JP2003318251A - Electrostatic chuck - Google Patents

Electrostatic chuck

Info

Publication number
JP2003318251A
JP2003318251A JP2002123947A JP2002123947A JP2003318251A JP 2003318251 A JP2003318251 A JP 2003318251A JP 2002123947 A JP2002123947 A JP 2002123947A JP 2002123947 A JP2002123947 A JP 2002123947A JP 2003318251 A JP2003318251 A JP 2003318251A
Authority
JP
Japan
Prior art keywords
dielectric layer
wafer
electrostatic chuck
substrate
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002123947A
Other languages
Japanese (ja)
Other versions
JP4028753B2 (en
Inventor
Junji Oe
純司 大江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002123947A priority Critical patent/JP4028753B2/en
Publication of JP2003318251A publication Critical patent/JP2003318251A/en
Application granted granted Critical
Publication of JP4028753B2 publication Critical patent/JP4028753B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem that temperature distribution of a wafer becomes worse because, to make dimensional change of the wafer small, a leakage current between an electrostatic electrode and the wafer is made small, so that a part of the wafer generates heat by heating due to the leakage current. <P>SOLUTION: This electrostatic chuck comprises a base substrate, an electrostatic electrode consisting of a conductor provided on the surface of the base substrate, and a dielectric layer covering the electrostatic electrode. Related to the base substrate, thermal expansion coefficient at 10-40°C is 1.0×10<SP>-6</SP>/°C or less, and a thickness is 3-50 mm. The dielectric layer consists of an amorphous thin film with Si as a main component, and has a thickness of 0.001-0.3 mm. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体製造工程に
おいて、半導体ウエハ(以下、ウエハと称す)に微細加
工を施すエッチング工程や薄膜を形成するための成膜工
程、主にフォトレジスト膜に露光するための露光処理工
程等において、ウエハを保持する静電チャックに関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an etching process for finely processing a semiconductor wafer (hereinafter referred to as a wafer) in a semiconductor manufacturing process, a film forming process for forming a thin film, and mainly for exposing a photoresist film. The present invention relates to an electrostatic chuck that holds a wafer in an exposure processing step or the like.

【0002】[0002]

【従来の技術】静電チャックは、吸着面にウエハを載置
して静電電極とウエハとの間に電圧を印可しクーロン力
やジョンソン・ラーベック力等の静電気力を発現させて
ウエハを吸着保持するものである。この種の静電チャッ
クとしては、吸着用の静電電極の上にアルミナ、サファ
イヤ、窒化アルミニウムなどからなる誘電体を形成した
ものが提案されている。例えば、特開平11−5460
3号公報には窒化アルミニウムからなる静電チャックが
開示されている。
2. Description of the Related Art An electrostatic chuck attracts a wafer by placing a wafer on an attracting surface and applying a voltage between the electrostatic electrode and the wafer to generate electrostatic force such as Coulomb force or Johnson-Rahbek force. To hold. As this type of electrostatic chuck, there has been proposed one in which a dielectric made of alumina, sapphire, aluminum nitride or the like is formed on an electrostatic electrode for adsorption. For example, Japanese Patent Laid-Open No. 11-5460
Japanese Patent No. 3 discloses an electrostatic chuck made of aluminum nitride.

【0003】また、近年、半導体集積回路の配線は、微
細化し集積度が向上している。そして、この様な半導体
集積回路を製造するウエハを吸着し固定する静電チャッ
クには、工程中の温度変化に対して寸法変動の小さいこ
とが望まれるようになってきた。
In recent years, the wiring of semiconductor integrated circuits has been miniaturized to improve the degree of integration. It has been desired that an electrostatic chuck for adsorbing and fixing a wafer for manufacturing such a semiconductor integrated circuit should have a small dimensional variation with respect to a temperature change during the process.

【0004】特に、露光工程では1℃の温度変化によっ
て発生する静電チャックの僅かな寸法変化が、半導体集
積回路の製造歩留まりを低下させる。そこで、吸着面を
備えた静電チャックは低熱膨張材料であることが望まれ
ている。
Particularly, in the exposure step, a slight dimensional change of the electrostatic chuck caused by a temperature change of 1 ° C. lowers the manufacturing yield of the semiconductor integrated circuit. Therefore, it is desired that the electrostatic chuck provided with the attracting surface is a low thermal expansion material.

【0005】更に、露光工程では配線パターンの露光を
複数回に分けて施すことから、ウエハの位置精度をナノ
ミクロンレベルで制御することが必要とされてきた。そ
のため、ウエハ温度を出来る限り一定としているが、ウ
エハの熱膨張による寸法変化をより小さくする必要が出
てきた。中でも、ウエハと静電電極間に生じる微小な漏
れ電流によって発生するジュール熱によりウエハの温度
が変化し、この漏れ電流がウェハ面内で不均一である
と、ウェハ面内で温度差が生じ、ウエハの面内で部分的
な寸法変化が生じて、ウェハ上の集積回路の精度を上げ
られないことから、静電電極からウエハへの漏れ電流が
ウェハの面内で均一であることが重要とされてきた。
Further, since the wiring pattern is exposed in a plurality of times in the exposure process, it has been necessary to control the position accuracy of the wafer at the nanomicron level. Therefore, although the wafer temperature is kept as constant as possible, it has become necessary to reduce the dimensional change due to the thermal expansion of the wafer. Above all, the temperature of the wafer changes due to Joule heat generated by a minute leakage current generated between the wafer and the electrostatic electrode, and if this leakage current is non-uniform within the wafer surface, a temperature difference occurs within the wafer surface, It is important that the leakage current from the electrostatic electrode to the wafer is uniform in the plane of the wafer, because the accuracy of the integrated circuit on the wafer cannot be improved because a partial dimensional change occurs in the plane of the wafer. It has been.

【0006】コージライトは代表的な低熱膨張材料であ
り、特公平6−97675号公報には、静電チャックの
基体にコージライトを使用する事が開示されている。す
なわち、図3に示すように、コージライトなどのセラミ
ックスからなる基体21の上に電極22を形成し、その
上にアルミナを主体とする誘電体層23を設け、積層体
24からなる静電チャックを形成している。
Cordierite is a typical low thermal expansion material, and Japanese Patent Publication No. 6-97675 discloses that cordierite is used as the base of an electrostatic chuck. That is, as shown in FIG. 3, an electrode 22 is formed on a substrate 21 made of a ceramic such as cordierite, a dielectric layer 23 mainly made of alumina is provided thereon, and an electrostatic chuck made of a laminated body 24 is formed. Is formed.

【0007】更に、特開2001−313332公報で
は、図4(a)に示すように、誘電体層23の裏面に静
電電極22を形成し、基体21に接着固定した静電チャ
ックが開示されている。この基体21は10〜40℃の
熱膨張係数が1.0×10-6/℃以下と小さいコージラ
イトからなる。
Further, Japanese Unexamined Patent Publication No. 2001-313332 discloses an electrostatic chuck in which an electrostatic electrode 22 is formed on the back surface of a dielectric layer 23 and is fixedly bonded to a substrate 21, as shown in FIG. 4 (a). ing. The base 21 is made of cordierite having a small thermal expansion coefficient of 10 × 10 −6 / ° C. or less at 10 to 40 ° C.

【0008】また、図4(b)は、コージライトからな
る誘電体層23と窒化アルミニウム、炭化珪素やムライ
トからなる基体21からなる静電チャックや、誘電体層
23と基体21とを同材質として静電電極22を埋設し
た静電チャックが開示されている。
FIG. 4B shows an electrostatic chuck composed of a dielectric layer 23 made of cordierite and a base 21 made of aluminum nitride, silicon carbide or mullite, or a dielectric layer 23 made of the same material as the base 21. As the above, an electrostatic chuck in which the electrostatic electrode 22 is embedded is disclosed.

【0009】また、特開平7−135246号公報で
は、図4(c)に示すように室温〜800℃における熱
膨張係数が4.0×10-6/℃〜6.0×10-6/℃で
ある導電性の基体21の表面に窒化アルミからなる薄膜
誘電体層23を形成した静電チャックが提案されてい
る。
Further, in Japanese Laid-7-135246, JP-4 thermal expansion coefficient at room temperature to 800 ° C. As shown in (c) is 4.0 × 10 -6 /℃~6.0×10 -6 / An electrostatic chuck has been proposed in which a thin film dielectric layer 23 made of aluminum nitride is formed on the surface of a conductive substrate 21 at a temperature of ° C.

【0010】[0010]

【発明が解決しようとする課題】これまでの静電チャッ
クでは、静電電極とウェハの間の漏れ電流がウェハ面内
で不均一であることから、漏れ電流によるウェハ面内の
部分的な加熱によりウエハの一部が発熱しウェハの温度
分布が悪くなる虞があった。
In the electrostatic chucks up to now, since the leak current between the electrostatic electrode and the wafer is non-uniform in the wafer surface, the partial heating in the wafer surface due to the leak current occurs. As a result, a part of the wafer may generate heat and the temperature distribution of the wafer may deteriorate.

【0011】また、静電チャックの熱膨張係数が大きい
と微妙な温度変化によりウェハの位置がずれるとの問題
があった。
Further, when the electrostatic expansion coefficient of the electrostatic chuck is large, there is a problem that the position of the wafer is displaced due to a slight temperature change.

【0012】更に、温度サイクルにより誘電体層が基体
から剥離する虞があった。
Further, the dielectric layer may be peeled off from the substrate due to the temperature cycle.

【0013】つまり、図3に示す静電チャックでは基体
に誘電体23がアルミナを主体とするセラミックスであ
り、その熱膨張係数は基体をなすコージライトの熱膨張
係数の数10倍以上にも達するため、積層体24を高温
で焼結したのち冷却した際に、誘電体23に剥がれが生
じる問題があった。また、同時焼結後に常温まで冷却す
るとウエハ吸着面が歪んで平坦度が低下したり、誘電体
層23と基体21との間、または、電極22と誘電体層
23との間に大きな応力が発生しており、室内の温度変
化で寸法変化が発生すると言う問題があった。
That is, in the electrostatic chuck shown in FIG. 3, the dielectric 23 is made of ceramics mainly composed of alumina, and the coefficient of thermal expansion of the electrostatic chuck reaches several tens of times or more of the coefficient of thermal expansion of cordierite, which constitutes the substrate. Therefore, when the laminated body 24 is sintered at a high temperature and then cooled, there is a problem that the dielectric body 23 is peeled off. Further, when cooled to room temperature after co-sintering, the wafer suction surface is distorted and the flatness is lowered, or a large stress is generated between the dielectric layer 23 and the base body 21 or between the electrode 22 and the dielectric layer 23. However, there is a problem that the dimensional change occurs due to the temperature change in the room.

【0014】また、図4(a)の静電チャックでは、接
着剤の熱膨張が誘電体層23、基体21と著しく異なる
ため、接着・加工後に加わる温度変化により1μmオー
ダーの寸法変化が生じる問題があった。
Further, in the electrostatic chuck of FIG. 4A, the thermal expansion of the adhesive is significantly different from that of the dielectric layer 23 and the substrate 21, so that a dimensional change of the order of 1 μm occurs due to a temperature change applied after the bonding and processing. was there.

【0015】更に、図4(b)の静電チャックでは、1
300〜1500℃の温度の高温で焼成する必要がある
ため、焼成の際に熱変形して焼結体に0.05〜1mm
の反りが生じ温度分布が悪いとの問題があった。
Further, in the electrostatic chuck of FIG.
Since it is necessary to fire at a high temperature of 300 to 1500 ° C., it is thermally deformed during firing, resulting in a sintered body of 0.05 to 1 mm.
However, there is a problem that the temperature distribution is bad due to the warp.

【0016】[0016]

【課題を解決するための手段】本発明は上記課題に鑑
み、基体と、該基体の表面に設けられた導電体よりなる
静電電極と、該静電電極を覆う誘電体層とを備えた静電
チャックであって、前記基体は10〜40℃における熱
膨張係数が1.0×10-6/℃以下で、その厚みが3〜
50mmであり、前記誘電体層はSiを主成分とするア
モルファス薄膜からなり、その厚みが0.001〜0.
3mmであることを特徴とする。
In view of the above-mentioned problems, the present invention comprises a substrate, an electrostatic electrode made of a conductor provided on the surface of the substrate, and a dielectric layer covering the electrostatic electrode. An electrostatic chuck, wherein the substrate has a coefficient of thermal expansion at 10 to 40 ° C. of 1.0 × 10 −6 / ° C. or less and a thickness of 3 to
50 mm, the dielectric layer is made of an amorphous thin film containing Si as a main component, and the thickness thereof is 0.001 to 0.
It is characterized by being 3 mm.

【0017】更に、前記誘電体層の内部応力が108
a以下であることを特徴とする。
Further, the internal stress of the dielectric layer is 10 8 P.
It is characterized by being a or less.

【0018】また、前記基体は希土類酸化物を1〜20
質量%含むコージライトからなることを特徴とする。
Further, the substrate is made of rare earth oxide of 1 to 20.
It is characterized by being composed of cordierite containing mass%.

【0019】[0019]

【発明の実施の形態】以下、本発明の実施形態について
説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below.

【0020】図1は本発明の静電チャックの一例を示す
斜視図であり、図2は、図1の断面図である。静電チャ
ック4は、基体1の上面に導電体よりなる静電電極2を
備え、該静電電極2を覆う誘電体層3を有しており、誘
電体層3の上面をウェハを載せる載置面5としている。
そして、載置面5に載せられたウエハWと、静電電極2
との間に概ね100〜1000Vの電圧を印可してウエ
ハWと静電電極2の間に静電気力を発現させ載置面5に
ウェハWを吸着させている。
FIG. 1 is a perspective view showing an example of the electrostatic chuck of the present invention, and FIG. 2 is a sectional view of FIG. The electrostatic chuck 4 is provided with an electrostatic electrode 2 made of a conductor on the upper surface of a substrate 1, and has a dielectric layer 3 covering the electrostatic electrode 2. The upper surface of the dielectric layer 3 is used for mounting a wafer. It is set as the surface 5.
Then, the wafer W placed on the placing surface 5 and the electrostatic electrode 2
A voltage of approximately 100 to 1000 V is applied between the wafer W and the wafer W to cause an electrostatic force between the wafer W and the electrostatic electrode 2 to attract the wafer W to the mounting surface 5.

【0021】本発明の基体1は、10〜40℃における
熱膨張係数が1.0×10-6/℃以下である。基体1の
熱膨張係数が1.0×10-6/℃以下であれば、1℃の
温度変化により基体1が膨張あるいは収縮してもウェハ
Wの位置ズレをナノミクロン以下の抑えることができ
る。
The substrate 1 of the present invention has a coefficient of thermal expansion at 10 to 40 ° C. of 1.0 × 10 -6 / ° C. or less. If the substrate 1 has a coefficient of thermal expansion of 1.0 × 10 −6 / ° C. or less, the positional deviation of the wafer W can be suppressed to nanomicrons or less even if the substrate 1 expands or contracts due to a temperature change of 1 ° C. .

【0022】例えば、基体1として、石英、Mg−Al
−Siを含むコージライト系、Li−Al−Siを含む
LAS系材料、K−Zr−P−Oを含むKZP系材料、
Al 2TiO5で表されるチタン酸アルミ等が好ましい。
特に、コージライトを主成分とする材料からなる基体1
は熱膨張係数が小さく、しかも、ヤング率が大きいこと
から好適である。すなわち、静電チャックを成膜装置な
どにネジ等により固定する際に、変形しにくく、微小な
温度変化に対し、基体1の膨張や収縮が小さく、載置面
5が高精度な平面度を備えた静電チャックを構成するこ
とが可能である。
For example, as the substrate 1, quartz, Mg-Al
-Si containing cordierite system, containing Li-Al-Si
LAS-based material, KZP-based material containing K-Zr-P-O,
Al 2TiOFiveAluminum titanate represented by and the like are preferable.
In particular, the substrate 1 made of a material containing cordierite as a main component
Has a small coefficient of thermal expansion and a large Young's modulus
Is preferred. That is, the electrostatic chuck is not used as a film forming device.
When fixing with a screw etc.
The base 1 expands and contracts little with respect to temperature changes, and the mounting surface
5 can constitute an electrostatic chuck with highly accurate flatness.
And are possible.

【0023】また、基体1の厚みは3〜50mmとす
る。特に、厚みを3mm以上とするのは、静電チャック
の載置面の平面度の加工する際に変形しない剛性が必要
であり。また、誘電体層3は薄く内部応力が小さいもの
の、基体1の厚みが3mmを下回ると成膜後の基体1の
反りが大きくなる虞があり、誘電体層3の加工時と静電
チャック4の使用時の温度差により熱膨張差から変形
し、載置面4の平面度を0.001mm以下に保ち得な
いからである。
The substrate 1 has a thickness of 3 to 50 mm. In particular, the thickness of 3 mm or more requires rigidity that does not deform when the flatness of the mounting surface of the electrostatic chuck is processed. Although the dielectric layer 3 is thin and has a small internal stress, when the thickness of the substrate 1 is less than 3 mm, warpage of the substrate 1 after film formation may become large. The reason is that the flatness of the mounting surface 4 cannot be kept below 0.001 mm due to the deformation due to the difference in thermal expansion due to the temperature difference during use.

【0024】基体1の厚みは、軽量・コンパクトを必要
とする露光装置のステージとしては50mm以下が望ま
しく、さらに望ましくは30mm以下である。
The thickness of the substrate 1 is preferably 50 mm or less, more preferably 30 mm or less for a stage of an exposure apparatus that requires lightweight and compactness.

【0025】そして、誘電体層3はSiを主成分とする
アモルファス薄膜とする。半導体デバイスの製造工程に
おいて、デバイスの微小な配線に露光したり、成膜する
際に誘電体層3がパーティクルとなり飛散し難いからで
ある。すなわち、誘電体層3がSiを主成分とする膜で
あれば、載置面5を洗浄する際に使用されるフッ素や塩
素系のガスによって容易に誘電体層3の脱落紛をガス化
できるため、ウエハW上にパーティクルとして飛散して
残留しないからである。
The dielectric layer 3 is an amorphous thin film containing Si as a main component. This is because, in the manufacturing process of a semiconductor device, the dielectric layer 3 becomes particles and is less likely to scatter during exposure or film formation on minute wiring of the device. That is, if the dielectric layer 3 is a film containing Si as a main component, the falling powder of the dielectric layer 3 can be easily gasified by the fluorine or chlorine-based gas used when cleaning the mounting surface 5. Therefore, the particles are not scattered and remain on the wafer W.

【0026】また、Siを主成分とするアモルファス薄
膜とする理由は、結晶質膜は結晶格子間が強固に結合し
格子間距離が外部応力で変化し難く、結晶膜に加えられ
た応力を緩和する機能に乏しいが、Siを主成分とする
アモルファス薄膜は、結晶質膜と異なり格子間距離が一
定でなく外部応力に対し格子間距離が変化する機能があ
り、アモルファス薄膜の内部応力をSiの結晶質膜より
も小さくできる。そこで、基体1の熱膨張係数を1.0
×10-6/℃以下としても基体1や静電電極2から誘電
体層3が剥がれる虞が小さい。
Further, the reason why the amorphous thin film containing Si as a main component is used is that the crystalline film is tightly bound between the crystal lattices and the interstitial distance is hard to change due to external stress, so that the stress applied to the crystal film is relaxed. The amorphous thin film containing Si as a main component, unlike the crystalline film, has a function of varying the interstitial distance with respect to external stress, unlike the crystalline film. It can be made smaller than a crystalline film. Therefore, the thermal expansion coefficient of the substrate 1 is set to 1.0.
Even if the temperature is not more than × 10 -6 / ° C, the dielectric layer 3 is less likely to be peeled off from the substrate 1 or the electrostatic electrode 2.

【0027】更に、誘電体層3の厚みは、0.001〜
0.3mmの厚みとする。0.001mmより小さいと
ウェハWと静電電極2に電圧印加の際に誘電体層5が絶
縁破壊してしまう虞がある。また、誘電体層3を洗浄し
た際に、容易に誘電体層3が脱落・消耗し好ましくな
い。
Further, the thickness of the dielectric layer 3 is 0.001 to
The thickness is 0.3 mm. If the thickness is smaller than 0.001 mm, the dielectric layer 5 may be dielectrically broken down when a voltage is applied to the wafer W and the electrostatic electrode 2. Moreover, when the dielectric layer 3 is washed, the dielectric layer 3 is easily dropped and consumed, which is not preferable.

【0028】他方、誘電体層3の厚みが0.3mmより
厚いと、基体1と誘電体層3の熱膨張差から成膜後に図
6(a)に示すような大きな反りが発生し、その後、静
電チャックの載置面5を平坦に加工すると図6(b)に
示すように、反りに起因する誘電体層3の厚みのバラツ
キが大きくなる。すると、誘電体層3の厚みの薄い部分
は抵抗値が小さくなり静電電極2とウェハWの間に流れ
る漏れ電流が局部的に大きくなる。そのため、ウェハW
面内の漏れ電流のバラツキが大きく、漏れ電流による発
熱でウエハWの温度ムラが発生し、ウェハW面内の温度
差に起因する熱膨張差からウエハWの面内の位置がズレ
て精密な露光ができない虞があるからである。
On the other hand, if the thickness of the dielectric layer 3 is thicker than 0.3 mm, a large warp as shown in FIG. 6 (a) occurs after the film formation due to the difference in thermal expansion between the substrate 1 and the dielectric layer 3, and thereafter. When the mounting surface 5 of the electrostatic chuck is processed to be flat, as shown in FIG. 6B, the variation in the thickness of the dielectric layer 3 due to the warp increases. Then, the resistance value of the thin portion of the dielectric layer 3 becomes small, and the leakage current flowing between the electrostatic electrode 2 and the wafer W locally becomes large. Therefore, the wafer W
The variation of the leak current in the plane is large, the temperature of the wafer W is uneven due to the heat generated by the leak current, and the in-plane position of the wafer W is deviated due to the difference in the thermal expansion due to the temperature difference in the plane of the wafer W. This is because exposure may not be possible.

【0029】更に、誘電体層3の内部応力は108Pa
以下とすることが好ましい。内部応力が108Paを超
える薄膜では、図6(a)に示すように、基体1や静電
電極2に成膜した後の反りが大きく、しかも誘電体層3
の応力も大きくなり、成膜後に誘電体層3が割れが生じ
たり、剥離が生じる虞がある。特に、露光装置用静電チ
ャックでは、載置面5の平坦度を1μm以下とするため
に誘電体層3を成膜後に誘電体層3の平坦化する加工が
必要があり、その際に加わる加工応力により誘電体層3
が剥がれ易いからである。
Further, the internal stress of the dielectric layer 3 is 10 8 Pa.
The following is preferable. In the case of a thin film having an internal stress of more than 10 8 Pa, as shown in FIG. 6A, the warp after the film formation on the substrate 1 or the electrostatic electrode 2 is large, and the dielectric layer 3
Stress increases, and the dielectric layer 3 may be cracked or peeled off after the film formation. Particularly, in the electrostatic chuck for an exposure apparatus, it is necessary to perform a process of flattening the dielectric layer 3 after forming the dielectric layer 3 in order to set the flatness of the mounting surface 5 to 1 μm or less. Dielectric layer 3 due to processing stress
Is easily peeled off.

【0030】また、前記と同様に図6(b)に示すよう
に誘電体層3の内部応力が108Paを超える薄膜で
は、誘電体層3を成膜した後の反りが大きく、誘電体層
3を平坦に加工すると、誘電体層3の厚みが不均一とな
る。誘電体層3の厚みが不均一となると、静電電極2と
ウエハWとの間の抵抗がウェハWの面内で不均一とな
り、静電チャックとして使用する際に、誘電体層3の抵
抗の小さな領域で大きな漏れ電流が流れ、この漏れ電流
により発熱しウエハの温度不均一を生じる。
Similarly to the above, as shown in FIG. 6B, in a thin film in which the internal stress of the dielectric layer 3 exceeds 10 8 Pa, the warp after the dielectric layer 3 is formed is large, and If the layer 3 is processed flat, the thickness of the dielectric layer 3 becomes uneven. When the thickness of the dielectric layer 3 becomes non-uniform, the resistance between the electrostatic electrode 2 and the wafer W becomes non-uniform in the plane of the wafer W, and the resistance of the dielectric layer 3 becomes large when used as an electrostatic chuck. A large leakage current flows in a small area, and the leakage current causes heat generation, resulting in non-uniform temperature of the wafer.

【0031】尚、この誘電体層膜内部の応力は、図5の
方法にて測定することが出来る。すなわち、測定試料と
して長さ40mm×幅10mm×厚み0.1mmのAF
45製のガラス基板の上に誘電体層3となる膜を10μ
m程度成膜し、AF45ガラスのそり量δから内部応力
σを式1によって求めることができる。σ=(E×δ×
Ts2)/(3×(1−ν)×L2×Tf)・・・(式
1)Eは基体1のヤング率、Tsは基体の厚み、νは基
体のポアソン比、Tfは誘電体層の厚みである。
The stress inside the dielectric layer film can be measured by the method shown in FIG. That is, an AF measuring 40 mm long, 10 mm wide, and 0.1 mm thick is used as a measurement sample.
A film to be the dielectric layer 3 is formed on the glass substrate made of 45 with a thickness of 10 μm.
The internal stress σ can be obtained from the warp amount δ of the AF45 glass by the equation 1 after forming a film of about m. σ = (E × δ ×
Ts 2 ) / (3 × (1-ν) × L 2 × Tf) (Equation 1) E is the Young's modulus of the substrate 1, Ts is the thickness of the substrate, ν is the Poisson's ratio of the substrate, and Tf is the dielectric. The thickness of the layer.

【0032】基体1を構成する材料は、コージライトに
希土類元素を酸化物換算で1〜20重量%の割合で含有
することが好ましい。希土類元素の含有により、焼結時
の緻密化が促進し、相対密度95%以上の緻密体を容易
に得ることが可能となる。これにより、気孔率2%以下
となり、基体1から発生するアウトガスが少なく、EU
V露光やEB露光、およびスパッターなど高真空中で行
うプロセスでの使用に好適となる。
The material forming the substrate 1 preferably contains cordierite in a proportion of 1 to 20% by weight in terms of oxide of a rare earth element. By containing the rare earth element, densification during sintering is promoted, and it becomes possible to easily obtain a densified body having a relative density of 95% or more. As a result, the porosity becomes 2% or less, the outgas generated from the substrate 1 is small, and the EU
It is suitable for use in processes performed in a high vacuum such as V exposure, EB exposure, and sputtering.

【0033】次に、前記静電チャック4の製造方法や構
成について述べる。
Next, the manufacturing method and structure of the electrostatic chuck 4 will be described.

【0034】誘電体層3として、内部応力の小さいアモ
ルファス薄膜を製造するためには、触媒CVD法等があ
る。例えば、Siを主成分とするアモルファス膜(以後
はaーと略す)は、原料ガスであるH2/SiH4の比
や、B26/SiH4の比を小さくすることによって誘
電体層3を成膜できる。誘電体層3を形成する膜として
は、a−Si系もしくはa−Si合金系の材料やa−S
i・a−SiC・a−SiN・a−SiO・a−SiG
e・a−SiCN・a−SiNO・a−SiCO・a−
SiCNO・a−AlOなどが上げられる。誘電体層3
は、周期律表第3a族元素(以下、3a族元素と略す)
や第5a族元素(以下、5a族元素と略す)を含有させ
たり、炭素(C)、窒素(N)、酸素(O)等の元素を
含有させて電気的特性を調節することが出来る。3a族
元素および5a族元素としてはそれぞれホウ素(B)・
リン(P)が共有結合性に優れ半導体特性を敏感に変え
ることができる。C、N、O等の元素とともにB、Pを
の含有させるには、誘電体層3に3a族元素で0.1〜
20000質量ppm含ませることが好ましく、5a族
元素で有れば0.1〜10000質量ppm含ませるこ
とがよい。また、誘電体層3の厚み方向にC、N、O等
の元素含有量を変化させ勾配を設けても良く、その場合
には誘電体層3全体の平均含有量が上記範囲内であれば
よい。
In order to manufacture an amorphous thin film having a small internal stress as the dielectric layer 3, there is a catalytic CVD method or the like. For example, an amorphous film containing Si as a main component (hereinafter abbreviated as a) is used as a dielectric layer by reducing the ratio of source gas H 2 / SiH 4 or B 2 H 6 / SiH 4. 3 can be formed into a film. As the film forming the dielectric layer 3, an a-Si-based or a-Si alloy-based material or a-S
i ・ a-SiC ・ a-SiN ・ a-SiO ・ a-SiG
e-a-SiCN-a-SiNO-a-SiCO-a-
SiCNO.a-AlO etc. can be used. Dielectric layer 3
Is an element of Group 3a of the periodic table (hereinafter abbreviated as Group 3a element)
The electric characteristics can be adjusted by containing a Group 5a element (hereinafter abbreviated as Group 5a element) or an element such as carbon (C), nitrogen (N), oxygen (O). Boron (B) is used as the group 3a element and the group 5a element, respectively.
Phosphorus (P) has an excellent covalent bond property and can sensitively change semiconductor characteristics. In order to contain B and P together with C, N, O and the like elements, the dielectric layer 3 contains 0.1 to 3 a group 3a element.
It is preferable to contain 20,000 mass ppm, and if it is a group 5a element, it is preferable to contain 0.1 to 10,000 mass ppm. Further, the content of elements such as C, N, and O may be changed in the thickness direction of the dielectric layer 3 to provide a gradient. In that case, if the average content of the entire dielectric layer 3 is within the above range. Good.

【0035】また、膜の内部応力を小さくする方法は、
a-Siの成膜の際に、原料ガスの成分量比を変更する
ことによって可能である。すなわち、原料ガスのH2/S
iH 4、B26/SiH4比を小さくすることで、内部応
力が108Pa以下のシリコンを主成分とするアモルフ
ァス薄膜を作ることができる。
A method for reducing the internal stress of the film is as follows.
Change the component ratio of the source gas when forming a-Si film
It is possible by That is, H of the source gas2/ S
iH Four, B2H6/ SiHFourBy reducing the ratio, the internal response
Power is 108Amorph mainly composed of silicon of Pa or less
A thin film can be made.

【0036】一方、薄膜製法において、成膜スピードは
10μm/時間程であり、0.3mm以上の膜を成膜す
ることは、経済的でない。
On the other hand, in the thin film manufacturing method, the film forming speed is about 10 μm / hour, and it is not economical to form a film of 0.3 mm or more.

【0037】次に、基体1をコージライトを主体とした
セラミックスで作製する製造方法を述べる。10μm以
下のコージライト粉末に、平均粒径が10μm以下の希
土類元素酸化物粉末を1〜20質量%、好適には5〜1
5質量%、さらに好適には8〜12質量%の割合で添加
することが良い。添加剤を加えないコージライト100
質量%でも、緻密化が可能であるが、焼成温度が高く、
焼成可能温度領域が±5℃と非常に狭いために緻密化し
た材料を安定に作製することが難しい。これに対して、
希土類元素を1重量%以上含有すると、焼成時にコージ
ライトの成分と反応して液層を生成することから、焼結
性を高める効果があり、低温で焼成可能とすることがで
きる共に、焼成可能温度領域を±25℃程度まで広げる
ことが出来ることから、量産性を高めることができる。
コージライト中に含有させる希土類元素としては、Y、
Yb、Lu、Er、Ce、Nd、Sm等が挙げられる。
これらの中でも安価に入手出来る点でY、Ybが好適で
ある。
Next, a method of manufacturing the base 1 made of cordierite-based ceramics will be described. 1 to 20% by mass, preferably 5 to 1% by weight of rare earth element oxide powder having an average particle size of 10 μm or less in 10 μm or less cordierite powder.
It is preferable to add 5% by mass, and more preferably 8 to 12% by mass. Cordierite 100 without additives
Even if the content is% by mass, densification is possible, but the firing temperature is high,
Since the calcinable temperature range is very narrow at ± 5 ° C, it is difficult to stably manufacture a densified material. On the contrary,
If the content of the rare earth element is 1% by weight or more, it reacts with the cordierite component during firing to form a liquid layer, which has the effect of increasing the sinterability, and enables firing at low temperature and firing. Since the temperature range can be expanded to about ± 25 ° C, mass productivity can be improved.
Rare earth elements contained in cordierite include Y,
Examples thereof include Yb, Lu, Er, Ce, Nd, Sm and the like.
Among these, Y and Yb are preferable because they can be obtained at low cost.

【0038】なお、この希土類元素はコージライト結晶
の粒界に存在するが、この希土類元素はRE23・Si
2またはRE23・2SiO2などのシリケート化合物
結晶相として存在することが望ましい、これは、粒界相
の結晶化により基体1の熱膨張係数を小さくするためで
ある。
Although this rare earth element exists at the grain boundary of the cordierite crystal, this rare earth element is RE 2 O 3 .Si.
It is desirable to exist as a crystal phase of a silicate compound such as O 2 or RE 2 O 3 .2SiO 2. This is to reduce the thermal expansion coefficient of the substrate 1 by crystallization of the grain boundary phase.

【0039】電極2を成す導電性の静電電極2は、金属
などの導電性材料を用いれば良く、特に製造方法は限定
される事は無く、例えばグロー放電分解法・各種スパッ
タリング法・各種蒸着法・ECR法・光CVD法・触媒
CVD法・反応性蒸着法などにより成膜し形成する事が
出来る。静電電極2の厚みは、0.0001〜0.1m
mであれば良い。0.0001mm以下では静電電極2
の平面的な導通が得られない。0.1mm以上では基体
1との熱膨張差のために、基体1との界面に剥がれが生
じやすい。特に、基体1の表面である界面はRa0.3
以上、好ましくは0.7以上とすることで、剥がれが生
じにくい静電電極2を形成することができる。
The conductive electrostatic electrode 2 forming the electrode 2 may be made of a conductive material such as metal, and the manufacturing method is not particularly limited. For example, glow discharge decomposition method, various sputtering methods, various vapor depositions. The film can be formed by a method, an ECR method, a photo CVD method, a catalytic CVD method, a reactive vapor deposition method, or the like. The thickness of the electrostatic electrode 2 is 0.0001 to 0.1 m.
m is sufficient. Electrostatic electrode 2 if 0.0001 mm or less
Can not be obtained in the plane. When the thickness is 0.1 mm or more, peeling easily occurs at the interface with the substrate 1 due to the difference in thermal expansion from the substrate 1. In particular, the interface that is the surface of the substrate 1 has Ra 0.3.
As described above, by setting it to preferably 0.7 or more, the electrostatic electrode 2 in which peeling hardly occurs can be formed.

【0040】本発明のアモルファス薄膜によって誘電体
層3を形成すれば、誘電体層3の内部応力は小さい。そ
して、誘電体層3を成膜後の基体1の反りは50μm以
下となり、誘電体層3の厚みが均一となり、誘電体層3
の面内での抵抗バラツキを小さくできる。その結果、ウ
エハWの面内温度を均一とすることが可能である。すな
わち、誘電体層3を成膜する時の基体1の反りを小さ
く、誘電体層3の剥離や割れが生じない位置精度の高い
静電チャックを製造することができる。
When the dielectric layer 3 is formed of the amorphous thin film of the present invention, the internal stress of the dielectric layer 3 is small. After the dielectric layer 3 is formed, the substrate 1 has a warp of 50 μm or less, and the thickness of the dielectric layer 3 becomes uniform.
It is possible to reduce the variation in resistance within the plane. As a result, the in-plane temperature of the wafer W can be made uniform. That is, it is possible to manufacture an electrostatic chuck having a high degree of positional accuracy in which warpage of the substrate 1 when forming the dielectric layer 3 is small and peeling or cracking of the dielectric layer 3 does not occur.

【0041】[0041]

【実施例】(実施例1)平均粒径が3μmのコージライ
ト粉末に、焼結助剤として、Y23、Yb23、Er2
3、CeO2粉末を表1のように調合し、バインダーお
よび溶媒を添加して24時間混合し乾燥し造粒粉体を得
た。その後、造粒粉体を金型に充てんし98MPaの圧
力にて加圧成形し成形体を作製した。そして、成形体
は、還元雰囲気下で炭化珪素質の匣鉢に入れて表1の焼
成温度で電気炉にて焼成した。
Example 1 A cordierite powder having an average particle size of 3 μm was added to Y 2 O 3 , Yb 2 O 3 and Er 2 as sintering aids.
O 3 and CeO 2 powders were prepared as shown in Table 1, a binder and a solvent were added, and the mixture was mixed for 24 hours and dried to obtain granulated powder. Then, the granulated powder was filled in a mold and pressure-molded at a pressure of 98 MPa to produce a molded body. Then, the molded body was put in a silicon carbide sagger under a reducing atmosphere and fired in an electric furnace at the firing temperature shown in Table 1.

【0042】得られた焼結体を研磨して3×4×15m
mの大きさに研磨加工し、このセラミックスの10〜4
0℃までの平均熱膨張係数をJIS R3251―19
95に規定される方法により測定した、相対密度はJI
S C2141−1992に規定された方法を用いて気
孔率、嵩密度を測定し求めた。さらにJIS R162
0に規定された方法にて測定した粉砕試料の粉体密度を
測定し、上記の嵩密度を粉体密度で除して相対密度を算
出した。
The obtained sintered body was polished to 3 × 4 × 15 m
10 ~ 4 of this ceramic is polished to a size of m
The average coefficient of thermal expansion up to 0 ° C is JIS R3251-19
The relative density measured by the method specified in
The porosity and bulk density were measured and determined using the method specified in S C2141-1992. Furthermore, JIS R162
The powder density of the pulverized sample measured by the method specified in 0 was measured, and the above-mentioned bulk density was divided by the powder density to calculate the relative density.

【0043】また、同様の方法で作製した焼結体を外径
320mm、厚み10mmの円板状に研磨加工し、上下
面の平面度を1μm以下として、上面のほぼ全面にわた
って、厚さ1μmのアルミ膜をスパッタ法にて成膜して
静電電極2とした。
Further, a sintered body produced by the same method was polished into a disk shape having an outer diameter of 320 mm and a thickness of 10 mm, and the flatness of the upper and lower surfaces was set to 1 μm or less, and the thickness of 1 μm was formed on almost the entire upper surface. An aluminum film was formed by sputtering to form the electrostatic electrode 2.

【0044】次に、基体1を触媒CVD装置にセットし
て、基体温度260℃、装置内圧13.3Paの条件に
て、静電電極3の上面にa−Si膜を形成した。Si源
にはH2/SiH4混合ガスを用い、H2、SiH4ガスの
流量は100sccmとし、膜の特性をコントロールす
るために必要に応じてB26を0.5%含んだH2ガス
を供給した。成膜速度は11.5μm/時間であった。
Next, the base 1 was set in a catalytic CVD apparatus, and an a-Si film was formed on the upper surface of the electrostatic electrode 3 under the conditions of the base temperature of 260 ° C. and the internal pressure of the apparatus of 13.3 Pa. A H 2 / SiH 4 mixed gas was used as the Si source, the flow rates of the H 2 and SiH 4 gases were 100 sccm, and H 2 containing 0.5% of B 2 H 6 was added as necessary to control the characteristics of the film. Gas was supplied. The film forming rate was 11.5 μm / hour.

【0045】同時に、AF45よりなる基板に成膜した
誘電体層の内部応力を前述の方法にて測定したところ、
2x107Paであった。また、成膜部分とステンレス
製マスクでマスキングした部分との段差をダイヤルゲー
ジにて測定し成膜した膜の厚みとした。
At the same time, the internal stress of the dielectric layer formed on the substrate made of AF45 was measured by the above-mentioned method.
It was 2 × 10 7 Pa. Further, the step between the film-formed portion and the portion masked with the stainless steel mask was measured with a dial gauge and used as the thickness of the formed film.

【0046】その後、静電電極を形成した面の平面度を
測定した。さらに、誘電体層を錫製ラップ盤上にて10
μmのダイヤモンドスラリーを用いて、ラップ加工し載
置面とした。載置面は、ラップ加工により平面度約1μ
m、表面粗さRa0.1に加工した。
Then, the flatness of the surface on which the electrostatic electrode was formed was measured. Further, the dielectric layer is placed on a tin lapping machine 10
Using a diamond slurry of μm, lapping was performed as a mounting surface. The mounting surface has a flatness of approximately 1μ due to lapping.
m, surface roughness Ra 0.1.

【0047】吸着力は真空中で25mm角のSi板を使
い、Si板と静電電極間に500Vの直流電圧を印加し
て、Si板を吸着させ、その後Si板をロードセルを介
して引き剥がした際に加わる力(F)をロードセルを用
いて測定し、FをSi板の面積で除して、単位面積あた
りの吸着力を算出した。
For the adsorption force, a 25 mm square Si plate was used in vacuum, a DC voltage of 500 V was applied between the Si plate and the electrostatic electrode to adsorb the Si plate, and then the Si plate was peeled off via a load cell. The force (F) applied at that time was measured using a load cell, F was divided by the area of the Si plate, and the adsorption force per unit area was calculated.

【0048】さらに、25mm角のSi板を載置面の全
面に移動させて、Si板と静電電極の間の電流を漏れ電
流として測定し、漏れ電流の最大値と最小値から、その
差を漏れ電流差として算出した。
Further, a 25 mm square Si plate is moved over the entire mounting surface, and the current between the Si plate and the electrostatic electrode is measured as a leakage current. The difference between the maximum and minimum values of the leakage current is measured. Was calculated as the leakage current difference.

【0049】また、静電チャックの位置精度の評価法と
して、静電チャックを20℃と30℃の雰囲気温度内に
置き、この温度差でのウエハ変形量を位置ズレとして測
定した。
As an evaluation method of the positional accuracy of the electrostatic chuck, the electrostatic chuck was placed in an ambient temperature of 20 ° C. and 30 ° C., and the amount of wafer deformation due to this temperature difference was measured as a positional deviation.

【0050】先ず、300mmのウエハの表面に200
mm離れた2点の距離を20℃でレーザーマーキングを
行い、20℃で2点間の距離を測定した。次に、静電チ
ャック上に300mmウエハを搭載して吸着し、200
mm離れた2点に30℃でレーザーマキングを行い、2
0℃で2点間の距離を測定し、その位置ずれを変形量と
した。また、直径300mmのシリコンウェハを30℃
で30分吸着した後のシリコンウェハ面内の温度分布を
赤外線温度測定器で測定しシリコンウェハ内の温度差を
測定した。結果を表1に示した。
First, 200 is applied to the surface of a 300 mm wafer.
Laser marking was performed at a temperature of 20 ° C. at two points separated by mm, and the distance between the two points was measured at 20 ° C. Next, a 300 mm wafer is mounted on the electrostatic chuck and attracted,
Laser macking at 30 ° C at two points 2 mm apart
The distance between two points was measured at 0 ° C., and the positional deviation was taken as the amount of deformation. In addition, a silicon wafer with a diameter of 300 mm is at 30 ° C.
The temperature distribution in the silicon wafer surface after adsorption for 30 minutes was measured by an infrared thermometer to measure the temperature difference in the silicon wafer. The results are shown in Table 1.

【0051】[0051]

【表1】 [Table 1]

【0052】本発明の試料No.3〜5、7の熱膨張係
数は1.0×10-6/℃より小さく、基体の厚みは3〜
50mmで、誘電体層はSiを主成分としたアモルファ
ス薄膜からなり、膜厚が0.001〜0.3mmであ
り、マーキングの位置ずれは1.0μm以下で且つ温度
差は5℃以下と小さく好ましい静電チャックであった。
また、吸着力は1×104Pa以上の大きな吸着力を示
し、良好な結果であった。
Sample No. of the present invention. The coefficient of thermal expansion of 3 to 5 and 7 is less than 1.0 × 10 −6 / ° C., and the thickness of the substrate is 3 to
50 mm, the dielectric layer is composed of an amorphous thin film containing Si as a main component, the film thickness is 0.001 to 0.3 mm, the positional deviation of marking is 1.0 μm or less, and the temperature difference is 5 ° C. or less. It was the preferred electrostatic chuck.
Further, the adsorption force showed a large adsorption force of 1 × 10 4 Pa or more, which was a good result.

【0053】一方、熱膨張係数が1.0×10-6/℃よ
り大きい試料No.6は、マーキングの位置ずれが2.
5μmと大きく良くなかった。
On the other hand, the sample No. having a coefficient of thermal expansion larger than 1.0 × 10 −6 / ° C. No. 6 has a marking displacement of 2.
It was 5 μm, which was not very good.

【0054】試料No.1は基体の厚みが1mmと小さく
位置ずれが1.1μmと大きく好ましくなかった。ま
た、試料No.9は基体の厚みが60mmと大きいこと
から、ウェハの温度差が1.2℃と大きく、また位置ず
れも1.2μmと大きかった。従って、基体の厚みは3
〜50mmが好ましい事が分った。
Sample No. 1 was not preferable because the thickness of the substrate was as small as 1 mm and the positional deviation was as large as 1.1 μm. Further, in the sample No. 9, since the thickness of the substrate was as large as 60 mm, the temperature difference of the wafer was as large as 1.2 ° C. and the positional deviation was also as large as 1.2 μm. Therefore, the thickness of the substrate is 3
It has been found that -50 mm is preferable.

【0055】試料No.2は誘電体層の厚みが0.00
05mmと小さく、評価中に誘電体層が絶縁破壊した。
また、試料No.8は誘電体層の厚みが0.4mmと大
きく誘電体層の厚みバラツキが生じ、ウェハの温度バラ
ツキが1.1℃大きく位置ずれも1.1μmと大きかっ
た。
Sample No. 2 had a dielectric layer thickness of 0.00
It was as small as 05 mm, and dielectric breakdown occurred during the evaluation.
In addition, the sample No. In No. 8, the thickness of the dielectric layer was as large as 0.4 mm, and the thickness variation of the dielectric layer was generated, and the temperature variation of the wafer was 1.1 ° C. and the positional deviation was also as large as 1.1 μm.

【0056】従って、誘電体層の厚みは0.001〜
0.3mmが好ましいことが分った。 (実施例2)次に、実施例1の試料No.4と同じ組成
で厚み10mmの基体を用いて、原料ガス流量を変化さ
せて異なる物性の誘電体層を形成し、−10〜100℃
の熱サイクルを施し、サイクルごとの膜の剥がれを観察
した。
Therefore, the thickness of the dielectric layer is 0.001 to
It has been found that 0.3 mm is preferred. (Example 2) Next, using a substrate having the same composition as that of sample No. 4 of Example 1 and a thickness of 10 mm, the flow rate of the raw material gas was changed to form a dielectric layer having different physical properties, and the temperature was -10 to 100 ° C.
Was subjected to a thermal cycle, and peeling of the film for each cycle was observed.

【0057】加熱、冷却は試料を温冷風試験機にて、3
0℃/時間の速度で昇降温し、最高・最低温度で30分
保持した。結果を、表2に示した。
For heating and cooling, the sample was heated with a hot / cold air tester to 3
The temperature was raised and lowered at a rate of 0 ° C./hour, and the maximum and minimum temperatures were maintained for 30 minutes. The results are shown in Table 2.

【0058】[0058]

【表2】 [Table 2]

【0059】内部応力が108Pa以下の試料No.3
1〜33、35、37、38は、熱サイクル100回で
も剥がれが発生せず良好な結果であった。
Sample No. having an internal stress of 10 8 Pa or less. Three
Nos. 1 to 33, 35, 37, and 38 had good results without peeling even after 100 thermal cycles.

【0060】しかし、内部応力が108Pa以上であっ
た試料No.34,36では、100サイクルで剥がれ
生じ、良くなかった。
However, sample No. 1 having an internal stress of 10 8 Pa or more. In Nos. 34 and 36, peeling occurred after 100 cycles, which was not good.

【0061】[0061]

【発明の効果】本発明によれば、基体と、該基体の表面
に設けられた導電体よりなる静電電極と、該静電電極を
覆う誘電体層とを備えた静電チャックであって、前記基
体は10〜40℃における熱膨張係数が1.0×10-6
/℃以下で、前記基体の厚みが3〜50mmであり、前
記誘電体層はSiを主成分とするアモルファス薄膜から
なり、その厚みが0.001〜0.3mmとしたことに
よって、静電電極とウェハの間の漏れ電流を小さくし、
ウエハの温度分布が小さくなる。
According to the present invention, there is provided an electrostatic chuck provided with a substrate, an electrostatic electrode made of a conductor provided on the surface of the substrate, and a dielectric layer covering the electrostatic electrode. The substrate has a coefficient of thermal expansion of 1.0 × 10 −6 at 10 to 40 ° C.
/ C or less, the substrate has a thickness of 3 to 50 mm, the dielectric layer is an amorphous thin film containing Si as a main component, and the thickness is 0.001 to 0.3 mm. The leakage current between the wafer and the wafer,
The temperature distribution of the wafer becomes smaller.

【0062】また、静電チャックの熱膨張係数が小さく
ウェハの位置がずれることを防止できる。
Further, the coefficient of thermal expansion of the electrostatic chuck is small, and the position of the wafer can be prevented from shifting.

【0063】更に、温度サイクルにより誘電体層が基体
から剥離することがなく信頼性の高い静電チャックを提
供できる。
Further, it is possible to provide a highly reliable electrostatic chuck in which the dielectric layer does not peel off from the substrate due to the temperature cycle.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の静電チャックを示す斜視図である。FIG. 1 is a perspective view showing an electrostatic chuck of the present invention.

【図2】本発明の静電チャックを示す断面図である。FIG. 2 is a sectional view showing an electrostatic chuck of the present invention.

【図3】従来の静電チャックを示す断面図である。FIG. 3 is a cross-sectional view showing a conventional electrostatic chuck.

【図4】(a)〜(c)は従来の他の静電チャックを示
す断面図である。
4A to 4C are cross-sectional views showing another conventional electrostatic chuck.

【図5】内部応力の測定法を示す図である。FIG. 5 is a diagram showing a method for measuring internal stress.

【図6】(a)(b)は従来の静電チャックを示す断面
図である。
6A and 6B are cross-sectional views showing a conventional electrostatic chuck.

【符号の説明】[Explanation of symbols]

1:基体 2:電極 3:誘電体層 W:ウエハ 4:静電チャック 5:載置面 21:基体 22:電極 23:誘電体層 24:積層体 25:載置面 26:接着剤 1: substrate 2: electrode 3: dielectric layer W: Wafer 4: Electrostatic chuck 5: Mounting surface 21: substrate 22: electrode 23: dielectric layer 24: Laminated body 25: Mounting surface 26: Adhesive

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】基体と、該基体の表面に設けられた導電体
よりなる静電電極と、該静電電極を覆う誘電体層とを備
えた静電チャックであって、前記基体は10〜40℃に
おける熱膨張係数が1.0×10-6/℃以下で、その厚
みが3〜50mmであり、前記誘電体層はSiを主成分
とするアモルファス薄膜からなり、その厚みが0.00
1〜0.3mmであることを特徴とする静電チャック。
1. An electrostatic chuck comprising a base, an electrostatic electrode made of a conductor provided on the surface of the base, and a dielectric layer covering the electrostatic electrode, wherein the base is 10 to 10. The thermal expansion coefficient at 40 ° C. is 1.0 × 10 −6 / ° C. or less, the thickness is 3 to 50 mm, the dielectric layer is an amorphous thin film containing Si as a main component, and the thickness is 0.00.
An electrostatic chuck having a size of 1 to 0.3 mm.
【請求項2】前記誘電体層の内部応力が108Pa以下
である請求項1記載の静電チャック。
2. The electrostatic chuck according to claim 1, wherein the internal stress of the dielectric layer is 10 8 Pa or less.
【請求項3】前記基体は希土類酸化物を1〜20質量%
含むコージライトからなることを特徴とする請求項1ま
たは2に記載の静電チャック。
3. The base contains 1 to 20% by mass of a rare earth oxide.
An electrostatic chuck according to claim 1 or 2, wherein the electrostatic chuck comprises cordierite.
JP2002123947A 2002-04-25 2002-04-25 Electrostatic chuck Expired - Fee Related JP4028753B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002123947A JP4028753B2 (en) 2002-04-25 2002-04-25 Electrostatic chuck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002123947A JP4028753B2 (en) 2002-04-25 2002-04-25 Electrostatic chuck

Publications (2)

Publication Number Publication Date
JP2003318251A true JP2003318251A (en) 2003-11-07
JP4028753B2 JP4028753B2 (en) 2007-12-26

Family

ID=29539093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002123947A Expired - Fee Related JP4028753B2 (en) 2002-04-25 2002-04-25 Electrostatic chuck

Country Status (1)

Country Link
JP (1) JP4028753B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1560208A2 (en) * 2004-01-28 2005-08-03 Victor Company of Japan, Ltd. Method and apparatus for controlling recording power of a laser
WO2005091356A1 (en) * 2004-03-19 2005-09-29 Creative Technology Corporation Bipolar electrostatic chuck
JP2008034496A (en) * 2006-07-27 2008-02-14 Covalent Materials Corp Electrostatic chuck
JP2020004751A (en) * 2018-06-25 2020-01-09 日本特殊陶業株式会社 Electrostatic chuck and manufacturing method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1560208A2 (en) * 2004-01-28 2005-08-03 Victor Company of Japan, Ltd. Method and apparatus for controlling recording power of a laser
EP1560208A3 (en) * 2004-01-28 2007-05-30 Victor Company of Japan, Ltd. Method and apparatus for controlling recording power of a laser
US7697385B2 (en) 2004-01-28 2010-04-13 Victor Company Of Japan, Ltd. Method and apparatus for controlling recording laser power
WO2005091356A1 (en) * 2004-03-19 2005-09-29 Creative Technology Corporation Bipolar electrostatic chuck
JPWO2005091356A1 (en) * 2004-03-19 2008-02-07 株式会社クリエイティブ テクノロジー Bipolar electrostatic chuck
JP4684222B2 (en) * 2004-03-19 2011-05-18 株式会社クリエイティブ テクノロジー Bipolar electrostatic chuck
JP2008034496A (en) * 2006-07-27 2008-02-14 Covalent Materials Corp Electrostatic chuck
JP2020004751A (en) * 2018-06-25 2020-01-09 日本特殊陶業株式会社 Electrostatic chuck and manufacturing method thereof
JP7122174B2 (en) 2018-06-25 2022-08-19 日本特殊陶業株式会社 ELECTROSTATIC CHUCK AND METHOD FOR MANUFACTURING ELECTROSTATIC CHUCK

Also Published As

Publication number Publication date
JP4028753B2 (en) 2007-12-26

Similar Documents

Publication Publication Date Title
JP4744855B2 (en) Electrostatic chuck
JP4476701B2 (en) Manufacturing method of sintered body with built-in electrode
US20070146961A1 (en) Electrostatic chuck
JP4879929B2 (en) Electrostatic chuck and manufacturing method thereof
JPH07307377A (en) Ceramic heater with electrostatic chuck
JP2001274103A (en) Gas shower member for semiconductor manufacturing apparatus
JP2001302330A (en) Ceramic substrate
JP4387563B2 (en) Susceptor and method of manufacturing susceptor
JP3176219B2 (en) Electrostatic chuck
JP2000103689A (en) Alumina sintered compact, its production and plasma- resistant member
US20070095291A9 (en) Holder for Use in Semiconductor or Liquid-Crystal Manufacturing Device and Semiconductor or Liquid-Crystal Manufacturing Device in Which the Holder Is Installed
JP4028753B2 (en) Electrostatic chuck
JP2001237303A (en) Vacuum chuck for wafer and its manufacturing method
JP3426845B2 (en) Electrostatic chuck
JP2005340442A (en) Electrostatic chuck and method of manufacturing the same
JP2005093723A (en) Electrostatic chuck
JP2011100844A (en) Device having electrostatic chucking function and method of manufacturing the same
JP3810341B2 (en) Electrostatic chuck
JP3297571B2 (en) Electrostatic chuck
JP2004196589A (en) Ceramic sintered compact and its producing method
JP3057670B2 (en) Multilayer ceramic heater
JP2001319967A (en) Method for manufacturing ceramic substrate
JPH06314694A (en) Heating apparatus of semiconductor wafer
JP2000129388A (en) Corrosion resisting member
JP2004119739A (en) Electrostatic chuck

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071012

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131019

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees