JP2003320382A - Method for removing dissolved sulfide - Google Patents

Method for removing dissolved sulfide

Info

Publication number
JP2003320382A
JP2003320382A JP2002126523A JP2002126523A JP2003320382A JP 2003320382 A JP2003320382 A JP 2003320382A JP 2002126523 A JP2002126523 A JP 2002126523A JP 2002126523 A JP2002126523 A JP 2002126523A JP 2003320382 A JP2003320382 A JP 2003320382A
Authority
JP
Japan
Prior art keywords
sulfide
treatment
wastewater
sulfur
sodium chlorite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002126523A
Other languages
Japanese (ja)
Inventor
Yoshihiko Endo
由彦 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2002126523A priority Critical patent/JP2003320382A/en
Publication of JP2003320382A publication Critical patent/JP2003320382A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for efficiently removing dissolved sulfide contained in wastewater as sulfur alone by oxidation to obtain treated water with a small amount of a suspended substance. <P>SOLUTION: An oxidizing agent is added to wastwater containing dissolved sulfide under a pH condition of 6.45 or more and dissolved sulfide is oxidized to form sulfur. This sulfur is removed by flocculation treatment or membrane treatment. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、溶存硫化物の除去
方法に関する。さらに詳しくは、本発明は、排水に含ま
れる溶存硫化物を、酸化によりイオウ単体として効率的
に除去し、懸濁物質の少ない処理水を得ることができる
溶存硫化物の除去方法に関する。
TECHNICAL FIELD The present invention relates to a method for removing dissolved sulfide. More specifically, the present invention relates to a method for removing dissolved sulfide, which is capable of efficiently removing dissolved sulfide contained in wastewater as sulfur simple substance by oxidation to obtain treated water with less suspended substances.

【0002】[0002]

【従来の技術】下水、し尿などを嫌気性微生物消化する
と、メタン、硫化水素、二酸化炭素などが含まれる消化
ガスが発生する。メタンを燃料として有効利用するに先
立って、消化ガスを気液接触塔で吸収液と接触させ、硫
化水素などを除去し、この際に硫化物を溶解した排水が
発生する。また、石油精製プロセスや、紙パルププロセ
スなどから発生する排水にも、溶存硫化物が含有される
場合が多い。溶存硫化物は中性領域で硫化水素を発生
し、悪臭の原因となるのみならず、その濃度が高いと人
命が危険にさらされる場合もある。このために、排水中
の溶存硫化物を適切な処理により除去する必要がある。
従来より行われている排水中の溶存硫化物の除去方法を
大別すると、微生物による酸化と、薬品を用いる酸化が
ある。例えば、特開平5−68849号公報には、嫌気
性消化により発生する消化ガス中の硫化水素を無害化す
る方法として、消化ガスを処理液と気液接触させて硫化
水素を吸収させ、吸収液を好気性微生物により酸化する
方法が提案されている。また、特開平8−168785
号公報には、硫化水素を含有する排水を遷移金属化合物
と過酸化水素の存在下で処理する方法が提案され、特開
平11−253971号公報には、アモルファス合金を
表面にコーティングした担体からなる硫化物の酸化処理
剤が提案されている。しかし、微生物による方法は、硫
化物の酸化に大型の装置と長時間を要するという問題が
ある。一方、薬剤を用いる方法は、酸化の程度を制御す
ることが容易でなく、イオウ単体を越えて硫酸イオンま
で酸化され、さらにその処理が必要になるという問題が
ある。このために、排水に含まれる溶存硫化物を効果的
かつ経済的に除去する方法が求められていた。
2. Description of the Related Art When sewage, human waste and the like are digested by anaerobic microorganisms, digestive gas containing methane, hydrogen sulfide, carbon dioxide and the like is generated. Prior to the effective use of methane as a fuel, digestive gas is contacted with an absorbing liquid in a gas-liquid contact tower to remove hydrogen sulfide and the like, and at this time, sulfide-dissolved waste water is generated. Dissolved sulfides are often contained in wastewater generated from petroleum refining processes and paper pulp processes. Dissolved sulfides generate hydrogen sulfide in the neutral region, causing not only bad odor, but high concentration may endanger human life. For this reason, it is necessary to remove the dissolved sulfides in the wastewater by appropriate treatment.
The conventional methods for removing dissolved sulfides in wastewater are roughly classified into oxidation by microorganisms and oxidation using chemicals. For example, JP-A-5-68849 discloses a method for detoxifying hydrogen sulfide in digestive gas generated by anaerobic digestion, in which the digestive gas is brought into gas-liquid contact with a treatment liquid to absorb hydrogen sulfide, A method has been proposed in which ox is oxidized by an aerobic microorganism. In addition, JP-A-8-168785
Japanese Patent Application Laid-Open No. 11-253971 proposes a method of treating wastewater containing hydrogen sulfide in the presence of a transition metal compound and hydrogen peroxide, and Japanese Patent Application Laid-Open No. 11-253971 comprises a carrier coated with an amorphous alloy on its surface. Sulfide oxidizing agents have been proposed. However, the method using microorganisms has a problem that a large-scale apparatus and a long time are required to oxidize sulfide. On the other hand, the method using a chemical has a problem that it is not easy to control the degree of oxidation, and the sulfate ion is oxidized beyond the simple substance of sulfur, and the treatment is required. For this reason, there has been a demand for a method of effectively and economically removing dissolved sulfides contained in wastewater.

【0003】[0003]

【発明が解決しようとする課題】本発明は、排水に含ま
れる溶存硫化物を、酸化によりイオウ単体として効率的
に除去し、懸濁物質の少ない処理水を得ることができる
溶存硫化物の除去方法を提供することを目的としてなさ
れたものである。
DISCLOSURE OF THE INVENTION According to the present invention, dissolved sulfide contained in wastewater can be efficiently removed as a simple substance of sulfur by oxidation, and a treated water with less suspended matter can be obtained. The purpose is to provide a method.

【0004】[0004]

【課題を解決するための手段】本発明者は、上記の課題
を解決すべく鋭意研究を重ねた結果、溶存硫化物を含む
排水にpH6.45以上で酸化剤を添加することにより、
硫化物イオンがイオウ単体まで酸化され、このイオウ単
体は凝集処理又は膜処理により容易に除去し得ることを
見いだし、この知見に基づいて本発明を完成するに至っ
た。すなわち、本発明は、(1)溶存硫化物を含む排水
に、pH6.45以上で酸化剤を添加し、溶存硫化物を酸
化してイオウとしたのち、凝集処理又は膜処理によりイ
オウを除去することを特徴とする溶存硫化物の除去方
法、及び、(2)酸化剤が、亜塩素酸塩である第1項記
載の溶存硫化物の除去方法、を提供するものである。
Means for Solving the Problems As a result of intensive studies to solve the above problems, the present inventor has found that by adding an oxidizer at a pH of 6.45 or higher to wastewater containing dissolved sulfides,
It has been found that sulfide ions are oxidized to sulfur simple substance, and this sulfur simple substance can be easily removed by aggregation treatment or membrane treatment, and based on this finding, the present invention has been completed. That is, according to the present invention, (1) an oxidant is added to a wastewater containing a dissolved sulfide at a pH of 6.45 or higher to oxidize the dissolved sulfide into sulfur, and then the sulfur is removed by a coagulation treatment or a membrane treatment. The present invention provides a method for removing dissolved sulfides, and (2) a method for removing dissolved sulfides according to item 1, wherein the oxidizing agent is chlorite.

【0005】[0005]

【発明の実施の形態】本発明の溶存硫化物の除去方法に
おいては、溶存硫化物を含む排水に、pH6.45以上で
酸化剤を添加し、溶存硫化物を酸化してイオウとしたの
ち、凝集処理又は膜処理によりイオウを除去する。本発
明方法においては、酸化剤として亜塩素酸塩を好適に用
いることができる。本発明方法を適用する溶存硫化物を
含む排水としては、例えば、気体中に含まれる硫化水素
を気液接触処理により除去する際に発生する排水、石油
精製プロセス排水、紙パルププロセス排水、魚骨処理場
排水、下水処理場排水、ごみ処理場排水などを挙げるこ
とができる。本発明に用いる酸化剤に特に制限はなく、
例えば、塩素、臭素、ヨウ素、次亜塩素酸塩、亜塩素酸
塩、臭素酸塩、過ヨウ素酸塩などのハロゲン化合物、過
マンガン酸カリウム、二酸化マンガンなどのマンガン化
合物、塩化第二鉄、硫酸第二鉄などの鉄化合物、亜硝
酸、硝酸、二酸化窒素などの窒素化合物、オゾン、酸素
ガス、過酸化水素などの酸素化合物などを挙げることが
できる。これらの中で、亜塩素酸ナトリウムは、水溶液
として市販され、比較的取り扱いが容易であり、アルカ
リ性領域では酸化力が弱く、硫化物イオンの酸化をイオ
ウ単体の段階で止めやすいので、特に好適に用いること
ができる。
BEST MODE FOR CARRYING OUT THE INVENTION In the method for removing dissolved sulfides of the present invention, an oxidizer is added to a wastewater containing dissolved sulfides at a pH of 6.45 or higher to oxidize the dissolved sulfides to form sulfur. Sulfur is removed by coagulation or membrane treatment. In the method of the present invention, chlorite can be preferably used as the oxidizing agent. As the wastewater containing dissolved sulfide to which the method of the present invention is applied, for example, wastewater generated when removing hydrogen sulfide contained in gas by gas-liquid contact treatment, oil refining process wastewater, paper pulp process wastewater, fish bone Examples include wastewater from treatment plants, wastewater from sewage treatment plants, and wastewater from waste treatment plants. The oxidizing agent used in the present invention is not particularly limited,
For example, chlorine, bromine, iodine, hypochlorite, chlorite, bromate, periodate and other halogen compounds, potassium permanganate, manganese dioxide and other manganese compounds, ferric chloride, sulfuric acid Examples thereof include iron compounds such as ferric iron, nitrogen compounds such as nitrous acid, nitric acid and nitrogen dioxide, oxygen compounds such as ozone, oxygen gas and hydrogen peroxide. Among these, sodium chlorite is commercially available as an aqueous solution, is relatively easy to handle, has a weak oxidizing power in the alkaline region, and is easy to stop the oxidation of sulfide ions at the stage of sulfur alone, and thus is particularly preferable. Can be used.

【0006】本発明方法において、溶存硫化物を含む排
水のpHが6.45以上である場合は、そのまま酸化剤を
添加することができるが、排水のpHが6.45未満であ
る場合は、アルカリを添加することにより、pHを6.4
5以上に調整したのち、酸化剤を添加する。pHの調整に
用いるアルカリに特に制限はなく、例えば、水酸化ナト
リウム、水酸化カリウム、水酸化カルシウム、炭酸ナト
リウム、炭酸カリウムなどを挙げることができる。これ
らの中で、水酸化ナトリウムを特に好適に用いることが
できる。硫化物を含む排水のpHが6.45以上である
と、酸化剤として、例えば、亜塩素酸ナトリウムを用い
たとき、硫化物イオンは下式に示されるように、酸化さ
れてイオウ単体となる。2S2- + NaClO2 + 2
2O → 2S + NaCl + 4OH-硫化物を含む排
水のpHが6.45未満であると、酸化剤として、例え
ば、亜塩素酸ナトリウムを用いたとき、硫化物イオンは
下式に示されるように、酸化されて亜硫酸イオン又は硫
酸イオンとなる。 2S2- + 3NaClO2 → 2SO3 2- + 3NaCl S2- + 2NaClO2 → SO4 2- + 2NaCl すなわち、pHが6.45未満であると、硫化物イオン1
モルの酸化処理に必要な亜塩素酸ナトリウム量は1.5
ないし2モルであるのに対して、pH6.45以上である
と、硫化物イオン1モルの酸化処理に必要な亜塩素酸ナ
トリウムの量は0.5モルであり、本発明方法によれ
ば、少量の亜塩素酸ナトリウムを用いて効率的に硫化物
を含む排水から溶存硫化物を除去することができる。ま
た、亜硫酸イオン又は硫酸イオンを水から除去するため
には、さらにカルシウム塩などの水に不溶性の化合物と
して除去する必要があるが、本発明方法によれば、硫化
物イオンはイオウ単体として析出するので、固液分離に
より直ちに除去することができる。
In the method of the present invention, when the pH of the wastewater containing dissolved sulfide is 6.45 or more, the oxidizing agent can be added as it is, but when the pH of the wastewater is less than 6.45, The pH is adjusted to 6.4 by adding alkali.
After adjusting to 5 or more, an oxidizing agent is added. The alkali used for adjusting the pH is not particularly limited, and examples thereof include sodium hydroxide, potassium hydroxide, calcium hydroxide, sodium carbonate, potassium carbonate and the like. Among these, sodium hydroxide can be particularly preferably used. When the pH of wastewater containing sulfide is 6.45 or more, when sodium chlorite, for example, is used as an oxidant, the sulfide ion is oxidized into sulfur as shown in the following formula. . 2S 2- + NaClO 2 + 2
When the pH of the waste water containing H 2 O → 2S + NaCl + 4OH - sulfide is less than 6.45, the sulfide ion is represented by the following formula when, for example, sodium chlorite is used as the oxidant. Thus, it is oxidized to sulfite ion or sulfate ion. 2S 2- + 3NaClO 2 → 2SO 3 2- + 3NaCl S 2- + 2NaClO 2 → SO 4 2- + 2NaCl That is, when the pH is less than 6.45, the sulfide ion 1
The amount of sodium chlorite required for the molar oxidation treatment is 1.5
When the pH is 6.45 or more, the amount of sodium chlorite required for the oxidation treatment of 1 mol of sulfide ion is 0.5 mol, while the amount of sodium chlorite is 0.5 mol. Dissolved sulfides can be efficiently removed from sulfide-containing wastewater using a small amount of sodium chlorite. Further, in order to remove the sulfite ion or the sulfate ion from water, it is necessary to further remove as a water-insoluble compound such as a calcium salt. According to the method of the present invention, the sulfide ion is precipitated as a simple substance of sulfur. Therefore, it can be immediately removed by solid-liquid separation.

【0007】本発明方法において、析出したイオウの凝
集処理方法に特に制限はなく、例えば、硫酸アルミニウ
ム、ポリ塩化アルミニウム、塩化第二鉄、硫酸第一鉄、
ポリ硫酸鉄などの無機凝集剤、ポリジメチルジアリルア
ンモニウムクロライド、アルキルアミン・エピクロルヒ
ドリン付加物、ポリエチレンイミン、アルキレンジクロ
ライド・ポリアルキレンポリアミン付加物、ジシアンジ
アミド・ホルマリン縮合物などのカチオン性高分子凝集
剤、ポリアクリル酸ナトリウム、アクリル酸ナトリウム
とアクリルアミドのコポリマー、ポリ−2−アクリルア
ミド−2−メチルプロパンスルホン酸などのアニオン性
高分子凝集剤などを用いて凝集処理することができる。
これらの凝集剤は、1種を単独で用いることができ、あ
るいは、2種以上を組み合わせて用いることもできる。
析出したイオウのフロックを凝集処理により成長させた
処理液は、ろ過装置、遠心脱水機、ベルトプレス脱水
機、スクリュープレス脱水機、フィルタープレス脱水
機、真空脱水機、沈降槽、加圧浮上槽などを用いて固液
分離し、懸濁物質の少ない清澄な処理水を得ることがで
きる。本発明方法において、析出したイオウの膜処理方
法に特に制限はなく、例えば、精密ろ過膜、限外ろ過
膜、逆浸透膜などを用いて、析出したイオウをろ別し、
清澄な処理水を得ることができる。使用する膜の形態に
特に制限はなく、例えば、平面膜モジュール、スパイラ
ルモジュール、管型モジュール、中空糸モジュールなど
を挙げることができる。膜の材質に特に制限はないが、
処理液のpHが高いので、耐アルカリ性の材質を選ぶこと
が好ましい。耐アルカリ性の材質としては、例えば、ポ
リテトラフルオロエチレン、ポリフッ化ビニリデン、ポ
リスルホンなどを挙げることができる。本発明の溶存硫
化物の除去方法によれば、排水中の硫化物をイオウ単体
まで酸化して、凝集処理又は膜処理により除去するの
で、使用する酸化剤の量が少なく効率的であり、懸濁物
質の混入の少ない良好な水質の処理水を得ることができ
る。
In the method of the present invention, the method of coagulating the precipitated sulfur is not particularly limited. For example, aluminum sulfate, polyaluminum chloride, ferric chloride, ferrous sulfate,
Inorganic flocculants such as polysulfate, polydimethyldiallylammonium chloride, alkylamine / epichlorohydrin adducts, polyethyleneimine, alkylenedichloride / polyalkylenepolyamine adducts, cationic polymer flocculants such as dicyandiamide / formalin condensate, polyacryl The flocculation treatment can be performed using sodium acid, a copolymer of sodium acrylate and acrylamide, an anionic polymer flocculant such as poly-2-acrylamido-2-methylpropanesulfonic acid, or the like.
These aggregating agents may be used alone or in combination of two or more.
The treatment liquid obtained by growing the precipitated sulfur flocs by coagulation treatment is a filtration device, centrifugal dehydrator, belt press dehydrator, screw press dehydrator, filter press dehydrator, vacuum dehydrator, sedimentation tank, pressurized flotation tank, etc. The solid-liquid separation can be performed by using to obtain clear treated water with less suspended substances. In the method of the present invention, there is no particular limitation on the membrane treatment method of the precipitated sulfur, for example, using a microfiltration membrane, ultrafiltration membrane, reverse osmosis membrane, etc., the precipitated sulfur is filtered off,
Clear treated water can be obtained. The form of the membrane used is not particularly limited, and examples thereof include a flat membrane module, a spiral module, a tubular module, and a hollow fiber module. The material of the film is not particularly limited,
Since the pH of the treatment liquid is high, it is preferable to select an alkali resistant material. Examples of the alkali resistant material include polytetrafluoroethylene, polyvinylidene fluoride, and polysulfone. According to the method for removing dissolved sulfides of the present invention, sulfides in wastewater are oxidized to sulfur simple substance and removed by coagulation treatment or membrane treatment, so that the amount of oxidizer used is small and efficient. It is possible to obtain treated water of good water quality with little contamination of turbid substances.

【0008】[0008]

【実施例】以下に、実施例を挙げて本発明をさらに詳細
に説明するが、本発明はこれらの実施例によりなんら限
定されるものではない。 実施例1 硫化ナトリウム9水塩を用いて、硫化物イオン濃度18
0mg/L(pH12.0)の合成排水を調製した。この合
成排水500mLをビーカーに取り、これを硫酸でpHを
6.50に調整した液に25重量%亜塩素酸ナトリウム
水溶液(pH11.5)500mgを加えて10秒間撹拌し
た。処理後のpHは9.88であり、懸濁物質濃度は19
0mg/L、硫化物イオン濃度は1mg/L未満であった。
この処理水にポリ塩化アルミニウム250mgを添加して
1分間撹拌した後pHを6.50に調整し、さらに1分間
撹拌した。次いで高分子凝集剤[栗田工業(株)、クリフ
ロックPA]1mgを添加して2分間撹拌した。この上澄
み液の懸濁物質濃度は10mg/L未満となった。また、
25重量%亜塩素酸ナトリウム水溶液を100〜400
mg加えて、上記と同じ操作を繰り返した。ただし、硫化
物イオンが残留する場合は、凝集剤を添加するとpHが低
下し、硫化水素ガスが発生するので凝集処理は行わなか
った。比較例1実施例1と同じ合成排水を用い、初期の
pH調整を6.40にしたほかは、同じ操作を行った。す
なわち、この排水500mLをビーカーに取り、これを硫
酸でpHを6.40に調整した液に25重量%亜塩素酸ナ
トリウム水溶液(pH11.5)1,000mgを加えて10
秒間撹拌した。処理後のpHは2.57であり、懸濁物質
濃度は10mg/L未満、硫化物イオン濃度は9mg/Lで
あった。また、25重量%亜塩素酸ナトリウム水溶液を
100〜900mg加えて酸化処理を行った。実施例1及
び比較例1の結果を、第1表に示す。
The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples. Example 1 Using sodium sulfide nonahydrate, a sulfide ion concentration of 18
0 mg / L (pH 12.0) of synthetic wastewater was prepared. 500 mL of this synthetic waste water was placed in a beaker, and 500 mg of a 25 wt% sodium chlorite aqueous solution (pH 11.5) was added to a liquid whose pH was adjusted to 6.50 with sulfuric acid, followed by stirring for 10 seconds. The pH after treatment is 9.88 and the concentration of suspended matter is 19
0 mg / L, sulfide ion concentration was less than 1 mg / L.
To this treated water, 250 mg of polyaluminum chloride was added and stirred for 1 minute, then the pH was adjusted to 6.50 and further stirred for 1 minute. Next, 1 mg of a polymer flocculant [Clifloc PA, Kurita Water Industries Ltd.] was added and stirred for 2 minutes. The concentration of suspended substances in this supernatant was less than 10 mg / L. Also,
25-wt% sodium chlorite aqueous solution 100-400
The same operation as above was repeated after adding mg. However, when sulfide ions remained, the pH was lowered by adding a flocculant and hydrogen sulfide gas was generated. Therefore, the flocculation treatment was not performed. Comparative Example 1 Using the same synthetic wastewater as in Example 1,
The same operation was performed except that the pH was adjusted to 6.40. That is, 500 mL of this waste water was placed in a beaker, and 1,000 mg of a 25 wt% sodium chlorite aqueous solution (pH 11.5) was added to a solution whose pH was adjusted to 6.40 with sulfuric acid to obtain 10
Stir for 2 seconds. After the treatment, the pH was 2.57, the concentration of suspended substances was less than 10 mg / L, and the concentration of sulfide ions was 9 mg / L. Further, 100 to 900 mg of a 25 wt% sodium chlorite aqueous solution was added for oxidation treatment. The results of Example 1 and Comparative Example 1 are shown in Table 1.

【0009】[0009]

【表1】 [Table 1]

【0010】第1表に見られるように、硫化物イオン1
80mg/Lを含む合成排水(pH12.0)のpHを6.50
に調整し、亜塩素酸ナトリウム水溶液を添加して処理し
た実施例1では、亜塩素酸ナトリウム水溶液の添加量が
増えるほど処理液のpHが高くなり、懸濁物質濃度も高く
なる。これは、水中の硫化物イオンが酸化されてイオウ
単体となり、水中に懸濁していることを示すと考えられ
る。硫化物イオン濃度が1mg/L未満の処理液に、ポリ
塩化アルミニウムと高分子凝集剤を添加して凝集処理
し、ろ過すると、凝集した懸濁物質は除去される。亜塩
素酸ナトリウム水溶液の添加量が増えるほど、硫化物イ
オン濃度は減少し、25重量%亜塩素酸ナトリウム水溶
液の添加量が1,000mg/Lのとき、硫化物イオン濃
度は1mg/L以下になる。これに対して、同じ排水のpH
を6.40に調整し、亜塩素酸ナトリウム水溶液を添加
して処理した比較例1では、亜塩素酸ナトリウム水溶液
の添加量が増えるほどpHが下がり、懸濁物質は一定値の
10mg/Lで変化がない。これは、水中の硫化物イオン
が亜硫酸イオン又は硫酸イオンまで酸化されていること
を示すと考えられる。硫化物イオン濃度の下がり方も実
施例1に比べると少なく、25重量%亜塩素酸ナトリウ
ム水溶液を2,000mg/L添加しても、なお硫化物イ
オン9mg/Lが残っている。 実施例2 硫化物イオウ濃度80mg/L、pH6.17の石油プロセ
ス工場のデソルタ排水の処理を行った。排水500mLを
ビーカーに取り、水酸化ナトリウム水溶液を加えてpHを
6.50に調整したのち、25重量%亜塩素酸ナトリウ
ム水溶液(pH11.5)を300mg加えて10秒間撹拌
した。処理液のpHは8.72であり、硫化物イオン濃度
は1mg/L未満であり、懸濁物質濃度は85mg/Lであ
った。この処理液を、ポリテトラフルオロエチレン精密
ろ過膜を備えたプリーツ型カートリッジフィルターを用
いてろ過した。ろ液の懸濁物質濃度は、10mg/L以下
であった。排水500mLをビーカーに取り、水酸化ナト
リウム水溶液を加えてpHを6.50に調整し、25重量
%亜塩素酸ナトリウム水溶液(pH11.5)100mgを
加えて10秒間撹拌した。処理液のpHは7.01であ
り、硫化物イオン濃度は50mg/Lであり、懸濁物質濃
度は20mg/Lであった。この処理液を、上記のカート
リッジフィルターを用いてろ過した。ろ液の懸濁物質濃
度は、10mg/L以下であった。25重量%亜塩素酸ナ
トリウム水溶液の添加量を200mgとして、同じ操作を
繰り返した。処理液のpHは8.55、硫化物イオン濃度
は15mg/Lであり、ろ液の懸濁物質濃度は10mg/L
以下であった。 比較例2 実施例2と同じ石油プロセス工場のデソルタ排水500
mLをビーカーに取り、25重量%亜塩素酸ナトリウム水
溶液100mgを加えて10秒間撹拌した。処理液のpHは
5.70であり、硫化物イオン濃度は60mg/Lであ
り、懸濁物質濃度は10mg/L以下であった。25重量
%亜塩素酸ナトリウム水溶液の添加量を、0mg、200
mg、300mg、400mg、500mg、1,000mgとし
て、同じ操作を繰り返した。25重量%亜塩素酸ナトリ
ウム水溶液の添加量が300mgのとき、処理液のpHは
3.50、硫化物イオン濃度は25mg/L、懸濁物質濃
度は10mg/L以下であった。25重量%亜塩素酸ナト
リウム水溶液の添加量が1,000mgのとき、処理液のp
Hは2.84、硫化物イオン濃度は1mg/L以下であり、
懸濁物質濃度は10mg/L以下であった。実施例2及び
比較例2の結果を、第2表に示す。
As can be seen in Table 1, sulfide ion 1
The pH of synthetic wastewater (pH 12.0) containing 80 mg / L was 6.50.
In Example 1, in which the treatment was performed by adding the aqueous solution of sodium chlorite, the pH of the treatment liquid increased and the concentration of suspended solids increased as the amount of the aqueous sodium chlorite solution added increased. This is considered to indicate that the sulfide ions in the water are oxidized to form sulfur alone and are suspended in the water. When polyaluminum chloride and a polymer flocculant are added to a treatment liquid having a sulfide ion concentration of less than 1 mg / L for coagulation treatment and filtration is performed, the flocculated suspended matter is removed. As the amount of sodium chlorite aqueous solution added increases, the sulfide ion concentration decreases, and when the amount of 25 wt% sodium chlorite aqueous solution added is 1,000 mg / L, the sulfide ion concentration is 1 mg / L or less. Become. In contrast, the pH of the same wastewater
Was adjusted to 6.40 and treated with an aqueous solution of sodium chlorite, in Comparative Example 1, the pH was lowered as the amount of the aqueous solution of sodium chlorite was increased, and the suspended substance was a constant value of 10 mg / L. no change. This is considered to indicate that sulfide ions in water are oxidized to sulfite ions or sulfate ions. The decrease in the concentration of sulfide ions was smaller than that in Example 1, and even when 2,000 mg / L of 25 wt% sodium chlorite aqueous solution was added, 9 mg / L of sulfide ions still remained. Example 2 Desalter wastewater of a petroleum process plant having a sulfide sulfur concentration of 80 mg / L and a pH of 6.17 was treated. 500 mL of the waste water was taken in a beaker and the pH was adjusted to 6.50 by adding a sodium hydroxide aqueous solution, and then 300 mg of a 25 wt% sodium chlorite aqueous solution (pH 11.5) was added and stirred for 10 seconds. The pH of the treatment liquid was 8.72, the sulfide ion concentration was less than 1 mg / L, and the suspended substance concentration was 85 mg / L. The treatment liquid was filtered using a pleated cartridge filter equipped with a polytetrafluoroethylene microfiltration membrane. The concentration of suspended matter in the filtrate was 10 mg / L or less. The waste water (500 mL) was placed in a beaker, the pH was adjusted to 6.50 by adding sodium hydroxide aqueous solution, 100 mg of 25 wt% sodium chlorite aqueous solution (pH 11.5) was added, and the mixture was stirred for 10 seconds. The treatment solution had a pH of 7.01, a sulfide ion concentration of 50 mg / L, and a suspended substance concentration of 20 mg / L. This treatment liquid was filtered using the cartridge filter described above. The concentration of suspended matter in the filtrate was 10 mg / L or less. The same operation was repeated with the addition amount of the 25 wt% sodium chlorite aqueous solution being 200 mg. The pH of the treatment liquid is 8.55, the sulfide ion concentration is 15 mg / L, and the suspended substance concentration of the filtrate is 10 mg / L.
It was below. Comparative Example 2 Desalter wastewater 500 of the same oil process plant as in Example 2
The mL was placed in a beaker, 100 mg of a 25 wt% sodium chlorite aqueous solution was added, and the mixture was stirred for 10 seconds. The treatment liquid had a pH of 5.70, a sulfide ion concentration of 60 mg / L, and a suspended substance concentration of 10 mg / L or less. The amount of 25 wt% sodium chlorite aqueous solution added was 0 mg, 200
The same operation was repeated for mg, 300 mg, 400 mg, 500 mg and 1,000 mg. When the amount of the 25 wt% sodium chlorite aqueous solution added was 300 mg, the pH of the treatment liquid was 3.50, the sulfide ion concentration was 25 mg / L, and the suspended substance concentration was 10 mg / L or less. When the amount of 25 wt% sodium chlorite aqueous solution added is 1,000 mg, the p
H is 2.84, sulfide ion concentration is 1 mg / L or less,
The suspended substance concentration was 10 mg / L or less. The results of Example 2 and Comparative Example 2 are shown in Table 2.

【0011】[0011]

【表2】 [Table 2]

【0012】第2表に見られるように、硫化物イオン8
0mg/Lを含む石油プロセス工場のデソルタ排水のpHを
6.50に調整し、亜塩素酸ナトリウム水溶液を添加し
て処理した実施例2では、亜塩素酸ナトリウム水溶液の
添加量が増えるほど処理液のpHが高くなり、懸濁物質濃
度も高くなる。これは、水中の硫化物イオンが酸化され
てイオウ単体となり、水中に懸濁していることを示すと
考えられる。この処理液を精密ろ過膜を用いてろ過する
と、懸濁物質は除去される。亜塩素酸ナトリウム水溶液
の添加量が増えるほど、硫化物イオン濃度は減少し、2
5重量%亜塩素酸ナトリウム水溶液の添加量が600mg
/Lのとき、硫化物イオン濃度は1mg/L以下になる。
これに対して、同じデソルタ排水をpH6.17のまま、
亜塩素酸ナトリウム水溶液を添加して処理した比較例2
では、亜塩素酸ナトリウム水溶液の添加量が増えるほど
pHが下がり、懸濁物質は一定値の10mg/L以下で変化
がない。これは、水中の硫化物イオンが亜硫酸イオン又
は硫酸イオンまで酸化されていることを示すと考えられ
る。ろ硫化物イオン濃度の下がり方も実施例2に比べる
と少なく、25重量%亜塩素酸ナトリウム水溶液を1,
000mg/L添加して、ようやく硫化物イオン1mg/L
に達する。
As can be seen in Table 2, sulfide ions 8
In Example 2 in which the pH of the desalter wastewater of a petroleum process plant containing 0 mg / L was adjusted to 6.50 and the treatment was performed by adding a sodium chlorite aqueous solution, the treatment liquid increased as the amount of the sodium chlorite aqueous solution added increased. The higher the pH, the higher the suspended solids concentration. This is considered to indicate that the sulfide ions in the water are oxidized to form sulfur alone and are suspended in the water. When this treatment liquid is filtered using a microfiltration membrane, suspended substances are removed. As the amount of sodium chlorite aqueous solution added increases, the sulfide ion concentration decreases, and
Addition amount of 5 wt% sodium chlorite aqueous solution is 600 mg
When / L, the sulfide ion concentration is 1 mg / L or less.
On the other hand, the same desalter wastewater with a pH of 6.17,
Comparative Example 2 treated by adding an aqueous solution of sodium chlorite
Then, as the amount of sodium chlorite aqueous solution added increases
The pH drops and the suspended solids do not change below a certain value of 10 mg / L. This is considered to indicate that sulfide ions in water are oxidized to sulfite ions or sulfate ions. The decrease in the concentration of the sulfide ion was less than that in Example 2, and 25% by weight aqueous sodium chlorite solution was added to 1,
Add 000mg / L, and finally sulfide ion 1mg / L
Reach

【0013】[0013]

【発明の効果】本発明の溶存硫化物の除去方法によれ
ば、排水中の硫化物をイオウ単体まで酸化して、凝集処
理又は膜処理により除去するので、使用する酸化剤の量
が少なく効率的であり、懸濁物質の混入の少ない良好な
水質の処理水を得ることができる。
EFFECTS OF THE INVENTION According to the method for removing dissolved sulfides of the present invention, sulfides in waste water are oxidized to sulfur simple substance and removed by coagulation treatment or membrane treatment. Therefore, it is possible to obtain treated water of good water quality with little contamination of suspended substances.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D006 GA07 HA71 KA62 KB30 MC30X PA01 PB08 PB70 PC25 4D015 BA19 BB05 BB09 CA20 DA04 DB01 EA24 EA32 FA01 FA24 FA28 4D050 AA12 AA13 AB41 BB07 CA09 CA13 CA16    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4D006 GA07 HA71 KA62 KB30 MC30X                       PA01 PB08 PB70 PC25                 4D015 BA19 BB05 BB09 CA20 DA04                       DB01 EA24 EA32 FA01 FA24                       FA28                 4D050 AA12 AA13 AB41 BB07 CA09                       CA13 CA16

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】溶存硫化物を含む排水に、pH6.45以上
で酸化剤を添加し、溶存硫化物を酸化してイオウとした
のち、凝集処理又は膜処理によりイオウを除去すること
を特徴とする溶存硫化物の除去方法。
1. A sewage containing dissolved sulfide is added with an oxidizing agent at a pH of 6.45 or higher to oxidize the dissolved sulfide to sulfur, and then sulfur is removed by coagulation treatment or membrane treatment. Method for removing dissolved sulfide.
【請求項2】酸化剤が、亜塩素酸塩である請求項1記載
の溶存硫化物の除去方法。
2. The method for removing dissolved sulfide according to claim 1, wherein the oxidizing agent is chlorite.
JP2002126523A 2002-04-26 2002-04-26 Method for removing dissolved sulfide Pending JP2003320382A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002126523A JP2003320382A (en) 2002-04-26 2002-04-26 Method for removing dissolved sulfide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002126523A JP2003320382A (en) 2002-04-26 2002-04-26 Method for removing dissolved sulfide

Publications (1)

Publication Number Publication Date
JP2003320382A true JP2003320382A (en) 2003-11-11

Family

ID=29540915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002126523A Pending JP2003320382A (en) 2002-04-26 2002-04-26 Method for removing dissolved sulfide

Country Status (1)

Country Link
JP (1) JP2003320382A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010162493A (en) * 2009-01-16 2010-07-29 Kurita Water Ind Ltd Method and device for flocculation and sedimentation treatment of low organic compound concentration wastewater
WO2017187673A1 (en) * 2016-04-26 2017-11-02 水ing株式会社 Method for treating hydrogen sulfide-containing waste water and apparatus therefor
CN111573934A (en) * 2020-05-29 2020-08-25 赛恩斯环保股份有限公司 Method and device for removing sulfide in liquid after sulfuration of smelting waste acid

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010162493A (en) * 2009-01-16 2010-07-29 Kurita Water Ind Ltd Method and device for flocculation and sedimentation treatment of low organic compound concentration wastewater
WO2017187673A1 (en) * 2016-04-26 2017-11-02 水ing株式会社 Method for treating hydrogen sulfide-containing waste water and apparatus therefor
CN111573934A (en) * 2020-05-29 2020-08-25 赛恩斯环保股份有限公司 Method and device for removing sulfide in liquid after sulfuration of smelting waste acid

Similar Documents

Publication Publication Date Title
JP5579414B2 (en) Treatment method for wastewater containing reducing selenium
JP4862361B2 (en) Waste water treatment apparatus and waste water treatment method
WO2010061879A1 (en) Fresh water production method, fresh water production apparatus, method for desalinating sea water into fresh water, and apparatus for desalinating sea water into fresh water
JP3790383B2 (en) Treatment method of flue gas desulfurization waste water
JP2011200848A (en) Treatment method of wastewater
JP2007301459A (en) Treatment method of waste water containing ammonia nitrogen and cod component at high concentration
JP4406017B2 (en) Coal gasification wastewater treatment method
JP2007252969A (en) Purification method of steel production drainage
JPH0655320B2 (en) Waste treatment agent and waste treatment method
JP3572233B2 (en) Flue gas desulfurization method and flue gas desulfurization system
JP2003320382A (en) Method for removing dissolved sulfide
JP2007319816A (en) Water treatment apparatus and water treatment method
JP3642516B2 (en) Method and apparatus for removing COD components in water
JP2016168514A (en) Waste water treatment method
JP7157192B2 (en) water treatment method
JPH0366036B2 (en)
JP3990207B2 (en) Coal gasification wastewater treatment method
JP2007260556A (en) Phosphoric acid-containing wastewater treatment method and apparatus
JP5174360B2 (en) Organic wastewater treatment method
JP2621090B2 (en) Advanced wastewater treatment method
JP3921695B2 (en) Treatment method for wastewater containing manganese
JPH1133561A (en) Flocculation and sedimentation treatment equipment
JP2000263065A (en) Removal of phosphorus in industrial waste solution
JP5693992B2 (en) Method for recovering dissolved iron from wastewater containing various metal ions
JPS5930153B2 (en) Treatment method for wastewater containing sterilization/disinfectant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051213

A131 Notification of reasons for refusal

Effective date: 20051220

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20060414

Free format text: JAPANESE INTERMEDIATE CODE: A02