JP2003314593A - Clutch control device for automatic transmission - Google Patents

Clutch control device for automatic transmission

Info

Publication number
JP2003314593A
JP2003314593A JP2002119221A JP2002119221A JP2003314593A JP 2003314593 A JP2003314593 A JP 2003314593A JP 2002119221 A JP2002119221 A JP 2002119221A JP 2002119221 A JP2002119221 A JP 2002119221A JP 2003314593 A JP2003314593 A JP 2003314593A
Authority
JP
Japan
Prior art keywords
clutch
vehicle speed
sensor
speed
creep
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002119221A
Other languages
Japanese (ja)
Other versions
JP3653255B2 (en
Inventor
Toshio Otsuka
敏夫 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002119221A priority Critical patent/JP3653255B2/en
Priority to DE10249167.4A priority patent/DE10249167B4/en
Priority to KR10-2002-0065237A priority patent/KR100467381B1/en
Publication of JP2003314593A publication Critical patent/JP2003314593A/en
Application granted granted Critical
Publication of JP3653255B2 publication Critical patent/JP3653255B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/06Control by electric or electronic means, e.g. of fluid pressure
    • F16D48/064Control of electrically or electromagnetically actuated clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18063Creeping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0638Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/12Brake pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/027Clutch torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/104Clutch
    • F16D2500/10443Clutch type
    • F16D2500/10475Magnetic field, e.g. electro-rheological, magnetisable particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/104Clutch
    • F16D2500/10443Clutch type
    • F16D2500/10481Automatic clutch, e.g. centrifugal masses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/306Signal inputs from the engine
    • F16D2500/3067Speed of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/308Signal inputs from the transmission
    • F16D2500/3082Signal inputs from the transmission from the output shaft
    • F16D2500/30825Speed of the output shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/31Signal inputs from the vehicle
    • F16D2500/3102Vehicle direction of travel, i.e. forward/reverse
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/314Signal inputs from the user
    • F16D2500/31406Signal inputs from the user input from pedals
    • F16D2500/31426Brake pedal position
    • F16D2500/31433Brake pedal position threshold, e.g. switch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/314Signal inputs from the user
    • F16D2500/31406Signal inputs from the user input from pedals
    • F16D2500/3144Accelerator pedal position
    • F16D2500/31453Accelerator pedal position threshold, e.g. switch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/702Look-up tables
    • F16D2500/70205Clutch actuator
    • F16D2500/70223Current
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/702Look-up tables
    • F16D2500/70252Clutch torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/704Output parameters from the control unit; Target parameters to be controlled
    • F16D2500/70402Actuator parameters
    • F16D2500/70418Current
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/704Output parameters from the control unit; Target parameters to be controlled
    • F16D2500/70422Clutch parameters
    • F16D2500/70438From the output shaft
    • F16D2500/7044Output shaft torque

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Electromagnetism (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Control Of Transmission Device (AREA)
  • Controls For Constant Speed Travelling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a clutch control device for an automatic transmission having no difference of creep force due to a secular distortion and variation, and offering an excellent creep feeling. <P>SOLUTION: The device is provided with a control means for switching the speed change state of the synchromesh automatic transmission on the basis of detection signals of an engine speed sensor, a brake switch, a range switch, an acceleration position sensor and a vehicle speed sensor. In the control means, creep travel of a vehicle is executed when the shift position is in the traveling range and no detection by the brake switch and acceleration position is made, whereby the characteristics of the relationship between the clutch transmission torque and the clutch exciting current is corrected so as to make the value of the clutch transmission torque when the actual vehicle speed by the vehicle speed sensor reaches the target speed, conform to that when the actual vehicle speed at the time of the previous creep travel reaches the target speed. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】この発明は自動変速機のクラ
ッチ制御装置に関し、特にクラッチ伝達トルクの経年変
化やバラツキを吸収し、走行フィーリングを向上させる
技術に関するものである。 【0002】 【従来の技術】従来、車両エンジンのクラッチ制御方法
として、例えば、特開平6−206481号公報に参照
されるものがある。上記公報記載の装置においては、湿
式単板クラッチを油圧により制御する方法を採用してお
り、油圧センサを備え発進時はこの圧力センサの入力に
よりクラッチ制御油圧を閉ループ制御している。この発
進時の油圧センサ入力値から予測したエンジントルクと
エンジントルクマップから計算したエンジントルクの差
より、発進時の目標クラッチ圧を補正している。 【0003】 【発明が解決しようとする課題】従来の自動変速機のク
ラッチ制御装置は、上述の如く発進時の目標クラッチ圧
のみ補正しているため、例えば、クリープ走行時のクラ
ッチ圧は補正されていないことになる。このため、経年
変化やバラツキによりクリープ力が弱すぎたり強すぎた
りした場合には、良好な走行フィーリングが得られない
という問題点があった。 【0004】この発明は上記のような問題を解決するた
めになされたものであり、経年変化やバラツキによるク
リープ力の差がなく、良好なクリープフィーリングが得
られる自動変速機のクラッチ制御装置を実現することを
目的とする。 【0005】 【課題を解決するための手段】この発明に係る自動変速
機のクラッチ制御装置は、目標車速と実車速の偏差に基
づく閉ループ制御により得られる偏差信号に応じて算出
されたクラッチ伝達トルクをクラッチ伝達トルク−クラ
ッチ励磁電流の関係特性に基づいてクラッチ励磁電流へ
変換し、該クラッチ励磁電流を電磁パウダークラッチに
供給することにより車両をクリープ走行させる自動変速
機のクラッチ制御装置であって、エンジン回転速度を検
出するエンジン回転センサと、ブレーキペダルを踏み込
んでいる状態を検出するブレーキスイッチと、走行レン
ジ、ニュートラルレンジ、およびリバースレンジのいず
れであるかシフト位置を検出するレンジスイッチと、ア
クセルペダル踏込み量をアクセル開度として検出するア
クセルポジションセンサと、同期噛合式変速機の出力回
転速度を車速として検出する車速センサと、前記エンジ
ン回転センサ、前記ブレーキスイッチ、前記レンジスイ
ッチ、前記アクセルポジションセンサ、および前記車速
センサの検出信号に基づいて前記同期噛合式変速機の変
速状態を切り換える制御手段とを備え、前記制御手段
は、前記シフト位置が前記走行レンジであり、かつ前記
ブレーキスイッチおよび前記アクセルポジションによる
検出がない場合に車両をクリープ走行させ、前記車速セ
ンサによる実車速が目標速度に到達した時のクラッチ伝
達トルクの値が、以前のクリープ走行時の実車速が前記
目標速度に到達した時のクラッチ伝達トルクの値となる
ように、前記クラッチ伝達トルク−クラッチ励磁電流の
関係特性を補正するものである。 【0006】 【発明の実施の形態】実施の形態1.以下、図面を参照
しながら、この発明の実施の形態1について詳細に説明
する。図1はこの発明の実施の形態1を概略的に示すブ
ロック構成図である。 【0007】図1において、エンジン1のクランク軸2
1には、電磁パウダークラッチ2を介して、同期噛合式
自動変速機を構成する同期噛合式の有段変速機3(以
下、単に「有段変速機3」という)が連結されている。 【0008】コントロールユニット4は、各種演算機能
を有するマイクロコンピュータを含み、エンジン1の運
転状態を示す各種センサ情報に基づいて、エンジン1、
電磁パウダークラッチ2および有段変速機3を制御す
る。 【0009】シフト・セレクトアクチュエータ5は、コ
ントロールユニット4の制御下で有段変速機3を駆動す
る。シフト・セレクトポジションセンサ6は、有段変速
機3の実際のシフト・セレクト位置VY、VXを検出し
て、コントロールユニット4に入力する。 【0010】有段変速機3のインプットシャフト22に
は、プライマリギヤとして機能する4速ギヤ23が直結
されている。4速ギヤ23の後段には、3速ギヤ24、
2速ギヤ25、1速ギヤ26、5速ギヤ27および後退
ギヤ28が順次配列されている。 【0011】各ギヤ23〜28の間には、3つのスリー
ブギヤ29が配置されている。各スリーブギヤ29は、
有段変速機3のアウトプットシャフト30に直結される
とともに、軸方向に移動可能になっている。 【0012】また、各ギヤ23〜28は、アウトプット
シャフト30に並設されたカウンタシャフト31に直結
されたギヤとセットを構成しており、カウンタシャフト
31上のギヤと常に噛み合っている。 【0013】上記構成により、アウトプットシャフト3
0は、スリーブギヤ29を介して、各ギヤ23〜28の
いずれかに直結されることにより、インプットシャフト
22に直結されるようになっている。 【0014】この場合、有段変速機3は、カウンタシャ
フト型の5段ギヤ変速機であり、ギヤ比の異なる5組の
前進用ギヤセットと、1組の後退用ギヤセットと、ギヤ
噛合状態切換用の3つのスリーブギヤとを備えている。 【0015】インプットシャフト22上の4速ギヤ23
には、有段変速機3の入力回転速度Niを検出するため
の入力回転速度センサ7が設けられている。アウトプッ
トシャフト30には、有段変速機3の出力回転速度を車
速Vrとして検出するための出力回転速度センサ8が設
けられている。 【0016】エンジン1の吸気管9には、スロットルア
クチュエータ11により駆動されるスロットルバルブ1
0が設けられている。スロットルポジションセンサ12
は、スロットルバルブ10の開度θを検出する。 【0017】アクセルポジションセンサ13は、運転者
によるアクセルペダル(図示せず)の踏込量に比例した
信号を、アクセル開度αとしてコントロールユニット4
に入力する。 【0018】コントロールユニット4は、アクセルポジ
ションセンサ13の出力信号を処理して、アクセル開度
αに応じた目標スロットル開度θoを演算し、スロット
ル開度θをフィードバック(F/B)制御しながら、θ
=θoとなるように、スロットルアクチュエータ11を
介してスロットルバルブ10を駆動する。 【0019】シフトレバー14は、運転者により操作さ
れたシフト位置(たとえば、パーキングレンジP、リバ
ースレンジR、ニュートラルレンジN、走行レンジD)
をコントロールユニット4に入力する。エンジン回転速
度センサ15は、エンジン1の回転速度Neを検出して
コントロールユニット4に入力する。 【0020】有段変速機3内の後退ギヤ28には、後退
ギヤスイッチ16が設けられており、後退ギヤの動作状
態が検出されている。ブレーキスイッチ17は、運転者
がブレーキペダル(図示せず)を踏込中のブレーキ動作
状態を示す信号をコントロールユニット4に入力する。 【0021】コントロールユニット4は、各種センサ信
号に基づいて変速判定を行うとともに、変速判定に応じ
てシフト・セレクトアクチュエータ5を制御し、アクセ
ル開度αおよび車速Vrによるシフトパターン(シフト
線図)から求められる変速段にギヤ段を設定し、有段変
速機3の複数のギヤ段を自動的に切り換える。 【0022】次に、図1に示したこの発明の実施の形態
1による基本的な動作について説明する。電磁クラッチ
2は、コントロールユニット4の制御下で、クラッチ伝
達トルクに比例したクラッチ励磁電流により駆動され、
エンジン1のクランク軸21から有段変速機3のインプ
ットシャフト22への動力伝達(または、遮断)を制御
する。 【0023】有段変速機3において、入力回転は、ま
ず、最前方のプライマリギヤ(インプットシャフト2
2)からカウンタシャフト31に伝えられる。アウトプ
ットシャフト30は、3速ギヤセットの前方まで延長さ
れており、この上のギヤのうち、どれを連結するかによ
り伝達経路および変速比(プライマリギヤのギヤ比×各
速ギヤのギヤ比)が変化する。 【0024】4速においては、インプットシャフト22
とアウトプットシャフト30が直結状態となる。有段変
速機3は、ギヤ切換用のシフト・セレクトアクチュエー
タ5によりスリーブギヤ29がシフト制御されて変速操
作される。 【0025】すなわち、有段変速機3は、スリーブギヤ
29のシフト制御により、現在の変速段の歯車同志の機
械的噛合を外す開放作動と、次期の変速段の歯車同志を
機械的に噛み合わせる連結作動とに切り換えられる。 【0026】コントロールユニット4は、シフトレバー
14の操作位置、アクセル開度α、ブレーキペダル(図
示しない)の踏み込み状態、回転速度Neおよび車速V
rに基づくシフトパターンから最適変速段を設定し、シ
フト・セレクトポジションセンサ6でシフト・セレクト
位置を検出しつつ、シフト・セレクトアクチュエータ5
を制御する。 【0027】スリーブギヤ29の同期状態は、各センサ
7、8により検出された入出力回転速度関係から検出さ
れる。変速時においては、スロットルアクチュエータ1
1によりスロットル開度θを所定の開度位置に絞り、電
磁クラッチ2の励磁電流を0にして有段変速機3をパワ
ーオフ状態にして変速段の切り換えを行う。 【0028】次に、図2のクラッチ励磁電流とクラッチ
伝達トルクとの関係特性図を参照しながら、この発明の
実施の形態1による具体的な補正方法について説明す
る。 【0029】図2において、実線は新品時のクラッチ励
磁電流−クラッチ伝達トルク関係特性であり、破線は本
実施の形態1に係る自動変速機のクラッチ制御装置によ
り前記クラッチ励磁電流−クラッチ伝達トルク関係特性
の変更を繰り返して得られた経年変化後のクラッチ励磁
電流−クラッチ伝達トルク関係特性を示している。 【0030】図中の実線上のA点は前回のクリープ走行
時に車速がクリープ目標車速に到達したときのポイント
であり、B点が今回のクリープ走行時に車速がクリープ
目標車速に到達したときのポイントである。 【0031】目標車速の到達時のクラッチ伝達トルクが
等しいとすると、B点を通るクラッチ励磁電流一定の直
線と、A点を通るクラッチ伝達トルク一定の直線の交点
が、変更後のポイントとなる。即ち、この変更後のポイ
ントを通るような点線で示したクラッチ励磁電流−クラ
ッチ伝達トルクの関係特性に補正する。 【0032】また、上記説明では、実線上のポイントA
点、B点を例にとったが、破線である経年変化後のクラ
ッチ励磁電流−クラッチ伝達トルクの関係特性について
も同様の方法により新たに補正した関係特性を得ること
ができる。 【0033】次に、図3は、車両停止状態からクリープ
状態を示したタイミングチャート図である。図3におい
て、実線は新品時のクラッチによる走行状態を示したも
の、破線は経年変化後のクラッチによる走行状態を示し
たものである。 【0034】経年変化後のクラッチは新品時のクラッチ
と比較して、同一クラッチ励磁電流に対するクラッチ伝
達トルクの値が小さいため、車速の上昇率(加速度)が
小さい(図3の車速の実線、破線を参照)。本実施の形
態1に係る自動変速機のクラッチ制御装置によれば、ク
ラッチ伝達トルク−クラッチ励磁電流の関係特性を変更
したことにより、クラッチ励磁電流にフィードバック制
御において積分項分ΔAが加算され、クリープ目標車速
到達時に電磁パウダークラッチに供給するクリープ励磁
電流を増加させている。 【0035】 【発明の効果】この発明に係る自動変速機のクラッチ制
御装置は、シフト位置が前記走行レンジであり、かつブ
レーキスイッチおよびアクセルポジションによる検出が
ない場合に車両をクリープ走行させ、車速センサによる
実車速が目標速度に到達した時のクラッチ伝達トルクの
値が、以前のクリープ走行時の実車速が前記目標速度に
到達した時のクラッチ伝達トルクの値となるように、前
記クラッチ伝達トルク−クラッチ励磁電流の関係特性を
補正することにより、クラッチの経年変化や特性のバラ
ツキによるクリープ力の差がなく良好なクリープフィー
リングが得られる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a clutch control device for an automatic transmission, and more particularly to a technology for absorbing aging and variations in clutch transmission torque and improving running feeling. Things. 2. Description of the Related Art Conventionally, as a clutch control method for a vehicle engine, for example, there is a method disclosed in Japanese Patent Application Laid-Open No. 6-206481. The apparatus described in the above publication employs a method of controlling the wet type single-plate clutch by hydraulic pressure, and includes a hydraulic pressure sensor. When starting, the clutch control hydraulic pressure is closed-loop controlled by the input of the pressure sensor. The target clutch pressure at the time of starting is corrected based on the difference between the engine torque predicted from the oil pressure sensor input value at the time of starting and the engine torque calculated from the engine torque map. [0003] In the conventional clutch control device for an automatic transmission, since only the target clutch pressure at the time of starting is corrected as described above, for example, the clutch pressure at the time of creep running is corrected. Will not be. For this reason, if the creep force is too weak or too strong due to aging or variation, there is a problem that a good running feeling cannot be obtained. SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a clutch control device for an automatic transmission which can obtain a good creep feeling without a difference in creep force due to aging and variations. It is intended to be realized. A clutch control device for an automatic transmission according to the present invention provides a clutch transmission torque calculated based on a deviation signal obtained by a closed loop control based on a deviation between a target vehicle speed and an actual vehicle speed. A clutch control device of an automatic transmission that converts a clutch transmission torque to a clutch excitation current based on a relation characteristic of a clutch excitation current and supplies the clutch excitation current to an electromagnetic powder clutch to cause the vehicle to creep. An engine rotation sensor that detects an engine rotation speed, a brake switch that detects a state in which a brake pedal is depressed, a range switch that detects a shift position of a travel range, a neutral range, and a reverse range, and an accelerator pedal An accelerator that detects the amount of depression as the accelerator opening Position sensor, a vehicle speed sensor that detects an output rotation speed of the synchronous meshing transmission as a vehicle speed, and a detection signal from the engine rotation sensor, the brake switch, the range switch, the accelerator position sensor, and the vehicle speed sensor. Control means for switching the gearshift state of the synchronous meshing transmission, wherein the control means creeps the vehicle when the shift position is in the travel range and there is no detection by the brake switch and the accelerator position. The vehicle is driven so that the value of the clutch transmission torque when the actual vehicle speed by the vehicle speed sensor reaches the target speed becomes the value of the clutch transmission torque when the actual vehicle speed during the previous creep traveling reaches the target speed. For correcting the relationship characteristic of the clutch transmission torque-clutch excitation current. A. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First Embodiment Hereinafter, Embodiment 1 of the present invention will be described in detail with reference to the drawings. FIG. 1 is a block diagram schematically showing a first embodiment of the present invention. In FIG. 1, a crankshaft 2 of an engine 1 is shown.
1 is connected via an electromagnetic powder clutch 2 to a synchronous meshing stepped transmission 3 (hereinafter simply referred to as a "stepped transmission 3") constituting a synchronous meshing automatic transmission. The control unit 4 includes a microcomputer having various arithmetic functions, and controls the engine 1 based on various sensor information indicating the operating state of the engine 1.
The electromagnetic powder clutch 2 and the stepped transmission 3 are controlled. [0009] The shift / select actuator 5 drives the stepped transmission 3 under the control of the control unit 4. The shift / select position sensor 6 detects the actual shift / select positions VY and VX of the stepped transmission 3 and inputs the detected positions to the control unit 4. A fourth speed gear 23 functioning as a primary gear is directly connected to the input shaft 22 of the stepped transmission 3. Behind the fourth gear 23, the third gear 24,
A second speed gear 25, a first speed gear 26, a fifth speed gear 27, and a reverse gear 28 are sequentially arranged. Between the gears 23 to 28, three sleeve gears 29 are arranged. Each sleeve gear 29
It is directly connected to the output shaft 30 of the stepped transmission 3 and is movable in the axial direction. Each of the gears 23 to 28 forms a set with a gear directly connected to a counter shaft 31 provided side by side with the output shaft 30, and is always meshed with a gear on the counter shaft 31. With the above configuration, the output shaft 3
0 is directly connected to the input shaft 22 by being directly connected to any of the gears 23 to 28 via the sleeve gear 29. In this case, the stepped transmission 3 is a countershaft type five-speed gear transmission, which includes five forward gear sets having different gear ratios, one reverse gear set, and a gear meshing state switching. And three sleeve gears. The fourth gear 23 on the input shaft 22
Is provided with an input rotation speed sensor 7 for detecting an input rotation speed Ni of the stepped transmission 3. The output shaft 30 is provided with an output rotation speed sensor 8 for detecting the output rotation speed of the stepped transmission 3 as the vehicle speed Vr. A throttle valve 1 driven by a throttle actuator 11 is provided in an intake pipe 9 of the engine 1.
0 is provided. Throttle position sensor 12
Detects the opening degree θ of the throttle valve 10. The accelerator position sensor 13 outputs a signal proportional to the amount of depression of an accelerator pedal (not shown) by the driver as an accelerator opening α.
To enter. The control unit 4 processes the output signal of the accelerator position sensor 13, calculates a target throttle opening θo corresponding to the accelerator opening α, and controls the throttle opening θ in a feedback (F / B) manner. , Θ
The throttle valve 10 is driven via the throttle actuator 11 so that = θo. The shift lever 14 is operated by a driver in a shift position (eg, a parking range P, a reverse range R, a neutral range N, and a driving range D).
Is input to the control unit 4. The engine speed sensor 15 detects the speed Ne of the engine 1 and inputs it to the control unit 4. The reverse gear 28 in the stepped transmission 3 is provided with a reverse gear switch 16 for detecting the operating state of the reverse gear. The brake switch 17 inputs to the control unit 4 a signal indicating a brake operation state while the driver is depressing a brake pedal (not shown). The control unit 4 determines a shift based on various sensor signals, and controls the shift / select actuator 5 in accordance with the shift determination, and determines a shift pattern (shift diagram) based on the accelerator opening α and the vehicle speed Vr. The gear speed is set to the required shift speed, and the plurality of gear speeds of the stepped transmission 3 are automatically switched. Next, a basic operation according to the first embodiment of the present invention shown in FIG. 1 will be described. The electromagnetic clutch 2 is driven by a clutch exciting current proportional to the clutch transmission torque under the control of the control unit 4,
The power transmission (or interruption) from the crankshaft 21 of the engine 1 to the input shaft 22 of the stepped transmission 3 is controlled. In the step-variable transmission 3, the input rotation is performed first by the forefront primary gear (input shaft 2).
2) is transmitted to the counter shaft 31. The output shaft 30 is extended to the front of the third-speed gear set, and the transmission path and speed ratio (gear ratio of the primary gear × gear ratio of each speed gear) change depending on which of the above gears is connected. I do. In the fourth speed, the input shaft 22
And the output shaft 30 is directly connected. In the stepped transmission 3, a shift operation is performed by controlling the shift of the sleeve gear 29 by the shift / select actuator 5 for gear switching. That is, the step-variable transmission 3 releases the mechanical engagement of the gears of the current gear and the gear of the next gear by the shift control of the sleeve gear 29. It is switched to the connection operation. The control unit 4 includes an operating position of the shift lever 14, an accelerator opening α, a depressed state of a brake pedal (not shown), a rotational speed Ne and a vehicle speed V.
The shift / select position sensor 6 detects the shift / select position and sets the optimum gear position based on the shift pattern based on the shift / select position.
Control. The synchronous state of the sleeve gear 29 is detected from the relationship between the input and output rotational speeds detected by the sensors 7 and 8. At the time of shifting, the throttle actuator 1
The throttle opening .theta. Is narrowed to a predetermined opening position by 1 and the exciting current of the electromagnetic clutch 2 is set to 0 so that the stepped transmission 3 is in a power-off state to switch gears. Next, a specific correction method according to the first embodiment of the present invention will be described with reference to the characteristic diagram of the relationship between the clutch exciting current and the clutch transmission torque shown in FIG. In FIG. 2, the solid line indicates the relationship between the clutch excitation current and the clutch transmission torque when the product is new, and the broken line indicates the relationship between the clutch excitation current and the clutch transmission torque by the clutch control device of the automatic transmission according to the first embodiment. The graph shows the clutch excitation current-clutch transmission torque relation characteristic after aging obtained by repeatedly changing the characteristic. Point A on the solid line in the figure is a point when the vehicle speed reaches the creep target vehicle speed during the previous creep running, and point B is a point when the vehicle speed reaches the creep target vehicle speed during the current creep running. It is. Assuming that the clutch transmission torques at the time when the target vehicle speed is reached are equal, the intersection of a straight line passing through the point B with a constant clutch exciting current and a straight line passing through the point A with a constant clutch transmission torque is the point after the change. That is, the relationship between the clutch excitation current and the clutch transmission torque is corrected to the characteristic indicated by the dotted line passing through the changed point. In the above description, the point A on the solid line
Although the points B and B are taken as examples, the relationship characteristic of the clutch exciting current-clutch transmission torque after aging, which is a broken line, can be newly corrected by the same method. FIG. 3 is a timing chart showing a state in which the vehicle is stopped and a state in which it is creeped. In FIG. 3, the solid line shows the running state of the clutch when new, and the broken line shows the running state of the clutch after aging. Since the clutch after the aging has a smaller value of the clutch transmission torque for the same clutch exciting current as compared with the clutch when it is new, the rate of increase (acceleration) of the vehicle speed is small (solid line and broken line of the vehicle speed in FIG. 3). See). According to the clutch control device for an automatic transmission according to the first embodiment, the integral characteristic ΔA is added to the clutch excitation current in the feedback control by changing the relationship characteristic between the clutch transmission torque and the clutch excitation current, and the creep is increased. The creep exciting current supplied to the electromagnetic powder clutch when the target vehicle speed is reached is increased. The clutch control device for an automatic transmission according to the present invention allows a vehicle to creep when a shift position is within the travel range and there is no detection by a brake switch and an accelerator position. The clutch transmission torque-so that the value of the clutch transmission torque when the actual vehicle speed reaches the target speed is the value of the clutch transmission torque when the actual vehicle speed during the previous creep traveling reaches the target speed. By correcting the relationship characteristic of the clutch excitation current, a good creep feeling can be obtained without a difference in creep force due to aging of the clutch or variation in characteristics.

【図面の簡単な説明】 【図1】 この発明の実施の形態1の構成図である。 【図2】 この発明の実施の形態1のクラッチ励磁電流
とクラッチ伝達トルクの関係特性図である。 【図3】 この発明の実施の形態1のタイミングチャー
ト図である。 【符号の説明】 1 エンジン、2 電磁パウダークラッチ、3 有段変
速機(同期噛合式変速機)、4 コントロールユニット
(制御手段)、8 出力回転速度センサ(車速セン
サ)、13 アクセルポジションセンサ、14 シフト
レバー(レンジスイッチ)、15 エンジン回転セン
サ、17 ブレーキスイッチ。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a configuration diagram of Embodiment 1 of the present invention. FIG. 2 is a characteristic diagram showing a relationship between a clutch exciting current and a clutch transmission torque according to the first embodiment of the present invention; FIG. 3 is a timing chart of the first embodiment of the present invention. [Description of Signs] 1 engine, 2 electromagnetic powder clutch, 3 stepped transmission (synchronous mesh transmission), 4 control unit (control means), 8 output rotational speed sensor (vehicle speed sensor), 13 accelerator position sensor, 14 Shift lever (range switch), 15 engine rotation sensor, 17 brake switch.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F02D 29/00 F02D 29/02 301C 29/02 301 F16H 63/46 F16H 63/46 F16D 37/02 A Fターム(参考) 3D041 AA04 AA37 AB01 AC04 AC10 AC15 AD02 AD04 AD10 AD19 AD31 AD41 AD51 AE04 AE18 AE22 AE23 AE31 AF01 3D044 AA01 AA45 AB01 AC03 AC16 AC22 AC24 AC26 AD04 AD12 AD14 AD17 AE14 AE21 3G093 AA05 BA23 BA28 CB02 CB10 DA01 DA06 DB05 DB10 DB11 DB15 EA09 EB01 FA04 3J057 AA01 BB08 GA31 GA64 GB02 GB05 GB27 GB30 GB36 HH01 JJ04 3J552 MA01 MA14 NA01 NB01 PA45 PA52 RB03 UA03 VA61W VB01W VC01W VD02W VD11W──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F02D 29/00 F02D 29/02 301C 29/02 301 F16H 63/46 F16H 63/46 F16D 37/02 A F Terms (Reference) 3D041 AA04 AA37 AB01 AC04 AC10 AC15 AD02 AD04 AD10 AD19 AD31 AD41 AD51 AE04 AE18 AE22 AE23 AE31 AF01 3D044 AA01 AA45 AB01 AC03 AC16 AC22 AC24 AC26 AD04 AD12 AD14 AD17 AE14 AE21 3G093 DBABA DABA03 DB15 EA09 EB01 FA04 3J057 AA01 BB08 GA31 GA64 GB02 GB05 GB27 GB30 GB36 HH01 JJ04 3J552 MA01 MA14 NA01 NB01 PA45 PA52 RB03 UA03 VA61W VB01W VC01W VD02W VD11W

Claims (1)

【特許請求の範囲】 【請求項1】 目標車速と実車速の偏差に基づく閉ルー
プ制御により得られる偏差信号に応じて算出されたクラ
ッチ伝達トルクをクラッチ伝達トルク−クラッチ励磁電
流の関係特性に基づいてクラッチ励磁電流へ変換し、該
クラッチ励磁電流を電磁パウダークラッチに供給するこ
とにより車両をクリープ走行させる自動変速機のクラッ
チ制御装置であって、 エンジン回転速度を検出するエンジン回転センサと、 ブレーキペダルを踏み込んでいる状態を検出するブレー
キスイッチと、 走行レンジ、ニュートラルレンジ、およびリバースレン
ジのいずれであるかシフト位置を検出するレンジスイッ
チと、 アクセルペダル踏込み量をアクセル開度として検出する
アクセルポジションセンサと、 同期噛合式変速機の出力回転速度を車速として検出する
車速センサと、 前記エンジン回転センサ、前記ブレーキスイッチ、前記
レンジスイッチ、前記アクセルポジションセンサ、およ
び前記車速センサの検出信号に基づいて前記同期噛合式
変速機の変速状態を切り換える制御手段とを備え、 前記制御手段は、前記シフト位置が前記走行レンジであ
り、かつ前記ブレーキスイッチおよび前記アクセルポジ
ションによる検出がない場合に車両をクリープ走行さ
せ、前記車速センサによる実車速が目標速度に到達した
時のクラッチ伝達トルクの値が、以前のクリープ走行時
の実車速が前記目標速度に到達した時のクラッチ伝達ト
ルクの値となるように、前記クラッチ伝達トルク−クラ
ッチ励磁電流の関係特性を補正することを特徴とする自
動変速機のクラッチ制御装置。
Claims 1. A clutch transmission torque calculated according to a deviation signal obtained by a closed loop control based on a deviation between a target vehicle speed and an actual vehicle speed, based on a clutch transmission torque-clutch excitation current relationship characteristic. A clutch control device for an automatic transmission that converts a clutch excitation current and supplies the clutch excitation current to an electromagnetic powder clutch to cause the vehicle to creep. The engine includes an engine rotation sensor that detects an engine rotation speed, and a brake pedal. A brake switch for detecting a depressed state; a range switch for detecting a shift position of any of a travel range, a neutral range, and a reverse range; and an accelerator position sensor for detecting an accelerator pedal depression amount as an accelerator opening. Output rotation speed of synchronous mesh transmission A vehicle speed sensor that detects the vehicle speed as a vehicle speed; and a control unit that switches a shift state of the synchronous meshing transmission based on detection signals of the engine rotation sensor, the brake switch, the range switch, the accelerator position sensor, and the vehicle speed sensor. The control means causes the vehicle to creep when the shift position is in the travel range and there is no detection by the brake switch and the accelerator position, and the actual vehicle speed by the vehicle speed sensor reaches a target speed. The relationship between the clutch transmission torque and the clutch excitation current is corrected so that the value of the clutch transmission torque at the time of the above-described operation becomes the value of the clutch transmission torque when the actual vehicle speed during the previous creep running reaches the target speed. A clutch control device for an automatic transmission.
JP2002119221A 2002-04-22 2002-04-22 Automatic transmission clutch control device Expired - Fee Related JP3653255B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002119221A JP3653255B2 (en) 2002-04-22 2002-04-22 Automatic transmission clutch control device
DE10249167.4A DE10249167B4 (en) 2002-04-22 2002-10-22 Clutch control system for an automatic transmission
KR10-2002-0065237A KR100467381B1 (en) 2002-04-22 2002-10-24 Clutch control system for an automatic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002119221A JP3653255B2 (en) 2002-04-22 2002-04-22 Automatic transmission clutch control device

Publications (2)

Publication Number Publication Date
JP2003314593A true JP2003314593A (en) 2003-11-06
JP3653255B2 JP3653255B2 (en) 2005-05-25

Family

ID=29207940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002119221A Expired - Fee Related JP3653255B2 (en) 2002-04-22 2002-04-22 Automatic transmission clutch control device

Country Status (3)

Country Link
JP (1) JP3653255B2 (en)
KR (1) KR100467381B1 (en)
DE (1) DE10249167B4 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100467381B1 (en) * 2002-04-22 2005-01-24 미쓰비시덴키 가부시키가이샤 Clutch control system for an automatic
JP2006336854A (en) * 2005-06-06 2006-12-14 Nissan Motor Co Ltd Start clutch control device of vehicle
JP2007064251A (en) * 2005-08-29 2007-03-15 Jtekt Corp Driving force transmission module
CN102954125A (en) * 2011-08-24 2013-03-06 爱信Ai株式会社 Automatic clutch control apparatus
US10125826B2 (en) * 2016-05-20 2018-11-13 Hyundai Motor Company Creep control method for vehicle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1626191A1 (en) * 2004-08-12 2006-02-15 BorgWarner Inc. Method and arrangement to control the creeping speed of a vehicle

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5997325A (en) * 1982-11-26 1984-06-05 Isuzu Motors Ltd Method of adjusting operating position of clutch
US4867287A (en) 1986-06-20 1989-09-19 Toyota Jidosha Kabushiki Kaisha Control method for magnetic powder clutch
JP3134901B2 (en) 1992-06-08 2001-02-13 スズキ株式会社 Shift control device for continuously variable transmission
JPH08177890A (en) * 1994-12-27 1996-07-12 Nippondenso Co Ltd Electromagnetic clutch control device for vehicle
JP2000110856A (en) * 1998-09-30 2000-04-18 Suzuki Motor Corp Creep controller for clutch
JP2000110855A (en) * 1998-09-30 2000-04-18 Suzuki Motor Corp Creep controller for clutch
JP2001208110A (en) 2000-01-28 2001-08-03 Mitsubishi Electric Corp Gear type automatic transmission system and its controlling method
JP3653255B2 (en) * 2002-04-22 2005-05-25 三菱電機株式会社 Automatic transmission clutch control device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100467381B1 (en) * 2002-04-22 2005-01-24 미쓰비시덴키 가부시키가이샤 Clutch control system for an automatic
JP2006336854A (en) * 2005-06-06 2006-12-14 Nissan Motor Co Ltd Start clutch control device of vehicle
JP4604856B2 (en) * 2005-06-06 2011-01-05 日産自動車株式会社 Vehicle starting clutch control device
JP2007064251A (en) * 2005-08-29 2007-03-15 Jtekt Corp Driving force transmission module
CN102954125A (en) * 2011-08-24 2013-03-06 爱信Ai株式会社 Automatic clutch control apparatus
US10125826B2 (en) * 2016-05-20 2018-11-13 Hyundai Motor Company Creep control method for vehicle

Also Published As

Publication number Publication date
KR100467381B1 (en) 2005-01-24
DE10249167B4 (en) 2018-06-28
DE10249167A1 (en) 2003-11-06
KR20030083551A (en) 2003-10-30
JP3653255B2 (en) 2005-05-25

Similar Documents

Publication Publication Date Title
JP3941906B2 (en) Control device for synchronous mesh automatic transmission
US6978691B2 (en) Shift control apparatus and method for automated twin clutch transmission
JP4434136B2 (en) Automatic transmission abnormality determination device
US20040224820A1 (en) Method of controlling a vehicle and system of controlling the same
US20040186645A1 (en) Control apparatus and method for friction device of vehicle
JP2002122157A (en) Synchromesh type automatic transmission
JP2004218799A (en) Gear shift controller for vehicle in high acceleration
JP4986740B2 (en) Shift control method for automobile
JP2003314593A (en) Clutch control device for automatic transmission
KR100456754B1 (en) Synchronous mesh-type automatic transmission control system
JP2004092702A (en) Controller for automatic transmission
JP2002021997A (en) Control device for automatic transmission
US6371888B1 (en) Control apparatus for vehicular automatic transmission
US6354981B1 (en) Controlling apparatus for synchronous engagement type automatic transmission
JP4371269B2 (en) Control device and control method for automatic transmission
JP2001354049A (en) Controller for synchronized engagement type automatic transmission
JP2002323068A (en) Clutch control device for synchronous meshing type automatic transmission
EP1312837B1 (en) Shift control apparatus and method of transmission for vehicle
JP3590625B2 (en) Control device for synchronous automatic transmission
JP2004052925A (en) Controlling device for synchromesh type automatic transmission
JP2004052862A (en) Control device for synchromesh type automatic transmission
KR20010046849A (en) Method for controlling a run up of automatic transmission
JP2008014254A (en) Control system of automatic transmission
KR20030083550A (en) Clutch control system for automatic transmission
JP2004011695A (en) Synchromesh type automatic transmission

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050225

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080304

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120304

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130304

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130304

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees