JP2003315482A - Ventilation facility at top part of reactor pressure vessel - Google Patents

Ventilation facility at top part of reactor pressure vessel

Info

Publication number
JP2003315482A
JP2003315482A JP2002118377A JP2002118377A JP2003315482A JP 2003315482 A JP2003315482 A JP 2003315482A JP 2002118377 A JP2002118377 A JP 2002118377A JP 2002118377 A JP2002118377 A JP 2002118377A JP 2003315482 A JP2003315482 A JP 2003315482A
Authority
JP
Japan
Prior art keywords
vent
pressure vessel
reactor pressure
rpv
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002118377A
Other languages
Japanese (ja)
Other versions
JP4131914B2 (en
Inventor
Yuji Yamamoto
雄司 山本
Michitomo Kuroda
理知 黒田
Akio Shioiri
章夫 塩入
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002118377A priority Critical patent/JP4131914B2/en
Publication of JP2003315482A publication Critical patent/JP2003315482A/en
Application granted granted Critical
Publication of JP4131914B2 publication Critical patent/JP4131914B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide ventilation facilities at the top part of a reactor pressure vessel capable of efficiently and reliably preventing non-condensable gases from being accumulated in the vicinity of the top part of the reactor pressure vessel and performing highly reliable and stable operation. <P>SOLUTION: The ventilation facilities 20 at the top part of the reactor pressure vessel (RPV) is provided with both an RPV head spray system 31 for supplying cooling water for an RPV head spray nozzle 36 at the upper part of the RPV 22 and a RPV ventilation system 30 for guiding non-condensable gases which occurs during operation of a reactor to a main steam pipe 37. The RPV head spray system 31 is provided with a branched ventilation system 32 branched from a check valve 39, provided on RPV head spray piping 38, on the side of the RPV 22. The branched ventilation system 32 is constituted in such a way as to guide the non-condensable gases which occur in the RPV 22 to the side of the main steam pipe 27 with the RPV ventilation system 30 during normal operation of the reactor. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、原子炉圧力容器内
に存在する非凝縮性ガスを処理する原子力発電所の原子
炉圧力容器頂部ベント設備に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nuclear reactor pressure vessel top vent facility for treating non-condensable gases present in the reactor pressure vessel.

【0002】[0002]

【従来の技術】一般に、沸騰水型原子力プラント(以
下、BWRプラントという。)は、原子炉圧力容器(以
下、RPVという。)2の頂部廻りの気体処理設備が図
5に示されるように構成される。BWRプラントは、原
子炉格納容器(以下、PCVという。)1内にRPV
(原子炉圧力容器)2が格納される。このRPV2内に
炉心3が収容され、この炉心3は原子炉冷却水4で浸漬
されている。RPV2内は原子炉冷却水4が貯溜された
液相部とこの液相部上方の気相部5とに区画される。
2. Description of the Related Art Generally, in a boiling water nuclear power plant (hereinafter referred to as BWR plant), a gas treatment facility around the top of a reactor pressure vessel (hereinafter referred to as RPV) 2 is constructed as shown in FIG. To be done. The BWR plant has an RPV in the reactor containment vessel (hereinafter referred to as PCV) 1.
The (reactor pressure vessel) 2 is stored. A reactor core 3 is housed in the RPV 2, and the reactor core 3 is immersed in reactor cooling water 4. The inside of the RPV 2 is divided into a liquid phase part in which the reactor cooling water 4 is stored and a gas phase part 5 above the liquid phase part.

【0003】RPV2内の原子炉冷却水4中には、炉心
3での核反応に伴う中性子照射により、冷却水4から分
解生成される水素ガスおよび酸素ガスあるいは、場合に
よっては燃料棒より微量に漏洩するKr,Xe等の放射
性希ガス等の非凝縮ガスが存在する。このため、非凝縮
性ガスを処理する気体廃棄物処理系(図示せず)がBW
Rプラントに設けられる。
In the reactor cooling water 4 in the RPV 2, hydrogen gas and oxygen gas, which are decomposed and produced from the cooling water 4 by neutron irradiation accompanying the nuclear reaction in the core 3, or, in some cases, a trace amount from the fuel rods are produced. There are leaking non-condensable gases such as radioactive noble gases such as Kr and Xe. For this reason, the gas waste treatment system (not shown) for treating the non-condensable gas is BW.
It is installed in the R plant.

【0004】BWRプラントの通常運転時、RPV2内
で発生する非凝縮性ガスは、RPV2から蒸気タービン
Tに接続される主蒸気管6を経て案内され、蒸気タービ
ンTを経て復水器に導かれた後、この復水器に設けられ
た気体廃棄物処理系で処理される。主蒸気管6には、P
CV(原子炉格納容器)1の上流側および下流側に主蒸
気隔離弁7a,7bがそれぞれ設けられる。
During normal operation of the BWR plant, the non-condensable gas generated in the RPV 2 is guided from the RPV 2 via the main steam pipe 6 connected to the steam turbine T, and is guided to the condenser via the steam turbine T. After that, it is treated in the gaseous waste treatment system provided in this condenser. The main steam pipe 6 has P
Main steam isolation valves 7a and 7b are provided on the upstream side and the downstream side of the CV (reactor containment vessel) 1, respectively.

【0005】また、RPV2の頂部には原子炉圧力容器
ベント配管(以下、RPVベント配管という。)8が備
えられる。RPVベント配管8は電動弁9を経て主蒸気
管6に主蒸気隔離弁7aの上流側で接続され、原子炉圧
力容器ベント系(以下、RPVベント系)10が構成さ
れる。このRPVベント系10は、RPV2内に蓄積す
る可能性のある非凝縮性ガスを、RPV2の頂部より排
出し、主蒸気管6内を通る主蒸気に合流せしめている。
A reactor pressure vessel vent pipe (hereinafter referred to as RPV vent pipe) 8 is provided on the top of the RPV 2. The RPV vent pipe 8 is connected to the main steam pipe 6 via the motor-operated valve 9 on the upstream side of the main steam isolation valve 7a, and constitutes a reactor pressure vessel vent system (hereinafter, RPV vent system) 10. The RPV vent system 10 discharges the non-condensable gas that may accumulate in the RPV 2 from the top of the RPV 2 and joins the main steam passing through the main steam pipe 6.

【0006】さらに、BWRプラントを停止させ、RP
V2を冷却する際、蒸気相となっているRPV2内の気
相部5を冷却するために、RPV2の上部に冷却水を供
給する原子炉圧力容器ヘッドスプレイ系(以下、RPV
ヘッドスプレイ系という。)11が設けられる。このR
PVヘッドスプレイ系11のRPVヘッドスプレイ配管
12には、逆止弁13とPCV1の内外近傍の原子炉格
納容器(PCV)隔離弁14a,14bとがそれぞれ設
けられる。
Furthermore, the BWR plant is shut down and the RP
When cooling V2, a reactor pressure vessel head spray system (hereinafter, RPV) that supplies cooling water to the upper part of RPV2 in order to cool the vapor phase portion 5 in RPV2 that is in the vapor phase
It is called a head spray system. ) 11 is provided. This R
The RPV head spray pipe 12 of the PV head spray system 11 is provided with a check valve 13 and reactor containment (PCV) isolation valves 14a and 14b near the inside and outside of the PCV 1, respectively.

【0007】沸騰水型原子炉の停止時に、RPVヘッド
スプレイ配管12から冷却水を逆止弁13を経てRPV
2内に散水し、RPV2内の上部を冷却している。
When the boiling water reactor is stopped, cooling water is supplied from the RPV head spray pipe 12 through the check valve 13 to the RPV.
2 is sprinkled with water to cool the upper part of RPV2.

【0008】[0008]

【発明が解決しようとする課題】沸騰水型原子炉の通常
運転時に、RPV2内で発生する非凝縮性ガスは、基本
的には主蒸気管6、蒸気タービンTを経て復水器から気
体廃棄物処理系に移送され、この気体廃棄物処理系で処
理される。RPV2内上部に蓄積された非凝縮性ガス
も、RPVベント系10により主蒸気管6内に排出し、
RPV2上部への非凝縮性ガスの蓄積防止を配慮した設
計となっている。
The non-condensable gas generated in the RPV 2 during the normal operation of the boiling water reactor is basically a gas discharged from the condenser through the main steam pipe 6 and the steam turbine T. It is transferred to the waste treatment system and treated in this gaseous waste treatment system. The non-condensable gas accumulated in the upper part of the RPV 2 is also discharged into the main steam pipe 6 by the RPV vent system 10,
The design is designed to prevent the accumulation of non-condensable gas above the RPV2.

【0009】しかし、RPV2の頂部に接続されるRP
Vヘッドスプレイ系11には、非凝縮性ガスの蓄積を防
止するための対応はとられていない。RPV2の頂部廻
りでも、非凝縮性ガスの蓄積防止を確実に行なうため
に、多少でも非凝縮性ガスの蓄積の可能性のある部分の
蓄積自体を未然に防止することは、原子力発電プラント
の安定運転を確実にし、信頼性の高い運転を行なう上で
重要である。
However, the RP connected to the top of the RPV2
The V head spray system 11 does not take measures to prevent the accumulation of non-condensable gas. In order to reliably prevent the accumulation of non-condensable gas even around the top of RPV2, it is necessary to prevent the accumulation itself of the part where there is a possibility of non-condensable gas accumulation, in order to stabilize the nuclear power plant. It is important for ensuring reliable operation and reliable operation.

【0010】一方、沸騰水型原子炉の通常運転時に、R
PV2内で発生する非凝縮性ガスの主成分である水素ガ
スや酸素ガスは、配管立上り部に蓄積される、との知見
がある。この観点からも、RPV2の頂部で非凝縮性ガ
スが多少でも蓄積する可能性のある部位のガス蓄積を未
然にかつ確実に防止することが、強く望まれている。
On the other hand, during normal operation of the boiling water reactor, R
It is known that hydrogen gas and oxygen gas, which are the main components of the non-condensable gas generated in PV2, are accumulated at the rising portion of the pipe. From this point of view as well, it is strongly desired to prevent gas accumulation in the top of the RPV2 where there is a possibility that some non-condensable gas may accumulate, in advance.

【0011】本発明は、上述した事情を考慮してなされ
たもので、原子炉圧力容器の頂部付近廻りへの非凝縮性
ガスの蓄積を効率よくかつ確実に防止し、信頼性の高い
安定運転を行なうことができる原子炉圧力容器頂部ベン
ト設備を提供することを目的とする。
The present invention has been made in consideration of the above-mentioned circumstances, and efficiently and reliably prevents the accumulation of non-condensable gas around the top of the reactor pressure vessel, and ensures reliable and stable operation. It is an object of the present invention to provide a reactor pressure vessel top venting device capable of performing the above.

【0012】本発明の他の目的は、通常運転時に原子炉
圧力容器の頂部付近廻りへの非凝縮性ガスの蓄積を未然
にかつ確実に防止するとともに原子炉隔離時冷却設備の
動作時における冷却機能を充分に維持できる原子炉圧力
容器頂部ベント設備を提供するにある。
Another object of the present invention is to prevent the non-condensable gas from accumulating around the top of the reactor pressure vessel during normal operation, and to surely prevent the non-condensable gas from being accumulated during operation of the reactor isolation cooling system. It is to provide a venting equipment at the top of a reactor pressure vessel that can sufficiently maintain its function.

【0013】本発明の別の目的は、従来の原子炉圧力容
器ベント系では原子炉圧力容器廻りから非凝縮性ガスの
排気処理が困難な非凝縮性ガス蓄積部位から、非凝縮性
ガスを効率よく有効的に排気処理し、非凝縮性ガスの蓄
積を防止した原子炉圧力容器頂部ベント設備を提供する
にある。
Another object of the present invention is to efficiently remove the non-condensable gas from the non-condensable gas accumulation portion where it is difficult to exhaust the non-condensable gas from around the reactor pressure vessel in the conventional reactor pressure vessel vent system. It is an object of the present invention to provide a vent facility at the top of a reactor pressure vessel that effectively and effectively exhausts gas and prevents the accumulation of non-condensable gas.

【0014】[0014]

【課題を解決するための手段】本発明に係る原子炉圧力
容器頂部ベント設備は、上述した課題を解決するため
に、請求項1に記載したように、原子炉圧力容器上部の
原子炉圧力容器ヘッドスプレイノズルに冷却水を供給す
る原子炉圧力容器ヘッドスプレイ系と、原子炉運転時に
発生する非凝縮性ガスを主蒸気管に導く原子炉圧力容器
ベント系とを備えた原子炉圧力容器において、前記原子
炉圧力容器ヘッドスプレイ系には、原子炉圧力容器ヘッ
ドスプレイ配管上に設けられた逆止弁の原子炉圧力容器
側から分岐される分岐ベント系を備え、この分岐ベント
系は前記原子炉圧力容器ベント系とともに原子炉圧力容
器内で発生した非凝縮性ガスを主蒸気管側に導くように
構成したものである。
In order to solve the above-mentioned problems, the reactor pressure vessel top venting equipment according to the present invention is, as set forth in claim 1, a reactor pressure vessel above a reactor pressure vessel. In a reactor pressure vessel having a reactor pressure vessel head spray system for supplying cooling water to a head spray nozzle and a reactor pressure vessel vent system for guiding a non-condensable gas generated during a reactor operation to a main steam pipe, The reactor pressure vessel head spray system comprises a branch vent system branched from the reactor pressure vessel side of the check valve provided on the reactor pressure vessel head spray pipe, and the branch vent system is the reactor. It is configured to guide the non-condensable gas generated in the reactor pressure vessel to the main steam pipe side together with the pressure vessel vent system.

【0015】また、上述した課題を解決するために、本
発明に係る原子炉圧力容器頂部ベント設備は、請求項2
に記載したように、前記分岐ベント系は、原子炉圧力容
器ヘッドスプレイ系の原子炉圧力容器ヘッドスプレイ配
管から分岐されるベント分岐配管を備え、このベント分
岐配管は途中に遠隔操作される開閉弁を介して主蒸気管
側に接続されたものであり、さらに、請求項3に記載し
たように、前記分岐ベント系は、原子炉圧力容器ヘッド
スプレイ系の原子炉圧力容器ヘッドスプレイ配管から分
岐されるベント分岐配管を備え、このベント分岐配管は
原子炉圧力容器ベント系の原子炉圧力容器ベント配管
に、この原子炉圧力容器ベント配管に設けられた開閉弁
の上流側で接続されたものである。
In order to solve the above-mentioned problems, the venting equipment at the top of the reactor pressure vessel according to the present invention comprises:
As described above, the branch vent system includes a vent branch pipe branched from the reactor pressure vessel head spray pipe of the reactor pressure vessel head spray system, and the vent branch pipe is an on-off valve that is remotely operated on the way. It is connected to the main steam pipe side via the, further, as described in claim 3, the branch vent system is branched from the reactor pressure vessel head spray pipe of the reactor pressure vessel head spray system. This vent branch pipe is connected to the reactor pressure vessel vent pipe of the reactor pressure vessel vent system at the upstream side of the on-off valve provided in this reactor pressure vessel vent pipe. .

【0016】さらに、上述した課題を解決するために、
本発明に係る原子炉圧力容器頂部ベント設備は、請求項
4に記載したように、前記分岐ベント系は、原子炉圧力
容器ヘッドスプレイ系の原子炉圧力容器ヘッドスプレイ
配管から分岐されるベント分岐配管を備え、このベント
分岐配管は下流側が原子炉圧力容器ベント系の原子炉圧
力容器ベント配管に接続される一方、上記ベント分岐配
管の途中に遠隔操作される開閉弁を設けたものであり、
また、請求項5に記載したように、前記分岐ベント系
は、原子炉圧力容器ヘッドスプレイ系の原子炉圧力容器
ヘッドスプレイ配管から分岐されるベント分岐配管を備
え、この分岐配管は下流側が原子炉圧力容器ベント系の
原子炉圧力容器ベント配管に接続される一方、上記ベン
ト分岐配管の途中に遠隔操作される開閉弁とオリフィス
を設けたものである。
Further, in order to solve the above-mentioned problems,
In the reactor pressure vessel top vent equipment according to the present invention, as described in claim 4, the branch vent system is a vent branch pipe branched from the reactor pressure vessel head spray pipe of the reactor pressure vessel head spray system. This vent branch pipe is connected to the reactor pressure vessel vent pipe of the reactor pressure vessel vent system on the downstream side, while a remotely operated on-off valve is provided in the middle of the vent branch pipe.
Further, as described in claim 5, the branch vent system comprises a vent branch pipe branched from a reactor pressure vessel head spray pipe of a reactor pressure vessel head spray system, and the downstream side of the branch pipe is the reactor. While being connected to a reactor pressure vessel vent pipe of a pressure vessel vent system, an on-off valve and an orifice which are remotely operated are provided in the middle of the vent branch pipe.

【0017】また、上述した課題を解決するために、本
発明に係る原子炉圧力容器頂部ベント設備は、請求項6
に記載したように、前記原子炉圧力容器ヘッドスプレイ
系には、原子炉圧力容器ヘッドスプレイ配管の原子炉格
納容器内側および外側に原子炉格納容器隔離弁が備えら
れる一方、上記原子炉圧力容器ヘッドスプレイ配管は原
子炉隔離時冷却設備の注入配管を兼ねるように構成した
ものであり、さらに、請求項7に記載したように、前記
分岐ベント系のベント分岐配管に設けられる開閉弁は、
原子炉圧力容器ヘッドスプレイ系の原子炉格納容器隔離
弁の開許可信号で閉鎖されるように構成したものであ
る。
In order to solve the above problems, the reactor pressure vessel top vent equipment according to the present invention is provided in claim 6.
As described above, in the reactor pressure vessel head spray system, reactor containment vessel isolation valves are provided inside and outside the reactor containment vessel of the reactor pressure vessel head spray piping, while the reactor pressure vessel head is provided. The spray pipe is configured so as to also serve as the injection pipe of the reactor isolation cooling facility. Further, as described in claim 7, the opening / closing valve provided in the vent branch pipe of the branch vent system is:
The reactor pressure vessel head spray system is configured to be closed by an opening permission signal of the reactor containment vessel isolation valve.

【0018】[0018]

【発明の実施の形態】本発明に係る原子炉圧力容器頂部
ベント設備の実施の形態について、添付図面を参照して
説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of a reactor pressure vessel top vent facility according to the present invention will be described with reference to the accompanying drawings.

【0019】(第1の実施形態)図1は、本発明に係る
原子炉圧力容器頂部ベント設備の第1実施形態を示す概
略的な系統図である。
(First Embodiment) FIG. 1 is a schematic system diagram showing a first embodiment of a reactor pressure vessel top vent equipment according to the present invention.

【0020】この原子炉圧力容器頂部ベント設備は全体
を符号20で示し、沸騰水型原子力プラント(BWRプ
ラント)の原子炉格納容器(以下、PCVという。)2
1と原子炉圧力容器(以下、RPVという。)22とで
区画されるドライウェル37に設置される。
This reactor pressure vessel top vent equipment is generally designated by the numeral 20, and a reactor containment vessel (hereinafter referred to as PCV) 2 of a boiling water nuclear power plant (BWR plant) 2
1 and a reactor pressure vessel (hereinafter referred to as RPV) 22 are installed in a dry well 37.

【0021】BWRプラントは、原子炉格納容器(PC
V)21内に原子炉圧力容器(RPV)22を格納して
おり、このRPV22内に炉心23を収納している。炉
心23は原子炉冷却水24に浸漬される。RPV22の
下部には原子炉冷却水24を貯えた液相部が成形される
一方、この液相部の上方にRPV22は気相部25が形
成される。
The BWR plant is a reactor containment vessel (PC
A reactor pressure vessel (RPV) 22 is housed in V) 21 and a reactor core 23 is housed in this RPV 22. The reactor core 23 is immersed in the reactor cooling water 24. A liquid phase portion storing the reactor cooling water 24 is formed in the lower portion of the RPV 22, while a vapor phase portion 25 of the RPV 22 is formed above the liquid phase portion.

【0022】RPV22内の原子炉冷却水24は、炉心
23を通る際に、核反応による中性子照射を受けて加熱
され、蒸気化される。発生した蒸気はRPV22内で気
水分離され、乾燥された後、主蒸気管27を通って蒸気
タービン28に送られ、蒸気タービン28で仕事をし、
発電機(図示せず)を駆動させる。主蒸気管27には原
子炉格納容器21を介してその上流側および下流側に主
蒸気隔離弁29a,29bがそれぞれ設けられる。蒸気
タービン28で仕事をし、膨張した蒸気は復水器(図示
せず)で凝縮された後、原子炉復水・給水系を通ってR
PV22内に再び還流される。
The reactor cooling water 24 in the RPV 22 is heated and vaporized by being irradiated with neutrons due to a nuclear reaction while passing through the core 23. The generated steam is separated into water and water in the RPV 22, dried, and then sent to the steam turbine 28 through the main steam pipe 27 to work in the steam turbine 28.
Drive a generator (not shown). The main steam pipe 27 is provided with main steam isolation valves 29 a and 29 b on the upstream side and the downstream side of the reactor containment vessel 21, respectively. The steam that has worked in the steam turbine 28 and has expanded is condensed in a condenser (not shown) and then passes through the reactor condensate / water supply system to R
It is returned to the PV 22 again.

【0023】また、BWRプラントの原子炉圧力容器
(RPV)22に備えられた原子炉圧力容器頂部ベント
設備20は、原子炉圧力容器(RPV)ベント系30
と、原子炉圧力容器ヘッドスプレイ系(以下、RPVヘ
ッドスプレイ系という。)31から分岐された分岐ベン
ト系32とを備える。
Further, the reactor pressure vessel top vent facility 20 provided in the reactor pressure vessel (RPV) 22 of the BWR plant is a reactor pressure vessel (RPV) vent system 30.
And a branch vent system 32 branched from a reactor pressure vessel head spray system (hereinafter referred to as an RPV head spray system) 31.

【0024】RPVベント系30は、RPV22の頂部
に接続される原子炉圧力容器(RPV)ベント配管33
を有する。このRPVベント配管33はRPV22の頂
部に形成されたRPVヘッドベントノズル34に接続さ
れる一方、途中に開閉弁として遠隔操作される電動弁3
5が設けられる。電動弁35の下流側は主蒸気管27に
原子炉格納容器21内の主蒸気隔離弁29aの上流側で
接続される。
The RPV vent system 30 is a reactor pressure vessel (RPV) vent pipe 33 connected to the top of the RPV 22.
Have. The RPV vent pipe 33 is connected to an RPV head vent nozzle 34 formed on the top of the RPV 22, and on the other hand, an electric valve 3 which is remotely operated as an on-off valve.
5 are provided. The downstream side of the motor-operated valve 35 is connected to the main steam pipe 27 on the upstream side of the main steam isolation valve 29 a in the reactor containment vessel 21.

【0025】また、分岐ベント系32は、原子炉圧力容
器(RPV)ヘッドスプレイ配管38の逆止弁39下流
側から分岐されたベント分岐配管40を備える。このベ
ント分岐配管40も途中に開閉弁として遠隔操作される
電動弁41を備え、電動弁41の下流側は主蒸気管27
に主蒸気隔離弁29aの上流側で接続される。
The branch vent system 32 also includes a vent branch pipe 40 branched from the check valve 39 downstream side of the reactor pressure vessel (RPV) head spray pipe 38. The vent branch pipe 40 is also provided with an electrically operated valve 41 which is remotely operated as an on-off valve in the middle thereof, and the downstream side of the electrically operated valve 41 is the main steam pipe 27.
To the upstream side of the main steam isolation valve 29a.

【0026】さらに、RPVヘッドスプレイ系31は、
RPVヘッドスプレイ配管38がRPV22の頂部に設
けられた原子炉圧力容器ヘッドスプレイノズル(以下、
RPVヘッドスプレイノズルという。)36に接続され
る。RPVヘッドスプレイ系31のRPVヘッドスプレ
イ配管38は原子炉隔離時冷却設備(以下、RCICと
いう。)43の冷却水注入配管を兼ねるようにしてもよ
い。RCIC43は沸騰水型原子炉の停止時にRPV上
部ドームの残圧を下げるために停止時冷却系の冷却水を
利用してRPV22の気相部25を冷却する設備であ
る。
Further, the RPV head spray system 31 is
The RPV head spray pipe 38 is provided on the top of the RPV 22 and the reactor pressure vessel head spray nozzle (hereinafter,
It is called RPV head spray nozzle. ) 36. The RPV head spray pipe 38 of the RPV head spray system 31 may also serve as the cooling water injection pipe of the reactor isolation cooling facility (hereinafter referred to as RCIC) 43. The RCIC 43 is a facility for cooling the gas phase part 25 of the RPV 22 by using the cooling water of the cooling system during shutdown in order to reduce the residual pressure of the RPV upper dome when the boiling water reactor is shut down.

【0027】一方、RPVヘッドスプレイ配管38に
は、逆止弁39および原子炉格納容器隔離弁(PCV隔
離弁)44a,44bが途中に設けられる。PCV隔離
弁44a,44bは原子炉格納容器21を介してその内
側と外側にそれぞれ設置され、原子炉運転時には通常閉
塞されている。
On the other hand, the RPV head spray pipe 38 is provided with a check valve 39 and reactor containment isolation valves (PCV isolation valves) 44a and 44b on the way. The PCV isolation valves 44a and 44b are installed inside and outside the reactor containment vessel 21, respectively, and are normally closed during the operation of the reactor.

【0028】ところで、原子炉圧力容器頂部ベント設備
20は、RPVベント系30とRPVヘッドスプレイ系
31を利用した分岐ベント系32とから構成される。両
ベント系30と31は協働作用して原子炉圧力容器22
廻りで非凝縮性ガスの蓄積可能部位から非凝縮性ガスを
導出し、主蒸気管27に排出するようになっている。原
子炉圧力容器(RPV)22の頂部にRPVベント系3
0とRPVヘッドスプレイ系31を利用した分岐ベント
系32とを設け、協働作用をさせることで、原子力発電
所の通常運転時に、RPV22内の頂部付近に蓄積する
可能性のある部位の酸素ガス、水素ガスおよびKr,X
eの放射性希ガス等の非凝縮性ガスを主蒸気管27側に
円滑かつスムーズに排出することができ、RPV22の
頂部付近廻りに非凝縮性ガスの蓄積が未然にかつ確実に
防止される。
By the way, the reactor pressure vessel top vent equipment 20 comprises an RPV vent system 30 and a branch vent system 32 utilizing an RPV head spray system 31. Both vent systems 30 and 31 work in concert to operate the reactor pressure vessel 22.
The non-condensable gas is led out from the area where the non-condensable gas can be accumulated, and is discharged to the main steam pipe 27. At the top of the reactor pressure vessel (RPV) 22, the RPV vent system 3
0 and a branch vent system 32 using the RPV head spray system 31 are provided to cooperate with each other, so that oxygen gas in a portion that may accumulate near the top of the RPV 22 during normal operation of the nuclear power plant. , Hydrogen gas and Kr, X
The non-condensable gas such as the radioactive noble gas of e can be smoothly and smoothly discharged to the main steam pipe 27 side, and the accumulation of the non-condensable gas around the top of the RPV 22 can be prevented in advance.

【0029】次に、原子炉圧力容器頂部ベント設備の作
用について説明する。
Next, the operation of the reactor pressure vessel top vent facility will be described.

【0030】この原子炉圧力容器頂部ベント設備20
は、BWRプラントの通常運転時には、主蒸気隔離弁2
9a,29bおよび電動弁35,41は開状態にセット
され、PCV隔離弁44a,44bは閉状態にセットさ
れる。
This reactor pressure vessel top venting equipment 20
Is the main steam isolation valve 2 during normal operation of the BWR plant.
9a, 29b and the motor-operated valves 35, 41 are set to an open state, and the PCV isolation valves 44a, 44b are set to a closed state.

【0031】原子炉の運転により、炉心23での核反応
に起因する中性子照射により原子炉冷却水24から水素
ガスおよび酸素ガスが分解生成される一方、場合によっ
て炉心装荷の燃料集合体の燃料棒より微量に漏洩する可
能性のあるKr,Xe等の放射性希ガスが存在する。こ
れらの水素ガス、酸素ガス、放射性希ガス等の非凝縮性
ガスは、原子力発電プラントの通常運転時に、RPV2
2内で発生する。
When the reactor is operated, hydrogen gas and oxygen gas are decomposed and produced from the reactor cooling water 24 by the neutron irradiation caused by the nuclear reaction in the core 23, while the fuel rods of the core-loaded fuel assemblies may be generated. There is a radioactive noble gas such as Kr or Xe that may leak in a smaller amount. These non-condensable gases such as hydrogen gas, oxygen gas, radioactive noble gas, etc., are generated by RPV2 during normal operation of the nuclear power plant.
It occurs within 2.

【0032】発生した非凝縮性ガスはRPV22から主
蒸気に混入して主蒸気管27を通って蒸気タービン28
に案内される一方、蒸気タービン28から復水器(図示
せず)に排出され、この復水器に付設された気体廃棄物
処理系(図示せず)に案内されて処理される。
The generated non-condensable gas is mixed with the main steam from the RPV 22, passes through the main steam pipe 27, and passes through the steam turbine 28.
On the other hand, it is discharged from the steam turbine 28 to a condenser (not shown) and is guided to a gas waste treatment system (not shown) attached to this condenser for treatment.

【0033】また、BWRプラントの通常運転時には遠
隔操作される電動弁35および41は開状態にセットさ
れているため、RPVベント系30および分岐ベント系
32は作動状態にある。このため、RPV22のヘッド
部内やヘッド部廻りの非凝縮性ガスはRPVベント系3
0のRPVベント配管33やRPVヘッドスプレイ系3
1を利用した分岐ベント系32のベント分岐配管40を
通じて主蒸気管27に通じるベント流路が形成される。
したがって、RPV22のヘッド部付近、例えばRPV
22のヘッド部内やRPVベント系30の電動弁35上
流側配管部、さらにはRPVヘッドスプレイ系31の逆
止弁39下流側配管部に非凝縮性ガスが蓄積するのを未
然にかつ確実に防止できる。
Further, since the electrically operated valves 35 and 41 that are remotely operated during the normal operation of the BWR plant are set to the open state, the RPV vent system 30 and the branch vent system 32 are in the operating state. For this reason, the non-condensable gas in the head portion of the RPV 22 and around the head portion does not flow into the RPV vent system 3
0 RPV vent piping 33 and RPV head spray system 3
A vent flow path communicating with the main steam pipe 27 is formed through the vent branch pipe 40 of the branch vent system 32 that utilizes No. 1.
Therefore, in the vicinity of the head portion of the RPV 22, for example, the RPV
It is possible to prevent the non-condensable gas from accumulating in the head portion of No. 22, the electric valve 35 upstream side piping of the RPV vent system 30, and the check valve 39 downstream side piping of the RPV head spray system 31 in advance. it can.

【0034】また、BWRプラントの運転停止時には、
電動弁41が閉塞され、PCV隔離弁44a,44bが
開操作される。このため、RPVヘッドスプレイ系31
のRPVヘッドスプレイ配管38を原子炉隔離時冷却設
備(以下、RCICという)43の冷却水注入配管と兼
用させると、原子炉停止時に、RCIC43の注入配管
であるRPVヘッドスプレイ配管38を通してRPV2
2内に冷却水を供給し、スプレイしてRPV22の気相
部25を冷却し、上部ドームの残圧を下げることができ
る。
When the BWR plant is shut down,
The electric valve 41 is closed and the PCV isolation valves 44a and 44b are opened. Therefore, the RPV head spray system 31
When the RPV head spray pipe 38 of No. 2 is also used as the cooling water injection pipe of the reactor isolation cooling facility (hereinafter referred to as RCIC) 43, the RPV 2 is passed through the RPV head spray pipe 38 which is the injection pipe of the RCIC 43 when the reactor is stopped.
It is possible to supply cooling water into the inside of 2 and spray it to cool the gas phase portion 25 of the RPV 22 and reduce the residual pressure of the upper dome.

【0035】この原子炉停止時には、RCIC43のR
PVヘッドスプレイ配管38から分岐された分岐ベント
系32は、電動弁41が閉鎖されるので、冷却水全量を
RPV22内に戻すことが可能となる。このRCIC4
3は、RPV22のヘッドスプレイ時に、冷却水が分岐
ベント系32に流入するのを確実に防止するため、電動
弁41の閉鎖をPCV隔離弁44a,44bの開許可信
号と連動させ、PCV隔離弁44a,44bに中央制御
室等から開許可信号を付与したとき、電動弁41はこの
開許可信号により閉塞させるようにしてもよい。
At the time of this reactor shutdown, R of RCIC43
In the branch vent system 32 branched from the PV head spray pipe 38, since the electric valve 41 is closed, it is possible to return the entire amount of cooling water into the RPV 22. This RCIC4
In order to reliably prevent the cooling water from flowing into the branch vent system 32 during the head spray of the RPV 22, the motor control valve 3 is operated in conjunction with the opening permission signal of the PCV isolation valves 44a and 44b so that the PCV isolation valve is closed. When the opening permission signal is given to 44a and 44b from the central control room or the like, the motor-operated valve 41 may be closed by this opening permission signal.

【0036】この原子炉圧力容器頂部ベント設備20に
よれば、原子力発電所の通常運転時に、従来のRPVベ
ント系のみでは非凝縮性ガスを排出できず、非凝縮性ガ
スの蓄積を防止できない部位、例えば、RPVヘッドス
プレイ系(RCIC43)31の逆止弁39下流側配管
部からの非凝縮性ガスも確実に排出でき、その配管部へ
のガス蓄積を未然にかつ確実に穂防止できる。しかも、
RPVヘッドスプレイ系31の下流側配管部への非凝縮
性ガスの蓄積を防止しても、RCIC43の冷却機能を
損なうことがないので、信頼性の高い安定運転を行なう
ことができる。
According to this reactor pressure vessel top vent equipment 20, the non-condensable gas cannot be discharged only by the conventional RPV vent system during normal operation of the nuclear power plant, and the accumulation of the non-condensable gas cannot be prevented. For example, the non-condensable gas from the pipe section on the downstream side of the check valve 39 of the RPV head spray system (RCIC43) 31 can be surely discharged, and the accumulation of gas in the pipe section can be prevented in advance. Moreover,
Even if the non-condensable gas is prevented from accumulating in the downstream piping of the RPV head spray system 31, the cooling function of the RCIC 43 is not impaired, so that reliable and stable operation can be performed.

【0037】(第2の実施形態)図2は、本発明に係る
原子炉圧力容器頂部ベント設備の第2実施形態を示す概
略的な系統図である。
(Second Embodiment) FIG. 2 is a schematic system diagram showing a second embodiment of a reactor pressure vessel top vent equipment according to the present invention.

【0038】この実施形態に示された原子炉圧力容器頂
部ベント設備20Aは、分岐ベント系45の構成が第1
実施形態に示された原子炉圧力容器頂部ベント設備20
と基本的に異にし、他の構成、作用は実質的に異ならな
いので、同じ符号を付して説明を省略する。
In the reactor pressure vessel top vent equipment 20A shown in this embodiment, the structure of the branch vent system 45 is the first.
Reactor pressure vessel top vent equipment 20 shown in the embodiment
Since the second embodiment is basically different from the second embodiment and other configurations and actions are not substantially different, the same reference numerals are given and the description thereof will be omitted.

【0039】図2に示された原子炉圧力容器頂部ベント
設備20AはRPVヘッドスプレイ系31の逆止弁39
下流側、すなわち逆止弁39のRPV22側から分岐さ
れた分岐ベント系45を有する。この分岐ベント系45
は、RPVヘッドスプレイ系31のRPVヘッドスプレ
イ配管38から分岐されるベント分岐配管46を備え、
このベント分岐配管46は下流側がRPVベント系30
のRPVベント配管33に、遠隔操作される開閉弁とし
ての電動弁35の上流側で接続される。ベント分岐配管
46の分岐部は、逆止弁39に可能な限り近付けた位置
に形成される。RPVヘッドスプレイ系31のRPVヘ
ッドスプレイ配管38は原子炉隔離時冷却設備(RCI
C)43の注入配管を兼ねるようにしてもよい。
The reactor pressure vessel top vent equipment 20A shown in FIG. 2 is a check valve 39 of the RPV head spray system 31.
It has a branch vent system 45 branched from the RPV 22 side of the check valve 39 on the downstream side. This branch vent system 45
Comprises a vent branch pipe 46 branched from the RPV head spray pipe 38 of the RPV head spray system 31.
The downstream side of the vent branch pipe 46 is the RPV vent system 30.
Is connected to the RPV vent pipe 33 on the upstream side of a motor-operated valve 35 that is a remotely operated on-off valve. The branch portion of the vent branch pipe 46 is formed at a position as close to the check valve 39 as possible. The RPV head spray piping 38 of the RPV head spray system 31 is a reactor isolation cooling facility (RCI).
C) The injection pipe of 43 may also be used.

【0040】この原子炉圧力容器頂部ベント設備20A
においても、RPV22内で発生した非凝縮性ガスは、
RPVベント系30で排出できない部分でも、RPVヘ
ッドスプレイ系31の一部を利用した分岐ベント系45
で排出させることができるので、RPV22の頂部付近
廻りに非凝縮性ガスが蓄積するのを未然にかつ確実に防
止できる。
This reactor pressure vessel top vent equipment 20A
In the above, the non-condensable gas generated in the RPV22 is
A branch vent system 45 that uses a part of the RPV head spray system 31 even in a portion that cannot be discharged by the RPV vent system 30.
Therefore, it is possible to prevent the non-condensable gas from accumulating around the top of the RPV 22 in advance.

【0041】次に、原子炉圧力容器頂部ベント設備の作
用について説明する。
Next, the operation of the reactor pressure vessel top vent equipment will be described.

【0042】この原子炉圧力容器頂部ベント設備20A
は、BWRプラントの通常運転時には、主蒸気隔離弁2
9a,29bおよび電動弁35は開状態にセットされ、
PCV隔離弁44a,44bは閉状態にセットされる。
This reactor pressure vessel top vent equipment 20A
Is the main steam isolation valve 2 during normal operation of the BWR plant.
9a, 29b and the motor operated valve 35 are set to the open state,
The PCV isolation valves 44a and 44b are set to the closed state.

【0043】原子炉の運転により、炉心23での核反応
により中性子照射を受けて原子炉冷却水24は加熱作用
を受け、蒸気化されるが、その際に原子炉冷却水24か
ら水素ガスや酸素ガス、燃料棒より微量な放射性希ガス
等の非凝縮性ガスが生成される。
When the reactor is operated, the reactor cooling water 24 is heated by the neutron irradiation due to the nuclear reaction in the core 23 and is vaporized. Non-condensable gases such as oxygen gas and a trace amount of radioactive rare gas are produced from the fuel rods.

【0044】RPV22内に発生した非凝縮性ガスはR
PV22から主蒸気に混入して主蒸気管27を通って蒸
気タービン28に案内される一方、蒸気タービン28か
ら復水器(図示せず)に排出され、この復水器に付設さ
れた気体廃棄物処理系(図示せず)に案内されて処理さ
れる。
The non-condensable gas generated in the RPV 22 is R
While being mixed with the main steam from the PV 22 and being guided to the steam turbine 28 through the main steam pipe 27, the steam is discharged from the steam turbine 28 to a condenser (not shown), and the gas waste attached to this condenser is discarded. A material processing system (not shown) guides and processes.

【0045】また、BWRプラントの通常運転時には、
RPVベント系30の電動弁35は開状態にセットされ
ているため、RPVベント系30および分岐ベント系3
2は作動状態にある。このため、RPV22のヘッド部
内の非凝縮性ガスは、RPVベント系30やRPVヘッ
ドスプレイ系(RCIC43)31を利用した分岐ベン
ト系45により、主蒸気管27に通じるベント流路が形
成され、主蒸気管27に排出される。
During normal operation of the BWR plant,
Since the motor-operated valve 35 of the RPV vent system 30 is set to the open state, the RPV vent system 30 and the branch vent system 3
2 is in operation. Therefore, the non-condensable gas in the head portion of the RPV 22 forms a vent flow path leading to the main steam pipe 27 by the branch vent system 45 using the RPV vent system 30 and the RPV head spray system (RCIC43) 31. It is discharged to the steam pipe 27.

【0046】したがって、RPV22のヘッド部付近、
例えばRPV22のヘッド部内やRPVベント系30の
電動弁35上流側配管部、さらにはRPVヘッドスプレ
イ系31の逆止弁39下流側配管部に非凝縮性ガスが蓄
積されることなく、円滑かつスムーズに主蒸気管27に
排出される。
Therefore, in the vicinity of the head portion of the RPV 22,
For example, the non-condensable gas is not accumulated in the head portion of the RPV 22, the electric valve 35 upstream side piping portion of the RPV vent system 30, and the check valve 39 downstream side piping portion of the RPV head spray system 31, and is smooth and smooth. To the main steam pipe 27.

【0047】また、BWRプラントの運転停止時には、
RPVベント系30の電動弁35が閉塞され、PCV隔
離弁44a,44bが開操作される。このPCV隔離弁
44a,44bの開操作により、停止時冷却系の冷却水
(例えばサプレッションチャンバ内の冷却水)の一部が
RPVヘッドスプレイ系(RCIC43)31を通って
RPV22内に供給され、スプレイにより冷却し、RP
V22上部ドームの残圧を下げている。
When the BWR plant is shut down,
The electric valve 35 of the RPV vent system 30 is closed, and the PCV isolation valves 44a and 44b are opened. By opening the PCV isolation valves 44a and 44b, a part of the cooling water of the cooling system during stop (for example, cooling water in the suppression chamber) is supplied into the RPV 22 through the RPV head spray system (RCIC43) 31 and sprayed. Cooled by RP
The residual pressure of the V22 upper dome has been reduced.

【0048】その際、RPVヘッドスプレイ系(RCI
C43)31から分岐ベント系45が分岐されている
が、RPVベント系30の電動弁35が閉じられている
ので、冷却水が主蒸気管27側に流入するのを確実に防
止でき、ほぼ全量がRPV22内に供給される。
At this time, the RPV head spray system (RCI
Although the branch vent system 45 is branched from C43) 31, the electric valve 35 of the RPV vent system 30 is closed, so that it is possible to reliably prevent the cooling water from flowing into the main steam pipe 27 side, and almost all Are supplied into the RPV 22.

【0049】RPVヘッドスプレイ系(RCIC43)
31によるRPV22のヘッドスプレイ時に、RPVベ
ント配管33の電動弁35を確実に閉鎖させるために、
電動弁35の閉鎖をPCV隔離弁44a,44bの開許
可信号で行なうこともできる。
RPV head spray system (RCIC43)
In order to surely close the motor-operated valve 35 of the RPV vent pipe 33 during head spraying of the RPV 22 by 31,
The motor-operated valve 35 can be closed by an opening permission signal for the PCV isolation valves 44a and 44b.

【0050】この原子炉圧力容器頂部ベント設備20A
は、BWRプラントの通常運転時に、RPVベント系3
0のみでは非凝縮性ガスの蓄積防止(排出)が不可能な
部位の非凝縮性ガスの排出処理を円滑かつスムーズに行
なうことができる。図2に示された原子炉圧力容器頂部
ベント設備20Aによっても、第1実施形態の原子炉圧
力容器頂部ベント設備20と同様な作用効果を奏するこ
とができる。
This reactor pressure vessel top vent equipment 20A
Is the RPV vent system 3 during normal operation of the BWR plant.
It is possible to smoothly and smoothly discharge the non-condensable gas at a portion where the non-condensable gas cannot be prevented from being accumulated (discharged) only by 0. The reactor pressure vessel top vent equipment 20A shown in FIG. 2 can also achieve the same effects as the reactor pressure vessel top vent equipment 20 of the first embodiment.

【0051】(第3実施形態)図3は本発明に係る原子
炉圧力容器頂部ベント設備の第3実施形態を示す概略的
な系統図である。
(Third Embodiment) FIG. 3 is a schematic system diagram showing a third embodiment of a reactor pressure vessel top vent equipment according to the present invention.

【0052】この実施形態に示された原子炉圧力容器頂
部ベント設備20Bは、分岐ベント系50の構成が図1
に示された原子炉圧力容器頂部ベント設備20と基本的
に異にし、他の構成、作用は実質的に異ならないので、
同じ符号を付して説明を省略する。
The reactor vent vessel top vent equipment 20B shown in this embodiment has a branch vent system 50 of FIG.
Since it is basically different from the reactor pressure vessel top vent equipment 20 shown in FIG.
The same reference numerals are given and the description is omitted.

【0053】図3に示された原子炉圧力容器頂部ベント
設備20Bは、RPVヘッドスプレイ系31の逆止弁3
9下流側、すなわち逆止弁39のRPV22側から分岐
された分岐ベント系50を有する。この分岐ベント系5
0はRPVヘッドスプレイ系31のRPVヘッドスプレ
イ配管38から分岐されるベント分岐配管51を備え、
このベント分岐配管51がRPVベント系30にRPV
ベント配管33の遠隔操作弁である電動弁35上流側で
接続される。RPVヘッドスプレイ系31からの分岐ベ
ント系50の分岐部は、逆止弁39に可能な限り近付い
た位置に設けられる。
The reactor pressure vessel top vent equipment 20B shown in FIG. 3 is a check valve 3 of the RPV head spray system 31.
9 has a branched vent system 50 branched from the RPV 22 side of the check valve 39. This branch vent system 5
0 is provided with a vent branch pipe 51 branched from the RPV head spray pipe 38 of the RPV head spray system 31,
This vent branch pipe 51 connects the RPV vent system 30 to the RPV.
The vent pipe 33 is connected on the upstream side of the electric valve 35, which is a remote control valve. The branch portion of the branch vent system 50 from the RPV head spray system 31 is provided at a position as close to the check valve 39 as possible.

【0054】この場合、RPVヘッドスプレイ系31の
RPVヘッドスプレイ配管38は原子炉隔離時冷却設備
43の注入配管を兼ねるようにしている。
In this case, the RPV head spray pipe 38 of the RPV head spray system 31 also serves as the injection pipe of the reactor isolation cooling facility 43.

【0055】ところで、分岐ベント系50は、ベント分
岐配管51の途中に遠隔操作される開閉弁である電動弁
52が備えられる。分岐ベント系50とRPVベント系
30の電動弁52,35は例えば中央制御室からの遠隔
操作により開閉制御される。電動弁52,35は原子炉
運転時に開放され、原子炉停止時に閉塞される。
By the way, the branch vent system 50 is provided with an electrically operated valve 52 which is an on-off valve which is remotely operated in the middle of the vent branch pipe 51. The motor-operated valves 52 and 35 of the branch vent system 50 and the RPV vent system 30 are controlled to be opened / closed by, for example, remote operation from the central control room. The motor-operated valves 52 and 35 are opened when the reactor is operating and closed when the reactor is stopped.

【0056】分岐ベント系50の電動弁52を原子炉停
止時に閉塞させることにより、RPVヘッドスプレイ系
(RCIC43)31のRPVヘッドスプレイ配管38
を用いて冷却水をRPV22に戻す場合、戻り全量をR
PV22内に戻すことができ、また、その後のRPV2
2の上蓋開放時における原子炉水処理の観点からも、遠
隔操作弁である電動弁52の設置が好ましい。RPVヘ
ッドスプレイ系31によるRPVヘッドスプレイ時に、
電動弁52を確実に閉鎖させるために、電動弁52はP
CV隔離弁44a,44bの開許可信号で閉鎖させるよ
うにしてもよい。
The RPV head spray pipe 38 of the RPV head spray system (RCIC43) 31 is closed by closing the motor-operated valve 52 of the branch vent system 50 when the reactor is stopped.
When returning the cooling water to RPV22 using
It can be put back into PV22 and then RPV2
It is preferable to install the motor-operated valve 52 which is a remote control valve from the viewpoint of the reactor water treatment when the upper lid 2 is opened. During the RPV head spray by the RPV head spray system 31,
In order to securely close the motor-operated valve 52, the motor-operated valve 52 is set to P
The CV isolation valves 44a and 44b may be closed by an opening permission signal.

【0057】図3に示された原子炉圧力容器頂部ベント
設備20Bにおいても、BWRプラントのRPV22廻
りで非凝縮性ガスの蓄積する可能性のある部分を解消す
ることができ、RPVベント系30で原子炉通常運転時
に排出することができない非凝縮性ガスの蓄積を防止
し、この非凝縮性ガスをも分岐ベント系50から排出す
ることができる。
In the reactor pressure vessel top vent equipment 20B shown in FIG. 3 as well, it is possible to eliminate the portion where non-condensable gas may accumulate around the RPV 22 of the BWR plant, and the RPV vent system 30 can be used. It is possible to prevent the accumulation of the non-condensable gas that cannot be discharged during the normal operation of the nuclear reactor, and also to discharge the non-condensable gas from the branch vent system 50.

【0058】次に、原子炉圧力容器頂部ベント設備の作
用を説明する。
Next, the operation of the vent facility at the top of the reactor pressure vessel will be described.

【0059】BWRプラントの運転時には、RPVベン
ト系30の電動弁35、分岐ベント系50の電動弁5
2、主蒸気隔離弁29a,29bをそれぞれ開状態に、
RPVヘッドスプレイ系31のPCV隔離弁44a,4
4bを閉状態にセットする。
During operation of the BWR plant, the electric valve 35 of the RPV vent system 30 and the electric valve 5 of the branch vent system 50
2. Open the main steam isolation valves 29a and 29b,
PCV isolation valves 44a, 4 of the RPV head spray system 31
Set 4b to the closed state.

【0060】RPVベント系30の電動弁35を開放す
るとともに分岐ベント系50の電動弁52も開放される
ので、原子炉運転中は、RPV22の頂部よりRPVベ
ント系30を介した主蒸気管27への流路に加えて、R
PVヘッドスプレイ系31の逆止弁39下流側配管部に
も、分岐ベント系50およびRPVベント配管33を通
じた主蒸気管27への流路が形成される。このため、R
PVヘッドスプレイ系(RCIC43)31の逆止弁3
9下流側配管部へ、原子炉運転中に非凝縮性ガスが蓄積
するのを未然にかつ確実に防止できる。
Since the motor-operated valve 35 of the RPV vent system 30 is opened and the motor-operated valve 52 of the branch vent system 50 is also opened, the main steam pipe 27 from the top of the RPV 22 via the RPV vent system 30 during the reactor operation. In addition to the flow path to
A flow path to the main steam pipe 27 through the branch vent system 50 and the RPV vent pipe 33 is also formed in the check valve 39 downstream side pipe portion of the PV head spray system 31. Therefore, R
Check valve 3 of PV head spray system (RCIC43) 31
9. It is possible to prevent the non-condensable gas from accumulating in the downstream piping portion during the operation of the nuclear reactor.

【0061】この原子炉圧力容器頂部ベント設備20B
によれば、BWRプラントの通常運転中にRPV22内
で発生した非凝縮性ガスがRPV頂部付近に滞留するの
を確実に防止でき、従来のRPVベント系30のみでは
非凝縮性ガスの排出が困難な部位での非凝縮性ガスの蓄
積が防止される。また、分岐ベント系50に遠隔操作弁
である電動弁52を設けることは、原子炉停止時の運用
上、例えばRPV22内への冷却水の供給やRPV22
頂部の上蓋を取り外す運用上も好ましい。
This reactor pressure vessel top vent equipment 20B
According to this, it is possible to reliably prevent the non-condensable gas generated in the RPV 22 during the normal operation of the BWR plant from staying near the top of the RPV, and it is difficult to discharge the non-condensable gas only by the conventional RPV vent system 30. Accumulation of non-condensable gas at various locations is prevented. In addition, it is necessary to provide the branch vent system 50 with a motor-operated valve 52 that is a remote control valve in order to supply cooling water into the RPV 22 or to operate the RPV 22 when the reactor is shut down.
It is also preferable in operation to remove the top lid of the top.

【0062】(第4実施形態)図4は、本発明に係る原
子炉圧力容器頂部ベント設備の第4実施形態を示す概略
的な系統図である。
(Fourth Embodiment) FIG. 4 is a schematic system diagram showing a fourth embodiment of the reactor pressure vessel top vent equipment according to the present invention.

【0063】この実施形態に示された原子炉圧力容器頂
部ベント設備20Cは、分岐ベント系55の構成が、第
1実施形態の原子炉圧力容器頂部ベント設備20と基本
的に相違し、他の構成、作用は実質的に異ならないの
で、同じ符号を付して説明を省略する。
The reactor pressure vessel top vent equipment 20C shown in this embodiment is basically different from the reactor pressure vessel top vent equipment 20 of the first embodiment in the structure of the branch vent system 55, and other Since the configuration and the action are not substantially different, the same reference numerals are given and the description thereof will be omitted.

【0064】図4に示された原子炉圧力容器頂部ベント
設備20Cは、RPVヘッドスプレイ系31の逆止弁3
9下流側、すなわち、逆止弁39のRPV22側から分
岐された分岐ベント系55を有する。この分岐ベント系
55は、RPVヘッドスプレイ系(RCIC43)31
のRPVヘッドスプレイ配管38から分岐されるベント
分岐配管56を備える。ベント分岐配管56には途中に
オリフィス57および遠隔操作弁である電動弁58が設
けられ、電動弁56の下流側は、RPVベント系30に
RPVベント配管33の電動弁35上流側で接続され
る。電動弁35も遠隔操作にて開閉される開閉弁であ
る。
The reactor pressure vessel top vent equipment 20C shown in FIG. 4 is a check valve 3 of the RPV head spray system 31.
9 has a branch vent system 55 branched from the RPV 22 side of the check valve 39. The branch vent system 55 is an RPV head spray system (RCIC43) 31.
A vent branch pipe 56 branched from the RPV head spray pipe 38 of FIG. The vent branch pipe 56 is provided with an orifice 57 and a motor-operated valve 58 which is a remote control valve on the way, and the downstream side of the motor-operated valve 56 is connected to the RPV vent system 30 at the motor valve 35 upstream side of the RPV vent pipe 33. . The motor-operated valve 35 is also an opening / closing valve that is opened / closed by remote control.

【0065】RPVベント系30の電動弁35および分
岐ベント系55の電動弁58は、原子炉運転中に開操作
される一方、原子炉停止時に自動閉鎖のインターロック
信号60が入力され、作動制御されるように配設され
る。なお、RPVヘッドスプレイ系31からの分岐ベン
ト系55の分岐部は、逆止弁39に可能な限り近付いた
位置とされる。
The motor-operated valve 35 of the RPV vent system 30 and the motor-operated valve 58 of the branch vent system 55 are opened while the reactor is operating, while an interlock signal 60 for automatic closing is input when the reactor is stopped, and operation control is performed. Are arranged as described above. The branch portion of the branch vent system 55 from the RPV head spray system 31 is located as close to the check valve 39 as possible.

【0066】また、RPVヘッドスプレイ系31のRP
Vヘッドスプレイ配管38は原子炉隔離時冷却設備(R
CIC)43の注入配管を兼ねるようにしてもよい。
The RP of the RPV head spray system 31
V head spray pipe 38 is a reactor isolation cooling facility (R
The CIC) 43 may also serve as the injection pipe.

【0067】この原子炉圧力容器頂部ベント設備20C
は、原子炉運転時にはRPV22廻りで非凝縮性ガスの
蓄積する可能性のある部分に、分岐ベント系55を設置
することで、非凝縮性ガスの滞留を防止することができ
る。また、RPVヘッドスプレイ配管38は、RPVヘ
ッドスプレイ系31の注入配管を兼ねているBWRプラ
ントにおいて、RPVヘッドスプレイ系(RCIC4
3)31の冷却機能に影響を与えることなく、RPV2
2の頂部廻りに非凝縮性ガスの蓄積を防止することがで
きる。
This reactor pressure vessel top vent equipment 20C
When the reactor is in operation, the branch vent system 55 is installed at a portion where the non-condensable gas may accumulate around the RPV 22, so that the non-condensable gas can be prevented from staying. Further, the RPV head spray system 38 is used for the RPV head spray system (RCIC4) in the BWR plant that also serves as the injection piping for the RPV head spray system 31.
3) RPV2 without affecting the cooling function of 31
It is possible to prevent the accumulation of non-condensable gas around the top of No.2.

【0068】次に、原子炉圧力容器頂部ベント設備20
Cの作用を説明する。
Next, the vent equipment 20 at the top of the reactor pressure vessel
The action of C will be described.

【0069】BWRプラントの通常運転時に、RPVベ
ント系30の電動弁35、分岐ベント系55の電動弁5
8および主蒸気隔離弁29a,29bは開状態に、RP
Vヘッドスプレイ系31のPCV隔離弁44a,44b
は閉鎖状態にセットされる。
During normal operation of the BWR plant, the motor-operated valve 35 of the RPV vent system 30 and the motor-operated valve 5 of the branch vent system 55
8 and the main steam isolation valves 29a and 29b are opened, and RP
PCV isolation valves 44a and 44b of the V head spray system 31
Is set to the closed state.

【0070】この原子炉圧力容器頂部ベント設備20C
は、原子炉運転時には、RPV22の頂部よりRPVベ
ント系30を介した主蒸気管27への流路に加えて、分
岐ベント系55およびRPVベント配管33を介した主
蒸気管27への流路が形成される。
This reactor pressure vessel top vent equipment 20C
Is a flow path from the top of the RPV 22 to the main steam pipe 27 via the RPV vent system 30 and a flow path to the main steam pipe 27 via the branch vent system 55 and the RPV vent pipe 33 during the reactor operation. Is formed.

【0071】このため、RPVヘッドスプレイ系31の
逆止弁39下流側配管部に、原子炉運転中に、非凝縮性
ガスの蓄積を防止することができる。
Therefore, it is possible to prevent the non-condensable gas from accumulating in the piping portion on the downstream side of the check valve 39 of the RPV head spray system 31 during the operation of the reactor.

【0072】また、原子炉停止時に、冷却水をRPVヘ
ッドスプレイ系31を介してRPV22に戻す場合、分
岐ベント系55の電動弁58を閉鎖することにより、戻
り水全量をRPV22に戻すことが可能である。このこ
とは、その後、RPV22の上蓋開放時の原子炉水処理
の観点からも分岐ベント系55へ電動弁58を設けるこ
とが好ましい。
Further, when the cooling water is returned to the RPV 22 via the RPV head spray system 31 when the reactor is stopped, it is possible to return the entire amount of the returned water to the RPV 22 by closing the electric valve 58 of the branch vent system 55. Is. From this point of view, it is preferable to provide the branch vent system 55 with the electric valve 58 from the viewpoint of treating the reactor water when the upper lid of the RPV 22 is opened.

【0073】RPVヘッドスプレイ時、分岐ベント系5
5の電動弁58を確実に閉鎖させるために、PCV隔離
弁44a,44bの開許可信号で閉鎖させるように制御
してもよい。
Branch vent system 5 during RPV head spray
In order to surely close the motor-operated valve 58 of No. 5, the PCV isolation valves 44a and 44b may be controlled to be closed by the opening permission signal.

【0074】さらに、原子炉通常運転中に、RPVヘッ
ドスプレイ系31が作動した場合、作動直後の冷却水の
分岐ベント系55への移行を、オリフィス57で極力防
止するとともに、分岐ベント系55の電動弁58および
RPVベント系30の電動弁35がRPVヘッドスプレ
イ系31の起動による自動閉鎖信号60を受けて閉鎖す
ることで、RPVヘッドスプレイ系(RCIC43)3
1のRPVヘッドスプレイ配管38を介した冷却水注入
機能上も問題はない。
Furthermore, when the RPV head spray system 31 operates during normal reactor operation, the orifice 57 is used to prevent transfer of the cooling water to the branch vent system 55 immediately after the operation as much as possible, and the branch vent system 55 is operated. The motor-operated valve 58 and the motor-operated valve 35 of the RPV vent system 30 are closed by receiving the automatic closing signal 60 by the activation of the RPV head spray system 31, so that the RPV head spray system (RCIC 43) 3
There is no problem in the function of injecting the cooling water through the RPV head spray pipe 38 of No. 1.

【0075】なお、RCIC43は、原子炉運転中もサ
ーベランスの試験モードでの運転を行なうが、このサー
ベランスとしての運転時には、RPVベント系30の電
動弁35および分岐ベント系55の電動弁58の閉鎖信
号にバイパスさせる等の配慮が要求される。
Although the RCIC 43 operates in the surveillance test mode even during the reactor operation, the motor valve 35 of the RPV vent system 30 and the motor valve 58 of the branch vent system 55 are closed during the surveillance operation. Consideration such as bypassing the signal is required.

【0076】この原子炉圧力容器頂部ベント設備20C
によれば、BWRプラントの運転中、RPV22廻りで
従来のRPVベント系30の運転のみでは排出できない
部位の非凝縮性ガスの排出を円滑かつスムーズに行なう
ことができる。分岐ベント系55にオリフィス57や電
動弁58を設けることは、原子炉停止時の運用上も好ま
しい。
This reactor pressure vessel top vent equipment 20C
According to this, during the operation of the BWR plant, it is possible to smoothly and smoothly discharge the non-condensable gas around the RPV 22 in a portion that cannot be discharged only by the operation of the conventional RPV vent system 30. It is preferable to provide the branch vent system 55 with the orifice 57 and the motor-operated valve 58 in terms of operation when the reactor is stopped.

【0077】(その他の実施例)本発明に係る原子炉圧
力容器頂部ベント設備の各実施形態においては、RPV
ヘッドスプレイ配管38がRPVヘッドスプレイ系(R
CIC43)31の冷却水注入配管を兼ね、さらに、第
3および第4実施形態では、分岐ベント系のRPVベン
ト系30への接続位置を電動弁35の上流側とした例を
説明したが、分岐ベント系はRPVベント系30の電動
弁35下流側に設置してもよい。但し、第2実施形態の
分岐ベント系46はRPVベント系30の電動弁35上
流側に接続する必要がある。原子炉停止時に主蒸気管側
へ戻り冷却水が移行するのを防止するためである。
(Other Examples) In each embodiment of the reactor pressure vessel top vent equipment according to the present invention, the RPV is used.
The head spray pipe 38 is an RPV head spray system (R
The CIC 43) 31 also serves as the cooling water injection pipe, and in the third and fourth embodiments, the branch vent system is connected to the RPV vent system 30 at the upstream side of the motor-operated valve 35. The vent system may be installed downstream of the motor-operated valve 35 of the RPV vent system 30. However, the branch vent system 46 of the second embodiment needs to be connected to the upstream side of the electric valve 35 of the RPV vent system 30. This is to prevent the cooling water from returning to the main steam pipe side when the reactor is shut down.

【0078】また、第4実施形態において、RPVヘッ
ドスプレイ系(RCIC43)31の起動信号後の冷却
水注入開始時間より、分岐ベント系55の電動弁58や
RPVベント系30の電動弁35の閉鎖時間が早い場合
は、オリフィスの設置は必要的ではない。RPVヘッド
スプレイ系(RCIC43)31の冷却水の注入機能上
問題がないためである。
In the fourth embodiment, the motor-operated valve 58 of the branch vent system 55 and the motor-operated valve 35 of the RPV vent system 30 are closed according to the cooling water injection start time after the activation signal of the RPV head spray system (RCIC43) 31. If the time is fast, then the installation of the orifice is not necessary. This is because there is no problem in the cooling water injection function of the RPV head spray system (RCIC43) 31.

【0079】RCIC43の注入配管をRPVヘッドス
プレイ系31のRPVヘッドスプレイ配管38と兼用し
ているBWRプラントでは、分岐ベント系55のベント
分岐配管56を主蒸気管27に接続してもよい。
In the BWR plant in which the injection pipe of the RCIC 43 is also used as the RPV head spray pipe 38 of the RPV head spray system 31, the vent branch pipe 56 of the branch vent system 55 may be connected to the main steam pipe 27.

【0080】さらに、この原子炉圧力容器頂部ベント設
備は、PWRプラントの原子炉容器廻りのベント設備と
して利用することもできる。
Further, the vent equipment at the top of the reactor pressure vessel can be used as the vent equipment around the reactor vessel of the PWR plant.

【0081】[0081]

【発明の効果】本発明に係る原子炉圧力容器頂部ベント
設備においては、原子炉圧力容器ベント系と原子炉圧力
容器ヘッドスプレイ系を利用した分岐ベント系とによ
り、原子炉圧力容器頂部付近への非凝縮性ガスの蓄積を
効率よく確実に防止し、信頼性の高い安定運転を行なう
ことができる。
EFFECTS OF THE INVENTION In the reactor pressure vessel top vent equipment according to the present invention, a reactor pressure vessel vent system and a branch vent system utilizing a reactor pressure vessel head spray system are provided to the vicinity of the reactor pressure vessel top. Accumulation of non-condensable gas can be prevented efficiently and reliably, and reliable and stable operation can be performed.

【0082】また、原子炉圧力容器ヘッドスプレイ系を
原子炉隔離時冷却設備の注入配管と兼用させた場合で
も、原子炉通常運転時に原子炉圧力容器の頂部付近への
非凝縮性ガスの蓄積を原子炉圧力容器ベント系と分岐ベ
ント系の協働作用により未然にかつ確実に防止するとと
もに、原子炉隔離時冷却設備の動作時における注入冷却
機能を損なうことなく、注入冷却機能を充分に発揮、維
持することができる。
Even when the reactor pressure vessel head spray system is also used as the injection pipe of the reactor isolation cooling equipment, non-condensable gas is accumulated in the vicinity of the top of the reactor pressure vessel during normal operation of the reactor. By the cooperation of the reactor pressure vessel vent system and the branch vent system, it prevents it in advance and surely, and fully demonstrates the injection cooling function without impairing the injection cooling function during operation of the reactor isolation cooling system, Can be maintained.

【0083】さらに、原子炉圧力容器ベント系では排気
処理できない部位の非凝縮性ガスの排気処理を分岐ベン
ト系で効率よく、有効的に行なうことができ、原子炉圧
力容器頂部廻りに非凝縮性ガスが蓄積するのを未然にか
つ確実に防止できる。
Further, the branch vent system can efficiently and effectively perform the exhaust process of the non-condensable gas in the part which cannot be exhausted by the reactor pressure vessel vent system, and the non-condensable property is provided around the top of the reactor pressure container. It is possible to prevent gas from accumulating in advance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る原子炉圧力容器頂部ベント設備の
第1実施形態を示す概略的な系統図。
FIG. 1 is a schematic system diagram showing a first embodiment of a reactor pressure vessel top vent facility according to the present invention.

【図2】本発明に係る原子炉圧力容器頂部ベント設備の
第2実施形態を示す概略的な系統図。
FIG. 2 is a schematic system diagram showing a second embodiment of a reactor pressure vessel top vent facility according to the present invention.

【図3】本発明に係る原子炉圧力容器頂部ベント設備の
第3実施形態を示す概略的な系統図。
FIG. 3 is a schematic system diagram showing a third embodiment of a reactor pressure vessel top vent facility according to the present invention.

【図4】本発明に係る原子炉圧力容器頂部ベント設備の
第4実施形態を示す概略的な系統図。
FIG. 4 is a schematic system diagram showing a fourth embodiment of a reactor pressure vessel top vent facility according to the present invention.

【図5】従来の原子力発電所の気体処理設備の概略的な
系統図。
FIG. 5 is a schematic system diagram of a gas treatment facility of a conventional nuclear power plant.

【符号の説明】[Explanation of symbols]

20,20A,20B,20C 原子炉圧力容器頂部ベ
ント設備 21 原子炉格納容器(PCV) 22 原子炉圧力容器(RPV) 23 炉心 24 原子炉冷却水(液相部) 25 気相部(蒸気相部) 27 主蒸気管 28 蒸気タービン 29a,29b 主蒸気隔離弁 30 原子炉圧力容器ベント系(RPVベント系) 31 原子炉圧力容器ヘッドスプレイ系(RPVヘッド
スプレイ系) 32 分岐ベント系 33 原子炉圧力容器ベント配管(RPVベント配管) 34 原子炉圧力容器ヘッドベントノズル(RPVヘッ
ドベントノズル) 35 電動弁(遠隔操作弁) 36 原子炉圧力容器ヘッドスプレイノズル(RPVヘ
ッドスプレイノズル) 37 ドライウェル 38 原子炉圧力容器ヘッドスプレイ配管(RPVヘッ
ドスプレイ配管) 39 逆止弁 40 ベント分岐配管 41 電動弁(遠隔操作弁) 43 原子炉隔離時冷却設備(RCIC) 44a,44b 原子炉格納容器隔離弁(PCV隔離
弁) 45,50,55 分岐ベント系 46,51,56 ベント分岐配管 52,58 電動弁(遠隔操作弁) 57 オリフィス
20, 20A, 20B, 20C Reactor pressure vessel top vent equipment 21 Reactor containment vessel (PCV) 22 Reactor pressure vessel (RPV) 23 Core 24 Reactor cooling water (liquid phase portion) 25 Gas phase portion (steam phase portion) ) 27 main steam pipe 28 steam turbines 29a, 29b main steam isolation valve 30 reactor pressure vessel vent system (RPV vent system) 31 reactor pressure vessel head spray system (RPV head spray system) 32 branch vent system 33 reactor pressure vessel Vent piping (RPV vent piping) 34 Reactor pressure vessel head vent nozzle (RPV head vent nozzle) 35 Motorized valve (remotely operated valve) 36 Reactor pressure vessel head spray nozzle (RPV head spray nozzle) 37 Dry well 38 Reactor pressure Container head spray piping (RPV head spray piping) 39 Check valve 40 Vent Branch piping 41 Motorized valve (remote control valve) 43 Reactor isolation cooling equipment (RCIC) 44a, 44b Reactor containment vessel isolation valve (PCV isolation valve) 45, 50, 55 Branch vent system 46, 51, 56 Vent branch piping 52,58 Electric valve (remote control valve) 57 Orifice

フロントページの続き (72)発明者 塩入 章夫 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内Continued front page    (72) Inventor Akio Shioiri             8th Shinsugita Town, Isogo Ward, Yokohama City, Kanagawa Prefecture             Ceremony company Toshiba Yokohama office

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 原子炉圧力容器上部の原子炉圧力容器ヘ
ッドスプレイノズルに冷却水を供給する原子炉圧力容器
ヘッドスプレイ系と、原子炉運転時に発生する非凝縮性
ガスを主蒸気管に導く原子炉圧力容器ベント系とを備え
た原子炉圧力容器において、 前記原子炉圧力容器ヘッドスプレイ系には、原子炉圧力
容器ヘッドスプレイ配管上に設けられた逆止弁の原子炉
圧力容器側から分岐される分岐ベント系を備え、この分
岐ベント系は前記原子炉圧力容器ベント系とともに原子
炉圧力容器内で発生した非凝縮性ガスを主蒸気管側に導
くように構成したことを特徴とする原子炉圧力容器頂部
ベント設備。
1. A reactor pressure vessel head spray system for supplying cooling water to a reactor pressure vessel head spray nozzle above a reactor pressure vessel, and an atom for guiding a non-condensable gas generated during reactor operation to a main steam pipe. In a reactor pressure vessel with a reactor pressure vessel vent system, the reactor pressure vessel head spray system is branched from the reactor pressure vessel side of the check valve provided on the reactor pressure vessel head spray pipe. A branch vent system, which is configured to guide the non-condensable gas generated in the reactor pressure vessel to the main steam pipe side together with the reactor pressure vessel vent system. Vent equipment on top of pressure vessel.
【請求項2】 前記分岐ベント系は、原子炉圧力容器ヘ
ッドスプレイ系の原子炉圧力容器ヘッドスプレイ配管か
ら分岐されるベント分岐配管を備え、このベント分岐配
管は途中に遠隔操作される開閉弁を介して主蒸気管側に
接続された請求項1に記載の原子炉圧力容器頂部ベント
設備。
2. The branch vent system comprises a vent branch pipe branched from a reactor pressure vessel head spray pipe of a reactor pressure vessel head spray system, and the vent branch pipe has an on-off valve which is remotely operated on the way. The reactor pressure vessel top vent equipment according to claim 1, which is connected to the main steam pipe side through the vent pipe.
【請求項3】 前記分岐ベント系は、原子炉圧力容器ヘ
ッドスプレイ系の原子炉圧力容器ヘッドスプレイ配管か
ら分岐されるベント分岐配管を備え、このベント分岐配
管は原子炉圧力容器ベント系の原子炉圧力容器ベント配
管に、この原子炉圧力容器ベント配管に設けられた開閉
弁の上流側で接続された請求項1記載の原子炉圧力容器
頂部ベント設備。
3. The branch vent system comprises a vent branch pipe branched from a reactor pressure vessel head spray pipe of a reactor pressure vessel head spray system, and the vent branch pipe is a reactor of the reactor pressure vessel vent system. The reactor pressure vessel top vent facility according to claim 1, which is connected to the pressure vessel vent pipe on the upstream side of an on-off valve provided in the reactor pressure vessel vent pipe.
【請求項4】 前記分岐ベント系は、原子炉圧力容器ヘ
ッドスプレイ系の原子炉圧力容器ヘッドスプレイ配管か
ら分岐されるベント分岐配管を備え、このベント分岐配
管は下流側が原子炉圧力容器ベント系の原子炉圧力容器
ベント配管に接続される一方、上記ベント分岐配管の途
中に遠隔操作される開閉弁を設けた請求項1記載の原子
炉圧力容器頂部ベント設備。
4. The branch vent system comprises a vent branch pipe branched from a reactor pressure vessel head spray pipe of a reactor pressure vessel head spray system, and this vent branch pipe has a downstream side of the reactor pressure vessel vent system. The reactor pressure vessel top vent equipment according to claim 1, wherein an on-off valve that is remotely operated is provided in the middle of the vent branch pipe while being connected to the reactor pressure vessel vent pipe.
【請求項5】 前記分岐ベント系は、原子炉圧力容器ヘ
ッドスプレイ系の原子炉圧力容器ヘッドスプレイ配管か
ら分岐されるベント分岐配管を備え、この分岐配管は下
流側が原子炉圧力容器ベント系の原子炉圧力容器ベント
配管に接続される一方、上記ベント分岐配管の途中に遠
隔操作される開閉弁とオリフィスを設けた請求項1記載
の原子炉圧力容器頂部ベント設備。
5. The branch vent system comprises a vent branch pipe branched from a reactor pressure vessel head spray pipe of a reactor pressure vessel head spray system, and this branch pipe has a downstream side of an atom of the reactor pressure vessel vent system. The reactor vent vessel top venting facility according to claim 1, wherein the vent valve top pipe is connected to the reactor pressure vessel vent pipe, and a remotely operated opening / closing valve and an orifice are provided in the middle of the vent branch pipe.
【請求項6】 前記原子炉圧力容器ヘッドスプレイ系に
は、原子炉圧力容器ヘッドスプレイ配管の原子炉格納容
器内側および外側に原子炉格納容器隔離弁が備えられる
一方、上記原子炉圧力容器ヘッドスプレイ配管は原子炉
隔離時冷却設備の注入配管を兼ねるように構成した請求
項1ないし5のいずれかに記載の原子炉圧力容器頂部ベ
ント設備。
6. The reactor pressure vessel head spray system comprises reactor containment vessel isolation valves inside and outside the reactor containment vessel of the reactor pressure vessel head spray pipe, while the reactor pressure vessel head spray system is provided. The reactor pressure vessel top venting equipment according to any one of claims 1 to 5, wherein the piping is configured so as to also serve as an injection piping of the reactor isolation cooling equipment.
【請求項7】 前記分岐ベント系のベント分岐配管に設
けられる開閉弁は、原子炉圧力容器ヘッドスプレイ系の
原子炉格納容器隔離弁の開許可信号で閉鎖されるように
構成した請求項3、4または5に記載の原子炉圧力容器
頂部ベント設備。
7. The on-off valve provided in the vent branch pipe of the branch vent system is configured to be closed by an opening permission signal of the reactor containment isolation valve of the reactor pressure vessel head spray system. The reactor vent vessel top vent facility according to 4 or 5.
JP2002118377A 2002-04-19 2002-04-19 Reactor pressure vessel top vent facility Expired - Lifetime JP4131914B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002118377A JP4131914B2 (en) 2002-04-19 2002-04-19 Reactor pressure vessel top vent facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002118377A JP4131914B2 (en) 2002-04-19 2002-04-19 Reactor pressure vessel top vent facility

Publications (2)

Publication Number Publication Date
JP2003315482A true JP2003315482A (en) 2003-11-06
JP4131914B2 JP4131914B2 (en) 2008-08-13

Family

ID=29535286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002118377A Expired - Lifetime JP4131914B2 (en) 2002-04-19 2002-04-19 Reactor pressure vessel top vent facility

Country Status (1)

Country Link
JP (1) JP4131914B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100288848A1 (en) * 2009-05-15 2010-11-18 Kabushiki Kaisha Toshiba Head spray system of reactor pressure vessel
KR101479001B1 (en) * 2013-06-11 2015-01-05 한국원자력연구원 Gas removal system of a passive residual heat removal system
JP2017044645A (en) * 2015-08-28 2017-03-02 日立Geニュークリア・エナジー株式会社 Cooling device at time of reactor isolation
CN116344074A (en) * 2023-01-03 2023-06-27 中国原子能科学研究院 Top shield structure for reactor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100288848A1 (en) * 2009-05-15 2010-11-18 Kabushiki Kaisha Toshiba Head spray system of reactor pressure vessel
JP2010266369A (en) * 2009-05-15 2010-11-25 Toshiba Corp Head spray system for reactor pressure vessel
KR101479001B1 (en) * 2013-06-11 2015-01-05 한국원자력연구원 Gas removal system of a passive residual heat removal system
JP2017044645A (en) * 2015-08-28 2017-03-02 日立Geニュークリア・エナジー株式会社 Cooling device at time of reactor isolation
CN116344074A (en) * 2023-01-03 2023-06-27 中国原子能科学研究院 Top shield structure for reactor
CN116344074B (en) * 2023-01-03 2023-10-27 中国原子能科学研究院 Top shield structure for reactor

Also Published As

Publication number Publication date
JP4131914B2 (en) 2008-08-13

Similar Documents

Publication Publication Date Title
US20030058981A1 (en) Method of decontaminating by ozone and a device thereof
US20140254738A1 (en) Alternative air supply and exhaust port for air-operated valve
JP2003315482A (en) Ventilation facility at top part of reactor pressure vessel
JP2003329794A (en) Vent device for top of reactor pressure vessel
JP5058016B2 (en) Non-condensable gas accumulation combustion prevention system
JP3213076B2 (en) Apparatus and method for low pressure coolant injection correction for boiling water reactors
JP4434436B2 (en) Operation method of boiling water nuclear power plant
KR101696369B1 (en) Tritium Removal System in Exhaust Line of Nuclear Power Plant
JP4086269B2 (en) Gas treatment facility and gas treatment method for nuclear power plant
JP6118231B2 (en) Gas supply device and air or nitrogen supply device of nuclear power plant
JP2004012145A (en) Cumulative combustion preventing system for noncondensing gas
JPH08201561A (en) Safety system reactor container
JPS5928279B2 (en) Main condenser
KR102414701B1 (en) Apparatus for reducing the release of Iodine to the atmosphere under severe accident
JP2023000744A (en) Radioactive material treatment device and reactor facility
JPS6247279B2 (en)
JP2815424B2 (en) Radioactive gas waste treatment equipment
JP2008122419A (en) Prevention system of accumulated combustion of noncondensable gas
JPH01232294A (en) Spray system driven by storage container vent gas turbine
Cheng et al. The Comparative Advantages of CAP1400 Nuclear Power Plant Passive Safety System
JPS61251795A (en) Radioactive gas waste processor
JPH10115696A (en) Method for stopping injection of hydrogen-oxygen of nuclear power plant and equipment for injection of hydrogen-oxygen for emergency
JPH08278386A (en) Reactor cooling system operation method and reactor cooling system equipment
JPH0255997A (en) Device for treating radioactive gaseous waste
CN116313174A (en) Pressurized water reactor nuclear power plant waste heat discharging system and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080520

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080529

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4131914

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

EXPY Cancellation because of completion of term