JP2003321714A - Method of producing galvanized cold rolled steel sheet having excellent strain aging hardening property - Google Patents

Method of producing galvanized cold rolled steel sheet having excellent strain aging hardening property

Info

Publication number
JP2003321714A
JP2003321714A JP2002126668A JP2002126668A JP2003321714A JP 2003321714 A JP2003321714 A JP 2003321714A JP 2002126668 A JP2002126668 A JP 2002126668A JP 2002126668 A JP2002126668 A JP 2002126668A JP 2003321714 A JP2003321714 A JP 2003321714A
Authority
JP
Japan
Prior art keywords
mass
heating
steel sheet
cold
temperature range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002126668A
Other languages
Japanese (ja)
Other versions
JP3951789B2 (en
Inventor
Shinjiro Kaneko
真次郎 金子
Kazuhiro Hanazawa
和浩 花澤
Saiji Matsuoka
才二 松岡
Takashi Sakata
坂田  敬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002126668A priority Critical patent/JP3951789B2/en
Publication of JP2003321714A publication Critical patent/JP2003321714A/en
Application granted granted Critical
Publication of JP3951789B2 publication Critical patent/JP3951789B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a galvanized cold rolled steel sheet which has excellent fatigue properties and safety against collision, e.g. as automobile structural parts by increasing the yield strength and tensile strength owing to strain aging in a relatively low strength steel sheet having the tensile strength of <590 MPa. <P>SOLUTION: A steel stock having a componential composition containing, by mass, 0.01 to 0.2% C, ≤0.4% Si, 0.2 to 2.0% Mn, ≤0.05% P, 0.001 to 0.1% Al and 0.005 to 0.02% N, and the balance Fe with inevitable impurities is hot- rolled, and is then cold-rolled to obtain a cold rolled steel sheet containing solid solution N of ≥50 ppm. The cold rolled steel sheet is subjected to heating- cooling treatment so as to be heated to a temperature range of 650 to 900°C, and to be cooled at a mean cooling rate of 5 to 50°C/s at least in a temperature range from the heating temperature to 650°C. Successively, plating treatment where a plating layer is formed on the surface of the steel sheet is performed. In the fundamental process, the time of the heating-cooling treatment in a temperature range of ≥650°C is regulated in the case the content of the solid solution N is less than the prescribed value. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、自動車の構造部
品、足周り部品などの使途に好適な、加工後の焼付け塗
装処理を経て降伏強さおよび引張強さが上昇し、疲労特
性並びに耐衝突安全性が向上するとともに防錆性に優れ
る、引張強さが590MPa 未満の溶融亜鉛めっき冷延鋼板
を製造する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is suitable for use in automobile structural parts, foot parts and the like, and is increased in yield strength and tensile strength after baking processing after processing, resulting in fatigue characteristics and collision resistance. The present invention relates to a method for producing a hot-dip galvanized cold-rolled steel sheet having a tensile strength of less than 590 MPa, which has improved safety and excellent rust prevention.

【0002】[0002]

【従来の技術】近年、自動車の乗員の安全確保の目的か
ら、耐衝突安全性に優れた自動車車体の開発が行なわれ
ていて、そのため自動車用鋼板の一層の高強度化が進め
られている。また、CO2 排出に関わる環境問題の観点か
ら、燃費向上のために 車体を軽量化する必要があり、
鋼板の薄肉化が望まれている。
2. Description of the Related Art In recent years, for the purpose of ensuring the safety of passengers of an automobile, an automobile body having excellent collision resistance has been developed, and therefore, the strength of automobile steel sheet has been further enhanced. Also, from the perspective of environmental issues related to CO 2 emissions, it is necessary to reduce the weight of the vehicle body in order to improve fuel efficiency.
It is desired to reduce the thickness of steel sheets.

【0003】ところで、鋼板の高強度化はプレス成形を
困難にするという問題点がある。とくに、寸法精度は鋼
板の強度に強く依存し、中でも引張強さが590MPa 以上
の強度レベルにおいては寸法精度の達成が著しく困難に
なるため、590MPa未満の強度で鋼板の薄肉化を達成でき
るような特性を有するものが望まれている。
By the way, there is a problem that increasing the strength of a steel sheet makes press forming difficult. In particular, the dimensional accuracy strongly depends on the strength of the steel sheet. Above all, at tensile strength levels of 590 MPa or higher, it becomes extremely difficult to achieve dimensional accuracy. What has characteristics is desired.

【0004】ここに、成形性と車体強度を両立する高強
度化技術としては、成形時には加工がし易く、塗装時の
焼付によって強度を増加させる、いわゆる歪み時効硬化
を利用した技術が知られている。例えば、特開平10 −31
0824 号および特開平10 −310847 号各公報には、C :
0.01 〜0.08mass %、Si :0.005 〜1.0mass %、Mn:
0.01 〜3.0mass %、Al :0.001 〜0.1mass %、N:0.0
002 〜0.01mass %を含み、さらにW、Cr 、Mo の1種
または2種以上を合計0.05 〜3.0mass %含有し、組織
がフェライトあるいはフェライトを主体とする、成形後
強度上昇熱処理性能を有する合金化溶融亜鉛めっき鋼板
およびその製造方法が開示されている。
Here, as a strength-enhancing technique that achieves both moldability and vehicle strength, a technique utilizing so-called strain age hardening, which is easy to process during molding and increases strength by baking during coating, is known. There is. For example, Japanese Patent Laid-Open No. 10-31
In 0824 and Japanese Patent Laid-Open No. 10-310847, C:
0.01-0.08mass%, Si: 0.005-1.0mass%, Mn:
0.01-3.0mass%, Al: 0.001-0.1mass%, N: 0.0
An alloy containing 002 to 0.01 mass% and further containing one or more of W, Cr and Mo in a total amount of 0.05 to 3.0 mass% and having a structure of ferrite or ferrite as a main component and having heat treatment performance for increasing strength after forming. A galvanized steel sheet and a method for manufacturing the same are disclosed.

【0005】しかしながら、当該技術においては、塗装
焼付け処理を従来(170 ℃程度)よりも高い200 〜450
℃という温度で行う必要があり、従来プロセスとは適合
せず、高温化により経済的に不利になったり、新たにプ
ロセスを追加しなければならないなどの問題があった。
However, in this technique, the coating baking process is performed at a temperature of 200 to 450, which is higher than the conventional temperature (about 170 ° C.).
Since it needs to be performed at a temperature of ℃, it is not compatible with the conventional process, and there are problems that it is economically disadvantageous due to the high temperature and that a new process must be added.

【0006】また、特開2001-247946 号公報には、C :
0.005 〜0.15mass %、Mn :0.3〜3.0mass %、Mo :0.
005 〜0.02mass %、Al :0.005 〜0.02mass %、N:
0.005 〜0.02mass %を含みかつN /Al :0.3 以上であ
り、フェライトとマルテンサイトの複合組織を有する歪
み時効硬化特性に優れた高張力溶融亜鉛めっき鋼板およ
びその製造方法が開示されている。しかしながら当該技
術においては、Mo ,Cr ,Ni などの高価な元素を用い
るためコスト的な問題があった。
Further, in Japanese Patent Laid-Open No. 2001-247946, C:
0.005 to 0.15 mass%, Mn: 0.3 to 3.0 mass%, Mo: 0.
005 to 0.02 mass%, Al: 0.005 to 0.02 mass%, N:
Disclosed are a high-strength hot-dip galvanized steel sheet containing 0.005 to 0.02 mass% and N / Al: 0.3 or more, having a composite structure of ferrite and martensite and excellent in strain age hardening characteristics, and a method for producing the same. However, this technique has a cost problem because expensive elements such as Mo, Cr, and Ni are used.

【0007】さらに、特開2001 −303180 号公報には、
C :0.20mass %以下、Si :2.0mass %以下、Mn :3.0
mass %以下、P :0.08mass %以下、S :0.02mass %
以下、Al :0.02mass %以下、N :0.0050 〜0.0250mas
s %、Nb :0.005 〜0.50mass %を含み、かつN /Al
が0.3 以上であり、平均結晶粒径10 μm 以下のフェラ
イト相を面積率で50 %以上含む組織を有する、降伏比
0.7 以上でかつ引張強さ440MPa 以上を有する、高降伏
比型高張力溶融亜鉛めっき鋼板およびその製造方法が開
示されている。
Furthermore, Japanese Patent Laid-Open No. 2001-303180 discloses that
C: 0.20mass% or less, Si: 2.0mass% or less, Mn: 3.0
mass% or less, P: 0.08mass% or less, S: 0.02mass%
Below, Al: 0.02mass% or less, N: 0.0050 to 0.0250mass
s%, Nb: 0.005 to 0.50 mass% is included, and N / Al
Is 0.3 or more and has a structure containing a ferrite phase with an average grain size of 10 μm or less in an area ratio of 50% or more.
A high-yield ratio type high-strength hot-dip galvanized steel sheet having a tensile strength of 0.7 or more and a tensile strength of 440 MPa or more and a method for producing the same are disclosed.

【0008】当該技術によって、確かに歪時効特性並び
に引張特性に優れる溶融亜鉛めっき鋼板が得られるが、
その特性を安定して得ることが工業的規模の生産にとっ
て不可欠であり、その点の検討が十分になされていなか
った。
[0008] By this technique, a hot dip galvanized steel sheet having excellent strain aging characteristics and tensile characteristics can be obtained.
Stable acquisition of these characteristics is essential for industrial-scale production, and this point has not been fully studied.

【0009】[0009]

【発明が解決しようとする課題】この発明は、上記の問
題を解決するものであり、引張強さが590MPa 未満の比
較的低強度の鋼板において、歪み時効による降伏強さお
よび引張強さを著しく上昇させて、例えば自動車の構造
部品として優れた疲労特性並びに耐衝突安全性を発揮す
ることが可能な、溶融亜鉛めっき冷延鋼板を製造するた
めの方途について提案することを目的とする。
SUMMARY OF THE INVENTION The present invention is to solve the above problems, and in a steel sheet having a relatively low tensile strength of less than 590 MPa, yield strength and tensile strength due to strain aging are remarkably increased. It is an object of the present invention to propose a method for producing a hot-dip galvanized cold-rolled steel sheet that can be raised and can exhibit excellent fatigue characteristics and collision resistance as a structural part of an automobile, for example.

【0010】[0010]

【課題を解決するための手段】発明者らは、上記の目的
を達成するために、冷間圧延工程後に行われる めっき
処理 工程における熱処理について鋭意検討したとこ
ろ、該熱処理において特定温度以上での保持時間を、鋼
板の成分や製法により定まる適正範囲内に制御すること
により、所期した特性が達成されることを見出した。こ
の発明は、上記知見に立脚するものであり、その要旨構
成は以下の通りである。
[Means for Solving the Problems] In order to achieve the above-mentioned object, the inventors of the present invention have made extensive studies on heat treatment in a plating treatment step performed after a cold rolling step, and found that the heat treatment at a temperature higher than a specific temperature is performed. It was found that the desired properties can be achieved by controlling the time within an appropriate range determined by the composition of the steel sheet and the manufacturing method. The present invention is based on the above knowledge, and its gist is as follows.

【0011】(A)C:0.01 〜0.2mass %、Si :0.4m
ass %以下、Mn :0.2 〜2.0mass %、P:0.05mass %
以下、Al :0.001 〜0.1mass %およびN:0.005 〜0.0
2mass %を含有し、残部はFe および不可避的不純物の
成分組成を有する鋼素材に、熱間圧延、次いで冷間圧延
を施して得た、固溶Nの含有量が50ppm 以上である冷延
鋼板を、650 ℃以上900 ℃以下の温度域に加熱した後、
少なくとも当該加熱温度から650 ℃までの温度域は平均
冷却速度:5〜50 ℃/s にて冷却する、加熱−冷却処
理を施し、引き続き鋼板表面にめっき層を形成する、め
っき処理を施すことを基本工程とし、さらに下記式
(1)にて示されるNs1 がNs1 <0.005 の場合には、65
0 ℃以上の温度域における上記加熱−冷却処理の時間を
下記式(2)にて示されるtg1 秒以内に規制することを
特徴とする歪み時効特性に優れる溶融亜鉛めっき冷延鋼
板の製造方法。 記 Ns1 =[N ]−(14 /27 )[Al ]・・・・ (1) Log (tg1 )=0.000075 ×(Tg −800 )2 +tO ・・・・ (2) ここで、Tg :加熱−冷却処理における加熱温度( ℃) t0 =2.0 ×Pr1 −0.008 ×CR +0.85 但し、CR :冷間圧下率(%) Pr1 =([N ]−0.005 )/[N ] [N ], [Al ]はN,Al 元素の含有量(mass %)
(A) C: 0.01 to 0.2 mass%, Si: 0.4 m
ass% or less, Mn: 0.2 to 2.0 mass%, P: 0.05 mass%
Below, Al: 0.001 to 0.1 mass% and N: 0.005 to 0.0
A cold rolled steel sheet containing 2 mass% and the balance being Fe and unavoidable impurities, obtained by hot rolling and then cold rolling, and having a solid solution N content of 50 ppm or more. Is heated to a temperature range of 650 ℃ to 900 ℃,
At least in the temperature range from the heating temperature to 650 ° C, cooling is performed at an average cooling rate of 5 to 50 ° C / s, heating-cooling treatment is performed, and then a plating layer is formed on the surface of the steel sheet. As a basic process, if Ns1 represented by the following formula (1) is Ns1 <0.005, 65
A method for producing a hot-dip galvanized cold-rolled steel sheet having excellent strain aging characteristics, characterized in that the time of the heating-cooling treatment in a temperature range of 0 ° C. or higher is regulated within tg 1 second represented by the following formula (2). Note Ns1 = [N]-(14/27) [Al] ... (1) Log (tg1) = 0.000075 × (Tg-800) 2 + tO ... (2) Where, Tg: Heating- Heating temperature in cooling process (° C) t0 = 2.0 × Pr1 −0.008 × CR +0.85 However, CR: Cold reduction rate (%) Pr1 = ([N] −0.005) / [N] [N], [Al] ] Is the content of N and Al elements (mass%)

【0012】(B)上記(A)に記載の基本工程に、そ
の加熱−冷却処理を施すに先立ち、該加熱−冷却処理に
おける加熱温度以上に加熱した後酸洗する前処理を追加
した、一連の工程を基本とし、さらに下記式(1) にて示
されるNs1 <0.005 の場合には、650 ℃以上の温度域に
おける上記前処理時間を下記式(3)にて示されるtc秒
以内に規制し、かつ650 ℃以上の温度域における上記加
熱−冷却処理の時間を下記式(4)にて示されるtg2 秒
以内に規制することを特徴とする歪み時効特性に優れる
溶融亜鉛めっき冷延鋼板の製造方法。 記 Ns1 =[N ]−(14 /27 )[Al ]・・・・ (1) Log (tc )=0.000075 ×(Tc −800 )2 +tOc ・・・・(3) ここで、Tc :前処理における加熱温度( ℃) tOc =2.0 ×Pr1 −0.008 ×CR +0.85 但し、CR :冷間圧下率(%) Pr1 =([N ]−0.005 )/[N ] Log (tg2 )=0.000075 ×(Tg −800 )2 +tOg ・・・・(4) ここで、 Tg :加熱−冷却処理における加熱温度( ℃) t0g : Log (tc )<0.000075 ×(Tc-800)2-0.008 ×CR+0.85
のとき、 t0g=2.0 ×Pr1+0.85 Log(tc) ≧0.000075 ×(Tc-800)2-0.008 ×CR+0.85 の
とき、 t0g=2.0 ×Pr1+0.85-{Log (tc )-0.000075 ×(Tc −
800 )2} 但し、CR :冷間圧下率(%) Pr1 =([N ]−0.005 )/[N ] [N ], [Al ]はN,Al 元素の含有量(mass %)
(B) In addition to the basic step described in (A) above, prior to the heating-cooling treatment, a pretreatment of heating above the heating temperature in the heating-cooling treatment and then pickling is added. If Ns1 <0.005 shown in the following formula (1), the pretreatment time in the temperature range of 650 ℃ or higher is regulated within tc seconds shown in the following formula (3). Of the hot-dip galvanized cold-rolled steel sheet having excellent strain aging characteristics, which is characterized in that the time of the heating-cooling treatment in the temperature range of 650 ° C. or higher is regulated within tg2 seconds represented by the following formula (4). Production method. Note Ns1 = [N] − (14/27) [Al] ... (1) Log (tc) = 0.000075 × (Tc−800) 2 + tOc ... (3) where Tc: pretreatment Heating temperature (℃) tOc = 2.0 × Pr1 −0.008 × CR +0.85 However, CR: Cold reduction rate (%) Pr1 = ([N] −0.005) / [N] Log (tg2) = 0.000075 × ( Tg −800) 2 + tOg ··· (4) where Tg: Heating temperature in heating-cooling process (° C) t0g: Log (tc) <0.000075 × (Tc-800) 2 -0.008 × CR + 0.85
When t0g = 2.0 × Pr1 + 0.85 Log (tc) ≧ 0.000075 × (Tc-800) 2 -0.008 × CR + 0.85, t0g = 2.0 × Pr1 + 0.85- {Log (tc) -0.000075 × (Tc −
800) 2 } However, CR: Cold reduction (%) Pr1 = ([N] -0.005) / [N] [N], [Al] is the content of N and Al elements (mass%)

【0013】(C)冷延鋼板は、鋼素材を1000 〜1300
℃の温度域で加熱し、粗圧延、次いで仕上圧延を施した
後、Ns1 ≧0.005 の場合には650 ℃以下で巻き取り、Ns
1 <0.005 の場合には550 ℃以下で巻き取ることにより
製造した熱延鋼板に、冷間圧延を施したものである上記
(A)または(B)に記載の歪み時効特性に優れる溶融
亜鉛めっき冷延鋼板の製造方法。
(C) The cold rolled steel sheet is made of a steel material of 1000 to 1300.
After heating in the temperature range of ℃, rough rolling, and then finish rolling, if Ns1 ≧ 0.005, wind at 650 ℃ or less and Ns
If 1 <0.005, hot-rolled steel sheet produced by winding at 550 ° C. or lower is cold-rolled, and hot-dip galvanizing having excellent strain aging characteristics as described in (A) or (B) above. Manufacturing method of cold rolled steel sheet.

【0014】(D)C:0.01 〜0.2mass %、Si :0.4m
ass %以下、Mn :0.2 〜2.0mass %、P:0.05mass %
以下、Al :0.001 〜0.1mass %およびN:0.005 〜0.0
2mass %を含有し、さらにTi :0.001 〜0.1mass %お
よびNb :0.001 〜0.1mass %のいずれか1種または2
種を、[N ]≧(14 /93 )[Nb ]+(14/48) [Ti ]+
0.005の下に含有し、残部はFe および不可避的不純物の
成分組成を有する鋼素材に、熱間圧延、次いで冷間圧延
を施して得た、固溶Nの含有量が50ppm 以上である冷延
鋼板を、650 ℃以上900 ℃以下の温度域に加熱した後、
少なくとも当該加熱温度から650 ℃までの温度域は平均
冷却速度:5〜50 ℃/s にて冷却する、加熱−冷却処
理を施し、引き続き鋼板表面にめっき層を形成する、め
っき処理を施すことを基本とし、さらに下記式(5)に
て示されるNs2 がNs2 <0.005 の場合には、650 ℃以上
の温度域における上記加熱−冷却処理の時間を下記式
(2)にて示されるtg1 秒以内に規制することを特徴と
する歪み時効特性に優れる溶融亜鉛めっき冷延鋼板の製
造方法。 記 Ns2 =[N ]−(14/27 )[Al]-(14/93)[Nb]-(14/48)[Ti] ・・・・ (5) Log (tg1 )=0.000075 ×(Tg −800 )2 +tO ・・・・ (2) ここで、 Tg :加熱温度(℃) t0=2.0 ×Pr2 −0.008 ×CR+0.85 但し、 CR: 冷間圧下率(%) Pr2={[N]-(14/93)[Nb]-(14/48)[Ti]-0.005}/{[N]-(14/
93)[Nb]-(14/48)[Ti]} [N],[Al ],[Nb ]および[Ti ]は、それぞれ
N,Al ,Nb およびTiの含有量(mass %)
(D) C: 0.01 to 0.2 mass%, Si: 0.4 m
ass% or less, Mn: 0.2 to 2.0 mass%, P: 0.05 mass%
Below, Al: 0.001 to 0.1 mass% and N: 0.005 to 0.0
2 mass% is contained, and any one of Ti: 0.001 to 0.1 mass% and Nb: 0.001 to 0.1 mass% or 2
Seed, [N] ≧ (14/93) [Nb] + (14/48) [Ti] +
Cold rolling with a content of solid solution N of 50 ppm or more obtained by hot rolling and then cold rolling a steel material containing less than 0.005 and the balance being Fe and inevitable impurities. After heating the steel plate in the temperature range of 650 ℃ to 900 ℃,
At least in the temperature range from the heating temperature to 650 ° C, cooling is performed at an average cooling rate of 5 to 50 ° C / s, heating-cooling treatment is performed, and then a plating layer is formed on the surface of the steel sheet. Basically, if Ns2 represented by the following equation (5) is Ns2 <0.005, the heating-cooling time in the temperature range of 650 ° C or higher is within tg1 second represented by the following equation (2). A method for producing a hot-dip galvanized cold-rolled steel sheet having excellent strain aging characteristics, which is characterized in that Note Ns2 = [N]-(14/27) [Al]-(14/93) [Nb]-(14/48) [Ti] ... (5) Log (tg1) = 0.000075 × (Tg- 800) 2 + tO ··· (2) Where, Tg: Heating temperature (℃) t0 = 2.0 × Pr2 −0.008 × CR + 0.85 However, CR: Cold reduction rate Pr2 = {[N]- (14/93) [Nb]-(14/48) [Ti] -0.005} / {[N]-(14 /
93) [Nb]-(14/48) [Ti]} [N], [Al], [Nb] and [Ti] are the contents of N, Al, Nb and Ti (mass%), respectively.

【0015】(E)上記(D)に記載の基本工程に、そ
の加熱−冷却処理を施すに先立ち、該加熱−冷却処理に
おける加熱温度以上に加熱した後酸洗する前処理を追加
した、一連の工程を基本とし、さらに下記式( 5) にて
示されるNs2 <0.005 の場合には、650 ℃以上の温度域
における上記前処理時間を下記式(3)にて示されるtc
秒以内に規制し、かつ650 ℃以上の温度域における上
記加熱−冷却処理の時間を下記式(4)にて示されるtg
2 秒以内に規制することを特徴とする歪み時効特性に優
れる溶融亜鉛めっき冷延鋼板の製造方法。 記 Log (tc )=0.000075 ×(Tc −800 )2 +tOc ・・・・(3) ここで、Tc :前処理における加熱温度( ℃) tOc =2.0 ×Pr2 −0.008 ×CR +0.85 但し、 CR :冷間圧下率(%) Pr2={[N]-(14/93)[Nb]-(14/48)[Ti]-0.005}/{[N]-(14/
93)[Nb]-(14/48)[Ti]} Log (tg2 )=0.000075 ×(Tg −800 )2 +tOg ・・・・(4) ここで、 Tg :加熱−冷却処理における加熱温度( ℃) t0g : Log (tc )<0.000075 ×(Tc-800)2-0.008 ×CR+0.85
のとき、 t0g=2.0 ×Pr2+0.85 Log(tc) ≧0.000075 ×(Tc-800)2-0.008 ×CR+0.85 の
とき、 t0g=2.0 ×Pr2+0.85-{Log (tc )-0.000075 ×(Tc −
800 )2} 但し、 CR :冷間圧下率(%) Pr2={[N]-(14/93)[Nb]-(14/48)[Ti]-0.005}/{[N]-(14/
93)[Nb]-(14/48)[Ti]} [N],[Al ],[Nb ]および[Ti ]は、それぞれ
N,Al ,Nb およびTiの含有量(mass %)
(E) In addition to the basic process described in (D) above, a pre-treatment of adding a pre-treatment of heating to a heating temperature or higher in the heating-cooling treatment and then pickling is added prior to the heating-cooling treatment. If Ns2 <0.005 expressed by the following formula (5), the pretreatment time in the temperature range of 650 ° C or higher is expressed by the following formula (3).
The time of the heating-cooling treatment in the temperature range of 650 ° C or higher, which is regulated within seconds, is represented by the following formula (4).
A method for producing a hot-dip galvanized cold-rolled steel sheet having excellent strain aging characteristics, characterized by being regulated within 2 seconds. Note Log (tc) = 0.000075 × (Tc −800) 2 + tOc ··· (3) where Tc: Heating temperature in pretreatment (° C) tOc = 2.0 × Pr2 −0.008 × CR +0.85 However, CR : Cold reduction (%) Pr2 = {[N]-(14/93) [Nb]-(14/48) [Ti] -0.005} / {[N]-(14 /
93) [Nb]-(14/48) [Ti]} Log (tg2) = 0.000075 × (Tg −800) 2 + tOg ··· (4) Where, Tg: Heating temperature in heating-cooling process (° C ) t0g: Log (tc) <0.000075 × (Tc-800) 2 -0.008 × CR + 0.85
, T0g = 2.0 × Pr2 + 0.85 Log (tc) ≧ 0.000075 × (Tc-800) 2 -0.008 × CR + 0.85, t0g = 2.0 × Pr2 + 0.85- {Log (tc) -0.000075 × (Tc −
800) 2 } However, CR: Cold reduction (%) Pr2 = {[N]-(14/93) [Nb]-(14/48) [Ti] -0.005} / {[N]-(14 /
93) [Nb]-(14/48) [Ti]} [N], [Al], [Nb] and [Ti] are the contents of N, Al, Nb and Ti (mass%), respectively.

【0016】(F)冷延鋼板は、鋼素材を1000 〜1300
℃の温度域で加熱し、粗圧延、次いで仕上圧延を施した
後、Ns2 ≧0.005 の場合には650 ℃以下で巻き取り、Ns
2 <0.005 の場合には550 ℃以下で巻き取ることにより
製造した熱延鋼板に、冷間圧延を施したものである上記
(D)または(E)に記載の歪み時効特性に優れる溶融
亜鉛めっき冷延鋼板の製造方法。
(F) The cold rolled steel sheet is made of a steel material of 1000 to 1300.
After heating in the temperature range of ℃, rough rolling, then finish rolling, if Ns2 ≧ 0.005, wind it at 650 ℃ or less and Ns
In the case of 2 <0.005, hot-rolled steel sheet produced by winding at 550 ° C. or lower is cold-rolled, and hot-dip galvanizing having excellent strain aging characteristics as described in (D) or (E) above. Manufacturing method of cold rolled steel sheet.

【0017】(G)めっき層の形成後に、さらに加熱合
金化処理を施すことを特徴とする上記(A)ないし
(F)のいずれかに記載の歪み時効特性に優れる溶融亜
鉛めっき冷延鋼板の製造方法。
(G) A hot-dip galvanized cold-rolled steel sheet having excellent strain aging characteristics as described in any one of (A) to (F) above, which is characterized by further performing a heat alloying treatment after forming the plated layer. Production method.

【0018】[0018]

【発明の実施の形態】以下に、この発明を導くに到った
実験結果について、詳しく述べる。すなわち、C:0.1m
ass %、Si:0.01mass %、Mn :1.2mass %、P:0.0
17mass %、S:0.0020mass %およびAl :0.018mass
%を含む成分系に、Nを0.0050 〜0.0190mass %の範囲
で変化させて含有し、残部鉄および不可避的不純物とし
た 組成を有する、種々の鋼を転炉にて溶製し、連続鋳
造法にて鋳片とした。これらを1180 ℃にて加熱し、粗圧
延、仕上げ圧延を施した後、500 ℃で巻取りを行って熱
延鋼板とした。これら熱延板を酸洗した後、圧延率30 %
の冷間圧延を施した。次いで、めっき処理工程である
溶融亜鉛めっきラインにて5 ℃/s の速度で昇温し、750
℃の加熱処理を保持時間5〜185 秒間の範囲で実施
し、冷却速度10 ℃/s で500 ℃まで冷却し、溶融亜鉛め
っき浴に鋼板を浸漬して、下記条件でのめっき処理を施
したのち、520 ℃で25 秒の合金化処理を施した。 記 板温度:475℃ めっき浴:0.13mass %Al- 残部Zn 浴温:475 ℃ 浸漬時間:3s 目付け量(片面あたり) :45g /m
BEST MODE FOR CARRYING OUT THE INVENTION Experimental results leading to the present invention will be described in detail below. That is, C: 0.1 m
ass%, Si: 0.01 mass%, Mn: 1.2 mass%, P: 0.0
17mass%, S: 0.0020mass% and Al: 0.018mass
%, N is changed in the range of 0.0050 to 0.0190 mass%, and various steels having the composition as the balance iron and unavoidable impurities are melted in a converter and continuously cast. Made into a slab. These were heated at 1180 ° C, subjected to rough rolling and finish rolling, and then wound at 500 ° C to obtain hot rolled steel sheets. After pickling these hot rolled sheets, the rolling rate is 30%
Cold-rolled. Next is the plating process
The temperature is raised at a rate of 5 ° C / s in a hot dip galvanizing line to 750
Heat treatment at ℃ was carried out for a holding time of 5 to 185 seconds, cooled to 500 ℃ at a cooling rate of 10 ℃ / s, the steel sheet was immersed in a hot dip galvanizing bath, and plating treatment was performed under the following conditions. After that, an alloying treatment was performed at 520 ° C. for 25 seconds. Plate temperature: 475 ° C Plating bath: 0.13 mass% Al- balance Zn Bath temperature: 475 ° C Immersion time: 3s Unit weight (per side): 45g / m 2

【0019】かくして得られためっき鋼板は、JIS 13
号B引張試験片に加工し機械的性質を調査した。また、
同めっき鋼板について5%の引張予歪みを加えたのち、
一旦除荷し、170 ℃×20min の熱処理を施してから、再
度引張試験を行って、その機械的性質を調査した。そし
て、ここで得られた引張強さから、前述のめっき処理ま
まのめっき 鋼板の引張強さ(すなわち歪み時効処理前の
めっき鋼板の引張強さ) を引くことにより、歪み時効処
理による引張強さの上昇量(以下、ΔTS と示す)を求
めた。このΔTS が60Mpa 以上の場合を○、それ未満の場
合を×として、含有N 量と加熱処理の保持時間との関係
を図1に示す。
The plated steel sheet thus obtained is JIS 13
No. B tensile test pieces were processed and the mechanical properties were investigated. Also,
After applying a pre-strain of 5% to the plated steel sheet,
Once unloaded, heat treatment was carried out at 170 ° C. for 20 minutes, and then a tensile test was conducted again to investigate its mechanical properties. Then, from the tensile strength obtained here, subtract the tensile strength of the plated steel sheet as described above (that is, the tensile strength of the plated steel sheet before strain aging treatment) to obtain the tensile strength by strain aging treatment. The amount of increase (hereinafter referred to as ΔTS) was calculated. The relationship between the amount of N contained and the holding time of heat treatment is shown in FIG.

【0020】この図から分かるように、含有N 量が0.01
4mass %以上の領域ではいかなる条件についても良好な
歪み時効特性を示した。また、含有N 量が0.014mass %
未満の領域であっても、良好な歪み時効特性を示す領域
が存在することも判明した。
As can be seen from this figure, the N content is 0.01
In the region of 4 mass% or more, good strain aging characteristics were exhibited under all conditions. In addition, the content of N is 0.014 mass%
It was also found that there is a region exhibiting good strain aging characteristics even in the region below.

【0021】さらに、上記の鋼のうちN 含有量が0.015m
ass %である鋼を用いて、加熱温度を750 ℃、加熱温度
での保持時間を30 秒間とし、冷却速度を2〜20 ℃/s
と変化させた、上記と同一の工程により、めっき鋼板を
製造した。めっき鋼板については、上記と同一の方法に
より△TS を求めた。このときの△TS と冷却速度との関
係を調査した結果を、図2 に示す。同図に示すように、
含有N 量が0.014mass %以上の領域でも、冷却速度が5
℃/s を下回った場合には所望の歪み時効硬化特性を得
ることができないことがわかる。
Furthermore, among the above steels, the N content is 0.015 m
Using ass% steel, the heating temperature is 750 ° C, the holding time at the heating temperature is 30 seconds, and the cooling rate is 2 to 20 ° C / s.
A plated steel sheet was manufactured by the same process as above, which was changed to. For plated steel sheets, ΔTS was determined by the same method as above. Figure 2 shows the results of an investigation of the relationship between ΔTS and the cooling rate at this time. As shown in the figure,
Even in the region where the content of N is 0.014 mass% or more, the cooling rate is 5
It can be seen that the desired strain age hardening characteristics cannot be obtained when the temperature is lower than ° C / s.

【0022】次に、化学組成が、C:0.1mass %、S
i:0.01mass %、Mn :1.2mass %、P:0.017mass
%、S:0.0020mass %、Al :0.018mass %およびN:
0.0135mass %を含み、残部鉄および不可避的不純物に
なる鋼Aと、C:0.07mass %、Mn:0.7mass %、P:
0.010mass %、S:0.002mass %、Al :0.020mass
%、N:0.0165mass %、Nb :0.015mass %およびTi
:0.01mass %を含み、残部鉄および不可避的不純物に
なる鋼Bと、N:0.0180mass %に変更した以外は上記
鋼Aと同じ成分組成の鋼Cを、それぞれ転炉にて溶製
し、連続鋳造法にて鋳片とした。これらを1180 ℃にて加
熱し、粗圧延を施した後、500 ℃で巻取りを行って熱延
鋼板とした。これら熱延板に酸洗を施した後に、圧下率3
0 〜90 %の冷間圧延を施した。次いで、溶融亜鉛めっ
きラインにて5 ℃/s の温度で昇温し、625 〜925 ℃の
範囲で温度を変化させた加熱処理を70 秒間実施し、冷
却速度15 ℃/s で500 ℃まで冷却し、溶融亜鉛めっき浴
に鋼板を浸漬して下記条件でのめっき処理を施したの
ち、520 ℃で25 秒の合金化処理を施した。 記 板温度:475 ℃ めっき浴:0.13mass %Al- 残部Zn 浴温:475 ℃ 浸漬時間:3s 目付け量(片面あたり) :45g /m
Next, the chemical composition is C: 0.1 mass%, S
i: 0.01 mass%, Mn: 1.2 mass%, P: 0.017 mass
%, S: 0.0020 mass%, Al: 0.018 mass% and N:
Steel A containing 0.0135 mass% and remaining iron and unavoidable impurities, C: 0.07 mass%, Mn: 0.7 mass%, P:
0.010mass%, S: 0.002mass%, Al: 0.020mass
%, N: 0.0165 mass%, Nb: 0.015 mass% and Ti
: Steel B containing 0.01 mass% and remaining iron and inevitable impurities, and Steel C having the same composition as Steel A except that N: 0.0180 mass% were melted in a converter. A slab was made by a continuous casting method. These were heated at 1180 ° C, subjected to rough rolling, and then wound at 500 ° C to obtain hot rolled steel sheets. After subjecting these hot-rolled sheets to pickling, the rolling reduction was 3
Cold rolling was performed at 0 to 90%. Next, the temperature is raised at a temperature of 5 ° C / s in the hot dip galvanizing line, heat treatment is performed for 70 seconds while changing the temperature in the range of 625 to 925 ° C, and the temperature is cooled to 500 ° C at a cooling rate of 15 ° C / s. Then, the steel sheet was immersed in a hot dip galvanizing bath to carry out a plating treatment under the following conditions, and then an alloying treatment was carried out at 520 ° C. for 25 seconds. Plate temperature: 475 ° C Plating bath: 0.13mass% Al- balance Zn Bath temperature: 475 ° C Immersion time: 3s Unit weight (on one side): 45g / m 2

【0023】かくして得られためっき鋼板について、上
述と同一の方法により△TS を求めた。その結果を、冷間
圧延での圧下率が50 %の場合について、図3に示す。こ
の図から分かるように△TS は800 ℃を極小とするよう
な温度依存性を示し、鋼AおよびBにおいては、高温
側、低温側で良好な歪み時効硬化特性を示し、鋼Cにお
いてはいずれの温度においても良好な歪み時効硬化特性
を示した。また、このような温度依存性は650 ℃以上の
温度域にて認められた。さらに、鋼Aについて加熱温度
を725 ℃とした場合の結果を、図4 に示す。この図か
ら、△TS は冷間圧下率とともに減少していくことがわ
かる。
With respect to the plated steel sheet thus obtained, ΔTS was determined by the same method as described above. The results are shown in Fig. 3 in the case where the cold rolling reduction is 50%. As can be seen from this figure, ΔTS shows a temperature dependence such that 800 ° C. is minimized. Steels A and B show good strain age hardening characteristics on the high temperature side and low temperature side, and in Steel C, Good strain age-hardening characteristics were exhibited even at the temperature. Moreover, such temperature dependence was recognized in the temperature range of 650 ° C or higher. Further, Fig. 4 shows the result when Steel A was heated to 725 ° C. From this figure, it can be seen that ΔTS decreases with cold reduction.

【0024】発明者らは、上記の図3の結果から、650
℃以上の温度域での保持時間が歪み時効硬化特性に影響
すると考えた。そこで、上記した鋼AおよびBを用い
て、加熱温度を675 〜925 ℃として加熱保持時間を種々
変化させた、同一の工程を経てめっき鋼板を製造し、こ
れら鋼板について、上記と同一の手順により△TS を求
めた。この結果と650 ℃以上の温度域にて処理を施して
いる時間、すなわち650 ℃以上の温度域での保持時間と
の関係を図5に示す。この図からわかるように、650 ℃
以上の温度域での保持時間がある閾値を超えると、歪み
時効硬化特性は低下し、その閾値は加熱温度800 ℃のと
きに最も短く、それより加熱温度が高くなるほど、また
は低くなるほど閾値は長時間側となった。
From the results shown in FIG.
It was considered that the holding time in the temperature range above ℃ affected the strain age hardening characteristics. Therefore, using the steels A and B described above, plated steel sheets are manufactured through the same process in which the heating temperature is 675 to 925 ° C. and various heating and holding times are changed, and these steel sheets are manufactured by the same procedure as above. ΔTS was calculated. FIG. 5 shows the relationship between this result and the treatment time in the temperature range of 650 ° C. or higher, that is, the holding time in the temperature range of 650 ° C. or higher. As you can see from this figure, 650 ° C
When the holding time in the above temperature range exceeds a certain threshold value, the strain age hardening characteristics deteriorate, and the threshold value is the shortest at a heating temperature of 800 ° C, and the higher the heating temperature or the lower, the longer the threshold value becomes. It's time.

【0025】さらに、上記と同一手順にて測定した△TS
が60MPa 以上の場合を○、それ未満の場合を×とし
て、加熱温度と650 ℃以上の温度域での保持時間との関
係を、図6に示す。同図からわかるように、加熱温度が8
00 ℃の前後50 ℃の範囲においては、適正な保持時間は
短く、それより加熱温度が高くなるほど、または低くな
るほど適性な保持時間は長時間となった。また、このと
きの○および×の閾値は温度と650 ℃以上の温度域での
保持時間の対数との間で放物線状に存在していることも
分かった。
Further, ΔTS measured by the same procedure as above
6 shows the relationship between the heating temperature and the holding time in the temperature range of 650 ° C. or higher, where ◯ is 60 MPa or more and x is less than 60 MPa. As you can see from the figure, the heating temperature is 8
In the range of around 50 ℃ and around 00 ℃, the appropriate holding time was short, and the higher or lower the heating temperature was, the longer the suitable holding time was. It was also found that the thresholds of O and X at this time existed in a parabolic shape between the temperature and the logarithm of the retention time in the temperature range of 650 ° C or higher.

【0026】以上の如く、化学組成、加熱温度、圧下率
および650 ℃以上の温度域での保持時間などを適正に操
作により、△TS が向上することが新たに判明した。しか
し、これらの条件を適正に制御してもまだ、製品品質が
ばらつくことがあり、とりわけ工業的規模の生産を前提
とした場合、更なる改善の余地が残されていた。
As described above, it has been newly found that ΔTS is improved by properly operating the chemical composition, heating temperature, reduction rate and holding time in the temperature range of 650 ° C. or higher. However, even if these conditions are properly controlled, the product quality may still fluctuate, and there is still room for further improvement, especially on the premise of industrial scale production.

【0027】そこで、発明者らは、上記の実験事実につ
いて詳細に再調査したところ、含有N 量からAl の全含
有分が析出物を形成するのに必要なN 量を差し引いた値
である、Ns1 、あるいはさらにNb およびTi を含有する
場合は、含有Al 分のN 量に加えてNb およびTi の全含
有分が析出物を形成するのに必要なN 量をを差し引いた
値であるNs2 、すなわち下記式(1) または(5) Ns1 =[N ]−(14 /27 )[Al ]・・・・ (1) Ns2 =[N ]−(14/27 )[Al]-(14/93)[Nb]-(14/48)[Ti] ・・・・ (5) が0.005 以上の場合には、冷却速度を考慮に入れること
が必要であり、Ns1 またはNs2 が0.005 に満たない場合
には、これに加えて加熱−冷却処理時の650 ℃以上の温
度域での保持時間を規制する必要があることを新たに知
見した。なお、上式中の〔〕は、そこに記載された元素
の質量含有率を示すものであり、これは以下の式におい
ても同様である。
Then, the present inventors re-examined the above experimental facts in detail, and found that the total content of Al was the value obtained by subtracting the N content necessary for forming a precipitate from the N content. When Ns1 or Nb and Ti are further contained, the total content of Nb and Ti is the value obtained by subtracting the N content necessary for forming precipitates in addition to the N content of Al content Ns2, That is, the following formula (1) or (5) Ns1 = [N] − (14/27) [Al] ... (1) Ns2 = [N] − (14/27) [Al]-(14/93 ) [Nb]-(14/48) [Ti] ··· (5) is 0.005 or more, it is necessary to take the cooling rate into consideration, and when Ns1 or Ns2 is less than 0.005. Newly found that, in addition to this, it is necessary to regulate the holding time in the temperature range of 650 ° C or higher during the heating-cooling treatment. [] In the above formula indicates the mass content of the elements described therein, and this is the same in the following formulas.

【0028】以上の新規知見を導いた道程に着いて、以
下に詳述する。まず、発明者らは、図1 の内容をここで
用いた冷延鋼板の成分組成をもとに詳細に検討し、50pp
m 以上の固溶N が歪み時効硬化特性に必要と判断した。
この固溶N量を基本に据えて、さらに歪み時効硬化特性
が、N の析出過程を考慮に入れた式に基づいて制御可能
であることを見出した。
The process leading to the above new knowledge will be described in detail below. First, the inventors examined the contents of Figure 1 in detail based on the composition of the cold-rolled steel sheet used here, and
It was judged that solid solution N of m or more is necessary for strain age hardening characteristics.
Based on this amount of solute N, it was further found that the strain age hardening characteristics can be controlled based on an equation that takes into account the precipitation process of N 2.

【0029】すなわち650 ℃以上の温度域での保持時間
の適性条件(tg1 )が、時間の対数をとると800 ℃で極
小値をとる方物線の如く変化していること、さらにその
放物線が加熱温度800 ℃において、△TS が60MPa を超え
るために許容できる最長の650 ℃以上の温度域での保持
時間(t0) 、50ppm 以上の固溶N を確保可能な最大の析出
N 量の全量析出量に対する割合(Pr1 またはPr2) および
冷間圧下率(CR) とで標記できることを見出し、下記式
(2) を実験式として得た。
That is, the suitability condition (tg1) for the holding time in the temperature range of 650 ° C. or higher is changed like a parabola that has a minimum value at 800 ° C. when the logarithm of time is taken, and the parabola is At a heating temperature of 800 ° C, the maximum holding time (t0) in the longest allowable temperature range of 650 ° C or more because ΔTS exceeds 60 MPa, and the maximum precipitation that can secure solid solution N of 50 ppm or more
It was found that the ratio can be expressed as the ratio of N content to the total precipitation amount (Pr1 or Pr2) and cold reduction rate (CR),
(2) was obtained as an empirical formula.

【0030】 記 Log (tg1 )=0.000075 ×(Tg −800 )2 +tO ・・・・ (2) ここで、 Tg :加熱−冷却処理における加熱温度( ℃) t0 =2.0 ×Pr1 −0.008 ×CR +0.85 但し、 CR :冷間圧下率(%) Pr1 =([N ]−0.005 )/[N ] またはNb およびTi のいずれか1種または2種を含有す
る場合は、Pr1 に代えて下記Pr2 Pr2={[N]-(14/93)[Nb]-(14/48)[Ti]-0.005}/{[N]-(14/
93)[Nb]-(14/48)[Ti]}
Note Log (tg1) = 0.000075 × (Tg −800) 2 + tO ··· (2) Where, Tg: Heating temperature in heating-cooling process (° C) t0 = 2.0 × Pr1 −0.008 × CR +0 .85 However, CR: Cold rolling reduction (%) Pr1 = ([N] -0.005) / [N] or when Nb and / or Ti contain one or two, Pr2 below instead of Pr1 Pr2 = {[N]-(14/93) [Nb]-(14/48) [Ti] -0.005} / {[N]-(14 /
93) [Nb]-(14/48) [Ti]}

【0031】ここで、図1 に示した内容を650 ℃以上
の温度域での保持時間で整理し直した結果を図7に、ま
た 図6において上記式(2){ または後述の式(4)} に
基づき計算したtg1( または後述のtg2) を実線にて示し
た結果を図8に、それぞれ示す。これらの図から分かる
ように、上記式(2)により、めっき処理工程の条件を
適正に設定し制御することにより、安定して高い歪み時
効硬化特性を有するめっき鋼板が製造可能となったので
ある。
Here, the result of rearranging the contents shown in FIG. 1 by the holding time in the temperature range of 650 ° C. or more is shown in FIG. 7, and in FIG. )} Is used to calculate tg1 (or tg2, which will be described later) indicated by a solid line. The results are shown in FIG. As can be seen from these figures, by appropriately setting and controlling the conditions of the plating treatment step according to the above formula (2), it is possible to stably manufacture a plated steel sheet having high strain age hardening characteristics. .

【0032】次に、化学組成が、C:0.1mass %、S
i:0.01mass %、Mn :1.2mass %、P:0.017mass
%、S:0.0020mass %、Al :0.018mass %およびN:
0.0135mass %を含み、残部鉄および不可避的不純物に
なる鋼Aと、C:0.07mass %、Mn:0.7mass %、P:
0.010mass %、S:0.002mass %、Al :0.020mass
%、N:0.0145mass %およびNb :0.022mass %を含
み、残部鉄および不可避的不純物になる鋼Bとを、それ
ぞれ転炉にて溶製し、連続鋳造法にて鋳片とした。これ
らを1180 ℃にて加熱し、粗圧延、仕上げ圧延を施した
後、500 ℃で巻取りを行い熱延鋼板とした。これら熱延
板を酸洗した後、圧下率60 %の冷間圧延を施した。次
いで、鋼Aについては連続焼鈍ラインにて加熱温度680
℃、730 ℃、780 ℃の3条件として加熱処理および酸洗
処理からなる前処理を行った。このとき、通板速度を一
定とし、650 ℃以上の保持時間を各々50 、65 、80 秒
とした。また、鋼Bについては、前処理を実施しなかっ
た。
Next, the chemical composition is C: 0.1 mass%, S
i: 0.01 mass%, Mn: 1.2 mass%, P: 0.017 mass
%, S: 0.0020 mass%, Al: 0.018 mass% and N:
Steel A containing 0.0135 mass% and remaining iron and unavoidable impurities, C: 0.07 mass%, Mn: 0.7 mass%, P:
0.010mass%, S: 0.002mass%, Al: 0.020mass
%, N: 0.0145 mass% and Nb: 0.022 mass%, and the balance iron and steel B which becomes unavoidable impurities were melted in a converter and formed into cast pieces by a continuous casting method. These were heated at 1180 ° C, subjected to rough rolling and finish rolling, and then wound at 500 ° C to obtain hot rolled steel sheets. These hot-rolled sheets were pickled and then cold-rolled at a rolling reduction of 60%. Next, for steel A, the heating temperature is 680 in the continuous annealing line.
A pretreatment consisting of heat treatment and pickling treatment was performed under three conditions of ℃, 730 ℃ and 780 ℃. At this time, the plate passing speed was kept constant and the holding time at 650 ° C or higher was set to 50, 65 and 80 seconds, respectively. Further, Steel B was not pretreated.

【0033】引き続いて、溶融亜鉛めっきラインにて66
0 ℃の加熱処理を施し、冷却速度20 ℃/s で500 ℃ま
で冷却し、溶融亜鉛めっき浴に鋼板を浸漬して、下記条
件でのめっき処理を施したのち、520 ℃で25 秒の合金
化処理を施した。 記 板温度:475℃ めっき浴:0.13mass %Al- 残部Zn 浴温:475 ℃ 浸漬時間:3s 目付け量(片面あたり) :45g /m
Subsequently, at the hot dip galvanizing line 66
Heat treatment at 0 ℃, cool to 500 ℃ at a cooling rate of 20 ℃ / s, immerse the steel sheet in a hot dip galvanizing bath, and perform the plating treatment under the following conditions, then alloy at 520 ℃ for 25 seconds Chemical treatment was performed. Plate temperature: 475 ° C Plating bath: 0.13 mass% Al- balance Zn Bath temperature: 475 ° C Immersion time: 3s Unit weight (per side): 45g / m 2

【0034】かくして得られた鋼板をJIS13 号B引張
試験片に加工し、機械的性質を調査した。また、同めっ
き鋼板について5%の引張予歪みを加えたのち、一旦除
荷し、170 ℃×20min の熱処理を施してから、再度引張
試験を行って機械的性質を調査した。この時の引張強さ
(TS )から前述のめっき処理ままのめっき鋼板のTS を
引くことにより歪み時効処理によるTS の上昇量ΔTS を
求めた。これらの結果を図9に示す。
The steel sheet thus obtained was processed into a JIS 13 B tensile test piece and examined for mechanical properties. Further, after applying a tensile prestrain of 5% to the plated steel sheet, the steel sheet was once unloaded, heat-treated at 170 ° C. for 20 min, and then subjected to a tensile test again to investigate the mechanical properties. The amount of increase in TS due to strain aging, ΔTS, was determined by subtracting the TS of the as-plated steel sheet from the tensile strength (TS) at this time. The results are shown in FIG.

【0035】この図から明らかなように、前処理工程お
よび溶融亜鉛めっき処理工程において650 ℃以上の保持
時間を適切に制御することにより著しく大きな歪み時効
硬化を得ることができる。すなわち、この前処理を施す
場合においても、上記のNs1 またはNs2 が0.005 未満の
場合は、上述した式(2)の場合と同様に、650 ℃以上
の保持時間を下記式(3)に示される(tc) に従って
規制する必要がある。
As is clear from this figure, remarkably large strain age hardening can be obtained by appropriately controlling the holding time at 650 ° C. or higher in the pretreatment step and the hot dip galvanizing step. That is, even when this pretreatment is performed, when Ns1 or Ns2 is less than 0.005, the holding time of 650 ° C. or higher is represented by the following formula (3) as in the case of the above formula (2). Must be regulated according to (tc).

【0036】 記 Log(tc)=0.000075×(Tc−800)2+t0c ・・・・(3) ここで、 Tc :前処理における加熱温度( ℃) tOc =2.0 ×Pr1 −0.008 ×CR +0.85 但し、CR :冷間圧下率(%) Pr1 =([N ]−0.005 )/[N ] また、加熱− 冷却処理時の650 ℃以上の保持時間を検
討した場合と同様に、NbおよびTi のいずれか1 種または
2種を含有する場合は、Pr1 に代えて下記Pr2 Pr2={[N]-(14/93)[Nb]-(14/48)[Ti]-0.005}/{[N]-(14/
93)[Nb]-(14/48)[Ti]}
Log (tc) = 0.000075 × (Tc−800) 2 + t0c (3) where Tc: heating temperature in pretreatment (° C.) tOc = 2.0 × Pr1−0.008 × CR + 0.85 However, CR: Cold rolling reduction (%) Pr1 = ([N] -0.005) / [N] In addition, as in the case of considering the holding time of 650 ° C or more during heating-cooling treatment, Nb and Ti When either one or two are contained, the following Pr2 Pr2 = {[N]-(14/93) [Nb]-(14/48) [Ti] -0.005} / {[N ]-(14/
93) [Nb]-(14/48) [Ti]}

【0037】なお、前処理を行う場合は、上記した式
(2)は、下記式(4)に替えて加熱保持時間を制御す
る。 記 Log(tg2)=0.000075×(Tg−800)2+t0g ・・・・(4) ここで、 Tg :加熱−冷却処理における加熱温度( ℃) t0g : Log (tc )<0.000075 ×(Tc-800)2-0.008 ×CR+0.85
のとき、 t0g=2.0 ×Pr1+0.85 Log(tc) ≧0.000075 ×(Tc-800)2-0.008 ×CR+0.85 の
とき、 t0g=2.0 ×Pr1+0.85-{Log (tc )-0.000075 ×(Tg −
800 )2} 但し、 CR :冷間圧下率(%) Pr1 =([N ]−0.005 )/[N ] またはNb およびTi のいずれか1種または2種を含有す
る場合は、 Pr2={[N]-(14/93)[Nb]-(14/48)[Ti]-0.005}/{[N]-(14/
93)[Nb]-(14/48)[Ti]}
When performing the pretreatment, the above equation (2) is replaced with the following equation (4) to control the heating and holding time. Note Log (tg2) = 0.000075 × (Tg-800) 2 + t0g ··· (4) Where, Tg: Heating temperature in heating-cooling process (℃) t0g: Log (tc) <0.000075 × (Tc-800 ) 2 -0.008 × CR + 0.85
, T0g = 2.0 × Pr1 + 0.85 Log (tc) ≧ 0.000075 × (Tc-800) 2 -0.008 × CR + 0.85, t0g = 2.0 × Pr1 + 0.85- {Log (tc) -0.000075 × (Tg −
800) 2 } However, CR: Cold rolling reduction (%) Pr1 = ([N] -0.005) / [N] or Pr2 = {[if one or two of Nb and Ti are contained. N]-(14/93) [Nb]-(14/48) [Ti] -0.005} / {[N]-(14 /
93) [Nb]-(14/48) [Ti]}

【0038】この発明は、上記実験事実に加え、さらに
詳細な検討を行い完成したものである。以下に、この発
明の各条件について詳しく説明する。まず、鋼成分の限
定理由について具体的に述べる。 C :0.01 〜0.2mass % C は、鋼を強化するにあたり重要な元素であり、高い固
溶強化能を有するとともに、歪み時効硬化にも有効であ
る。含有量が0.01mass %未満においては充分な強度が
得られず、一方0.2mass %を超えると溶接性が劣化す
る。したがってC 含有量は0.01 〜0.2mass %とする。
The present invention has been completed by conducting more detailed studies in addition to the above experimental facts. Each condition of the present invention will be described in detail below. First, the reasons for limiting the steel components will be specifically described. C: 0.01 to 0.2 mass% C is an important element for strengthening steel, has a high solid solution strengthening ability, and is also effective for strain age hardening. If the content is less than 0.01 mass%, sufficient strength cannot be obtained, while if it exceeds 0.2 mass%, the weldability deteriorates. Therefore, the C content should be 0.01 to 0.2 mass%.

【0039】Si :0.4mass %以下 Si は高い固溶強化能を有する元素であり、所望の強度
に応じて添加するが、0.4mass %を超えると歪み時効硬
化特性を低下させる。したがってSi 含有量は0.4mass
%以下とする。
Si: 0.4 mass% or less Si is an element having a high solid solution strengthening ability, and is added according to the desired strength, but if it exceeds 0.4 mass%, the strain age hardening characteristic is deteriorated. Therefore, the Si content is 0.4 mass.
% Or less.

【0040】Mn :0.2 〜2.0mass % Mn は熱間脆化の防止ならびに強度確保のため添加する
元素であり、0.2mass%未満ではその効果に乏しく、2.0
mass %を超えると加工性の劣化を招く。したがってMn
含有量は0.2 〜2.0mass %とする。
Mn: 0.2 to 2.0 mass% Mn is an element added to prevent hot embrittlement and to secure strength. If it is less than 0.2 mass%, its effect is poor.
If it exceeds mass%, the workability is deteriorated. Therefore Mn
The content is 0.2 to 2.0 mass%.

【0041】P :0.05mass %以下 P は高い固溶強化能を有する元素であり、所望の強度に
応じて添加する元素であるが、0.05mass %を超えると
溶接性の劣化を招くとともに、めっき性を低下させる。
したがってP 含有量は0.05mass %以下とする。
P: 0.05 mass% or less P is an element having a high solid solution strengthening ability, and is an element to be added according to the desired strength. However, if it exceeds 0.05 mass%, the weldability is deteriorated and the plating property is increased. Reduce sex.
Therefore, the P content should be 0.05 mass% or less.

【0042】Al :0.001 〜0.1mass % Al は鋼の脱酸のために必要な元素であるが、0.001mass
%未満ではその効果に乏しく、0.1mass %を超えて多
量に添加してもそれ以上の効果は望めないばかりか表面
性状を劣化させるとともに歪み時効硬化に必要なN を析
出物として固定してしまい、これを劣化させてしまう。
したがってAl 含有量は0.001 〜0.1mass%とする。
Al: 0.001 to 0.1 mass% Al is an element necessary for deoxidizing steel, but 0.001 mass
If it is less than 0.1%, the effect is poor, and even if it is added in a large amount exceeding 0.1mass%, no further effect can be expected and the surface properties are deteriorated, and N necessary for strain age hardening is fixed as a precipitate. , This will deteriorate it.
Therefore, the Al content is 0.001 to 0.1 mass%.

【0043】N:0.005 〜0.02mass% Nは、この発明において極めて重要な元素である。歪み
時効硬化特性を向上させるためには0.005mass% 以上の
含有量が必要である。一方、0.02mass% を超えると成形性
の低下を招く。したがってN 含有量は0.005 〜0.02mass
% とする。さらに後述するようにNb,Ti を含有する場合
はN 含有量を[N ]≧(14 /93 )[Nb ]+ (14 /48
)[Ti ]+0.005 の範囲となるように調整する。尚、
ここで[N ]、[Nb ]、[Ti ]は各々の元素の含有量
(mass%)である。N 含有量がこの範囲を外れると熱間
圧延工程中にN がTi ,Nb により析出固定されるため所
望の歪み時効硬化特性を得ることができない。
N: 0.005 to 0.02 mass% N is an extremely important element in the present invention. A content of 0.005 mass% or more is necessary to improve the strain age hardening characteristics. On the other hand, if it exceeds 0.02 mass%, the formability is deteriorated. Therefore, the N content is 0.005 to 0.02mass.
%. Further, as will be described later, when Nb and Ti are contained, the N content is [N] ≧ (14/93) [Nb] + (14/48
) Adjust so that the range is [Ti] +0.005. still,
Here, [N], [Nb], and [Ti] are the contents (mass%) of each element. If the N content deviates from this range, the desired strain age hardening characteristics cannot be obtained because N is precipitated and fixed by Ti and Nb during the hot rolling process.

【0044】以上、基本成分について説明したが、本発
明ではその他にもTi:0.001 〜0.1mass %、Nb:0.001 〜
0.1mass %のうちから選んだ1 種あるいは2 種を適宜含
有させることができる。 Ti :0.001 〜0.1mass %、Nb :0.001 〜0.1mass % Ti およびNb はいずれも、C 、N 、S と炭化、窒化、硫
化物を形成して強度および靭性の向上に有効に寄与する
が、添加量が0.001mass %未満では充分な効果が得られ
ず、一方0.1mass %を超えると歪み時効硬化に必要なC
、N 量を析出物として固定してしまい、これを低下さ
せてしまう。したがってこれらの元素の含有量は0.001
〜0.1mass %とする。さらにTi およびNb は[N ]≧
(14 /93)[Nb ]+(14 /48 )[Ti ]+0.005 を
満足する範囲で含有するものとする。これを外れる場合
には、後述する処理工程条件を満足しても尚、充分な固
溶Nを確保することができず、歪み時効特性が低下して
しまう。
Although the basic components have been described above, in the present invention, in addition, Ti: 0.001 to 0.1 mass%, Nb: 0.001 to
One or two kinds selected from 0.1 mass% can be appropriately contained. Ti: 0.001 to 0.1 mass%, Nb: 0.001 to 0.1 mass% Ti and Nb both form carbonization, nitriding, and sulfides with C, N, and S to effectively contribute to the improvement of strength and toughness. If the addition amount is less than 0.001 mass%, a sufficient effect cannot be obtained, while if it exceeds 0.1 mass%, C necessary for strain age hardening is obtained.
, N amount is fixed as a precipitate, which lowers it. Therefore, the content of these elements is 0.001
~ 0.1mass% Furthermore, Ti and Nb are [N] ≧
The content shall be (14/93) [Nb] + (14/48) [Ti] +0.005. If it is out of this range, sufficient solid solution N cannot be secured even if the processing step conditions described later are satisfied, and the strain aging characteristics deteriorate.

【0045】次に、この発明における製造条件の限定理
由について具体的に述べる。上記した組成の鋼素材は、
公知の溶製方法により溶製された溶鋼を、公知の連続鋳
造法、造塊法などにより鋳造し、スラブなどの形状とし
て供するのが好ましい。
Next, the reasons for limiting the manufacturing conditions in the present invention will be specifically described. The steel material with the above composition is
It is preferable that the molten steel melted by a known melting method is cast by a known continuous casting method, an ingot making method, or the like to be provided in the shape of a slab or the like.

【0046】この鋼素材を、加熱炉など公知の装置で加
熱する。ここで、熱延板または冷延板において所望の固
溶N 量を確保するためには、加熱時にN を溶解させてお
く必要があり、これを満足するためには加熱温度を1000
〜1300 ℃の温度域とすることが好ましい。すなわち、
加熱温度が1000 ℃未満では、N の析出が進行するため
所望量の窒素を固溶状態で残存させるのが困難になり、
冷延鋼板中の固溶N 量を50ppm 以上とすることが困難で
ある。一方、1300 ℃を超えると、冷延前の熱延板の組織
が粗大化し、後述する条件を満足しても所望の歪み時効
特性を得ることが難しくなる。
This steel material is heated by a known device such as a heating furnace. Here, in order to secure a desired amount of solid solution N in the hot-rolled sheet or the cold-rolled sheet, it is necessary to dissolve N during heating, and in order to satisfy this, the heating temperature is set to 1000
It is preferable to set the temperature range to ˜1300 ° C. That is,
If the heating temperature is lower than 1000 ° C, it becomes difficult to leave a desired amount of nitrogen in a solid solution state because precipitation of N progresses.
It is difficult to set the amount of solute N in the cold rolled steel sheet to 50 ppm or more. On the other hand, when the temperature exceeds 1300 ° C, the structure of the hot-rolled sheet before cold rolling becomes coarse, and it becomes difficult to obtain desired strain aging characteristics even if the conditions described later are satisfied.

【0047】加熱された鋼素材は、粗圧延、仕上げ圧延
を施された後、上記したNs1 またはNs2 が0.005 以上の
場合には、650 ℃以下の温度域で巻き取ることが好まし
い。一方、Ns1 またはNs2 が0.005 未満の場合には、55
0 ℃以下の温度域で巻き取ることが好ましい。すなわ
ち、巻取温度が650 ℃を超える場合には、冷延前の熱延
板の組織が粗大化し、後述する条件を満足しても所望の
歪み時効特性を得るのが難しくなる。さらに、Ns1 また
はNs2 が0.005 未満の場合に巻取温度が550 ℃を超える
と、N が析出物として固定されてしまうため、所望の固
溶N 量を確保することが難しくなる。
It is preferable to wind the heated steel material in a temperature range of 650 ° C. or less when the above Ns1 or Ns2 is 0.005 or more after rough rolling and finish rolling. On the other hand, if Ns1 or Ns2 is less than 0.005, 55
It is preferable to wind in a temperature range of 0 ° C. or lower. That is, when the coiling temperature exceeds 650 ° C., the structure of the hot rolled sheet before cold rolling becomes coarse, and it becomes difficult to obtain the desired strain aging characteristics even if the conditions described later are satisfied. Furthermore, when Ns1 or Ns2 is less than 0.005 and the coiling temperature exceeds 550 ° C, N is fixed as a precipitate, so that it becomes difficult to secure a desired amount of solid solution N 2.

【0048】巻取後の熱延鋼板は、酸洗、脱脂などの通
常の予備処理を施されたのち、冷間圧下率20 %以上で
冷間圧延を施すことが好ましい。すなわち、冷間圧下率
が20 %に満たない場合には、最終製品の溶融亜鉛めっ
き鋼板において、均一な組織を得ることができないため
成形性が低下することになる。また、めっき原板(冷延
板)の段階で鋼板中に存在する固溶N が50ppm に満たな
い場合は、後述する溶融亜鉛めっき処理を施したとして
も、所望の歪み時効硬化特性を得ることはできない。
The hot-rolled steel sheet after winding is preferably subjected to usual pretreatments such as pickling and degreasing, and then cold-rolled at a cold reduction of 20% or more. That is, if the cold reduction ratio is less than 20%, it is not possible to obtain a uniform structure in the hot-dip galvanized steel sheet of the final product, resulting in a decrease in formability. Further, when the solid solution N existing in the steel sheet at the stage of the original plate (cold rolled sheet) is less than 50 ppm, the desired strain age hardening characteristics cannot be obtained even if the hot dip galvanizing treatment described later is performed. Can not.

【0049】このように製造された冷延鋼板には、ま
ず、加熱処理を施す。この加熱処理は、その後のめっき
処理とともに連続溶融亜鉛めっきラインで行うのが好ま
しい。加熱処理工程は、上記した、Ns1 またはNs2 が0.0
05 以上の場合には、650 ℃以上900 ℃以下の温度域に
加熱した後、当該加熱温度から650 ℃までの平均冷却速
度を5〜50 ℃/s の冷却速度として冷却する。一方、N
s1 またはNs2 が0.005未満の場合には、650 ℃以上900
℃以下の温度域に加熱した後、当該加熱温度から650 ℃
までの平均冷却速度を5〜50 ℃/s の冷却速度として
冷却するに当り、650 ℃以上の温度域で処理している時
間、すなわち650 ℃以上の温度域での保持時間が、上記
した式(2)で示されるtg1 秒以内とする加熱−冷却工
程を行うことが肝要である。
The cold rolled steel sheet thus manufactured is first subjected to heat treatment. This heat treatment is preferably performed in a continuous hot dip galvanizing line together with the subsequent plating treatment. In the heat treatment process, Ns1 or Ns2 is 0.0
In the case of 05 or more, after heating in the temperature range of 650 ℃ to 900 ℃, the average cooling rate from the heating temperature to 650 ℃ is cooled to 5 to 50 ℃ / s. On the other hand, N
If s1 or Ns2 is less than 0.005, 650 ℃ or more 900
650 ℃ from the heating temperature after heating in the temperature range below ℃
When cooling at an average cooling rate of up to 5 to 50 ° C / s, the time of processing in the temperature range of 650 ° C or higher, that is, the holding time in the temperature range of 650 ° C or higher, It is important to carry out the heating-cooling step shown in (2) within tg 1 second.

【0050】なお、加熱温度が650 ℃未満の場合には、
充分な加工性を得ることができず、また、めっき性が阻
害される。一方、加熱温度が900 ℃を超える場合には、
最終製品である溶融亜鉛めっき鋼板のフェライト結晶粒
径を粗大化し歪み時効特性を低下させる。さらに、この
ような高温での加熱は工業的な観点からも現実的ではな
い。
When the heating temperature is less than 650 ° C.,
Sufficient workability cannot be obtained, and the plateability is impaired. On the other hand, if the heating temperature exceeds 900 ℃,
The final product, hot-dip galvanized steel sheet, coarsens the ferrite crystal grain size and reduces strain aging characteristics. Furthermore, heating at such a high temperature is not realistic from an industrial viewpoint.

【0051】加熱処理後に鋼板は冷却されるが、この冷
却過程においては、650 ℃までの平均冷却速度が5℃/
s に満たない場合には結晶粒が粗大化し歪み時効硬化特
性を低下させ、とくにNs1 またはNs2 が0.005 未満の場
合には、N の析出が顕著となり所望の歪み時効硬化特性
を満足することが出来ない。また、650 ℃までの平均冷
却速度が50 ℃/s を超えると低温変態相の生成により
硬質化し、延性を低下させる。このため当該加熱温度か
ら650 ℃までの平均冷却速度は5〜50 ℃/sとする。
After the heat treatment, the steel sheet is cooled. In this cooling process, the average cooling rate up to 650 ° C is 5 ° C /
If it is less than s, the crystal grains become coarse and the strain age-hardening property deteriorates.In particular, when Ns1 or Ns2 is less than 0.005, precipitation of N becomes remarkable and the desired strain age-hardening property can be satisfied. Absent. Further, if the average cooling rate up to 650 ° C exceeds 50 ° C / s, it hardens due to the formation of a low temperature transformation phase and reduces ductility. Therefore, the average cooling rate from the heating temperature to 650 ° C is 5 to 50 ° C / s.

【0052】さらに、Ns1 またはNs2 が0.005 未満の場
合には、上記条件を満足しても尚、650 ℃以上の温度域
での保持時間が上記した式(2)で示されるtg1 秒以内
とする必要がある。これがtg1 秒を超えると所望の歪み
時効硬化特性を得ることが出来ない。これは、この温度
域ではN がAl またはさらに,Ti およびNb 析出物を形成
し、鋼中の固溶N 量を低減させるからである。これらの
析出物の析出の速度は、化学組成と温度により変化する
ため、Ns1 またはNs2 が0.005 未満の場合には、この析
出量を必要な固溶N を確保できる量よりも少なくするよ
うに、高温での保持時間を制御する必要がある。すなわ
ち、上記した実験結果より明らかなように、化学組成と
温度によって定まる析出速度を示す上記式(2)に従っ
て制御することで優れた歪み時効硬化特性を得ることが
できる。
Further, when Ns1 or Ns2 is less than 0.005, the holding time in the temperature range of 650 ° C. or higher is tg1 second or less shown by the above formula (2) even if the above condition is satisfied. There is a need. If this exceeds tg 1 second, the desired strain age hardening characteristics cannot be obtained. This is because N forms Al or further Ti and Nb precipitates in this temperature range, and reduces the amount of solid solution N in the steel. The rate of precipitation of these precipitates varies depending on the chemical composition and temperature, so if Ns1 or Ns2 is less than 0.005, make the amount of precipitation less than the amount that can secure the required solid solution N. It is necessary to control the holding time at high temperature. That is, as is clear from the above experimental results, excellent strain age hardening characteristics can be obtained by controlling according to the above formula (2), which indicates the precipitation rate determined by the chemical composition and temperature.

【0053】なお、Ns1 またはNs2 が0.005 以上の場合
は、析出物を形成してもなお、充分な固溶N を残存させ
ることができるため、上述の高温での保持時間の制御は
考慮しなくてもよい。
When Ns1 or Ns2 is 0.005 or more, even if a precipitate is formed, a sufficient amount of solid-dissolved N 2 can remain, so that the control of the holding time at high temperature is not considered. May be.

【0054】次いで、この発明におけるめっき処理は、
通常、溶融亜鉛めっきラインで行われる条件と同様に、
450 〜550 ℃の温度範囲で亜鉛浴に浸漬し鋼板表層に溶
融亜鉛めっき層を形成する。なお、亜鉛浴は通常用いら
れるZn 浴とすればよい。また、めっき処理後には必要
に応じて、目付け量調整のためのワイピングを行っても
良い。めっき処理後には合金化処理を施してもよい。合
金化処理は、通常の方法で行えば良い。
Next, the plating treatment according to the present invention is as follows.
Usually, similar to the conditions performed in hot dip galvanizing line,
It is immersed in a zinc bath in the temperature range of 450 to 550 ° C to form a hot dip galvanized layer on the surface of the steel sheet. The zinc bath may be a commonly used Zn bath. Further, after the plating treatment, wiping for adjusting the basis weight may be performed if necessary. An alloying treatment may be performed after the plating treatment. The alloying treatment may be performed by a usual method.

【0055】さらには、この発明においては、めっき性
のさらなる改善のため、上記した連続亜鉛めっきライン
における一連の処理工程に先立ち、その加熱−冷却処理
における加熱温度以上の温度域に加熱する加熱処理と、
それに続く鋼板表面の成分濃化相を除去する酸洗処理と
からなる、前処理を施すことが可能である。この前処理
を追加する場合にも、Ns1 またはNs2 が0.005 未満の場
合には、前処理工程における650 ℃以上の温度域での保
持時間を上記した式(3)にて示されるtc秒以内とする
とともに、上記した連続亜鉛めっきラインにおける加熱
−冷却処理における650 ℃以上の温度域での保持時間を
上記した式(4)にて示されるtg2秒以内とすることに
より、所望の歪み時効硬化特性を得ることができる。
Further, in the present invention, in order to further improve the plating property, prior to the series of treatment steps in the above-mentioned continuous galvanizing line, the heat treatment for heating to a temperature range higher than the heating temperature in the heating-cooling treatment. When,
It is possible to perform a pretreatment, which is a subsequent pickling treatment for removing the component-rich phase on the surface of the steel sheet. Even when this pretreatment is added, if Ns1 or Ns2 is less than 0.005, the holding time in the temperature range of 650 ° C or higher in the pretreatment step is within tc seconds shown by the above formula (3). In addition, by keeping the holding time in the temperature range of 650 ° C. or higher in the heating-cooling treatment in the above continuous galvanizing line within tg2 seconds shown by the above formula (4), the desired strain age hardening characteristics can be obtained. Can be obtained.

【0056】これは、上述と同様の理由により、前処理
工程、めっき処理工程から成る一連の工程の全体におい
て、高温での保持時間を制御することにより固溶N 量が
確保できるためである。
This is because, for the same reason as described above, the amount of solid solution N 2 can be secured by controlling the holding time at high temperature in the whole series of processes including the pretreatment process and the plating process.

【0057】また、前処理を施した場合、引き続くめっ
き処理工程の加熱−冷却処理における650 ℃以上の温度
域での保持時間の制御には、前処理工程での析出量を考
慮する必要がある。すなわち、前処理が析出の生じない
潜伏期間中に完了した場合、つまりlog (tc )<0.0000
75 ×(Tc-800)2+0.85 のときには、前処理の影響は考慮
にいれずとも良い。一方、前処理中に析出が生じた場
合、つまりlog (tc)≧0.000075 ×(Tc-800)2+0.85 の
ときには、析出量に応じてめっき処理工程の650 ℃以上
の温度域での保持時間を短時間側に調整する。但し、冷間
圧延による効果は前処理工程中に歪みが開放されるため
にめっき処理工程では現出しない。したがってtg2 の算
出式においてCR の項は不要となる。
When the pretreatment is performed, it is necessary to consider the amount of precipitation in the pretreatment step in controlling the holding time in the temperature range of 650 ° C. or higher in the heating-cooling treatment in the subsequent plating treatment step. . That is, if the pretreatment is completed during the precipitation-free incubation period, that is, log (tc) <0.0000
When 75 × (Tc-800) 2 +0.85, the influence of the pretreatment need not be taken into consideration. On the other hand, when precipitation occurs during pretreatment, that is, when log (tc) ≥ 0.000075 × (Tc-800) 2 +0.85, the holding time in the temperature range of 650 ° C or higher in the plating process depends on the amount of precipitation. Is adjusted to the short side. However, the effect of cold rolling does not appear in the plating process because the strain is released during the pretreatment process. Therefore, the term of CR is unnecessary in the calculation formula of tg2.

【0058】[0058]

【実施例】実施例1 表1に示す化学組成に成る鋼を転炉にて溶製し、連続鋳
造法にて鋳片とした。これら鋳片に、表2に示す条件で
熱間圧延を施し、熱延鋼板とした。これら熱延鋼板を酸
洗し、表2に示す条件で冷間圧延を施し冷延鋼板とし、
次いで連続焼鈍ラインにおいて表2に示す条件にて加熱
処理を行い、さらに連続溶融亜鉛めっきライン内の予備
処理設備を利用して酸洗処理を施し、前処理を行った。
引き続き、連続溶融亜鉛めっきラインにおいて、表2に
示す条件に従う加熱−冷却処理を施し、その後めっき処
理、そして合金化処理を施した。ここで、めっき処理は
溶融亜鉛めっき浴に鋼板を浸漬して行い、浸漬した鋼板
を引き上げたのちガスワイピングにより目付け量を調整
した。なお、めっき処理条件は、下記のとおりである。 記 板温度:475 ℃ めっき浴:0.13mass %Al −残部Zn 浴温:475 ℃ 浸漬時間:3s 目付け量( 片面あたり) :45g /m2
Example 1 A steel having the chemical composition shown in Table 1 was melted in a converter and made into a slab by a continuous casting method. These cast pieces were hot-rolled under the conditions shown in Table 2 to obtain hot-rolled steel sheets. These hot rolled steel sheets are pickled and cold rolled under the conditions shown in Table 2 to obtain cold rolled steel sheets,
Next, heat treatment was performed in the continuous annealing line under the conditions shown in Table 2, and further, pickling treatment was performed using a pretreatment facility in the continuous hot-dip galvanizing line to perform pretreatment.
Subsequently, in the continuous hot-dip galvanizing line, heating-cooling treatment according to the conditions shown in Table 2 was performed, and then plating treatment and alloying treatment were performed. Here, the plating treatment was performed by immersing the steel sheet in a hot dip galvanizing bath, pulling up the immersed steel sheet, and adjusting the basis weight by gas wiping. The plating treatment conditions are as follows. Plate temperature: 475 ° C Plating bath: 0.13mass% Al-Remainder Zn Bath temperature: 475 ° C Immersion time: 3s Unit weight (on one side): 45g / m 2

【0059】[0059]

【表1】 [Table 1]

【0060】[0060]

【表2】 [Table 2]

【0061】また、一部の鋼板については、前記した前
処理または合金化処理を省略した。かくして得られため
っき鋼板は、JIS 13 号B引張試験片に加工し、歪み速
度10-3/s で引張試験を行い機械的特性{ 降伏強度(YS)
、引張強さ(TS) 、全伸び(El)} を調査した。また、処理
前の冷延鋼板の段階で化学分析により鋼板中のN 含有量
と析出物として存在するN 量とを測定し、その差をもっ
て固溶N 量とした。これらの結果を、表2、表3に示
す。
The above-mentioned pretreatment or alloying treatment was omitted for some steel sheets. The plated steel sheet thus obtained is processed into a JIS No. 13B tensile test piece and subjected to a tensile test at a strain rate of 10 -3 / s to obtain mechanical properties {yield strength (YS)
, Tensile strength (TS) and total elongation (El)} were investigated. In addition, the N content in the steel sheet and the N content present as precipitates were measured by chemical analysis at the stage of the cold-rolled steel sheet before treatment, and the difference was taken as the solid solution N content. The results are shown in Tables 2 and 3.

【0062】また、同めっき鋼板について、5 %の引張
予歪みを加えたのち、一担除去し、170 ℃×20min 熱処
理を施してから、再度引張試験を行い機械的性質を調査
した。このときのTS から前述のめっき処理ままのめっき
鋼板でのTS を引くことにより歪み時効処理によるTS の
上昇量ΔTS を求めた。また、めっき後のめっき鋼板に
ついて、5%の引張予歪みを加えたのち、一旦除荷し、
170 ℃×20min の熱処理を施してから再度引張試験を行
った時に観察される降伏強度から前記5 %の予歪みを加
えた時の応力を引くことにより、BH 量を求めた。これら
の結果を表3に示す。表3から、この発明によるめっき
鋼板は、高い歪み時効硬化を示すことがわかる。
The plated steel sheet was subjected to a tensile prestrain of 5%, was then partially removed, heat-treated at 170 ° C. for 20 minutes, and then subjected to a tensile test again to investigate the mechanical properties. The TS increase amount ΔTS due to strain aging treatment was obtained by subtracting the TS of the as-plated steel sheet described above from the TS at this time. In addition, after applying a 5% tensile pre-strain to the plated steel sheet after plating, it is temporarily unloaded,
The amount of BH was obtained by subtracting the stress when the prestrain of 5% was applied from the yield strength observed when the tensile test was conducted again after heat treatment at 170 ° C. for 20 min. The results are shown in Table 3. From Table 3, it can be seen that the plated steel sheet according to the present invention exhibits high strain age hardening.

【0063】なお、めっき性は、鋼板表面を目視で観察
し、不めっき欠陥の存在の有無を判定した。そして、不
めっき欠陥の全く無いもの(めっき性良好)を〇、不め
っき欠陥が一部発生したもの(めっき性やや良好)を
△、不めっき欠陥が多数発生したもの(めっき性不良)
を×とした。
The plating property was determined by visually observing the surface of the steel sheet and determining the presence of non-plating defects. And, there are no non-plating defects (good plating property), ◯, some non-plating defects occur (slightly good plating property), and many non-plating defects occur (poor plating property)
Was designated as x.

【0064】[0064]

【表3】 [Table 3]

【0065】実施例2 表1 の鋼a に従う化学組成の鋼を転炉にて溶製し、連続
鋳造法にて鋳片とした。これら鋳片に、実施例1と同一
の条件で熱間圧延および冷間圧延を施し、冷延鋼板を複
数コイル製造した。次いで、加熱温度720 ℃、加熱温度
から650 ℃までの平均冷却速度20 ℃/s 、めっき板温度4
75 ℃、合金化温度520 ℃、合金化時間20秒となるよう
に、連続溶融亜鉛めっきラインにおいて加熱−冷却処
理、めっき処理および合金化処理を施した。めっき処理
は、溶融亜鉛めっき浴に鋼板を浸漬して行い、浸漬した
鋼板を引き上げたのちガスワイピングにより目付け量を
調整した。なお、めっき処理条件は、下記のとおりであ
る。 記 板温度:475 ℃ めっき浴:0.13mass %Al −残部Zn 浴温:475 ℃ 浸漬時間:3s 目付け量( 片面あたり) :45g /m2
Example 2 Steel having a chemical composition according to Steel a in Table 1 was melted in a converter and made into a slab by a continuous casting method. These slabs were hot-rolled and cold-rolled under the same conditions as in Example 1 to manufacture a plurality of cold-rolled steel sheets as coils. Next, heating temperature 720 ℃, average cooling rate from heating temperature to 650 ℃ 20 ℃ / s, plating plate temperature 4
Heat-cooling treatment, plating treatment and alloying treatment were performed in a continuous hot dip galvanizing line so that the temperature was 75 ° C., the alloying temperature was 520 ° C., and the alloying time was 20 seconds. The plating treatment was performed by immersing the steel sheet in a hot dip galvanizing bath, pulling up the immersed steel sheet, and adjusting the basis weight by gas wiping. The plating treatment conditions are as follows. Plate temperature: 475 ° C Plating bath: 0.13mass% Al-Remainder Zn Bath temperature: 475 ° C Immersion time: 3s Unit weight (on one side): 45g / m 2

【0066】ここで、冷延鋼板の1コイルについては、
この発明法に則り加熱温度の変動に従って、その650 ℃
以上での保持時間を、通板速度を変更することにより、
加熱温度により計算されるtg1 より小さくなるように変
化させた(発明例)。また、比較として、1コイルはコ
イル全長において、650 ℃以上での保持時間が100秒と
一定になるようにした( 比較例) 。
Here, for one coil of cold rolled steel sheet,
650 ℃ according to the variation of heating temperature according to the method of this invention
By changing the passing speed, the holding time above is
It was changed to be smaller than tg1 calculated by the heating temperature (Invention Example). Further, as a comparison, one coil has a constant holding time of 100 seconds at 650 ° C. or higher over the entire length of the coil (comparative example).

【0067】かくして得られためっき鋼板は、JIS 13
号B引張試験片に加工して機械的性質を調査した。ま
た、同めっき鋼板について、5%引張予歪みを加えたの
ち、一旦除荷し、170 ℃×20min の熱処理を施してか
ら、再度引張試験を行って機械的性質を調査した。この
ときのTS から前述のめっき処理ままのめっき板でのTS
を引くことにより歪み時効処理によるTS の上昇量ΔTS
を求めた。このときの加熱温度、tg1 、650 ℃以上の保
持時間、△TS のコイル長さ方向での変化を、図10(発明
例) および図11( 比較例) に示す。これら図からわかる
ように、650 ℃以上での保持時間を制御することによ
り、歪み時効硬化特性のばらつきが抑制されることがで
きる。
The plated steel sheet thus obtained is JIS 13
It was processed into a No. B tensile test piece and examined for mechanical properties. Further, with respect to the same plated steel sheet, after applying a 5% tensile pre-strain, the load was once removed, heat treatment was carried out at 170 ° C. for 20 minutes, and then a tensile test was conducted again to investigate the mechanical properties. From the TS at this time, the TS of the plated plate as described above
By subtracting the amount of increase in TS due to strain aging treatment ΔTS
I asked. FIG. 10 (invention example) and FIG. 11 (comparative example) show changes in heating temperature, tg1, holding time of 650 ° C. or more, and ΔTS in the coil length direction at this time. As can be seen from these figures, by controlling the holding time at 650 ° C. or higher, it is possible to suppress variations in strain age hardening characteristics.

【0068】[0068]

【発明の効果】この発明によれば、特に自動車の構造部
品に使用するのに好適な、歪み時効特性に優れた高張力
溶融亜鉛めっき鋼板の製造が可能である。
According to the present invention, it is possible to manufacture a high-strength hot-dip galvanized steel sheet having excellent strain aging characteristics, which is particularly suitable for use in automobile structural parts.

【図面の簡単な説明】[Brief description of drawings]

【図1】 含有N 量と加熱温度での保持時間の△TS に
対する好適範囲を示す図である。
FIG. 1 is a diagram showing a preferable range of a content N content and a holding time at a heating temperature with respect to ΔTS.

【図2】 △TS と冷却速度との関係を示す図である。FIG. 2 is a diagram showing a relationship between ΔTS and a cooling rate.

【図3】 △TS と加熱温度の関係を示す図である。FIG. 3 is a diagram showing the relationship between ΔTS and heating temperature.

【図4】 △TS と冷間圧下率の関係を示す図である。FIG. 4 is a diagram showing a relationship between ΔTS and a cold reduction rate.

【図5】 △TS と650 ℃以上の温度域での保持時間と
の関係を示す図である。
FIG. 5 is a diagram showing a relationship between ΔTS and a holding time in a temperature range of 650 ° C. or higher.

【図6】 650 ℃以上の温度域での保持時間と加熱温度
の△TS に対する好適範囲を示す図である。
FIG. 6 is a diagram showing a preferable range of a holding time in a temperature range of 650 ° C. or higher and a heating temperature with respect to ΔTS.

【図7】 含有N 量、Ns 量と加熱温度での保持時間の
△TS に対する好適範囲を示す図である。
FIG. 7 is a diagram showing a suitable range of ΔN of content N amount, Ns amount and holding time at heating temperature.

【図8】 650 ℃以上の温度域での保持時間と加熱温度
の△TS に対する好適範囲を示す図である。
FIG. 8 is a diagram showing a preferable range of ΔT for holding time and heating temperature in a temperature range of 650 ° C. or higher.

【図9】 △TS と650 ℃以上の温度域での保持時間の
関係を示す図である。
FIG. 9 is a diagram showing a relationship between ΔTS and a holding time in a temperature range of 650 ° C. or higher.

【図10】 加熱温度、tg1 、650 ℃以上の保持時間、
△TS のコイル長手方向でのばらつきを示す図である。
[Fig. 10] Heating temperature, tg1, holding time of 650 ° C or higher,
FIG. 6 is a diagram showing variations in ΔTS in the coil longitudinal direction.

【図11】 加熱温度、tg1 、650 ℃以上の保持時間、
△TS のコイル長手方向でのばらつきを示す図である。
FIG. 11: Heating temperature, tg1, holding time of 650 ° C. or higher,
FIG. 6 is a diagram showing variations in ΔTS in the coil longitudinal direction.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成14年5月16日(2002.5.1
6)
[Submission date] May 16, 2002 (2002.5.1)
6)

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項4[Name of item to be corrected] Claim 4

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0014[Correction target item name] 0014

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0014】(D)C:0.01 〜0.2mass %、Si :0.4m
ass %以下、Mn :0.2 〜2.0mass %、P:0.05mass %
以下、Al :0.001 〜0.1mass %およびN:0.005 〜0.0
2mass %を含有し、さらにTi :0.001 〜0.1mass %お
よびNb :0.001 〜0.1mass %のいずれか1種または2
種を、[N ]≧(14 /93 )[Nb ]+(14/48) [Ti ]+
0.005 の下に含有し、残部はFe および不可避的不純物の
成分組成を有する鋼素材に、熱間圧延、次いで冷間圧延
を施して得た、固溶Nの含有量が50ppm 以上である冷延
鋼板を、650 ℃以上900 ℃以下の温度域に加熱した後、
少なくとも当該加熱温度から650 ℃までの温度域は平均
冷却速度:5〜50 ℃/s にて冷却する、加熱−冷却処
理を施し、引き続き鋼板表面にめっき層を形成する、め
っき処理を施すことを基本とし、さらに下記式(5)に
て示されるNs2 がNs2 <0.005 の場合には、650 ℃以上
の温度域における上記加熱−冷却処理の時間を下記式
(2)にて示されるtg1 秒以内に規制することを特徴と
する歪み時効特性に優れる溶融亜鉛めっき冷延鋼板の製
造方法。 記 Ns2 =[N ]−(14/27 )[Al]-(14/93)[Nb]-(14/48)[Ti] ・・・・ (5) Log (tg1 )=0.000075 ×(Tg −800 )2 +tO ・・・・ (2) ここで、 Tg :加熱−冷却処理における 加熱温度(℃) t0=2.0 ×Pr2 −0.008 ×CR+0.85 但し、 CR: 冷間圧下率(%) Pr2={[N]-(14/93)[Nb]-(14/48)[Ti]-0.005}/{[N]-(14/
93)[Nb]-(14/48)[Ti]} [N],[Al ],[Nb ]および[Ti ]は、それぞれ
N,Al ,Nb およびTiの含有量(mass %)
(D) C: 0.01 to 0.2 mass%, Si: 0.4 m
ass% or less, Mn: 0.2 to 2.0 mass%, P: 0.05 mass%
Below, Al: 0.001 to 0.1 mass% and N: 0.005 to 0.0
2 mass% is contained, and any one of Ti: 0.001 to 0.1 mass% and Nb: 0.001 to 0.1 mass% or 2
Seed, [N] ≧ (14/93) [Nb] + (14/48) [Ti] +
Cold rolled steel containing less than 0.005, the balance being Fe and unavoidable impurities, obtained by hot rolling and then cold rolling, and having a solute N content of 50 ppm or more. After heating the steel plate in the temperature range of 650 ℃ to 900 ℃,
At least in the temperature range from the heating temperature to 650 ° C, cooling is performed at an average cooling rate of 5 to 50 ° C / s, heating-cooling treatment is performed, and then a plating layer is formed on the surface of the steel sheet. Basically, if Ns2 represented by the following equation (5) is Ns2 <0.005, the heating-cooling time in the temperature range of 650 ° C or higher is within tg1 second represented by the following equation (2). A method for producing a hot-dip galvanized cold-rolled steel sheet having excellent strain aging characteristics, which is characterized in that Note Ns2 = [N]-(14/27) [Al]-(14/93) [Nb]-(14/48) [Ti] ... (5) Log (tg1) = 0.000075 × (Tg- 800) 2 + tO ··· (2) Where, Tg: Heating temperature in heating- cooling process (℃) t0 = 2.0 × Pr2 −0.008 × CR + 0.85 However, CR: Cold reduction rate (%) Pr2 = {[N]-(14/93) [Nb]-(14/48) [Ti] -0.005} / {[N]-(14 /
93) [Nb]-(14/48) [Ti]} [N], [Al], [Nb] and [Ti] are the contents of N, Al, Nb and Ti (mass%), respectively.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松岡 才二 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 (72)発明者 坂田 敬 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 Fターム(参考) 4K037 EA01 EA05 EA06 EA15 EA18 EA19 EA23 EA27 EA31 EB06 EB08 FA02 FA03 FB00 FE01 FE02 FG00 FJ04 FJ05 FJ06 FK03 GA05 HA01 JA01    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Saiji Matsuoka             1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Made in Kawasaki             Technical Research Institute of Iron Co., Ltd. (72) Inventor Kei Sakata             1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Made in Kawasaki             Technical Research Institute of Iron Co., Ltd. F-term (reference) 4K037 EA01 EA05 EA06 EA15 EA18                       EA19 EA23 EA27 EA31 EB06                       EB08 FA02 FA03 FB00 FE01                       FE02 FG00 FJ04 FJ05 FJ06                       FK03 GA05 HA01 JA01

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】C:0.01 〜0.2mass %、 Si :0.4mass %以下、 Mn :0.2 〜2.0mass %、 P:0.05mass %以下、 Al :0.001 〜0.1mass %および N:0.005 〜0.02mass % を含有し、残部はFe および不可避的不純物の成分組成
を有する鋼素材に、熱間圧延、次いで冷間圧延を施して
得た、固溶Nの含有量が50ppm 以上である冷延鋼板を、
650 ℃以上900 ℃以下の温度域に加熱した後、少なくと
も当該加熱温度から650 ℃までの温度域は平均冷却速
度:5〜50 ℃/s にて冷却する、加熱−冷却処理を施
し、引き続き鋼板表面にめっき層を形成する、めっき処
理を施すことを基本工程とし、さらに下記式(1)にて
示されるNs1 がNs1 <0.005 の場合には、650 ℃以上の
温度域における上記加熱−冷却処理の時間を下記式
(2)にて示されるtg1 秒以内に規制することを特徴と
する歪み時効特性に優れる溶融亜鉛めっき冷延鋼板の製
造方法。 記 Ns1 =[N ]−(14 /27 )[Al ]・・・・ (1) Log (tg1 )=0.000075 ×(Tg −800 )2 +tO ・・・・ (2) ここで、Tg :加熱−冷却処理における加熱温度( ℃) t0 =2.0 ×Pr1 −0.008 ×CR +0.85 但し、CR :冷間圧下率(%) Pr1 =([N ]−0.005 )/[N ] [N ], [Al ]はN,Al 元素の含有量(mass %)
1. C: 0.01 to 0.2 mass%, Si: 0.4 mass% or less, Mn: 0.2 to 2.0 mass%, P: 0.05 mass% or less, Al: 0.001 to 0.1 mass% and N: 0.005 to 0.02 mass%. A cold-rolled steel sheet containing 50 ppm or more of solute N, obtained by subjecting a steel material having the composition of Fe and unavoidable impurities to the rest, hot rolling, and then cold rolling,
After heating to a temperature range of 650 ℃ or more and 900 ℃ or less, at least the temperature range from the heating temperature to 650 ℃ is cooled at an average cooling rate of 5 to 50 ℃ / s, subjected to heat-cooling treatment, and subsequently steel sheet The basic step is to form a plating layer on the surface, and to perform a plating treatment. If Ns1 represented by the following formula (1) is Ns1 <0.005, the above heating-cooling treatment in a temperature range of 650 ° C or higher. The method for producing a hot-dip galvanized cold-rolled steel sheet having excellent strain aging characteristics, characterized in that the time is controlled within tg 1 second represented by the following formula (2). Note Ns1 = [N]-(14/27) [Al] ... (1) Log (tg1) = 0.000075 × (Tg-800) 2 + tO ... (2) Where, Tg: Heating- Heating temperature in cooling process (° C) t0 = 2.0 × Pr1 −0.008 × CR +0.85 However, CR: Cold reduction rate (%) Pr1 = ([N] −0.005) / [N] [N], [Al] ] Is the content of N and Al elements (mass%)
【請求項2】請求項1に記載の基本工程に、その加熱−
冷却処理を施すに先立ち、該加熱−冷却処理における加
熱温度以上に加熱した後酸洗する前処理を追加した、一
連の工程を基本とし、さらに下記式(1) にて示されるNs
1 <0.005 の場合には、650 ℃以上の温度域における上
記前処理時間を下記式(3)にて示されるtc 秒以内に
規制し、かつ650 ℃以上の温度域における上記 加熱−
冷却処理の時間を下記式(4)にて示されるtg2 秒以内
に規制することを特徴とする歪み時効特性に優れる溶融
亜鉛めっき冷延鋼板の製造方法。 記 Ns1 =[N ]−(14 /27 )[Al ]・・・・ (1) Log (tc )=0.000075 ×(Tc −800 )2 +tOc・・・・( 3) ここで、 Tc :前処理における加熱温度( ℃) tOc =2.0 ×Pr1 −0.008 ×CR +0.85 但し、CR :冷間圧下率(%) Pr1 =([N ]−0.005 )/[N ] Log (tg2 )=0.000075 ×(Tg −800 )2 +tOg ・・・・( 4) ここで、 Tg :加熱−冷却処理における加熱温度( ℃) t0g : Log (tc )<0.000075 ×(Tc-800)2-0.008 ×CR+0.85
のとき、 t0g=2.0 ×Pr1+0.85 Log(tc) ≧0.000075 ×(Tc-800)2-0.008 ×CR+0.85 の
とき、 t0g=2.0 ×Pr1+0.85-{Log (tc )-0.000075 ×(Tc −
800 )2} 但し、CR :冷間圧下率(%) Pr1 =([N ]−0.005 )/[N ] [N ], [Al ]はN,Al 元素の含有量(mass %)
2. The basic process according to claim 1, wherein
Prior to performing the cooling treatment, the heating-addition of a pretreatment of heating after the heating temperature in the cooling treatment or higher and pickling, based on a series of steps, Ns represented by the following formula (1)
When 1 <0.005, the pretreatment time in the temperature range of 650 ° C or higher is regulated within tc seconds represented by the following formula (3), and the heating temperature in the temperature range of 650 ° C or higher-
A method for producing a hot-dip galvanized cold-rolled steel sheet having excellent strain aging characteristics, characterized in that the cooling treatment time is restricted within tg2 seconds represented by the following formula (4). Note Ns1 = [N]-(14/27) [Al] ... (1) Log (tc) = 0.000075 × (Tc-800) 2 + tOc ... (3) where Tc: pretreatment Heating temperature (℃) tOc = 2.0 × Pr1 −0.008 × CR +0.85 However, CR: Cold reduction rate (%) Pr1 = ([N] −0.005) / [N] Log (tg2) = 0.000075 × ( Tg −800) 2 + tOg ··· (4) Where, Tg: Heating temperature in heating-cooling process (℃) t0g: Log (tc) <0.000075 × (Tc-800) 2 -0.008 × CR + 0.85
When t0g = 2.0 × Pr1 + 0.85 Log (tc) ≧ 0.000075 × (Tc-800) 2 -0.008 × CR + 0.85, t0g = 2.0 × Pr1 + 0.85- {Log (tc) -0.000075 × (Tc −
800) 2 } However, CR: Cold reduction (%) Pr1 = ([N] -0.005) / [N] [N], [Al] is the content of N and Al elements (mass%)
【請求項3】冷延鋼板は、鋼素材を1000 〜1300 ℃の温
度域で加熱し、粗圧延、次いで仕上圧延を施した後、Ns
1 ≧0.005 の場合には650 ℃以下で巻き取り、Ns1 <0.
005 の場合には550 ℃以下で巻き取ることにより製造し
た熱延鋼板に、冷間圧延を施したものである請求項1ま
たは2に記載の歪み時効特性に優れる溶融亜鉛めっき冷
延鋼板の製造方法。
3. A cold rolled steel sheet is produced by heating a steel material in a temperature range of 1000 to 1300 ° C., performing rough rolling, and then finish rolling, and then Ns.
If 1 ≥ 0.005, wind at 650 ℃ or less, Ns1 <0.
In the case of 005, the hot-rolled steel sheet produced by winding at 550 ° C. or lower is cold-rolled, and the production of hot-dip galvanized cold-rolled steel sheet having excellent strain aging characteristics according to claim 1 or 2. Method.
【請求項4】C:0.01 〜0.2mass %、 Si :0.4mass %以下、 Mn :0.2 〜2.0mass %、 P:0.05mass %以下、 Al :0.001 〜0.1mass %および N:0.005 〜0.02mass % を含有し、さらに Ti :0.001 〜0.1mass %および Nb :0.001 〜0.1mass % のいずれか1種または2種を、[N ]≧(14 /93 )
[Nb ]+(14/48) [Ti ]+0.005 の下に含有し、残部はF
e および不可避的不純物の成分組成を有する鋼素材に、
熱間圧延、次いで冷間圧延を施して得た、固溶Nの含有
量が50ppm 以上である冷延鋼板を、650 ℃以上900 ℃以
下の温度域に加熱した後、少なくとも当該加熱温度から
650 ℃までの温度域は平均冷却速度:5〜50 ℃/s に
て冷却する、加熱−冷却処理を施し、引き続き鋼板表面
にめっき層を形成する、めっき処理を施すことを基本と
し、さらに下記式(5)にて示されるNs2 がNs2 <0.00
5 の場合には、650 ℃以上の温度域における上記加熱−
冷却処理の時間を下記式(2)にて示されるtg1 秒以内
に規制することを特徴とする歪み時効特性に優れる溶融
亜鉛めっき冷延鋼板の製造方法。 記 Ns2 =[N ]−(14/27 )[Al]-(14/93)[Nb]-(14/48)[Ti] ・・・・ (5) Log (tg1 )=0.000075 ×(Tg −800 )2 +tO ・・・・ (2) ここで、 Tg :加熱温度(℃) t0=2.0 ×Pr2 −0.008 ×CR+0.85 但し、 CR: 冷間圧下率(%) Pr2={[N]-(14/93)[Nb]-(14/48)[Ti]-0.005}/{[N](14/9
3)[Nb]-(14/48)[Ti]} [N],[Al ],[Nb ]および[Ti ]は、それぞれ
N,Al ,Nb およびTiの含有量(mass %)
4. C: 0.01 to 0.2 mass%, Si: 0.4 mass% or less, Mn: 0.2 to 2.0 mass%, P: 0.05 mass% or less, Al: 0.001 to 0.1 mass% and N: 0.005 to 0.02 mass%. In addition, one or two of Ti: 0.001 to 0.1 mass% and Nb: 0.001 to 0.1 mass% are added to [N] ≧ (14/93).
[Nb] + (14/48) [Ti] + contained under 0.005, balance F
e and steel materials with inevitable impurity component composition,
After cold-rolled steel sheet containing 50 ppm or more of solute N obtained by hot rolling and then cold rolling is heated to a temperature range of 650 ° C to 900 ° C, at least from the heating temperature.
In the temperature range up to 650 ° C, cooling is performed at an average cooling rate of 5 to 50 ° C / s, heating-cooling treatment is performed, and then a plating layer is formed on the steel sheet surface. Ns2 shown in the equation (5) is Ns2 <0.00
In the case of 5, the above heating in the temperature range of 650 ° C or higher
A method for producing a hot-dip galvanized cold-rolled steel sheet having excellent strain aging characteristics, characterized in that the cooling treatment time is restricted to tg 1 second represented by the following formula (2). Note Ns2 = [N]-(14/27) [Al]-(14/93) [Nb]-(14/48) [Ti] ... (5) Log (tg1) = 0.000075 × (Tg- 800) 2 + tO ··· (2) Where, Tg: Heating temperature (℃) t0 = 2.0 × Pr2 −0.008 × CR + 0.85 However, CR: Cold reduction rate Pr2 = {[N]- (14/93) [Nb]-(14/48) [Ti] -0.005} / {[N] (14/9
3) [Nb]-(14/48) [Ti]} [N], [Al], [Nb] and [Ti] are the contents of N, Al, Nb and Ti (mass%), respectively.
【請求項5】請求項4に記載の基本工程に、その加熱−
冷却処理を施すに先立ち、該加熱−冷却処理における加
熱温度以上に加熱した後酸洗する前処理を追加した、一
連の工程を基本とし、さらに下記式(5) にて示されるNs
2 <0.005 の場合には、650 ℃以上の温度域における上
記前処理時間を下記式(3)にて示されるtc 秒以内に
規制し、かつ650 ℃以上の温度域における上記 加熱−
冷却処理の時間を下記式(4)にて示されるtg2 秒以内
に規制することを特徴とする歪み時効特性に優れる溶融
亜鉛めっき冷延鋼板の製造方法。 記 Log (tc )=0.000075 ×(Tc −800 )2 +tOc ・・・・(3) ここで、 Tc :前処理における加熱温度( ℃) tOc =2.0 ×Pr2 −0.008 ×CR +0.85 但し、 CR :冷間圧下率(%) Pr2={[N]-(14/93)[Nb]-(14/48)[Ti]-0.005}/{[N]-(14/
93)[Nb]-(14/48)[Ti]} Log (tg2 )=0.000075 ×(Tg −800 )2 +tOg ・・・・(4) ここで、 Tg :加熱−冷却処理における加熱温度( ℃) t0g : Log (tc )<0.000075 ×(Tc-800)2-0.008 ×CR+0.85
のとき、 t0g=2.0 ×Pr2+0.85 Log(tc) ≧0.000075 ×(Tc-800)2-0.008 ×CR+0.85 の
とき、 t0g=2.0 ×Pr2+0.85-{Log (tc )-0.000075 ×(Tc −
800 )2} 但し、 CR :冷間圧下率(%) Pr2={[N]-(14/93)[Nb]-(14/48)[Ti]-0.005}/{[N]-(14/
93)[Nb]-(14/48)[Ti]} [N],[Al ],[Nb ]および[Ti ]は、それぞれ
N,Al ,Nb およびTiの含有量(mass %)
5. The basic process according to claim 4, wherein
Prior to performing the cooling treatment, the heating-addition of a pretreatment of heating after heating to a heating temperature in the cooling treatment and then pickling, based on a series of steps, further represented by the following formula (5) Ns
When 2 <0.005, the pretreatment time in the temperature range of 650 ° C or higher is regulated within tc seconds represented by the following formula (3), and the heating temperature in the temperature range of 650 ° C or higher-
A method for producing a hot-dip galvanized cold-rolled steel sheet having excellent strain aging characteristics, characterized in that the cooling treatment time is restricted within tg2 seconds represented by the following formula (4). Note Log (tc) = 0.000075 × (Tc −800) 2 + tOc ··· (3) where Tc: Heating temperature in pretreatment (° C) tOc = 2.0 × Pr2 −0.008 × CR +0.85 However, CR : Cold reduction (%) Pr2 = {[N]-(14/93) [Nb]-(14/48) [Ti] -0.005} / {[N]-(14 /
93) [Nb]-(14/48) [Ti]} Log (tg2) = 0.000075 × (Tg −800) 2 + tOg ··· (4) Where, Tg: Heating temperature in heating-cooling process (° C ) t0g: Log (tc) <0.000075 × (Tc-800) 2 -0.008 × CR + 0.85
, T0g = 2.0 × Pr2 + 0.85 Log (tc) ≧ 0.000075 × (Tc-800) 2 -0.008 × CR + 0.85, t0g = 2.0 × Pr2 + 0.85- {Log (tc) -0.000075 × (Tc −
800) 2 } However, CR: Cold reduction (%) Pr2 = {[N]-(14/93) [Nb]-(14/48) [Ti] -0.005} / {[N]-(14 /
93) [Nb]-(14/48) [Ti]} [N], [Al], [Nb] and [Ti] are the contents of N, Al, Nb and Ti (mass%), respectively.
【請求項6】冷延鋼板は、鋼素材を1000 〜1300 ℃の温
度域で加熱し、粗圧延、次いで仕上圧延を施した後、Ns
2 ≧0.005 の場合には650 ℃以下で巻き取り、Ns2 <0.
005 の場合には550 ℃以下で巻き取ることにより製造し
た熱延鋼板に、冷間圧延を施したものである請求項4ま
たは5に記載の歪み時効特性に優れる溶融亜鉛めっき冷
延鋼板の製造方法。
6. A cold rolled steel sheet is produced by heating a steel material in a temperature range of 1000 to 1300 ° C., performing rough rolling, and then finish rolling, and then Ns.
If 2 ≥ 0.005, wind at 650 ℃ or less, Ns2 <0.
In the case of 005, the hot-rolled steel sheet produced by winding at 550 ° C. or lower is cold-rolled, and the production of hot-dip galvanized cold-rolled steel sheet having excellent strain aging characteristics according to claim 4 or 5. Method.
【請求項7】めっき層の形成後に、さらに加熱合金化処
理を施すことを特徴とする請求項1ないし6のいずれか
に記載の歪み時効特性に優れる溶融亜鉛めっき冷延鋼板
の製造方法。
7. The method for producing a hot-dip galvanized cold-rolled steel sheet having excellent strain aging characteristics according to claim 1, further comprising heat alloying treatment after forming the plating layer.
JP2002126668A 2002-04-26 2002-04-26 Method for producing hot-dip galvanized cold-rolled steel sheet with excellent strain age hardening characteristics Expired - Fee Related JP3951789B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002126668A JP3951789B2 (en) 2002-04-26 2002-04-26 Method for producing hot-dip galvanized cold-rolled steel sheet with excellent strain age hardening characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002126668A JP3951789B2 (en) 2002-04-26 2002-04-26 Method for producing hot-dip galvanized cold-rolled steel sheet with excellent strain age hardening characteristics

Publications (2)

Publication Number Publication Date
JP2003321714A true JP2003321714A (en) 2003-11-14
JP3951789B2 JP3951789B2 (en) 2007-08-01

Family

ID=29541013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002126668A Expired - Fee Related JP3951789B2 (en) 2002-04-26 2002-04-26 Method for producing hot-dip galvanized cold-rolled steel sheet with excellent strain age hardening characteristics

Country Status (1)

Country Link
JP (1) JP3951789B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008106350A (en) * 2006-09-28 2008-05-08 Nippon Steel Corp High strength cold rolled steel sheet and its production method
JP2008106351A (en) * 2006-09-29 2008-05-08 Nippon Steel Corp High strength cold rolled steel sheet excellent in workability and its production method
JP2010100896A (en) * 2008-10-23 2010-05-06 Kobe Steel Ltd High strength cold rolled steel sheet having excellent stability in mechanical property and method of producing the same
JP2012031458A (en) * 2010-07-29 2012-02-16 Jfe Steel Corp High-strength cold-rolled thin steel sheet superior in formability and method of manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008106350A (en) * 2006-09-28 2008-05-08 Nippon Steel Corp High strength cold rolled steel sheet and its production method
JP2008106351A (en) * 2006-09-29 2008-05-08 Nippon Steel Corp High strength cold rolled steel sheet excellent in workability and its production method
JP2010100896A (en) * 2008-10-23 2010-05-06 Kobe Steel Ltd High strength cold rolled steel sheet having excellent stability in mechanical property and method of producing the same
JP2012031458A (en) * 2010-07-29 2012-02-16 Jfe Steel Corp High-strength cold-rolled thin steel sheet superior in formability and method of manufacturing the same

Also Published As

Publication number Publication date
JP3951789B2 (en) 2007-08-01

Similar Documents

Publication Publication Date Title
JP5884714B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
JP7055171B2 (en) TWIP steel sheet with austenitic matrix
JP5408314B2 (en) High-strength cold-rolled steel sheet excellent in deep drawability and material uniformity in the coil and method for producing the same
JP5569657B2 (en) Steel sheet with excellent aging resistance and method for producing the same
JP5967318B1 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5256690B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and impact resistance and method for producing the same
JP4000943B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5256689B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
JP2013185240A (en) High-tension cold-rolled steel sheet, high-tension plated steel sheet, and method for producing them
JP5686028B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP4367205B2 (en) Strain aging treatment method for steel sheet and method for producing high-strength structural member
JP3896892B2 (en) Method for producing hot-dip galvanized hot-rolled steel sheet with excellent strain age hardening characteristics
JP6947327B2 (en) High-strength steel sheets, high-strength members and their manufacturing methods
JP3951789B2 (en) Method for producing hot-dip galvanized cold-rolled steel sheet with excellent strain age hardening characteristics
JP4465805B2 (en) Hot-rolled steel sheet excellent in room temperature aging resistance and strain aging characteristics and method for producing the same
JP4622187B2 (en) Cold-rolled steel sheet, cold-rolled steel sheet having excellent strain age hardening characteristics and no room temperature aging deterioration, and methods for producing them
JP2013139625A (en) High-strength cold-rolled steel sheet having excellent aging resistance and bake hardenability
JP2013076132A (en) High strength thin steel sheet having excellent bake hardenability and formability and method for manufacturing the same
JP4415579B2 (en) Method for producing hot-dip galvanized steel sheet
JPH1060542A (en) Production of steel sheet for can
JP7188659B1 (en) Steel plate, member and manufacturing method thereof
JP4930393B2 (en) Cold rolled steel sheet manufacturing method
JP5251206B2 (en) High-strength steel sheet excellent in deep drawability, aging resistance and bake hardenability, and its manufacturing method
JP4148257B2 (en) Manufacturing method of hot-dip galvanized steel sheet with excellent strain age hardening characteristics
JP4218598B2 (en) High tensile alloyed hot dip galvanized steel sheet with excellent plating characteristics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060718

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070116

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070416

R150 Certificate of patent or registration of utility model

Ref document number: 3951789

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140511

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees