JP2003314897A - Hot water storage type water heater - Google Patents

Hot water storage type water heater

Info

Publication number
JP2003314897A
JP2003314897A JP2002121760A JP2002121760A JP2003314897A JP 2003314897 A JP2003314897 A JP 2003314897A JP 2002121760 A JP2002121760 A JP 2002121760A JP 2002121760 A JP2002121760 A JP 2002121760A JP 2003314897 A JP2003314897 A JP 2003314897A
Authority
JP
Japan
Prior art keywords
hot water
temperature
water storage
storage tank
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002121760A
Other languages
Japanese (ja)
Other versions
JP3869749B2 (en
Inventor
Yoshio Muto
好夫 武藤
Hiroshi Nakayama
浩 中山
Takuyuki Yajima
卓幸 矢島
Tadashi Ohata
正 大畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Electric Air Conditioning Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Electric Air Conditioning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Electric Air Conditioning Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2002121760A priority Critical patent/JP3869749B2/en
Publication of JP2003314897A publication Critical patent/JP2003314897A/en
Application granted granted Critical
Publication of JP3869749B2 publication Critical patent/JP3869749B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent freezing of piping in a hot water storage type water heater, while minimizing increase in the power consumption of the hot water storage type water heater. <P>SOLUTION: When an outside air temperature drops to cause a detection temperature of any of an inlet temperature sensor 28, an outlet temperature sensor 29 and a hot water storage tank inlet temperature sensor 30 to be a first set temperature (5°C), a microcomputer 40 is operated to hold a water intake valve 20 open, open a return valve 26, close a flow regulating valve 24 and operate a circulating pump 19. The operation of the circulating pump 19 circulates low temperature water of a low temperature layer stored in a lower layer 10a in a lower section of a hot water storage tank 10 back to the lower layer 10a in the hot water storage tank 10, through the water intake valve 20, the circulating pump 19, a feed pipe 18, a refrigerant-to-water heat exchanger 2 of a heat pump unit 100, a first return pipe 23, a second return pipe 25 and the return valve 26, to thereby prevent freezing of the feed pipe 18 and the first return pipe 23. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、冷媒の凝縮熱を利
用したヒートポンプ式給湯機等の貯湯式給湯機に関す
る。詳述すれば、貯湯槽を備えた貯湯式給湯機の配管内
の水の凍結防止に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hot water storage type water heater such as a heat pump type water heater which utilizes the heat of condensation of a refrigerant. More specifically, the present invention relates to prevention of freezing of water in a pipe of a hot water storage type water heater having a hot water storage tank.

【0002】[0002]

【従来の技術】従来、ヒートポンプ式給湯機等の貯湯式
給湯機では、循環ポンプを使用して貯湯槽内の水をヒー
トポンプ、燃料電池などの熱源との間で循環させ、給湯
用の温水を生成して貯湯槽内に貯湯する。
2. Description of the Related Art Conventionally, in hot water storage type water heaters such as heat pump type water heaters, a circulating pump is used to circulate the water in the hot water storage tank between a heat source such as a heat pump and a fuel cell to supply hot water for hot water supply. Generate and store hot water in the hot water storage tank.

【0003】そして、上記貯湯式給湯機では、例えば冬
季に外気温度が低下すると、貯湯槽と熱源との間に接続
された循環用の配管内の水が凍結し、給湯ができなくな
る虞があった。また、配管内の水が凍結すると、凍結時
の膨張により配管が破れる、或いは配管に亀裂が入り、
水漏れが発生する虞があり、この水漏れのために水の循
環が不十分になり、熱源などの機器が故障する原因とな
っていた。
In the hot water storage water heater, for example, when the outside air temperature decreases in winter, the water in the circulation pipe connected between the hot water storage tank and the heat source may freeze, and hot water may not be supplied. It was Also, if the water in the pipe freezes, the pipe may break due to expansion during freezing, or the pipe may crack.
There is a risk of water leakage, and this water leakage causes insufficient water circulation, which causes equipment such as heat sources to malfunction.

【0004】[0004]

【発明が解決しようとする課題】上記貯湯式給湯機の配
管内での凍結を予防するために外気温度が低下したとき
にヒートポンプユニットなどの熱源を運転し、前記配管
に温水を循環させた場合には、凍結予防のための熱源の
運転に電力を消費するため、年間のエネルギー消費効率
であるCOPが低下するという問題が発生する。また、
電力使用量が増加し、使用者の電力料金負担が増加する
という問題が発生する。
When a heat source such as a heat pump unit is operated and hot water is circulated in the pipe when the outside air temperature is lowered in order to prevent freezing in the pipe of the hot water storage type water heater. However, since electric power is consumed to operate the heat source for freeze prevention, there is a problem that the annual energy consumption efficiency COP is reduced. Also,
There is a problem that the amount of power used increases and the burden of power charges on the user increases.

【0005】特に、貯湯式給湯機では、電力料金が安い
夜間(例えば午後11時から午前7時まで)の間に熱源
を運転し、貯湯槽内の水を加熱して温度を上昇させて貯
湯しておき、貯湯槽内の温水を電力料金が高い夜間以外
の昼間に使用することで、使用者が負担する電力料金を
抑えている。
In particular, in the hot water storage type water heater, the heat source is operated during the night when the electricity charge is low (for example, from 11:00 pm to 7:00 am) to heat the water in the hot water storage tank to raise the temperature and store hot water. By the way, the hot water in the hot water storage tank is used during the daytime other than the night when the power charge is high, so that the power charge for the user is suppressed.

【0006】しかしながら、昼間に配管の凍結防止のた
めに上記のように熱源を運転すると、電力料金が高い昼
間の電力を消費することになり、使用者の電力料金の負
担が大幅に増加するという問題が発生する。
However, if the heat source is operated as described above in order to prevent the piping from freezing during the daytime, the daytime electricity, which has a high electricity rate, will be consumed, and the burden on the user of the electricity rate will increase significantly. The problem occurs.

【0007】また、凍結防止のための熱源の運転を極力
避けるために、外気温度が低下したときに貯湯槽内の湯
を配管に供給し、配管内で温度低下した水が貯湯槽の上
部に戻されると、貯湯槽内に貯留している高温水と低温
水との温度層のバランスが崩れ、貯湯槽内の温水が全体
的に均一化され、高温水を供給することができなくなる
という問題が発生する。
Further, in order to avoid the operation of the heat source for preventing freezing as much as possible, the hot water in the hot water tank is supplied to the pipe when the outside air temperature drops, and the water whose temperature has dropped in the pipe reaches the upper part of the hot water tank. When returned, the balance of the temperature layers of the high temperature water and the low temperature water stored in the hot water storage tank is lost, and the hot water in the hot water storage tank is made uniform overall, making it impossible to supply high temperature water. Occurs.

【0008】そこで本発明は、貯湯式給湯機の電力消費
の上昇を極力抑えつつ、配管の凍結を予防し、また貯湯
槽内の温度層を維持できるようにすることを目的とす
る。
Therefore, an object of the present invention is to prevent freezing of piping and to maintain a temperature layer in a hot water storage tank while suppressing an increase in power consumption of a hot water storage water heater as much as possible.

【0009】[0009]

【課題を解決するための手段】このため第1の発明は、
循環ポンプにより水を貯湯槽と加熱用熱源との間を循環
させると共に前記貯湯槽から出湯可能とする給湯回路と
を備えた貯湯式給湯機において、外気温度を検出する温
度検出器と、該温度検出器の検出温度が低下したときに
循環ポンプを運転開始させる設定温度を格納した記憶手
段と、該温度検出器の検出温度が前記記憶手段に記憶さ
れている前記設定温度まで低下したときには前記循環ポ
ンプの運転を開始させる制御手段とを備えたことを特徴
とする。
Therefore, the first invention is
In a hot water storage type hot water supply device having a hot water supply circuit that circulates water between a hot water storage tank and a heat source for heating by a circulation pump, and a hot water supply circuit capable of discharging hot water from the hot water storage tank, a temperature detector for detecting the outside air temperature and the temperature. Storage means for storing a set temperature for starting operation of the circulation pump when the detected temperature of the detector decreases; and the circulation when the detected temperature of the temperature detector has decreased to the set temperature stored in the storage means. And a control means for starting the operation of the pump.

【0010】また第2の発明は、循環ポンプにより水を
貯湯槽と加熱用熱源との間を循環させると共に前記貯湯
槽から出湯可能とする給湯回路とを備えた貯湯式給湯機
において、前記貯湯槽と加熱用熱源との間に接続された
配管内の水温を検出する温度検出器と、第1の設定温度
と該第1の設定温度より低い第2の設定温度とを格納し
た記憶手段と、前記温度検出器の検出温度が前記記憶手
段に記憶されている前記第1の設定温度まで低下したと
きには前記循環ポンプの運転を開始させ、前記貯湯槽内
の下部の低温水を前記配管内に循環させ、前記温度検出
器の検出温度が前記記憶手段に記憶されている前記第2
の設定温度まで低下したときには前記循環ポンプの運転
を開始させ前記貯湯槽内の上部の高温水を前記配管内に
循環させる制御手段とを備えたこと特徴とする。
A second aspect of the present invention is a hot water storage type hot water dispenser comprising a hot water supply circuit for circulating water between a hot water storage tank and a heat source for heating by a circulation pump and allowing hot water to be discharged from the hot water storage tank. A temperature detector for detecting a water temperature in a pipe connected between the tank and the heating heat source; and a storage means for storing a first set temperature and a second set temperature lower than the first set temperature. When the temperature detected by the temperature detector has dropped to the first set temperature stored in the storage means, the circulation pump is started to operate, and the low temperature water in the lower portion of the hot water storage tank is introduced into the pipe. The second temperature is circulated, and the temperature detected by the temperature detector is stored in the storage means.
When the temperature falls to the set temperature, the control means starts the operation of the circulation pump to circulate the high temperature water in the upper part of the hot water storage tank in the pipe.

【0011】また第3の発明は、前記温度検出器の検出
温度が前記記憶手段に記憶されている前記第2の設定温
度まで低下し、前記循環ポンプが運転しているときに
は、前記貯湯槽内の上部のから供給され前記配管内を循
環した戻り水を前記貯湯槽の中間層に戻す戻し配管を設
けたこと特徴とする。
According to a third aspect of the invention, when the temperature detected by the temperature detector is lowered to the second set temperature stored in the storage means and the circulation pump is operating, the inside of the hot water tank is A return pipe for returning the return water supplied from the upper part of the above and circulated in the pipe to the intermediate layer of the hot water storage tank is provided.

【0012】[0012]

【発明の実施の形態】本発明の第1の実施の形態を図を
参照して、以下説明する。図1は本発明が適用される貯
湯式給湯機としてのヒートポンプ給湯機の回路説明図
で、このヒートポンプ給湯機は圧縮機にて圧縮された冷
媒と水とを加熱用熱交換器により熱交換させる冷媒回路
を備えた熱源としてのヒートポンプユニット100と、
ヒートポンプユニット100にて温度上昇した高温水を
貯留する貯湯槽などを備えた貯湯槽ユニット200と、
循環ポンプにより水を貯湯槽と前記加熱用熱交換器との
間を循環させると共に前記貯湯槽から出湯可能とする給
湯回路300とを主要構成としている。
BEST MODE FOR CARRYING OUT THE INVENTION A first embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a circuit diagram of a heat pump water heater serving as a hot water storage water heater to which the present invention is applied. This heat pump water heater exchanges heat between a refrigerant compressed by a compressor and water by a heating heat exchanger. A heat pump unit 100 as a heat source including a refrigerant circuit;
A hot water storage tank unit 200 including a hot water storage tank for storing high-temperature water whose temperature has risen in the heat pump unit 100;
A hot water supply circuit 300 that circulates water between the hot water storage tank and the heating heat exchanger by a circulation pump and allows hot water to be discharged from the hot water storage tank is a main component.

【0013】前記ヒートポンプユニット100に設けら
れた冷媒回路は、冷媒を吸入圧縮し高温高圧にする圧縮
機1、冷媒と水とを熱交換させる加熱用の冷媒対水熱交
換器2、電動式の膨張弁3、外気と冷媒との熱交換を行
う室外側熱交換器としての蒸発器4、アキュムレータ5
等を有している。
A refrigerant circuit provided in the heat pump unit 100 includes a compressor 1 which sucks and compresses a refrigerant to make it into a high temperature and high pressure, a refrigerant-to-water heat exchanger 2 for heating for exchanging heat between the refrigerant and water, and an electric type. Expansion valve 3, evaporator 4 as an outdoor heat exchanger for exchanging heat between outside air and refrigerant, accumulator 5
And so on.

【0014】前記貯湯槽ユニット200は、台所で操作
される台所リモコン(リモートコントローラ)7及び風
呂場で操作されるふろリモコン(リモートコントロー
ラ)8が接続された制御基板9及びお湯を貯湯する貯湯
槽10を備え、制御基板9にはヒートポンプ給湯機を制
御する制御手段としてマイクロコンピュータ(以下「マ
イコン」という)40等が搭載される。尚、台所リモコ
ン7及びふろリモコン8には時刻表示装置等が設けられ
ている。
The hot water tank unit 200 is a hot water tank for storing hot water and a control board 9 to which a kitchen remote controller (remote controller) 7 operated in the kitchen and a bath remote controller (remote controller) 8 operated in a bathroom are connected. The control board 9 is provided with a microcomputer (hereinafter referred to as “microcomputer”) 40 and the like as control means for controlling the heat pump water heater. The kitchen remote controller 7 and the bath remote controller 8 are provided with a time display device and the like.

【0015】前記給湯回路300は、前記貯湯槽10に
水道水を供給する逆止弁付き水道減圧弁11、貯湯槽1
0上部からお湯を取出す出湯管12、水道減圧弁11の
出口側から出湯管12に接続された混合弁13に至るバ
イパス管14、出湯管12から分岐して浴槽31ヘ至る
お湯張り管15、該お湯張り管15に接続された流量調
整弁16、前記混合弁13より上流側の出湯管12に接
続される圧力逃がし弁17、貯湯槽10の下端部と前記
冷媒対水熱交換器2の入口側との間に接続された往き管
18、この往き管18の途中に接続されて貯湯槽10か
ら前記冷媒対水熱交換器2に水を供給するための循環ポ
ンプ19、この循環ポンプ19の上流側に接続された開
閉弁(以下、「入水弁」という)20、前記循環ポンプ
19と入水弁20との間の往き管18から分岐して出湯
管12に至る高温水循環用管21、この高温水循環用管
21の途中に接続された開閉弁(以下、「高温弁」とい
う)22、冷媒対水熱交換器2の出口側と貯湯槽10の
上端部との間に接続された第1の戻り管23、この第1
の戻り管23の途中に接続された流量調整手段としての
流量調整弁24、第1の戻り管23の途中から分岐して
貯湯槽10の下部に接続された第2の戻り管25、この
第2の戻り管25の途中に接続された開閉弁(以下、
「戻り弁」という)26を配管接続して構成されてい
る。
The hot water supply circuit 300 includes a water supply pressure reducing valve 11 with a check valve for supplying tap water to the hot water storage tank 10 and the hot water storage tank 1.
0 hot water outlet pipe 12 for drawing hot water from the upper portion, bypass pipe 14 from the outlet side of the water supply pressure reducing valve 11 to the mixing valve 13 connected to the hot water outlet pipe 12, hot water filling pipe 15 branching from the hot water outlet pipe 12 to the bath 31 A flow rate control valve 16 connected to the hot water filling pipe 15, a pressure relief valve 17 connected to the hot water outlet pipe 12 upstream of the mixing valve 13, a lower end of the hot water storage tank 10 and the refrigerant-to-water heat exchanger 2. A forward pipe 18 connected to the inlet side, a circulation pump 19 connected in the middle of the forward pipe 18 to supply water from the hot water storage tank 10 to the refrigerant-to-water heat exchanger 2, and the circulation pump 19 An on-off valve (hereinafter referred to as "water inlet valve") 20 connected to the upstream side of the hot water circulation pipe 21, which branches from a forward pipe 18 between the circulation pump 19 and the water inlet valve 20 to a hot water outlet pipe 12, Connect in the middle of this high-temperature water circulation pipe 21 The on-off valve (hereinafter, "high temperature valve" hereinafter) 22, a first return pipe 23 connected between the upper end portion of the outlet side and the hot water storage tank 10 of the refrigerant-water heat exchanger 2, the first
Flow control valve 24 as a flow control means connected in the middle of the return pipe 23, a second return pipe 25 branched from the middle of the first return pipe 23 and connected to the lower portion of the hot water storage tank 10, An on-off valve (hereinafter,
A "return valve" 26 is connected by piping.

【0016】また、前記冷媒対水熱交換器2の入口側及
び出口側にはそれぞれ外気温度センサとしての温度セン
サ(以下、「入口温度センサ」という)28及び温度セ
ンサ(以下、「出口温度センサ」という)29が設けら
れ、更に貯湯槽ユニット200内の第1の戻り管23の
途中には外気温度センサとしての温度センサ(以下、
「貯湯槽入口温度センサ」という)30が設けられてい
る。
A temperature sensor (hereinafter referred to as "inlet temperature sensor") 28 as an outside air temperature sensor and a temperature sensor (hereinafter referred to as "outlet temperature sensor") are provided on the inlet side and the outlet side of the refrigerant-to-water heat exchanger 2, respectively. 29), and a temperature sensor (hereinafter, referred to as an outside air temperature sensor) in the middle of the first return pipe 23 in the hot water tank unit 200.
A "hot water tank inlet temperature sensor" 30 is provided.

【0017】次に図2の制御ブロック図に基づいて説明
する。貯湯槽ユニット200側の制御基板9に設けられ
たマイコン40は、本ヒートポンプ給湯機の貯湯槽ユニ
ット200に係る動作を統括制御するCPU(セントラ
ル・プロセッシング・ユニット)41、各種データを記
憶する記憶装置としてのRAM(ランダム・アクセス・
メモリ)42、給湯動作及び凍結防止運転の動作に係る
プログラムを格納するROM(リ−ド・オンリー・メモ
リ)43とから構成されている。ROM43には図3に
示したテーブルのような、貯湯槽10内の例えば深夜電
力を使用して深夜に沸き上げるときの最大貯湯量である
最大沸上量、沸き増しを開始する最低貯湯量及び沸き増
しを停止する貯湯量である沸き増し終了の貯湯量が沸き
上げ(沸き増し)制御のモードとしてモード1からモー
ド7まで格納され、また、これらのモードを貯湯量の変
化に基づいて変更するプログラムが設定されている。そ
して、CPU41は前記RAM42に記憶されたデータ
に基づき、前記ROM43に格納されたプログラム及び
上記モードに従い、本ヒートポンプ給湯機の給湯に係る
動作を統括制御する。そして、通常は貯湯槽10内の容
量全てを所定の温度に沸き上げるようにマイコン40は
給湯機を制御する。
Next, description will be given based on the control block diagram of FIG. The microcomputer 40 provided on the control board 9 on the side of the hot water tank unit 200 has a CPU (Central Processing Unit) 41 for centrally controlling the operation of the hot water tank unit 200 of the present heat pump water heater, and a storage device for storing various data. RAM (random access
Memory 42, and a ROM (read only memory) 43 for storing programs related to the hot water supply operation and the freeze prevention operation. The ROM 43 stores the maximum boiling amount, which is the maximum amount of hot water to be boiled in the middle of the night in the hot water tank 10 by using, for example, the midnight power, the minimum amount of hot water to start additional boiling, and the like in the table shown in FIG. The amount of stored hot water at the end of additional heating, which is the amount of hot water to stop the additional heating, is stored as the mode for heating (additional heating) from mode 1 to mode 7, and these modes are changed based on changes in the amount of stored hot water. The program is set. Based on the data stored in the RAM 42, the CPU 41 comprehensively controls the hot water supply operation of the heat pump water heater according to the program stored in the ROM 43 and the mode. Then, normally, the microcomputer 40 controls the water heater so as to boil all the capacity in the hot water storage tank 10 to a predetermined temperature.

【0018】また、台所リモコンCPU7aがマイコン
40に信号線にて接続され、台所リモコンCPU7aに
は浴槽31への給湯時にお湯張りの量を設定するための
沸き上げ量スイッチ7b及び上記モードを切り替えるた
めのモード切替スイッチ7cが接続されている。
Further, the kitchen remote controller CPU 7a is connected to the microcomputer 40 by a signal line, and the kitchen remote controller CPU 7a is provided with a boiling amount switch 7b for setting the amount of hot water filling when hot water is supplied to the bathtub 31 and the above mode. The mode changeover switch 7c is connected.

【0019】また、ヒートポンプユニット100側の制
御手段としてマイクロコンピュータ(以下「マイコン」
という)50は、ヒートポンプユニット100に係る動
作を統括制御するCPU51、各種データを記憶する記
憶する記憶装置としてのRAM52、ヒートポンプユニ
ット100の動作に係るプログラムを格納するROM5
3から構成されている。そして、圧縮機1、膨張弁3、
入口温度センサ28、出口温度センサ29及び貯湯槽入
口温度センサ30がマイコン50に信号線にて接続され
ている。
A microcomputer (hereinafter referred to as "microcomputer") is used as a control means on the heat pump unit 100 side.
50 is a CPU 51 that integrally controls the operation of the heat pump unit 100, a RAM 52 as a storage device that stores various data, and a ROM 5 that stores a program related to the operation of the heat pump unit 100.
It consists of three. Then, the compressor 1, the expansion valve 3,
The inlet temperature sensor 28, the outlet temperature sensor 29, and the hot water tank inlet temperature sensor 30 are connected to the microcomputer 50 by signal lines.

【0020】マイコン40とマイコン50とは信号線5
5にて接続され、入口温度センサ28、出口温度センサ
29及び貯湯槽入口温度センサ30の検出温度はマイコ
ン50及び信号線55を介してマイコン40に送信さ
れ、RAM42に随時記憶される。また、RAM42に
は、後述する低温水の循環による凍結予防運転を開始す
るときの第1の設定温度(例えば5℃)及びこの凍結予
防運転を終了するときの第2の設定温度(例えば10
℃)、高温水の循環による凍結予防運転を開始するとき
の第3の設定温度(例えば2℃)及びこの凍結予防運転
を終了するときの第4の設定温度(例えば10℃)が記
憶されている。
The microcomputer 40 and the microcomputer 50 are connected to the signal line 5
5, the temperatures detected by the inlet temperature sensor 28, the outlet temperature sensor 29, and the hot water tank inlet temperature sensor 30 are transmitted to the microcomputer 40 via the microcomputer 50 and the signal line 55, and are stored in the RAM 42 at any time. Further, in the RAM 42, a first set temperature (for example, 5 ° C.) at the time of starting the freeze preventive operation by circulation of low-temperature water described later and a second set temperature at the end of the freeze preventive operation (for example, 10 ° C.).
℃), a third set temperature (for example, 2 ° C.) when starting the freeze preventive operation by circulating hot water, and a fourth set temperature (for example, 10 ° C.) when ending the freeze preventive operation are stored. There is.

【0021】そして、前記貯湯槽10の容量が、例えば
370リットルであり、貯湯槽10には、湯温検出セン
サTS1、TS2、TS3、TS4、TS5、TS6及
びTS7が貯湯槽10の下部から上部まで上下間隔を存
して設けられ、本給湯機がその沸き上げ可能温度が55
℃までのため、前記各センサの検出湯温が55℃以上の
場合には貯湯槽10内の上端からその位置までは貯湯さ
れており残湯ありと判断する。このとき、検出センサT
S1の配置箇所は残湯量が350リットル、TS2が同
じく300リットル、TS3が250リットル、TS4
が200リットル、TS5が150リットル、TS6が
100リットル、TS7が50リットルの位置である。
The capacity of the hot water storage tank 10 is, for example, 370 liters, and hot water temperature detection sensors TS1, TS2, TS3, TS4, TS5, TS6 and TS7 are provided in the hot water storage tank 10 from the bottom to the top. This water heater has a maximum temperature of 55
Since the temperature is up to 0 ° C., when the hot water temperature detected by each sensor is 55 ° C. or higher, it is determined that there is residual hot water from the upper end of the hot water tank 10 to that position. At this time, the detection sensor T
The location of S1 is 350 liters of residual hot water, 300 liters of TS2, 250 liters of TS3, and TS4.
Is 200 liters, TS5 is 150 liters, TS6 is 100 liters, and TS7 is 50 liters.

【0022】ここで、貯湯槽入口温度センサ30による
外気温度(例えば25℃)、ヒートポンプの能力(例え
ば5.0kW)、沸き上げ温度(例えば75℃)、給水
温度センサ56により検出された逆止弁付き水道減圧弁
11を介して貯湯槽10に供給する水道水の給水温度
(例えば20℃)、湯温検出センサTS3の検出温度
(例えば63℃)、湯温検出センサTS1及びTS2の
検出温度(例えば50℃)等のデータは、前記マイコン
40のRAM42に格納され、これらのデータに基づい
てマイコン40が貯湯槽10内の貯湯量を判断する。
Here, the outside temperature (for example, 25 ° C.) by the hot water tank inlet temperature sensor 30, the capacity of the heat pump (for example, 5.0 kW), the boiling temperature (for example, 75 ° C.), and the non-return detected by the feed water temperature sensor 56. Supply temperature (eg, 20 ° C.) of tap water supplied to the hot water storage tank 10 via the valve-equipped tap water pressure reducing valve 11, detection temperature of the hot water temperature detection sensor TS3 (eg, 63 ° C.), and detection temperatures of the hot water temperature detection sensors TS1 and TS2 Data such as (for example, 50 ° C.) is stored in the RAM 42 of the microcomputer 40, and the microcomputer 40 determines the amount of hot water stored in the hot water storage tank 10 based on these data.

【0023】即ち、初めに7個の湯温検出センサの中か
ら沸き上げ湯温55℃を2個の検出センサ間に含む検出
センサの組み合わせをマイコン40が探索し、55℃よ
り高い温度を検出している検出センサの検出温度をTh
i、その残湯量をLhiとし、低い温度を検出している
検出センサの検出温度をTlo、その残湯量をLloと
して、55℃に到達している前記貯湯槽10内の貯湯量
(残湯量)Lzを、Lz=(Thi−55)/(Thi
−Tlo)×(Llo−Lhi)+Lhiからマイコン
40が算出する。
That is, first, the microcomputer 40 searches for a combination of detection sensors including the boiling water temperature 55 ° C. between the two detection sensors from the seven hot water temperature detection sensors, and detects a temperature higher than 55 ° C. The detection temperature of the detection sensor
i, the remaining hot water amount is Lhi, the detection temperature of the detection sensor detecting a low temperature is Tlo, and the remaining hot water amount is Llo, and the hot water storage amount (remaining hot water amount) in the hot water storage tank 10 reaching 55 ° C. Lz = Lz = (Thi−55) / (Thi
The microcomputer 40 calculates from −Tlo) × (Llo−Lhi) + Lhi.

【0024】従って、55℃に到達している残湯量Lz
は(63−55)/(63−50)×(300−25
0)+250から約286リットルであると、マイコン
40は判断する。
Therefore, the residual hot water amount Lz reaching 55 ° C.
Is (63-55) / (63-50) x (300-25
0) +250 to about 286 liters, the microcomputer 40 determines.

【0025】次に循環流量(1分間当りの沸き上げ量)
を、ヒートポンプによる1分間当りの加熱量を沸き上げ
温度から水温を引いた温度で割り算して算出するが、具
体的には循環流量=(ヒートポンプ能力P×860(K
cal)/60(分間)/(沸き上げ温度Tp−(外気
温度Tt×0.8+3))からマイコン40が算出す
る。即ち、所定能力が一定に出る給水温度(冷媒対水熱
交換器2に入る水温)は、外気温度値を用いて、各種性
能試験で得られた換算式より算出している。
Next, circulation flow rate (boiling amount per minute)
Is calculated by dividing the heating amount per minute by the heat pump by the temperature obtained by subtracting the water temperature from the boiling temperature. Specifically, the circulation flow rate = (heat pump capacity P × 860 (K
cal) / 60 (minutes) / (boiling temperature Tp− (outside air temperature Tt × 0.8 + 3)), which is calculated by the microcomputer 40. That is, the feed water temperature (water temperature entering the refrigerant-to-water heat exchanger 2) at which the predetermined capacity is constant is calculated by using the outside air temperature value from the conversion formulas obtained in various performance tests.

【0026】従って、循環流量は、(5×860/60
/(75−(25×0.8+3)から約1.38リット
ル/分と、マイコン40は判断する。即ち、ヒートポン
プの特性上(特に冷媒がCO2の場合)、沸き上げ温度
を固定で、給水温度(冷媒対水熱交換器2に入る水温)
が上昇すると圧縮機1の周波数を一定に保っていても徐
々に加熱能力が低下し、また水温の上昇と能力の低下の
カーブは完全にはリニアにはならないため、本給湯機で
圧縮機1の保護も含め、入口水温に合わせて圧縮機1の
周波数を段階的に下げる動作を行い、結果的に入口水温
が変動しても同じ外気温度条件なら略一定の循環流量を
維持する運転を行なうように制御することとなる。
Therefore, the circulation flow rate is (5 × 860/60)
/(75-(25×0.8+3) to about 1.38 liters / minute, the microcomputer 40 determines. That is, because of the characteristics of the heat pump (especially when the refrigerant is CO 2 ), the boiling temperature is fixed, Water supply temperature (water temperature entering the refrigerant-to-water heat exchanger 2)
When the temperature rises, the heating capacity gradually decreases even if the frequency of the compressor 1 is kept constant, and the curve of the rise in water temperature and the decrease in capacity are not completely linear. Including the protection of the inlet water temperature, the frequency of the compressor 1 is lowered stepwise in accordance with the inlet water temperature. As a result, if the inlet water temperature fluctuates, an operation is performed to maintain a substantially constant circulation flow rate under the same outside air temperature conditions. Will be controlled.

【0027】以上のようにマイコン40により、貯湯槽
10内の貯湯量が判断されると共に、沸き上げ時(沸き
増し時)の循環量が算出される。
As described above, the microcomputer 40 determines the amount of hot water stored in the hot water storage tank 10 and calculates the circulating amount at the time of boiling (at the time of additional boiling).

【0028】以下、ヒートポンプ給湯機からの給湯時の
制御について説明する。
The control during hot water supply from the heat pump water heater will be described below.

【0029】図4の(a)に示したような貯湯槽10内
の貯湯状態(ハッチングされた部分が全体の容量の内の
貯湯量を表す。)から給湯され、湯使用された時には、
貯湯槽10に水が一杯になるように逆止弁付き水道減圧
弁11から水が給水される。湯が使用され貯湯量が次第
に少なくなり(b)に示した貯湯状態になる。さらに、
給湯され貯湯量が少なくなり(c)に示したように最低
貯湯量(例えばモード4の場合においては150リット
ル)より少なくなり、検出センサTS6の検出温度が貯
湯状態と判断する温度である55℃より低下すると、マ
イコン40は貯湯量が検出センサの位置より少なくなっ
たと判断し、ヒートポンプユニット100側のマイコン
50に運転信号を出力し、ヒートポンプ給湯機に沸き増
し運転を開始させる。
When hot water is supplied from the hot water storage state in the hot water storage tank 10 as shown in FIG. 4A (the hatched portion represents the hot water storage amount of the entire capacity) and hot water is used,
Water is supplied from a water supply pressure reducing valve 11 with a check valve so that the hot water storage tank 10 is filled with water. As hot water is used, the amount of hot water stored gradually decreases, and the hot water storage state shown in FIG. further,
The amount of hot water supplied is reduced and becomes smaller than the minimum amount of hot water storage (for example, 150 liters in the case of mode 4) as shown in (c), and the temperature detected by the detection sensor TS6 is 55 ° C., which is the temperature determined to be the hot water storage state. When the temperature further decreases, the microcomputer 40 determines that the amount of stored hot water has become smaller than the position of the detection sensor, outputs an operation signal to the microcomputer 50 on the heat pump unit 100 side, and causes the heat pump water heater to start boiling operation.

【0030】即ち、圧縮機1が運転を開始し、圧縮機1
で圧縮されて高温になった冷媒が冷媒対水熱交換器2に
供給される。そして、循環ポンプ19が起動されて入水
弁20を介して貯湯槽10の底部の水が冷媒対水熱交換
器2に給水されて、冷媒と水との熱交換が開始される。
これにより、冷媒は熱を失って凝縮し、また水は冷媒の
凝縮熱により温度が上昇して、高温水すなわち湯となっ
て流量調節弁24を介して貯湯槽10に戻る。
That is, the compressor 1 starts operation, and the compressor 1
The refrigerant, which has been compressed by and has reached a high temperature, is supplied to the refrigerant-to-water heat exchanger 2. Then, the circulation pump 19 is activated and the water at the bottom of the hot water storage tank 10 is supplied to the refrigerant-to-water heat exchanger 2 via the water inlet valve 20, and heat exchange between the refrigerant and water is started.
As a result, the refrigerant loses heat and condenses, and the temperature of the water rises due to the heat of condensation of the refrigerant to become hot water, that is, hot water, and returns to the hot water storage tank 10 via the flow rate control valve 24.

【0031】このとき、出口温度センサ29の検出温度
に基づいてマイコン40が動作し、流量調節弁24の開
度を制御することにより、ほぼ設定温度(例えば85
℃)まで温度上昇した湯が第1の戻り管23から貯湯槽
10の上部へ供給される。これにより貯湯槽10内の上
層は湯で下層は水となり、時間の経過と共にお湯の層と
水の層とが混じることなく、湯の層が増え水の層が少な
くなる。そして、通常の運転状態(モード7のときに相
当)では、最終的に貯湯槽10が湯で満たされるが、例
えば沸き上げ制御のモードがモード4の場合には、図4
の(c)に示したように貯湯量が設定された沸き増し終
了の量である200リットルまで上昇し、検出センサT
S5の検出温度が55℃以上になると、CPU41が動
作しマイコン40が循環ポンプ19へ停止信号を出力す
ると共に、マイコン50を介して圧縮機1へ停止信号を
出力し、沸き増し運転が終了する。
At this time, the microcomputer 40 operates on the basis of the temperature detected by the outlet temperature sensor 29 to control the opening of the flow rate control valve 24 so that the temperature is substantially set.
Hot water whose temperature has risen to (° C.) is supplied from the first return pipe 23 to the upper part of the hot water storage tank 10. As a result, the upper layer in the hot water storage tank 10 becomes hot water and the lower layer becomes water, and the hot water layer and the water layer do not mix with each other over time, and the hot water layer increases and the water layer decreases. Then, in a normal operating state (corresponding to the case of mode 7), the hot water storage tank 10 is finally filled with hot water. For example, when the boiling control mode is mode 4,
As shown in (c) of FIG. 5, the amount of hot water stored rises up to 200 liters, which is the amount at the end of additional heating, and the detection sensor T
When the detected temperature of S5 becomes 55 ° C. or higher, the CPU 41 operates and the microcomputer 40 outputs a stop signal to the circulation pump 19 and also outputs a stop signal to the compressor 1 via the microcomputer 50, and the boiling operation ends. .

【0032】上記のように沸き増し運転時には図3に示
した沸き上げ制御のモードに従い、沸き増し運転が制御
されるが、以下、沸き上げ制御のモードを変更するとき
の制御について、図5のフローチャートに基づいて説明
する。
As described above, during the additional heating operation, the additional heating operation is controlled according to the mode of the additional heating control shown in FIG. 3. Below, the control when changing the mode of the additional heating control will be described with reference to FIG. A description will be given based on the flowchart.

【0033】まず、沸き上げ制御のモード(運転モー
ド)が手動か自動かが判断され、手動の場合には、前記
沸き上げ量設定スイッチ17bの操作に基づいて、沸き
上げ制御のモードがモード1乃至3までの間にて設定さ
れる。即ち、沸き上げ量を例えば多い、中間、少ない場
合の3段階に分け、多い場合にはモード3、中間の場合
にはモード2、少ない場合にはモード1が設定され、そ
の後、沸き上げ運転時には設定されたモードに従ってヒ
ートポンプ給湯機の運転が制御される。
First, it is determined whether the boiling control mode (operation mode) is manual or automatic. In the case of manual operation, the boiling control mode is set to mode 1 based on the operation of the boiling amount setting switch 17b. It is set between 3 and 3. That is, the boiling amount is divided into, for example, three stages of a large amount, a medium amount, and a small amount. Mode 3 is set when the amount is large, mode 2 is set when the amount is intermediate, and mode 1 is set when the amount is small. The operation of the heat pump water heater is controlled according to the set mode.

【0034】沸き上げ制御のモード(運転モード)が自
動の場合には、例えばヒートポンプ給湯機への電源投入
時に標準モードである沸き上げ制御のモード3が自動的
に設定される。このため、貯湯槽10からの給湯により
貯湯量が減少し、検出センサTS6の検出温度が55℃
より低くなり、貯湯量が100リットルをより少なくな
ったとマイコン40が判断する(判断A)。この判断に
伴いマイコン40に設けられた図示しないタイマが動作
を開始する。そして、その後、貯湯量が50リットル以
下にならず、即ち検出センサTS7が55℃以上の温度
を検出し続けた場合には、沸き上げ制御のモード3がタ
イマに予め設定されている所定時間(例えば3日間)維
持される。
When the boiling control mode (operating mode) is automatic, for example, the boiling control mode 3, which is the standard mode, is automatically set when the heat pump water heater is powered on. Therefore, the amount of hot water stored is reduced by supplying hot water from the hot water storage tank 10, and the temperature detected by the detection sensor TS6 is 55 ° C.
The microcomputer 40 determines that the temperature has become lower and the hot water storage amount has decreased to less than 100 liters (determination A). In accordance with this determination, a timer (not shown) provided in the microcomputer 40 starts operating. Then, after that, when the amount of stored hot water does not fall below 50 liters, that is, when the detection sensor TS7 continues to detect a temperature of 55 ° C. or higher, the boiling control mode 3 is set to a predetermined time (preliminarily set in the timer). For example, 3 days).

【0035】尚、所定時間が経過する前に貯湯量が減少
し、検出センサTS7の検出温度が55℃より低くなっ
た場合には、貯湯量が50リットルより少なくなったと
マイコン40が判断し(判断B)、沸き上げ制御のモー
ドを一ランク上のモード、即ち、モード番号の大きいモ
ードであるモード4へ移行する。このため、沸き増し開
始の最低貯湯量が100リットルから150リットルへ
増加し、かつ沸き増し運転の終了貯湯量が150リット
ルから200リットルに増加する。
If the amount of hot water stored decreases before the elapse of a predetermined time and the temperature detected by the detection sensor TS7 falls below 55 ° C., the microcomputer 40 determines that the amount of hot water stored has fallen below 50 liters ( Judgment B), the boiling control mode is shifted to a mode one rank higher, that is, the mode 4 having a larger mode number. Therefore, the minimum hot water storage amount at the start of additional heating is increased from 100 liters to 150 liters, and the end hot water storage amount of the additional heating operation is increased from 150 liters to 200 liters.

【0036】また、検出センサTS6の検出温度に基づ
いて貯湯槽10に100リットル以上の貯湯量があると
マイコン40が判断した(判断C)場合には、図示しな
いタイマが動作する。そして、100リットル以上の貯
湯量が予め設定されていた所定期間(例えば3日間)維
持された場合には、タイマがカウントアップし、マイコ
ン40が動作し、一ランク下のモード、即ち、モード番
号が小さいモードであるモード2へ移行する。この結
果、最大沸上量が370リットルから300リットルへ
減少する。
Further, when the microcomputer 40 determines that there is a hot water storage amount of 100 liters or more in the hot water storage tank 10 based on the temperature detected by the detection sensor TS6 (decision C), a timer (not shown) operates. When the amount of stored hot water of 100 liters or more is maintained for a preset predetermined period (for example, 3 days), the timer counts up, the microcomputer 40 operates, and the mode is one rank lower, that is, the mode number. Shifts to mode 2, which is a small mode. As a result, the maximum boiling amount is reduced from 370 liters to 300 liters.

【0037】各沸き上げ制御のモードにおいて、上記モ
ード3と同様の判断が行われ、例えばモード5において
は、100リットル以上の貯湯量が所定期間維持された
場合には、タイマがカウントアップし、マイコン40が
動作し、一ランク下のモード、即ち、モード番号が小さ
いモードであるモード4へ移行する。この結果、沸き増
し開始の最低貯湯量が200リットルから150リット
ルへ減少し、かつ沸き増し運転の終了貯湯量が250リ
ットルから200リットルに減少する。同様に、モード
4からモード7においては、100リットル以上の貯湯
量が所定期間維持された場合には、タイマがカウントア
ップし、マイコン20が動作し、一ランク下のモード、
即ち、モード番号が小さいモードであるモードへ移行す
る。この結果、沸き増し開始の最低貯湯量と沸き増し運
転の終了貯湯量との双方が50リットルずつ減少する。
In each boiling control mode, the same judgment as in the above mode 3 is made. For example, in mode 5, when the stored hot water amount of 100 liters or more is maintained for a predetermined period, the timer counts up, The microcomputer 40 operates and shifts to a mode one rank lower, that is, a mode 4 having a smaller mode number. As a result, the minimum hot water storage amount at the start of additional heating is reduced from 200 liters to 150 liters, and the end hot water storage amount of the additional heating operation is reduced from 250 liters to 200 liters. Similarly, in modes 4 to 7, when the amount of stored hot water of 100 liters or more is maintained for a predetermined period, the timer counts up, the microcomputer 20 operates, and the mode is one rank lower.
That is, the mode shifts to a mode having a small mode number. As a result, both the minimum hot water storage amount at the start of additional heating and the end hot water storage amount at the additional heating operation are decreased by 50 liters.

【0038】この結果、給湯量が多いとき、即ち使用負
荷が多いときにはモード番号を大きい方へ移行させ、負
荷に適切に対応することが可能であることはもちろん、
給湯量が少なく使用負荷が少ないときには、モード番号
を小さい方へ移行させ、深夜の最大沸上量を減少させ、
また、沸き増し開始の最低貯湯量と沸き増し運転の終了
貯湯量との双方を減少させることにより、1つの貯湯槽
10の容量で使用負荷に対応した幅広い運転、即ち、貯
湯量或いは沸き増し量の制御が可能であり、放熱よる熱
ロスを極力少なくし、ヒートポンプ給湯機の運転効率、
即ち湯の供給効率が向上する。
As a result, when the amount of hot water supply is large, that is, when the load used is large, it is possible to shift the mode number to the larger one and appropriately cope with the load.
When the amount of hot water supply is small and the usage load is small, the mode number is shifted to the smaller one to reduce the maximum boiling amount at midnight,
Further, by decreasing both the minimum amount of hot water storage at the start of additional heating and the amount of end hot water storage at the additional heating operation, a wide operation corresponding to the usage load with one hot water tank 10 capacity, that is, the amount of hot water storage or the additional heating amount. It is possible to control the heat loss due to heat dissipation as much as possible, and to improve the operating efficiency of the heat pump water heater,
That is, the hot water supply efficiency is improved.

【0039】以下、上記のように給湯運転が制御される
ヒートポンプ給湯機の冬季などの凍結防止運転について
説明する。
The antifreezing operation of the heat pump water heater whose hot water supply operation is controlled as described above in the winter season will be described below.

【0040】ヒートポンプユニット100の運転が停止
しているときに外気温度が低下し、入口温度センサ2
8、出口温度センサ29或いは貯湯槽入口温度センサ3
0のいずれかの検出温度が第1の設定温度(5℃)にな
ると、マイコン40が動作し、入水弁20を開状態に維
持すると共に、戻り弁26を開き、流量調整弁24を閉
じ、循環ポンプ19を運転する。
When the operation of the heat pump unit 100 is stopped, the outside air temperature decreases and the inlet temperature sensor 2
8, outlet temperature sensor 29 or hot water tank inlet temperature sensor 3
When any of the detected temperatures of 0 reaches the first set temperature (5 ° C.), the microcomputer 40 operates to maintain the water inlet valve 20 in the open state, open the return valve 26, and close the flow rate adjusting valve 24. The circulation pump 19 is operated.

【0041】従って、循環ポンプ19の運転により、貯
湯槽10の下部の下層10aに貯留している低温層の低
温水が入水弁20、循環ポンプ19、往き管18、ヒー
トポンプユニット100の冷媒対水熱交換器2、第1の
戻り管23、第2の戻り管25及び戻り弁26を介して
貯湯槽10ない下層10aと循環し、往き管18及び第
1の戻り管23の特にヒートポンプユニット100と貯
湯槽ユニット200との間に位置している部分の凍結を
予防する。
Therefore, by operating the circulation pump 19, the low temperature water in the low temperature layer stored in the lower layer 10a of the lower part of the hot water storage tank 10 is cooled by the water inlet valve 20, the circulation pump 19, the outflow pipe 18, and the heat pump unit 100. The heat exchanger 2, the first return pipe 23, the second return pipe 25, and the return valve 26 circulate with the lower layer 10a not in the hot water storage tank 10, and the forward pipe 18 and the first return pipe 23, especially the heat pump unit 100. The freezing of the portion located between the hot water tank unit 200 and the hot water tank unit 200 is prevented.

【0042】そして、上記凍結予防運転により往き管1
8及び第1の戻り管23などの循環路の温度が上昇し、
入口温度センサ28、出口温度センサ29及び貯湯槽入
口温度センサ30の検出温度が全て第2の設定温度(1
0℃)になると、マイコン40が動作して戻り弁26を
閉じると共に流量調整弁24を開放状態にし、更に循環
ポンプ19の運転を停止する。この結果、貯湯槽10か
らの低温水の循環が停止し、電力を抑えた低温水供給に
よる凍結予防運転は終了し、凍結予防運転による消費電
力の増加を極力小さくすることができる。
Then, by the above-mentioned freezing prevention operation, the forward pipe 1
8 and the temperature of circulation circuits such as the first return pipe 23 increase,
The temperatures detected by the inlet temperature sensor 28, the outlet temperature sensor 29, and the hot water tank inlet temperature sensor 30 are all the second set temperature (1
At 0 ° C.), the microcomputer 40 operates to close the return valve 26, open the flow rate adjusting valve 24, and stop the operation of the circulation pump 19. As a result, the circulation of the low-temperature water from the hot water storage tank 10 is stopped, the freeze prevention operation by supplying the low-temperature water with reduced power is terminated, and the increase in power consumption due to the freeze prevention operation can be minimized.

【0043】しかし、前述したような貯湯槽10の低温
水を往き管18、第1及び第2の戻り管23及び25に
循環して凍結を予防しているときに、外気温度の一層の
低下に伴い往き管18及び第1の戻り管23の温度が低
下し、入口温度センサ28、出口温度センサ29或いは
貯湯槽入口温度センサ30のいずれかの検出温度が第3
の設定温度(2℃)になると、マイコン40が動作し、
入水弁20を閉じると共に、高温弁22を開き、戻り弁
26を開いた状態に維持し、流量調整弁24を閉じた状
態に維持し、循環ポンプ19を運転する。
However, when the low temperature water in the hot water storage tank 10 as described above is circulated through the outflow pipe 18 and the first and second return pipes 23 and 25 to prevent freezing, the outside air temperature further decreases. As a result, the temperatures of the outflow pipe 18 and the first return pipe 23 decrease, and the detected temperature of either the inlet temperature sensor 28, the outlet temperature sensor 29, or the hot water tank inlet temperature sensor 30 becomes the third temperature.
At the set temperature (2 ° C) of, the microcomputer 40 operates,
The water inlet valve 20 is closed, the high temperature valve 22 is opened, the return valve 26 is kept open, the flow rate adjusting valve 24 is kept closed, and the circulation pump 19 is operated.

【0044】従って、循環ポンプ19の運転により、貯
湯槽10の上部(上層)に貯留している高温水が高温弁
22、高温水循環用管21、往き管18、循環ポンプ1
9、冷媒対水熱交換器2、第1の戻り管23、第2の戻
り管25及び戻り弁26を介して貯湯槽10の下層と循
環する。この結果、往き管18及び第1の戻り管23の
特にヒートポンプユニット100と貯湯槽ユニット20
0との間に位置している部分に高温水が流れ、この部分
の凍結を一層確実に予防する。
Therefore, by operating the circulation pump 19, the high temperature water stored in the upper portion (upper layer) of the hot water storage tank 10 is heated by the high temperature valve 22, the high temperature water circulation pipe 21, the forward pipe 18, and the circulation pump 1.
9, the refrigerant-to-water heat exchanger 2, the first return pipe 23, the second return pipe 25 and the return valve 26 circulate with the lower layer of the hot water storage tank 10. As a result, the forward pipe 18 and the first return pipe 23, especially the heat pump unit 100 and the hot water tank unit 20.
Hot water flows to the part located between 0 and 0, and the freezing of this part is more surely prevented.

【0045】そして、上記高温水供給による凍結予防運
転により、往き管18及び第1の戻り管23などの循環
路の温度が上昇し、入口温度センサ28、出口温度セン
サ29及び貯湯槽入口温度センサ30の検出温度が全て
第4の設定温度(10℃)になると、マイコン40が動
作して高温弁22及び戻り弁26を閉じると共に入水弁
20及び流量調整弁24を開放状態にし、更に循環ポン
プ19の運転を停止する。この結果、貯湯槽10からの
低温水の循環が停止し、高温水供給による凍結予防運転
は終了し、凍結予防運転による消費電力の増加を極力小
さくすることができる。
By the freezing prevention operation by supplying the high temperature water, the temperature of the circulation path such as the outflow pipe 18 and the first return pipe 23 rises, and the inlet temperature sensor 28, the outlet temperature sensor 29, and the hot water tank inlet temperature sensor. When all the detected temperatures of 30 reach the fourth set temperature (10 ° C.), the microcomputer 40 operates to close the high temperature valve 22 and the return valve 26, open the water inlet valve 20 and the flow rate adjusting valve 24, and further circulate the pump. The operation of 19 is stopped. As a result, the circulation of the low temperature water from the hot water storage tank 10 is stopped, the freeze prevention operation by supplying the high temperature water is completed, and the increase in power consumption due to the freeze prevention operation can be minimized.

【0046】次に、第2の実施形態について、図6に基
づき説明する。第1の実施形態が、第1の戻り管23の
途中から分岐して貯湯槽10の下部に第2の戻り管25
を接続し、この第2の戻り管25の途中に戻り弁26を
配管接続して構成されているのに対し、第2の実施形態
は、第1の戻り管23の途中から分岐して貯湯槽10の
中間部である中間層10bに至る第2の戻り管25を接
続し、この第2の戻り管25の途中に戻り弁26及び逆
止弁27を配管接続して構成されている点で異なる。即
ち、第2の実施形態の第2の戻り配管25の先端は、貯
湯槽10の中間部である中間層10b(貯湯槽10内の
湯の高温層と低温層の中間の層)に臨ませている。
Next, a second embodiment will be described with reference to FIG. In the first embodiment, the second return pipe 25 is provided at the bottom of the hot water storage tank 10 by branching from the middle of the first return pipe 23.
While the return valve 26 is connected in the middle of the second return pipe 25 by piping, the second embodiment branches off from the middle of the first return pipe 23 to store hot water. The second return pipe 25 reaching the intermediate layer 10b, which is the middle portion of the tank 10, is connected, and a return valve 26 and a check valve 27 are connected in the middle of the second return pipe 25. Different. That is, the tip end of the second return pipe 25 of the second embodiment faces the intermediate layer 10b (the middle layer between the high temperature layer and the low temperature layer of the hot water in the hot water storage tank 10) which is the intermediate portion of the hot water storage tank 10. ing.

【0047】また、上記のように高温水を循環して凍結
予防運転を行っているとき、戻り水を第2の戻り管25
を介して貯湯槽10の中間部である中間層10bに戻す
ため、戻ってきた中間温度の水が上部である上層10c
の高温水の層や下部の下層10aの低温水の層に影響を
与えることを回避できる。即ち、貯湯槽10の下層10
aの低温水の層或いは上層10cの高温水の層に往き管
18及び第1の戻り管23を通過した中間温度の水を戻
した場合、貯湯槽10内の湯層を壊して貯湯槽10内上
下の温度差が無くなり、高温水を供給できなくなる虞が
あるが、中間層10bに戻すことにより、貯湯槽10内
の層崩れを防止し、高温水を安定して供給することがで
きる。
When the hot water is circulated as described above to perform the freeze prevention operation, the return water is returned to the second return pipe 25.
To return to the intermediate layer 10b, which is the intermediate portion of the hot water storage tank 10, through the upper layer 10c, which returns the intermediate temperature water to the upper portion.
It is possible to avoid affecting the high temperature water layer and the low temperature water layer of the lower layer 10a below. That is, the lower layer 10 of the hot water storage tank 10
When the intermediate temperature water that has passed through the going pipe 18 and the first return pipe 23 is returned to the low temperature water layer of a or the high temperature water layer of the upper layer 10c, the hot water layer in the hot water storage tank 10 is destroyed and the hot water storage tank 10 There is a risk that the temperature difference between the upper and lower parts will disappear and high-temperature water cannot be supplied, but by returning to the intermediate layer 10b, layer collapse in the hot water storage tank 10 can be prevented, and high-temperature water can be stably supplied.

【0048】上記凍結防止の運転により往き管18及び
第1の戻り管23などの循環路の温度が上昇し、入口温
度センサ28、出口温度センサ29及び貯湯槽入口温度
センサ30の検出温度が全て第4の設定温度(10℃)
になると、マイコン40が動作して高温弁22及び戻り
弁26を閉じ、入水弁20を開くと共に流量調整弁24
を開放状態にし、更に循環ポンプ19の運転を停止す
る。この結果、高温水の循環が停止し、凍結予防運転は
終了し、凍結予防運転による貯湯槽10の高温水の使用
を極力少なくすることができる。
Due to the above-mentioned operation for preventing freezing, the temperature of the circulation path such as the outflow pipe 18 and the first return pipe 23 rises, and the temperatures detected by the inlet temperature sensor 28, the outlet temperature sensor 29, and the hot water tank inlet temperature sensor 30 are all detected. Fourth set temperature (10 ° C)
Then, the microcomputer 40 operates to close the high temperature valve 22 and the return valve 26, open the water entry valve 20 and open the flow rate adjusting valve 24.
Is opened, and the operation of the circulation pump 19 is stopped. As a result, the circulation of the high temperature water is stopped, the freezing prevention operation ends, and the use of the high temperature water in the hot water storage tank 10 due to the freezing prevention operation can be minimized.

【0049】尚、上記実施の形態において、流量調整弁
24を運転時の貯湯槽10へ供給される高温水の温度制
御及び凍結予防運転のときには閉じ、貯湯槽10の上部
(上層)へ循環水が戻ることを阻止するために使用した
が、流量調整弁24と直列に電磁弁を設け、この電磁弁
を凍結予防運転時に閉じるようにしてもよい。
In the above embodiment, the flow rate adjusting valve 24 is closed during the temperature control of the high temperature water supplied to the hot water storage tank 10 during operation and the freeze prevention operation, and the circulating water is circulated to the upper part (upper layer) of the hot water storage tank 10. However, it is also possible to provide an electromagnetic valve in series with the flow rate adjusting valve 24 and to close this electromagnetic valve during freeze prevention operation.

【0050】また、入水弁20を設けないで、凍結予防
運転時に高温弁22を開くことにより、貯湯槽10の上
部の高温水と下部の低温水とが混合された温水を循環し
て往き管18及び第1の戻り管23の凍結を予防しても
よい。
Further, by not opening the water inlet valve 20 and opening the high temperature valve 22 during the freeze prevention operation, the hot water in which the high temperature water in the upper part and the low temperature water in the lower part of the hot water storage tank 10 are circulated is circulated. Freezing of 18 and the first return line 23 may be prevented.

【0051】なお、上記凍結予防運転により、貯湯槽1
0の下層10aの水温が低下するが、ヒートポンプユニ
ット100の運転時には、ヒートポンプユニット100
に流入する水の温度が低い方が冷媒対水熱交換器2での
熱交換効率が良い。
By the freezing prevention operation, the hot water storage tank 1
0, the water temperature of the lower layer 10a decreases, but when the heat pump unit 100 is in operation, the heat pump unit 100
The lower the temperature of the water flowing into the refrigerant, the better the heat exchange efficiency in the refrigerant-to-water heat exchanger 2.

【0052】以上本発明の実施態様について説明した
が、上述の説明に基づいて当業者にとって種々の代替
例、修正又は変形が可能であり、本発明の趣旨を逸脱し
ない範囲で前述の種々の代替例、修正又は変形を包含す
るものである。
Although the embodiments of the present invention have been described above, various alternatives, modifications or variations can be made by those skilled in the art based on the above description, and the various alternatives described above are possible without departing from the spirit of the present invention. It is intended to include examples, modifications or variations.

【0053】[0053]

【発明の効果】以上のように本発明は、貯湯式給湯機に
おいて外気温度が低下したとき、貯湯槽の低温水或いは
高温水を使用し、貯湯式給湯機の電力消費の上昇を極力
抑えつつ、配管の凍結を予防することができる。
As described above, the present invention uses low-temperature water or high-temperature water in the hot-water storage tank when the outside air temperature of the hot-water storage water heater decreases, while suppressing an increase in power consumption of the hot-water storage water heater as much as possible. , It is possible to prevent the freezing of piping.

【0054】また、凍結予防運転時に貯湯槽内の温度層
を維持し、高温水を安定して供給することができる。
Further, during the freeze prevention operation, the temperature layer in the hot water storage tank can be maintained and the high temperature water can be stably supplied.

【図面の簡単な説明】[Brief description of drawings]

【図1】ヒートポンプ給湯機の回路説明図である。FIG. 1 is a circuit diagram of a heat pump water heater.

【図2】制御ブロック図である。FIG. 2 is a control block diagram.

【図3】各モード毎の最大沸上量、沸き増し開始時の最
低貯湯量及び沸き増し終了時の貯湯量のテーブルを示す
図である。
FIG. 3 is a diagram showing a table of a maximum boiling amount for each mode, a minimum hot water storage amount at the start of additional heating, and a hot water storage amount at the end of additional heating.

【図4】沸き増し運転時の貯湯量の変化を説明する図で
ある。
FIG. 4 is a diagram for explaining changes in the amount of hot water stored during the additional heating operation.

【図5】フローチャートを示す図である。FIG. 5 is a diagram showing a flowchart.

【図6】第2の実施形態のヒートポンプ給湯機の回路説
明図である。
FIG. 6 is a circuit explanatory diagram of a heat pump water heater according to a second embodiment.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 冷媒対水熱交換器(加熱用熱交換器) 10 貯湯槽 18 往き管 23 第1の戻り管 25 第2の戻り管 40 マイコン 41 CPU 42 RAM 43 ROM 50 マイコン 100 ヒートポンプユニット 200 貯湯槽ユニット 1 compressor 2 Refrigerant-to-water heat exchanger (heating heat exchanger) 10 Hot water storage tank 18 going pipe 23 First return pipe 25 Second return pipe 40 microcomputer 41 CPU 42 RAM 43 ROM 50 microcomputer 100 heat pump unit 200 hot water storage unit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中山 浩 栃木県足利市大月町1番地 三洋電機空調 株式会社内 (72)発明者 矢島 卓幸 栃木県足利市大月町1番地 三洋電機空調 株式会社内 (72)発明者 大畑 正 栃木県足利市大月町1番地 三洋電機空調 株式会社内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Hiroshi Nakayama             1 Otsuki-cho, Ashikaga City, Tochigi Prefecture Sanyo Electric Air Conditioning             Within the corporation (72) Inventor Takuyuki Yajima             1 Otsuki-cho, Ashikaga City, Tochigi Prefecture Sanyo Electric Air Conditioning             Within the corporation (72) Inventor Tadashi Ohata             1 Otsuki-cho, Ashikaga City, Tochigi Prefecture Sanyo Electric Air Conditioning             Within the corporation

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 循環ポンプにより水を貯湯槽と加熱用熱
源との間を循環させると共に前記貯湯槽から出湯可能と
する給湯回路とを備えた貯湯式給湯機において、外気温
度を検出する温度検出器と、該温度検出器の検出温度が
低下したときに循環ポンプを運転開始させる設定温度を
格納した記憶手段と、該温度検出器の検出温度が前記記
憶手段に記憶されている前記設定温度まで低下したとき
には前記循環ポンプの運転を開始させる制御手段とを備
えたことを特徴とする貯湯式給湯機。
1. A hot water storage water heater having a hot water supply circuit that circulates water between a hot water storage tank and a heat source for heating by a circulation pump and allows hot water to be discharged from the hot water storage tank. And storage means for storing the set temperature for starting the circulation pump when the detected temperature of the temperature detector is lowered, and the detected temperature of the temperature detector up to the set temperature stored in the storage means. A hot water storage type hot water supply device, comprising: a control means for starting the operation of the circulation pump when the temperature falls.
【請求項2】 循環ポンプにより水を貯湯槽と加熱用熱
源との間を循環させると共に前記貯湯槽から出湯可能と
する給湯回路とを備えた貯湯式給湯機において、前記貯
湯槽と加熱用熱源との間に接続された配管内の水温を検
出する温度検出器と、第1の設定温度と該第1の設定温
度より低い第2の設定温度とを格納した記憶手段と、前
記温度検出器の検出温度が前記記憶手段に記憶されてい
る前記第1の設定温度まで低下したときには前記循環ポ
ンプの運転を開始させて前記貯湯槽内の下部の低温水を
前記配管内に循環させ、前記温度検出器の検出温度が前
記記憶手段に記憶されている前記第2の設定温度まで低
下したときには前記循環ポンプの運転を開始させて前記
貯湯槽内の上部の高温水を前記配管内に循環させる制御
手段とを備えたことを特徴とする貯湯式給湯機。
2. A hot water storage type hot water supply device comprising a hot water supply circuit that circulates water between a hot water storage tank and a heating heat source by a circulation pump, and a hot water supply circuit capable of discharging hot water from the hot water storage tank. A temperature detector for detecting a water temperature in a pipe connected between the first temperature and a second temperature lower than the first temperature, and a temperature detector. When the detected temperature of is decreased to the first preset temperature stored in the storage means, the operation of the circulation pump is started to circulate the low temperature water in the lower portion of the hot water storage tank in the pipe, Control for starting the operation of the circulation pump to circulate the high temperature water in the upper part of the hot water tank in the pipe when the temperature detected by the detector has dropped to the second set temperature stored in the storage means. Having means Hot water storage type water heater characterized by.
【請求項3】 前記温度検出器の検出温度が前記記憶手
段に記憶されている前記第2の設定温度まで低下し、前
記循環ポンプが運転しているときには、前記貯湯槽内の
上部のから供給され前記配管内を循環した戻り水を前記
貯湯槽の中間層に戻す戻し配管を設けたことを特徴とす
る請求項2に記載の貯湯式給湯機。
3. When the temperature detected by the temperature detector has dropped to the second set temperature stored in the storage means and the circulation pump is operating, the temperature is supplied from above the hot water tank. The hot water storage type water heater according to claim 2, further comprising a return pipe for returning the return water circulated in the pipe to the middle layer of the hot water storage tank.
JP2002121760A 2002-04-24 2002-04-24 Hot water storage water heater Expired - Fee Related JP3869749B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002121760A JP3869749B2 (en) 2002-04-24 2002-04-24 Hot water storage water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002121760A JP3869749B2 (en) 2002-04-24 2002-04-24 Hot water storage water heater

Publications (2)

Publication Number Publication Date
JP2003314897A true JP2003314897A (en) 2003-11-06
JP3869749B2 JP3869749B2 (en) 2007-01-17

Family

ID=29537569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002121760A Expired - Fee Related JP3869749B2 (en) 2002-04-24 2002-04-24 Hot water storage water heater

Country Status (1)

Country Link
JP (1) JP3869749B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007113832A (en) * 2005-10-20 2007-05-10 Matsushita Electric Ind Co Ltd Heat pump water heater
JP2007120799A (en) * 2005-10-26 2007-05-17 Matsushita Electric Ind Co Ltd Hot water storage type water heater
JP2008096010A (en) * 2006-10-10 2008-04-24 Tokyo Gas Co Ltd Cogeneration system and its operation method
JP2010169272A (en) * 2009-01-20 2010-08-05 Daikin Ind Ltd Hot water supply device
JP2014001883A (en) * 2012-06-18 2014-01-09 Denso Corp Water heater
CN112728760A (en) * 2020-12-31 2021-04-30 广东万和新电气股份有限公司 Water storage type water heater system and control method
CN113639484A (en) * 2021-07-23 2021-11-12 常州市吉麗嘉多食品有限公司 Central temperature regulating system for regulating temperature of multiple food machines

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007113832A (en) * 2005-10-20 2007-05-10 Matsushita Electric Ind Co Ltd Heat pump water heater
JP2007120799A (en) * 2005-10-26 2007-05-17 Matsushita Electric Ind Co Ltd Hot water storage type water heater
JP2008096010A (en) * 2006-10-10 2008-04-24 Tokyo Gas Co Ltd Cogeneration system and its operation method
JP2010169272A (en) * 2009-01-20 2010-08-05 Daikin Ind Ltd Hot water supply device
JP2014001883A (en) * 2012-06-18 2014-01-09 Denso Corp Water heater
CN112728760A (en) * 2020-12-31 2021-04-30 广东万和新电气股份有限公司 Water storage type water heater system and control method
CN113639484A (en) * 2021-07-23 2021-11-12 常州市吉麗嘉多食品有限公司 Central temperature regulating system for regulating temperature of multiple food machines

Also Published As

Publication number Publication date
JP3869749B2 (en) 2007-01-17

Similar Documents

Publication Publication Date Title
KR100685341B1 (en) Heat pump type hot water supply device
JP2003279133A (en) Heat pump water heater
JP2009210195A (en) Water heater
JP4231863B2 (en) Heat pump water heater bathroom heating dryer
JP2007327728A (en) Heat pump hot-water supply system
JP2007139345A (en) Hot water storage-type water heater and method for changing standby opening of hot water supply mixing valve therefor
JP5095488B2 (en) Heat pump water heater
JP2007046856A (en) Heat pump hot-water supply floor heating device
JP3869749B2 (en) Hot water storage water heater
JP2008116130A (en) Bath hot water supply method and device
JP3903462B2 (en) Hot water storage water heater
JP3749194B2 (en) Hot water storage water heater
JP3857951B2 (en) Bath equipment
JP2010054145A (en) Heat pump water heater
JP2010071603A (en) Heat pump water heater
JP4207867B2 (en) Hot water storage water heater
JP2012042071A (en) Hot-water supply apparatus
JP4740284B2 (en) Heat pump water heater
JP3840456B2 (en) Heat pump water heater
JP4262657B2 (en) Heat pump water heater
JP4045266B2 (en) Heat pump water heater
JP3897039B2 (en) Heat pump water heater
JP3897038B2 (en) Heat pump water heater
JP3870963B2 (en) Heat pump water heater
JP2005106416A (en) Heat pump type hot water supply device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040802

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061013

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131020

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees