側へ変化しようとする。また、矢印A2に示すように、全気筒が稼働している高回転低負荷域から回転数が低下するような状況では、やはり、第1,第2位相変更機構12’,12が進角側へ変化しつつある間に、気筒休止運転への切換が開始する。更に、矢印A3に示すように、高負荷域からトルクが低下するような状況では、第1,第2位相変更機構12’,12の制御特性として、基本的には進角領域H1内にあるが、中負荷領域に比べて高負荷側の方が相対的に遅角した特性に位相制御の特性が設定されているので、矢印A3の変化に伴って、第1,第2位相変更機構12’,12は、僅かではあるが進角側へ変化する。従って、やはり第1,第2位相変更機構12’,12が進角側へ徐々に変化している際に、気筒休止(弁停止)への切換が開始することとなる。
【0031】
このように、休止気筒となる左バンク1側を右バンク2側と同様に位相制御することで、弁停止状態に切り換える際に、同時に第2位相変更機構12が進角側へ動作していることになり、つまり、作動油が還流油路48を通して弁停止用油圧室31へ供給されることになるため、簡素な構造でありながら、気筒休止運転開始時の作動応答性を効果的に向上させることができる。
【0032】
なお、気筒休止運転を継続して行っている場合のように、逆止弁49の下流側の油圧が高く逆止弁49が開弁できない状況で、第2位相変更機構12が進角側へ動作した場合には、制御弁51が開弁し、遅角側油圧室27内の作動油を進角側ドレーン分岐油路50を経由して確実にオイルパン11へ排出できるようになっている。
【0033】
また、全気筒稼働状態にあるときには、逆止弁49の開弁荷重が制御弁(逆止弁)51の開弁荷重よりも低く、逆止弁49の下流側の油圧が低いため、位相変更機構12が進角側へ動作すると、逆止弁49のみが開弁する。したがって、遅角側油圧室27の作動油は、還流油路48,弁停止用制御油路45および弁停止用ドレーン油路47を経てオイルパン11へ排出されることとなる。
【0034】
以上のように本発明を好適な一実施形態に基づいて説明してきたが、本発明はこの実施形態に限定されるものではなく、種々の変形,変更を含むものである。例えば、上記の制御弁51に代えて、圧力差を発生させるオリフィスを設ける構成としても良い。
【0035】
また上記実施例では、左バンク1側の気筒群の吸気弁の位相制御を常に右バンク2側と同様に行うようにしているが、休止運転への切換時に、左バンク1側の第2位相変更機構12のみを積極的に進角側へ動かして、弁停止機構14の作動応答性をより確実に高めるようにすることもできる。
【図面の簡単な説明】
【図1】本発明の一実施例の油圧制御装置における左バンク側の回路構成を示す構成図。
【図2】位相変更機構およびその油圧制御弁の作用説明図。
【図3】弁停止機構を示す斜視図。
【図4】弁停止用油圧制御弁を模式的に示す作用説明図。
【図5】位相変更機構の進角領域および気筒休止領域を示す特性図。
【図6】V型8気筒内燃機関の気筒配置を示す説明図。
【図7】1プレーンクランクシャフト形式の点火順序の説明図。
【図8】右バンク側の回路構成を示す構成図。
【符号の説明】
10…オイルポンプ(油圧源)
12…第2位相変更機構
14…弁停止機構
48…還流油路
49…逆止弁
50…進角側ドレーン分岐油路
51…制御弁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to two types of hydraulic operation mechanisms that function independently of each other while sharing a hydraulic pressure source, and more particularly, to a hydraulic control device for an internal combustion engine that includes an intake valve phase change mechanism and a valve stop mechanism.
[0002]
[Prior art]
In the field of internal combustion engines, it is a common practice to operate various hydraulic operating mechanisms using an oil pump used for circulating lubricating oil as a hydraulic source. Examples of such a hydraulic operation mechanism include a valve stop mechanism that temporarily stops the opening / closing of intake / exhaust valves of some cylinders according to engine operating conditions. The valve stop mechanism described above is applied to a multi-cylinder internal combustion engine that performs so-called cylinder number control in which some cylinders are deactivated and only some cylinders are activated at the time of partial load. The intake / exhaust valves of the cylinder group to be stopped, at least the intake valves are provided to stop.
[0003]
As a hydraulic operation mechanism, a variable valve mechanism that changes opening / closing timings and valve lift amounts of intake valves and exhaust valves according to engine operating conditions is also known. As a hydraulic variable valve mechanism, Japanese Patent Application Laid-Open No. 5-248217 discloses switching the opening / closing timing of an intake valve and an exhaust valve in two stages by switching between a low-speed rocker arm and a high-speed rocker arm. Although a possible variable valve mechanism has been disclosed, a phase change mechanism for delaying the phase of the intake / exhaust valve operating angle (phase with respect to the crankshaft) is also known and has already been put into practical use.
[0004]
[Problems to be solved by the invention]
The above valve stop mechanism can be used in combination with a variable valve mechanism such as a phase change mechanism. However, when the valve stop mechanism and the phase change mechanism are provided in this way, the engine operating conditions change and all cylinders change. When switching the valve stop mechanism to shift from the operating state to the resting state of some cylinders, it is usually necessary to operate the phase change mechanism simultaneously with changes in engine operating conditions. There is a risk that the hydraulic pressure supplied to the engine will be insufficient and the response of the operation will be reduced. In order to prevent such a decrease in operation responsiveness, it may be possible to provide a dedicated oil pump, an accumulator, or the like. In this case, however, the configuration of the hydraulic circuit becomes complicated, resulting in an increase in weight and cost. There is a fear.
[0005]
The present invention has been made in view of such problems, and in the case where a valve stop mechanism and a phase change mechanism that share a hydraulic pressure source are provided, the operation responsiveness of the valve stop mechanism can be improved with a simple structure. The purpose is to plan.
[0006]
[Means for Solving the Problems]
In the present invention, the internal combustion engine includes a first cylinder group and a second cylinder group. The first cylinder group includes a first phase change mechanism that delays the phase of the operating angle of the intake valve, and a plurality of cylinders that burn at equal intervals so that stable operation is possible when only the first cylinder group is operating. Consists of. The second cylinder group also includes a second phase change mechanism that similarly delays the phase of the operation angle of the intake valve, and temporarily opens and closes the intake valve by supplying hydraulic pressure from a hydraulic source that is shared with the second phase change mechanism. The valve stop mechanism which stops automatically is provided. Therefore, for example, under a predetermined operating condition such as a partial load, the second cylinder group is in a stopped state, and at the same time, the valve stop mechanism stops the opening and closing of the intake valve of the second cylinder group. The valve stop mechanism may stop both the intake valve and the exhaust valve. Then, the hydraulic control system of the present invention, the supply hydraulic fluid second phase change mechanism of the second cylinder group is discharged from the second phase change mechanism when operating the advance side to the valve stop Organization As described above, a reflux oil passage is provided between the second phase change mechanism and the valve stop mechanism.
[0007]
Therefore, when the valve stop mechanism is switched to the valve stop state, if the second phase change mechanism operates toward the advance side almost simultaneously, the hydraulic oil discharged from the second phase change mechanism is supplied to the valve stop mechanism. As a result, the valve stop mechanism immediately switches as the hydraulic pressure is supplied from the hydraulic source. That is, the operation responsiveness of the valve stop mechanism is improved by using the hydraulic oil that is normally discharged as it is.
[0008]
【The invention's effect】
According to this invention, when switching to the valve stop, the hydraulic oil discharged from the second phase change mechanism is supplied to the valve stop mechanism through the reflux oil passage, so that a special hydraulic auxiliary device such as an accumulator is used separately. In addition, the operation response of the valve stop mechanism can be improved.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment in which the present invention is applied to a V-type 8-cylinder internal combustion engine will be described in detail with reference to the drawings. First, the combustion interval of the V-type 8-cylinder internal combustion engine will be described. FIG. 6 shows a cylinder arrangement of a V-type 8-cylinder internal combustion engine, in which the left bank 1 and the right bank 2 are arranged in a V-type with a bank angle of 90 °. The left bank 1 includes four cylinders # 1, # 3, # 5, and # 7, and the right bank 2 includes # 2, # 4, # 6, and # 8 cylinders. The four cylinders are included. The V-type 8-cylinder internal combustion engine of the present embodiment is a so-called one-plane crankshaft type in which the crankpin is disposed at a point 180 degrees apart, and the ignition order of the eight cylinders is shown in FIG. Thus, “# 1 → # 4 → # 5 → # 2 → # 7 → # 6 → # 3 → # 8 →”, and each combustion interval is 90 °. Looking at this for each bank, the left bank 1 is “# 1 → # 5 → # 7 → # 3 →” with a combustion interval of 180 °, and the right bank 2 is also with a combustion interval of 180 °. “# 4 → # 2 → # 6 → # 8 →”. That is, all banks are equally spaced combustion. Accordingly, in this embodiment, the first cylinder group in which four cylinders in one bank, for example, the right bank 2 are always operated, is the second cylinder group in which the other bank, that is, the four cylinders in the left bank 1 can be stopped depending on the operating conditions. It has become. When the operation is performed only with the first cylinder group of the right bank, as described above, ignition is performed at equal intervals of 180 ° in the order of “# 4 → # 2 → # 6 → # 8 →”. Therefore, stable operation is possible with the cylinders of the left bank 1 being deactivated, and output can be improved by reducing exhaust interference.
[0010]
The left bank 1 serving as a deactivated cylinder is provided with a valve stop mechanism that stops opening and closing of the intake and exhaust valves when the cylinder is deactivated, as will be described later. Further, a phase changing mechanism is provided for each bank in order to optimize the phase of the operating angle of the intake valve in accordance with the operating conditions. These mechanisms are all driven using the hydraulic pressure of the lubricating oil of the internal combustion engine, and the hydraulic control device will be described below. The phase change mechanism of the right bank 2 that is always operating is the first phase change mechanism, and the phase change mechanism of the left bank 1 that can be paused is the second phase change mechanism, but these are basically the same configuration. is there.
[0011]
FIG. 1 is a schematic configuration diagram showing a hydraulic control device according to the present invention, and particularly shows a configuration on the left bank 1 side that can be stopped. As shown in the figure, this hydraulic control device supplies hydraulic pressure to the second phase change mechanism 12 and the valve stop mechanism 14 as necessary, and hydraulically feeds an oil pump 10 that circulates lubricating oil to each part of the internal combustion engine. Shared as a source. A phase change hydraulic control valve 16 that controls the hydraulic pressure supplied from the oil pump 10 to the second phase change mechanism 12 and a valve that controls the hydraulic pressure supplied from the oil pump 10 to the second hydraulic operation mechanism 14. A stop hydraulic control valve 18 is provided.
[0012]
The structure of the second phase change mechanism 12 is known, and will be briefly described with reference to FIG. 2. The phase change mechanism 12 is an outer peripheral side that rotates integrally with the cam sprocket 21 that rotates in synchronization with the crankshaft. A gear portion 22, an inner peripheral gear portion 24 which is coaxially disposed inside the outer peripheral gear portion 22 and rotates integrally with an intake camshaft 23 for driving the intake valve, and the outer peripheral gear portion 22, A substantially annular piston 25 that meshes with the inner and outer peripheral surfaces of the inner peripheral side gear portion 24 via a helical spline, and a return spring 26 that urges the piston 25 to the retard side.
[0013]
A retard-side hydraulic chamber 27 and an advance-side hydraulic chamber 28 face both end surfaces of the piston 25 in the axial direction, and the piston 25 moves in the axial direction in accordance with the hydraulic pressure of the hydraulic chambers 27 and 28. The phase of the intake camshaft 23 with respect to the cam sprocket 21 is changed, and the operating angle phase of the intake valve is continuously changed.
[0014]
The structure of the valve stop mechanism 14 is also known, and will be briefly described with reference to FIG. 3. When the hydraulic pressure of the valve stop hydraulic chamber 31 is low, the rod-shaped coupling 33 is caused by the spring force of a spring (not shown). It protrudes to a position where it engages with an auxiliary rocker arm 36 a having a roller type cam follower 34, and the pressing force of the cam 35 passes through the auxiliary rocker arm 36 a, the coupling 33 and the rocker arm 36, and the intake / exhaust valve 37 (intake valve 37 a and exhaust valve 37 b). ) And a normal opening / closing operation is performed. On the other hand, when a predetermined operating oil pressure is supplied to the valve stop hydraulic chamber 31, the piston 38 presses the coupling 33 in a backward direction against the spring force of the spring to separate from the auxiliary rocker arm 36a, and the auxiliary rocker arm 36a The rocker arm 36 is substantially separated. Accordingly, power transmission from the cam 35 to the rocker arm 36 is interrupted, and the intake / exhaust valve 37 stops. In other words, when the cylinder group of the left bank 1 is stopped, the hydraulic pressure is supplied to the valve stop mechanism 14 and the intake / exhaust valve 37 is held closed.
[0015]
Next, the circuit configuration of the hydraulic control apparatus will be described with reference to FIGS. The circuit includes a first hydraulic supply oil passage 41 that supplies hydraulic pressure from the oil pump 10 to the phase change hydraulic control valve 16 and a second hydraulic supply that supplies hydraulic pressure from the oil pump 10 to the valve stop hydraulic control valve 18. The oil passage 42, the retard control oil passage 43 that connects the phase change hydraulic control valve 16 and the retard hydraulic chamber 27, and the phase change hydraulic control valve 16 and the advance hydraulic chamber 28 are connected. An advance angle side control oil passage 44, a valve stop control oil passage 45 connecting the valve stop hydraulic control valve 18 and the valve stop hydraulic chamber 31, and an oil pan from the phase change hydraulic control valve 16 during the retard operation. 11 is provided with a retarded-side drain oil passage 46 for discharging the hydraulic oil to the valve 11 and a valve stop drain oil passage 47 for discharging the hydraulic oil from the valve stop hydraulic control valve 18 to the oil pan 11.
[0016]
The hydraulic fluid discharged from the retarded hydraulic chamber 27 during the advance operation is communicated with the retarded hydraulic chamber 27 of the second phase change mechanism 12 and the valve stop hydraulic chamber 31 of the valve stop mechanism 14. A reflux oil passage 48 for supplying the valve stop hydraulic chamber 31 is provided. The reflux oil passage 48 includes the retard angle side control oil passage 43, and joins the valve stop control oil passage 45 on the downstream side. That is, the leading end of the reflux oil passage 48 is connected to the valve stop control oil passage 45 between the valve stop hydraulic control valve 18 and the valve stop hydraulic chamber 31, and the valve stop hydraulic control valve 18 is opened and closed. Regardless of the state, the hydraulic oil can be supplied to the valve stop control oil passage 45.
[0017]
A check valve 49 that prevents the backflow of hydraulic oil in the direction from the valve stop mechanism 14 toward the second phase change mechanism 12 is disposed in the reflux oil passage 48. Further, an advance side drain branch oil passage 50 is provided which branches to the upstream side (phase change mechanism 12 side) of the return oil passage 48 from the check valve 49 and extends to the oil pan 11. A control valve 51 including a check valve is disposed in the drain branch oil passage 50. The valve opening load of the check valve 49 is set lower than the valve opening load of the control valve 51. For example, the valve opening load of the check valve 49 is about 0.1 kgf / cm 2 , and the valve opening load of the control valve 51 is Is set to about 0.3 kgf / cm 2 .
[0018]
FIG. 8 shows a circuit configuration on the right bank 2 side that is always operating. As described above, the first phase change mechanism 12 ′ is provided on the right bank 2 side. The first phase change mechanism 12 ′ itself has the same configuration as the second phase change mechanism 12. In addition, the configuration of the hydraulic circuit is the same except for the portion of the reflux oil passage 48, and therefore, the same reference numerals are given to the same portions as the above-described configuration. In this embodiment, the oil pump 10 serving as a hydraulic pressure source is shared with the hydraulic circuit on the left bank 1 side, and from the oil pump 10 to the hydraulic control valve 16 for phase change as in the configuration on the left bank 1 side described above. The first hydraulic pressure supply oil passage 41 that supplies the hydraulic pressure, the retard side control oil passage 43 that connects the phase change hydraulic control valve 16 and the retard side hydraulic chamber 27, the phase change hydraulic control valve 16 and the advance angle. An advance side control oil passage 44 that connects the side hydraulic chamber 28 and a retard side drain oil passage 46 that discharges hydraulic oil from the phase change hydraulic control valve 16 to the oil pan 11 during the retard operation are provided. ing. The right bank 2 side is not provided with the reflux oil passage 48, and the hydraulic oil pushed out from the advance side hydraulic chamber 28 during the advance operation operates through the advance side drain oil passage 52 to change the phase. 16 is discharged to the oil pan 11.
[0019]
Next, the operation of the embodiment configured as described above will be described.
[0020]
The first and second phase change mechanisms 12 'and 12 control the position of the spool 16a by variably controlling the duty ratio of the pulse signal applied to the solenoid that drives the spool 16a of the phase change hydraulic control valve 16. The direction of the hydraulic pressure acting on each of the phase change mechanisms 12 ', 12 is switched to change the position of the piston 25, and the operation angle phase of the intake valve corresponding to this is controlled.
[0021]
Specifically, at the time of retarding operation in which the operating angle phase of the intake valve is changed to the retard side, the spool 16a of the phase changing hydraulic control valve 16 is set to the position shown in FIG. The hydraulic pressure is supplied to the retard side hydraulic chamber 27 via the first hydraulic supply oil path 41 and the retard side control oil path 43, while proceeding through the advance side control oil path 44 and the retard side drain oil path 46. The hydraulic oil in the corner side hydraulic chamber 28 is discharged to the oil pan 11. As a result, the piston 25 is pressed and moved to the retard side (left side in FIG. 2). FIG. 2A shows the lift characteristics of the intake valve and the exhaust valve in the most retarded state.
[0022]
At the time of an advance operation for changing the operating angle phase of the intake valve to the advance side, the spool position shown in FIG. 2B is set, and the advance side hydraulic pressure is passed through the first hydraulic supply oil passage 41 and the advance side control oil passage 44. While hydraulic pressure is supplied to the chamber 28, hydraulic oil in the retarded hydraulic chamber 27 is discharged through the retarded control oil passage 43. This hydraulic oil is discharged to the valve stop control oil passage 45 via the reflux oil passage 48 on the left bank 1 side, and is discharged to the oil pan 11 by the advance side drain oil passage 52 on the right bank 2 side. As a result, the piston 25 is pressed and moved to the advance side (the right side in FIG. 2). FIG. 2 (b) shows the lift characteristics of the intake valve and the exhaust valve in the most advanced state.
[0023]
When the operating angle phase of the intake valve is maintained at the current phase, the spool position shown in FIG. 2C is set, and both of the spool 16a are connected to the retard side control oil path 43 and the advance side control oil path 44. Are closed, the hydraulic pressure in the hydraulic chambers 27 and 28 is locked, and the piston 25 is held at the current position.
[0024]
In this way, by switching the hydraulic pressure supplied to the phase change mechanisms 12 'and 12 via the phase change hydraulic control valve 16, it is possible to feedback control the operating angle phase of the intake valve to a characteristic according to the engine operating conditions. .
[0025]
On the other hand, in the valve stop mechanism 14 provided on the left bank 1 side, as shown in FIG. 1 and FIG. 4, the position of the spool 18a of the valve stop hydraulic control valve 18 is switched according to the engine operating conditions. The valve opening / closing movement is temporarily stopped in accordance with switching between operation and stop of the cylinder group on the bank 1 side. That is, when the cylinder group on the left bank 1 side is operated, the spool position shown in FIG. 4A is set, and the hydraulic oil in the valve stop hydraulic chamber 31 is supplied to the valve stop control oil passage 45 and the valve stop drain oil passage. 47 is discharged to the oil pan 11. On the other hand, when the cylinder group on the left bank 1 side is stopped, the spool position shown in FIG. 4B is set, and the oil pressure of the oil pump 10 is increased via the second hydraulic pressure supply oil passage 42 and the valve stop control oil passage 45. Supplied to the valve stop hydraulic chamber 31. As a result, the opening and closing of the intake valve and the exhaust valve are stopped as described above.
[0026]
Here, in this embodiment, when the valve stop is performed in the cylinder group on the left bank 1 side as described above, the second phase change mechanism 12 of the cylinder group on the left bank 1 side simultaneously operates toward the advance side. To do. When the second phase changing mechanism 12 is advanced in this way, hydraulic oil is discharged from the retarded-side hydraulic chamber 27 to the return oil passage 48 as the piston 25 moves forward. The hydraulic pressure in the valve stop control oil passage 45 is increased to some extent. Therefore, when the valve stop hydraulic control valve 18 is switched so as to supply the hydraulic pressure to the valve stop mechanism 14 under such circumstances, the hydraulic pressure introduced to the valve stop mechanism 14 is quickly increased, and the valve stop immediately Switch to state. That is, in addition to the hydraulic fluid supplied from the oil pump 10 to the valve stop hydraulic chamber 31 via the second hydraulic supply oil passage 42, the valve stop hydraulic control valve 18, and the valve stop control oil passage 45, The hydraulic oil is also supplied from the corner side hydraulic chamber 27 side via the reflux oil passage 48. Therefore, the retard side hydraulic chamber 27 functions as a kind of hydraulic accumulator, and the operation responsiveness of the valve stop mechanism 14 can be improved without providing a separate accumulator or the like.
[0027]
In particular, when the engine speed is low, the hydraulic pressure supplied from the oil pump 10 itself is low, so that the operation responsiveness tends to decrease. However, according to this embodiment, the hydraulic oil is also supplied from the retard side hydraulic chamber 27. Therefore, it is possible to obtain good operation responsiveness even in such an operation region where the supply pressure is low.
[0028]
More specifically, the reflux oil passage 48 joins the valve stop control oil passage 45 connecting the valve stop hydraulic control valve 18 and the valve stop hydraulic chamber 31, and passes through the valve stop hydraulic control valve 18. The hydraulic oil is directly supplied to the valve stop hydraulic chamber 31 without any problem. Therefore, the operation responsiveness is reliably improved.
[0029]
Here, in the present embodiment, the cylinder group on the left bank 1 side becomes a deactivated cylinder when the valve is stopped, so it is not necessary to move the second phase change mechanism 12 originally, but the right bank 2 side which is an operating cylinder side. By actively continuing the same phase control as that of the first cylinder group, the first phase changing mechanism 12 is operated to the advance side when the valve stop is switched. That is, FIG. 5 shows the relationship between the advance angle region H1 where the first and second phase change mechanisms 12 ′ and 12 are controlled to the advance position and the cylinder deactivation region H2 where the cylinder group on the left bank 1 side is deactivated. The cylinder deactivation region H2 is included in the advance angle region H1. In other words, in this embodiment, in the partial load region, some cylinders are deactivated and the operating angle phase of the intake valve of the working cylinder is advanced to increase the internal EGR, thereby improving fuel consumption and reducing NOx. Yes.
[0030]
Therefore, for example, as shown by an arrow A1 in FIG. 5, in a situation where the rotation speed increases from a low rotation and low load range near the idle, the first is almost simultaneously with the stop (valve stop) of the cylinder group on the left bank 1 side. The second phase changing mechanisms 12 'and 12 are about to change to the advance side. Further, as shown by the arrow A2, in the situation where the rotational speed is reduced from the high rotational speed and low load range in which all the cylinders are operating, the first and second phase change mechanisms 12 ′ and 12 are also advanced. While changing to, the switching to the cylinder deactivation operation is started. Furthermore, as shown by the arrow A3, in a situation where the torque decreases from the high load range, the control characteristics of the first and second phase change mechanisms 12 ′ and 12 are basically within the advance angle range H1. However, since the phase control characteristic is set to a characteristic that is relatively retarded on the high load side as compared with the middle load region, the first and second phase change mechanisms 12 are changed in accordance with the change of the arrow A3. ', 12 slightly changes to the advance side. Accordingly, when the first and second phase change mechanisms 12 'and 12 are gradually changing to the advance side, switching to cylinder deactivation (valve stop) is started.
[0031]
In this way, by performing phase control on the left bank 1 side, which is a deactivated cylinder, in the same manner as the right bank 2 side, the second phase change mechanism 12 is simultaneously operated toward the advance side when switching to the valve stop state. In other words, since the hydraulic oil is supplied to the valve stop hydraulic chamber 31 through the reflux oil passage 48, the operation responsiveness at the start of the cylinder deactivation operation is effectively improved while having a simple structure. Can be made.
[0032]
Note that the second phase change mechanism 12 moves to the advance side in a situation where the hydraulic pressure on the downstream side of the check valve 49 is high and the check valve 49 cannot be opened as in the case where the cylinder deactivation operation is continuously performed. When operated, the control valve 51 opens, and the hydraulic oil in the retard side hydraulic chamber 27 can be reliably discharged to the oil pan 11 via the advance side drain branch oil passage 50. .
[0033]
Further, when all cylinders are in an operating state, the valve opening load of the check valve 49 is lower than the valve opening load of the control valve (check valve) 51 and the hydraulic pressure downstream of the check valve 49 is low. When the mechanism 12 moves forward, only the check valve 49 opens. Accordingly, the hydraulic oil in the retard side hydraulic chamber 27 is discharged to the oil pan 11 through the reflux oil passage 48, the valve stop control oil passage 45 and the valve stop drain oil passage 47.
[0034]
As described above, the present invention has been described based on a preferred embodiment, but the present invention is not limited to this embodiment, and includes various modifications and changes. For example, instead of the control valve 51, an orifice that generates a pressure difference may be provided.
[0035]
In the above embodiment, the phase control of the intake valve of the cylinder group on the left bank 1 side is always performed in the same manner as on the right bank 2 side. However, the second phase on the left bank 1 side is switched to the rest operation. It is also possible to positively move only the changing mechanism 12 toward the advance side, so that the operation responsiveness of the valve stop mechanism 14 can be improved more reliably.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing a circuit configuration on a left bank side in a hydraulic control apparatus according to an embodiment of the present invention.
FIG. 2 is a diagram illustrating the operation of a phase change mechanism and its hydraulic control valve.
FIG. 3 is a perspective view showing a valve stop mechanism.
FIG. 4 is an operation explanatory view schematically showing a valve stop hydraulic control valve.
FIG. 5 is a characteristic diagram showing an advance angle region and a cylinder deactivation region of the phase change mechanism.
FIG. 6 is an explanatory view showing a cylinder arrangement of a V-type 8-cylinder internal combustion engine.
FIG. 7 is an explanatory diagram of an ignition sequence of a 1-plane crankshaft format.
FIG. 8 is a configuration diagram showing a circuit configuration on the right bank side.
[Explanation of symbols]
10 ... Oil pump (hydraulic power source)
12 ... Second phase change mechanism 14 ... Valve stop mechanism 48 ... Recirculation oil passage 49 ... Check valve 50 ... Advance side drain branch oil passage 51 ... Control valve

Claims (7)

吸気弁の作動角の位相を遅進させる第1位相変更機構を備え、かつ等間隔燃焼する複数気筒からなる第1気筒群と、同じく吸気弁の作動角の位相を遅進させる第2位相変更機構を備えるとともに、該第2位相変更機構と共用する油圧源からの油圧供給により吸気弁の開閉を一時的に停止させる弁停止機構を備える第2気筒群と、を含む内燃機関の油圧制御装置であって、
上記第2気筒群の第2位相変更機構が進角側に動作するときに該第2位相変更機構から排出される作動油が上記弁停止機構へ供給されるように、上記第2位相変更機構と上記弁停止機構との間に還流油路が設けられていることを特徴とする内燃機関の油圧制御装置。
A first phase change mechanism that includes a first phase change mechanism that retards the phase of the operating angle of the intake valve, and a second phase change that similarly delays the phase of the operating angle of the intake valve; And a second cylinder group including a valve stop mechanism that temporarily stops opening and closing of the intake valve by supplying hydraulic pressure from a hydraulic pressure source shared with the second phase change mechanism. Because
As the hydraulic oil discharged from the second phase changing mechanism is supplied to the valve stop Organization when the second phase change mechanism of the second cylinder group is operated to the advance side, the second phase change A hydraulic control device for an internal combustion engine, wherein a reflux oil passage is provided between the mechanism and the valve stop mechanism.
上記油圧源と上記弁停止機構との間に弁停止用油圧制御弁が設けられており、上記還流油路の先端は、上記弁停止用油圧制御弁と上記弁停止機構との間の油路に接続されていることを特徴とする請求項1に記載の内燃機関の油圧制御装置。A valve stop hydraulic control valve is provided between the hydraulic source and the valve stop mechanism, and a leading end of the reflux oil passage is an oil passage between the valve stop hydraulic control valve and the valve stop mechanism. The hydraulic control device for an internal combustion engine according to claim 1, wherein the hydraulic control device is connected to the internal combustion engine. 上記還流油路に、上記弁停止機構から上記第2位相変更機構への作動油の逆流を阻止する逆止弁が配設されていることを特徴とする請求項1または2に記載の内燃機関の油圧制御装置。3. The internal combustion engine according to claim 1, wherein a check valve that prevents backflow of hydraulic oil from the valve stop mechanism to the second phase change mechanism is disposed in the reflux oil passage. Hydraulic control device. 上記還流油路における上記逆止弁の上流側で分岐して作動油を排出するドレーン分岐油路に制御弁が設けられ、この制御弁の開弁荷重が上記逆止弁の開弁荷重よりも高く設定されていることを特徴とする請求項3に記載の内燃機関の油圧制御装置。A control valve is provided in a drain branch oil passage that branches off upstream of the check valve in the reflux oil passage and discharges hydraulic oil, and the valve opening load of the control valve is larger than the valve opening load of the check valve. 4. The hydraulic control apparatus for an internal combustion engine according to claim 3, wherein the hydraulic control apparatus is set high. 上記第1位相変更機構と上記第2位相変更機構と上記弁停止機構とが、同一の油圧源を共用していることを特徴とする請求項1〜4のいずれかに記載の内燃機関の油圧制御装置。5. The hydraulic pressure of the internal combustion engine according to claim 1, wherein the first phase change mechanism, the second phase change mechanism, and the valve stop mechanism share the same hydraulic pressure source. Control device. 内燃機関が1プレーンクランクシャフトのV型8気筒内燃機関であり、一方のバンクの気筒が第1気筒群を構成し、他方のバンクの気筒が第2気筒群を構成していることを特徴とする請求項1〜5のいずれかに記載の内燃機関の油圧制御装置。The internal combustion engine is a one-plane crankshaft V-type 8-cylinder internal combustion engine, wherein one bank of cylinders constitutes a first cylinder group and the other bank of cylinders constitutes a second cylinder group. The hydraulic control device for an internal combustion engine according to any one of claims 1 to 5. 上記弁停止機構が弁停止状態に切り換えられるときに、上記第2位相変更機構が進角側へ変化するように制御されることを特徴とする請求項1〜6のいずれかに記載の内燃機関の油圧制御装置。The internal combustion engine according to any one of claims 1 to 6, wherein when the valve stop mechanism is switched to a valve stop state, the second phase change mechanism is controlled to change to an advance side. Hydraulic control device.
JP2002131080A 2002-05-07 2002-05-07 Hydraulic control device for internal combustion engine Expired - Lifetime JP4075448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002131080A JP4075448B2 (en) 2002-05-07 2002-05-07 Hydraulic control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002131080A JP4075448B2 (en) 2002-05-07 2002-05-07 Hydraulic control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2003322007A JP2003322007A (en) 2003-11-14
JP4075448B2 true JP4075448B2 (en) 2008-04-16

Family

ID=29543854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002131080A Expired - Lifetime JP4075448B2 (en) 2002-05-07 2002-05-07 Hydraulic control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4075448B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4583297B2 (en) * 2005-12-15 2010-11-17 本田技研工業株式会社 Internal combustion engine
JP4924462B2 (en) * 2008-02-13 2012-04-25 トヨタ自動車株式会社 Variable valve operating device for internal combustion engine
WO2013051968A1 (en) 2011-10-03 2013-04-11 Volvo Technological Corporation Internal combustion engine system and method for increasing the temperature in at least one part of the internal combustion engine system
JP6020307B2 (en) * 2013-03-29 2016-11-02 マツダ株式会社 Multi-cylinder engine controller
JP6094430B2 (en) * 2013-08-28 2017-03-15 マツダ株式会社 Engine control device
JP6156182B2 (en) * 2014-02-19 2017-07-05 マツダ株式会社 Multi-cylinder engine controller
JP6160539B2 (en) * 2014-03-31 2017-07-12 マツダ株式会社 Engine control device
JP6498628B2 (en) * 2016-04-01 2019-04-10 ボルボ テクノロジー コーポレイション Method for raising the temperature of an exhaust gas aftertreatment system that is at least part of an internal combustion engine system, as well as a vehicle comprising an internal combustion engine system performing such a method

Also Published As

Publication number Publication date
JP2003322007A (en) 2003-11-14

Similar Documents

Publication Publication Date Title
US6230675B1 (en) Intake valve lift control system
JP2982581B2 (en) Variable valve train for internal combustion engine
US5704317A (en) Method for operating a hydraulically controlled/regulated camshaft adjuster for internal combustion engines
JP3946426B2 (en) Variable valve operating device for internal combustion engine
JP3975652B2 (en) Variable valve operating device for internal combustion engine
JP4058909B2 (en) Hydraulic control device for internal combustion engine
JP2891013B2 (en) Variable valve timing control device for V-type internal combustion engine
JP3985696B2 (en) Variable valve operating device for internal combustion engine
EP2133516B1 (en) Internal combustion engine controller
EP1803905A2 (en) Variable valve actuation system of internal combustion engine
US8205585B2 (en) Variable valve gear for internal combustion engine
JPH1113429A (en) Valve opening/closing characteristic control device for internal combustion engine
JP4075448B2 (en) Hydraulic control device for internal combustion engine
JPH10103034A (en) Oil feeder for internal combustion engine
EP0854273A1 (en) Variable valve timing and valve events mechanism for an internal combustion engine
US20210254515A1 (en) Valvetrain configurations for multilevel dynamic skip fire variable valve lift switching and cylinder deactivation
JP2016104970A (en) Variable valve device of internal combustion engine
JPH1113502A (en) Device for restraining abnormal internal pressure of cylinder in internal combustion engine
JPH041406A (en) Valve system for multicylinder engine
WO2020054699A1 (en) Variable valve-operating device for internal combustion engine
KR100288223B1 (en) Valve timing control system for internal combustion engine
JP2969284B2 (en) Engine valve gear
JP2638343B2 (en) Engine output control device
JPH07139321A (en) Valve timing controller for internal combustion engine
JP3769783B2 (en) Engine valve gear

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080121

R150 Certificate of patent or registration of utility model

Ref document number: 4075448

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140208

Year of fee payment: 6

EXPY Cancellation because of completion of term