JP2003315177A - Internal stress measuring method - Google Patents

Internal stress measuring method

Info

Publication number
JP2003315177A
JP2003315177A JP2002120315A JP2002120315A JP2003315177A JP 2003315177 A JP2003315177 A JP 2003315177A JP 2002120315 A JP2002120315 A JP 2002120315A JP 2002120315 A JP2002120315 A JP 2002120315A JP 2003315177 A JP2003315177 A JP 2003315177A
Authority
JP
Japan
Prior art keywords
crystal
internal stress
epoxy resin
sealing
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002120315A
Other languages
Japanese (ja)
Inventor
Yoshinori Nishitani
佳典 西谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2002120315A priority Critical patent/JP2003315177A/en
Publication of JP2003315177A publication Critical patent/JP2003315177A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an internal stress measuring method that can accurately measure an internal stress caused by an epoxy resin composition acting on a crystal in a molding. <P>SOLUTION: The internal stress measuring method, which is for a molding using an epoxy resin composition including no inorganic fillers with a crystal structure, and sealing in a crystal, computes an internal stress acting on the crystal in the molding from a difference between diffraction angles obtained when the crystal is irradiated with X rays before and after the sealing. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、内部応力の測定方
法に関するものである。 【0002】 【従来の技術】近年の電子機器の小型化、軽量化、高性
能化の市場動向において、半導体素子の高集積化が年々
進み、半導体素子のサイズは大きくなり配線は微細化し
ている。この様な半導体素子をエポキシ樹脂組成物で封
止された半導体装置の場合、エポキシ樹脂組成物の硬化
物である封止層が半導体素子に直接接触するため、温度
サイクルによるエポキシ樹脂組成物の硬化物の膨張、収
縮によって歪み応力が発生し、配線のずれやボンディン
グワイヤーの切断、半導体素子の破壊等の問題が生じ
る。このため、半導体装置内の半導体素子に作用する内
部応力を正確に測定し、解析して前記のような問題点を
解決できるエポキシ樹脂組成物の開発を促進する必要が
ある。 【0003】従来、半導体装置内の半導体素子に作用す
るエポキシ樹脂組成物に起因する内部応力は、圧電素子
を半導体素子と同様にエポキシ樹脂組成物で封止し、封
止前後の圧電素子の抵抗値を測定し、抵抗値の変化から
内部応力を算出する方法があったが、圧電素子は非常に
デリケートであり、圧電素子を封止する際の作業工程等
に大きく影響されるため、得られた結果は再現性に乏し
いものであった。又、他の方法として、半導体素子の反
りから有限要素法によって計算機シミュレーションによ
って応力を求める方法があったが、理想的な系における
計算結果しか得られないため、参考値として用いること
しかできなかった。このため、エポキシ樹脂組成物によ
り封止された半導体素子に作用する内部応力を正確に測
定する方法が望まれていた。 【0004】 【発明が解決しようとする課題】本発明は、成形品内の
結晶体に作用するエポキシ樹脂組成物に起因する内部応
力を正確に測定できる内部応力の測定方法を提供するも
のである。 【0005】 【課題を解決するための手段】本発明は、結晶構造を有
する無機充填材を含まないエポキシ樹脂組成物を用い、
結晶体を封止してなる成形品の内部応力の測定方法にお
いて、X線を封止前後の結晶体に照射して得られる回折
角の差から成形品内の結晶体に作用する内部応力を算出
することを特徴とする内部応力の測定方法である。 【0006】 【発明の実施の形態】本発明での結晶体とは、シリコン
ウェハーを切断した切片及び半導体素子のことを指す。
成形品とは、前記結晶体を封止したもので、半導体装置
も含まれる。本発明で用いるX線は、Co線、Fe線、
Cr線、Mo線等のX線の内で回折現象を生じるものな
らば、特に線種を限定するものではない。X線の発生装
置としては、特性X線のみ照射できるものでも、大型加
速器のような放射光を発生させるものでも構わないが、
成形品の封止層を透過し、回折光を検出しなければなら
ないことから発生出力の大きいX線発生装置で、かつ波
長が短いMo線等のX線種が好ましい。 【0007】本発明でのX線の回折角の測定方法として
は、結晶体が珪素単結晶であることから、並傾法、側傾
法のいずれでもよい。又X線の入射方向によって、入射
角固定法と面法線固定法のいずれでもよく、結晶体の結
晶構造を測定できる方法ならば、特に限定しない。 【0008】本発明で封止に用いるエポキシ樹脂組成物
は、通常半導体封止用に用いられているエポキシ樹脂、
フェノール樹脂、硬化促進剤及び結晶構造を有する無機
充填材を含まない無機充填材を必須成分とするものであ
る。結晶構造を有する無機充填材が含まれていると、内
部応力を測定する結晶体以外の個所でX線回折が起こ
り、正確な回折角の測定ができなくなるので、無機充填
材としては非晶質のものを用いる必要がある。更にエポ
キシ樹脂組成物の硬化物、即ち成形品の封止層には、酸
化アンチモン等のX線回折及び散乱を生ずる物質を含ま
ず、X線を透過するものでなければならない。 【0009】本発明での成形品内の結晶体に作用する内
部応力は、以下のようにして算出する。封止する前の結
晶体にX線を照射して、X線ディフラクトメーターによ
りX線の回折角θ0を測定し、前記結晶体をエポキシ樹
脂組成物で封止した成形品にX線を、同様に照射し、X
線ディフラクトメーターによりX線の回折角θを測定し
た。回折角θと回折角θ0との差をΔθ(=θ−θ0)と
する。封止前後における回折角の差が求められるので、
以下の計算式に基づき成形品内の結晶体の表面近傍にお
ける内部応力σを求める。 内部応力σ={E/2υ}×εhkl={E/2υ}/T
anθ0×Δθ ここで、Eは結晶体のヤング率、υは結晶体のポアソン
比、εhklは結晶体の結晶面間隔の歪みを表す。上式右
辺はεhklをX線による回折角を用いて式変形したもの
であり、金属材料等の結晶構造を測定する際は上式右辺
を用いて応力を求めることが一般的である(金原 粲
著、応用物理、30巻、496頁、及び日本材料学会
編、X線応力測定法標準、14頁)。エポキシ樹脂組成
物で封止した後の成形品内の結晶体は、結晶面間隔が縮
むことが多いので、Δθ及び応力は負の値を取り、圧縮
応力がかかっていることがわかる。 【0010】成形品としての半導体装置の種類として
は、例えばQFP、TQFP、BGA等が挙げられる
が、これらに限定されるものではない。なお、薄い半導
体装置の方が封止層が薄く、X線を透過しやすいため、
回折光を検出する際に回折強度が強くなることより測定
に有利である。 【0011】 【実施例】以下に、本発明の実施例を示すが、これらに
限定されるものではない。 実施例 160pLQFP用の銅フレーム上に、銀ペーストを介
してシリコンウェハー(単結晶)を7mm角に切断した
切片を搭載した後、下記のエポキシ樹脂組成物を用いて
金型温度175℃、注入圧力95Kg/cm2、硬化時
間120秒間で成形・封止し成形品を得た。Mo線(X
線の種類)を封止前後のものに照射し回折角を測定し、
前記式に基づき内部応力を計算した。再現性を確認する
ために5個の成形品を用いて行った。用いたシリコンウ
ェハーのヤング率は2.04×106Kg/cm2、ポア
ソン比は0.26である。結果を表1に示す。 球状溶融シリカ(非晶質) 825重量部 ビフェニル型エポキシ樹脂(ジャパンエポキシレジン(株)・製 YX400 0H、融点105℃、エポキシ当量195) 78重量部 フェノールアラルキル樹脂(三井化学(株)・製 XLC−LL、軟化点79 ℃、水酸基当量175) 70重量部 1,8−ジアザビシクロ(5,4,0)ウンデセン−7(以下、DBUという ) 2重量部 カルナバワックス 2重量部 カーボンブラック 3重量部 【0012】比較例 圧電素子による応力測定を行った。160pLQFP用
の銅フレーム上に、銀ペーストを介して3mm角の圧電
素子を搭載し、圧電素子の結晶方向に沿った方向の抵抗
値と結晶方向に対して垂直な方向の抵抗値を測定した。
その後、圧電素子表面の配線ポイントからの金線ワイヤ
ーボンディングにより、圧電素子と銅フレームとを導通
させた。次に、前記エポキシ樹脂組成物を用いて、金型
温度175℃、注入圧力95Kg/cm2、硬化時間1
20秒間で成形・封止し、成形品を得た。成形品の銅フ
レーム上の配線から圧電素子の結晶縦方向と横方向の抵
抗値を測定し、封止前後の圧電素子の抵抗値の変化から
圧電素子に作用する内部応力を求めた。再現性を確認す
るために5個の成形品を用いて行った。結果を表1に示
す。 【0013】 【表1】 【0014】実施例では、内部応力の値は殆どばらつき
がなく、正確に内部応力が測定できていることが判る。
比較例では、内部応力の値はばらつきが大きく、封止後
の抵抗値が無限大のものは、銅フレームと圧電素子間を
つなぐ金線ワイヤーが射出成形中に切断されたと推定さ
れる。 【0015】 【発明の効果】本発明に従うと、成形品内の結晶体に作
用するエポキシ樹脂組成物に起因する内部応力を正確に
測定でき、その結果を解析することによりエポキシ樹脂
組成物による問題点を解決するのに寄与できる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring internal stress. 2. Description of the Related Art In recent years, in the market trend of miniaturization, weight reduction, and high performance of electronic equipment, high integration of semiconductor elements is progressing year by year, and the size of semiconductor elements is increasing and wiring is becoming finer. . In the case of a semiconductor device in which such a semiconductor element is sealed with an epoxy resin composition, since the sealing layer, which is a cured product of the epoxy resin composition, comes into direct contact with the semiconductor element, the epoxy resin composition is cured by a temperature cycle. Strain stress is generated due to expansion and contraction of the object, causing problems such as displacement of wiring, cutting of bonding wires, and destruction of semiconductor elements. For this reason, it is necessary to accurately measure and analyze the internal stress acting on the semiconductor element in the semiconductor device, and to promote the development of an epoxy resin composition that can solve the above-mentioned problems. Conventionally, internal stress caused by an epoxy resin composition acting on a semiconductor element in a semiconductor device is caused by sealing the piezoelectric element with the epoxy resin composition similarly to the semiconductor element, and measuring the resistance of the piezoelectric element before and after sealing. There was a method of measuring the internal stress from the change in the resistance value by measuring the value, but the piezoelectric element is very delicate, and is greatly affected by the work process and the like when sealing the piezoelectric element. The results were poor in reproducibility. Further, as another method, there was a method of obtaining stress by computer simulation from the warpage of a semiconductor element by the finite element method. However, since only a calculation result in an ideal system was obtained, it could only be used as a reference value. . For this reason, there has been a demand for a method of accurately measuring internal stress acting on a semiconductor element sealed with an epoxy resin composition. SUMMARY OF THE INVENTION The present invention provides a method for measuring an internal stress which can accurately measure an internal stress caused by an epoxy resin composition acting on a crystal in a molded article. . [0005] The present invention provides an epoxy resin composition containing a crystalline structure and containing no inorganic filler,
In the method for measuring the internal stress of a molded article obtained by sealing a crystal, the internal stress acting on the crystal within the molded article is determined from the difference in diffraction angle obtained by irradiating the crystal before and after sealing with X-rays. This is a method for measuring internal stress, which is characterized in that it is calculated. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The crystal according to the present invention refers to a slice obtained by cutting a silicon wafer and a semiconductor element.
The molded product is a product obtained by sealing the crystal, and includes a semiconductor device. X-rays used in the present invention include Co lines, Fe lines,
The type of line is not particularly limited as long as a diffraction phenomenon occurs in X-rays such as Cr line and Mo line. The X-ray generator may be one that can emit only characteristic X-rays or one that generates radiation such as a large accelerator.
Since it is necessary to detect the diffracted light through the sealing layer of the molded article, it is preferable to use an X-ray generator having a large generation output and an X-ray type such as Mo ray having a short wavelength. The method of measuring the diffraction angle of X-rays in the present invention may be either the parallel tilt method or the side tilt method since the crystal is a silicon single crystal. Depending on the direction of incidence of X-rays, either the fixed angle of incidence method or the fixed surface normal method may be used. There is no particular limitation as long as the method can measure the crystal structure of the crystal. The epoxy resin composition used for encapsulation in the present invention is an epoxy resin which is usually used for encapsulating a semiconductor,
An inorganic filler which does not contain a phenol resin, a curing accelerator and an inorganic filler having a crystal structure is an essential component. If an inorganic filler having a crystal structure is included, X-ray diffraction occurs at locations other than the crystal where the internal stress is measured, and accurate diffraction angles cannot be measured. Need to be used. Further, the cured product of the epoxy resin composition, that is, the sealing layer of the molded product must be free from substances that cause X-ray diffraction and scattering, such as antimony oxide, and must transmit X-rays. In the present invention, the internal stress acting on the crystal in the molded article is calculated as follows. The crystal before sealing is irradiated with X-rays, the X-ray diffraction angle θ 0 is measured with an X-ray diffractometer, and X-rays are applied to a molded article obtained by sealing the crystal with an epoxy resin composition. Irradiate similarly, X
The diffraction angle θ of the X-ray was measured by a ray diffractometer. The difference between the diffraction angle θ and the diffraction angle θ 0 is defined as Δθ (= θ−θ 0 ). Since the difference in diffraction angle before and after sealing is required,
The internal stress σ in the vicinity of the surface of the crystal in the molded article is obtained based on the following formula. Internal stress σ = {E / 2} × ε hkl = {E / 2} / T
anθ 0 × Δθ Here, E represents the Young's modulus of the crystal, υ represents the Poisson's ratio of the crystal, and ε hkl represents the distortion of the crystal plane spacing of the crystal. The right side of the above equation is obtained by deforming ε hkl using an X-ray diffraction angle, and when measuring the crystal structure of a metal material or the like, it is common to find the stress using the right side of the above equation (Kanehara Jun, Applied Physics, Vol. 30, p. 496, edited by The Society of Materials Science, Japan, X-ray stress measurement standard, p. Since the crystal within the molded article after sealing with the epoxy resin composition often has a reduced crystal plane spacing, Δθ and stress take negative values, indicating that a compressive stress is applied. Examples of the type of the semiconductor device as a molded product include, but are not limited to, QFP, TQFP, and BGA. Note that a thinner semiconductor device has a thinner sealing layer and is easier to transmit X-rays.
When the diffracted light is detected, the diffraction intensity is increased, which is advantageous for the measurement. Examples of the present invention will be described below, but the present invention is not limited to these examples. Example 160 A piece obtained by cutting a silicon wafer (single crystal) into a 7 mm square through a silver paste on a copper frame for 160 pLQFP was mounted, and then a mold temperature of 175 ° C. and an injection pressure using the following epoxy resin composition were used. Molding and sealing were performed at 95 Kg / cm 2 for a curing time of 120 seconds to obtain a molded product. Mo line (X
Line type) to irradiate the one before and after sealing, measure the diffraction angle,
The internal stress was calculated based on the above equation. In order to confirm reproducibility, the test was performed using five molded articles. The used silicon wafer had a Young's modulus of 2.04 × 10 6 Kg / cm 2 and a Poisson's ratio of 0.26. Table 1 shows the results. Spherical fused silica (amorphous) 825 parts by weight Biphenyl type epoxy resin (YX4000H, manufactured by Japan Epoxy Resin Co., Ltd., melting point 105 ° C., epoxy equivalent 195) 78 parts by weight Phenol aralkyl resin (Mitsui Chemicals, Inc. XLC) -LL, softening point 79 ° C, hydroxyl equivalent 175) 70 parts by weight 1,8-diazabicyclo (5,4,0) undecene-7 (hereinafter referred to as DBU) 2 parts by weight Carnauba wax 2 parts by weight Carbon black 3 parts by weight [ Comparative Example A stress was measured using a piezoelectric element. A 3 mm square piezoelectric element was mounted on a copper frame for 160 pL QFP via a silver paste, and the resistance of the piezoelectric element in the direction along the crystal direction and the resistance in the direction perpendicular to the crystal direction were measured.
Thereafter, the piezoelectric element was electrically connected to the copper frame by gold wire bonding from a wiring point on the surface of the piezoelectric element. Next, using the epoxy resin composition, a mold temperature of 175 ° C., an injection pressure of 95 kg / cm 2 , and a curing time of 1
Molding and sealing were performed for 20 seconds to obtain a molded product. The crystal longitudinal and lateral resistances of the piezoelectric element were measured from the wiring on the copper frame of the molded article, and the internal stress acting on the piezoelectric element was determined from the change in the resistance of the piezoelectric element before and after sealing. In order to confirm reproducibility, the test was performed using five molded articles. Table 1 shows the results. [Table 1] In the example, it can be seen that the value of the internal stress hardly varies, and the internal stress can be accurately measured.
In the comparative example, when the value of the internal stress varies greatly and the resistance value after sealing is infinite, it is estimated that the gold wire connecting the copper frame and the piezoelectric element was cut during the injection molding. According to the present invention, the internal stress caused by the epoxy resin composition acting on the crystal in the molded article can be accurately measured, and the result is analyzed to solve the problems caused by the epoxy resin composition. Can help resolve the point.

Claims (1)

【特許請求の範囲】 【請求項1】 結晶構造を有する無機充填材を含まない
エポキシ樹脂組成物を用い、結晶体を封止してなる成形
品の内部応力の測定方法において、X線を封止前後の結
晶体に照射して得られる回折角の差から成形品内の結晶
体に作用する内部応力を算出することを特徴とする内部
応力の測定方法。
Claims: 1. A method for measuring an internal stress of a molded product obtained by sealing a crystal using an epoxy resin composition containing no inorganic filler having a crystal structure, wherein the X-ray is sealed. A method for measuring internal stress, comprising calculating an internal stress acting on a crystal in a molded article from a difference in diffraction angle obtained by irradiating the crystal before and after stopping.
JP2002120315A 2002-04-23 2002-04-23 Internal stress measuring method Pending JP2003315177A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002120315A JP2003315177A (en) 2002-04-23 2002-04-23 Internal stress measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002120315A JP2003315177A (en) 2002-04-23 2002-04-23 Internal stress measuring method

Publications (1)

Publication Number Publication Date
JP2003315177A true JP2003315177A (en) 2003-11-06

Family

ID=29536574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002120315A Pending JP2003315177A (en) 2002-04-23 2002-04-23 Internal stress measuring method

Country Status (1)

Country Link
JP (1) JP2003315177A (en)

Similar Documents

Publication Publication Date Title
Kelly et al. Importance of molding compound chemical shrinkage in the stress and warpage analysis of PQFPs
US7170188B2 (en) Package stress management
Nguyen Reliability of postmolded IC packages
US20070222472A1 (en) Carbon nanotube-based stress sensor
US20150069600A1 (en) Embedded Silver Nanomaterials into Die Backside to Enhance Package Performance and Reliability
Edwards et al. Test structure methodology of IC package material characterization
Nguyen et al. Effects of configuration on plastic package stresses
JPH11147936A (en) Epoxy resin composition for semiconductor sealing and semiconductor device
JP2003315177A (en) Internal stress measuring method
JP3006617B2 (en) Insulating adhesive composition for circuit board, hybrid integrated circuit board, and hybrid integrated circuit
Hu et al. Die cracking in flip-chip-on-board assembly
JP3303162B2 (en) Semiconductor device and manufacturing method thereof
JP4950010B2 (en) Manufacturing method of epoxy resin composition for semiconductor encapsulation and manufacturing method of semiconductor device
US6211277B1 (en) Encapsulating material and LOC structure semiconductor device using the same
Chong et al. Reliability analyses for new improved high performance flip chip BGA packages
Lan et al. Delamination and cracking effects in quad flat package
Tan et al. Development of environmental friendly (green), thermally enhanced mold compound (TEMC) for advanced packages
JP2023007647A (en) Method for estimating target characteristics of semiconductor package, method for manufacturing encapsulating resin composition, and method for manufacturing semiconductor package
JP4765159B2 (en) Epoxy resin composition and semiconductor device
KR100543092B1 (en) Epoxy Molding Compound for Encapsulation of Semiconductor Devices
JPH02168636A (en) Resin system adhesive agent for insulating die bonding
JP5346463B2 (en) Semiconductor device using epoxy resin composition for sealing
JPH0745960Y2 (en) Resin-sealed semiconductor device
JP5538697B2 (en) Semiconductor device test method
US20230102007A1 (en) Antenna assemblies