JP2003313548A - Method for producing microparticle-shaped luminous fluorescent powder, and microparticle-shaped luminous fluorescent powder - Google Patents

Method for producing microparticle-shaped luminous fluorescent powder, and microparticle-shaped luminous fluorescent powder

Info

Publication number
JP2003313548A
JP2003313548A JP2002116880A JP2002116880A JP2003313548A JP 2003313548 A JP2003313548 A JP 2003313548A JP 2002116880 A JP2002116880 A JP 2002116880A JP 2002116880 A JP2002116880 A JP 2002116880A JP 2003313548 A JP2003313548 A JP 2003313548A
Authority
JP
Japan
Prior art keywords
fluorescent powder
producing
phosphorescent fluorescent
precursor
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002116880A
Other languages
Japanese (ja)
Inventor
Naozumi Fujioka
直純 藤岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alpha Systems KK
Original Assignee
Alpha Systems KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alpha Systems KK filed Critical Alpha Systems KK
Priority to JP2002116880A priority Critical patent/JP2003313548A/en
Publication of JP2003313548A publication Critical patent/JP2003313548A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Luminescent Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a microparticle-shaped luminous fluorescent powder having characteristics of a strong emission intensity, a long light-emitting time, excellent water resistance, and particle distribution within a narrow range, and to provide the microparticle-shaped luminous fluorescent powder obtained by the production method. <P>SOLUTION: The method for producing the microparticle-shaped luminous fluorescent powder by using Al, Sr, Eu and Dy as constituent components, Al(NO<SB>3</SB>)<SB>3</SB>-9H<SB>2</SB>O as a raw material for the constituent component Al, Sr(NO<SB>3</SB>)<SB>2</SB>as a raw material for the constituent component Sr, Eu<SB>2</SB>O<SB>3</SB>as a raw material for the constituent component Eu, and Dy<SB>2</SB>O<SB>3</SB>as a raw material for the constituent component Dy involves a step for irradiating a precursor of the luminous fluorescent powder with a plasma. The irradiation with the plasma is carried out by introducing the powder of the precursor into a plasma irradiation zone by wind power to subject the powder of the precursor to a chemical reaction caused by the irradiation with the plasma. As a result, the luminous fluorescent powder having high luminance, long afterglow and 1-5 μm particle diameter is provided. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する分野】本発明は、微粒子状の蓄光性蛍光
粉の製造方法及び該製造方法により得られる微粒子状蓄
光性蛍光粉に関するものであり、さらに詳しくは、前記
蓄光性蛍光粉の前駆物質にプラズマを照射して得られる
微粒子状蓄光性蛍光粉の製造方法及び該方法により製造
される微粒子状蓄光性蛍光粉に関するものである。ここ
で、蓄光性蛍光粉とは、太陽または他の光源により照射
されて、光を蓄え、暗所で長時間にわたって発光し、繰
り返して蓄光と発光ができる材料である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a particulate phosphorescent fluorescent powder and a particulate phosphorescent fluorescent powder obtained by the method, more specifically, a precursor of the phosphorescent fluorescent powder. The present invention relates to a method for producing a particulate phosphorescent fluorescent powder obtained by irradiating plasma with plasma and a particulate phosphorescent fluorescent powder produced by the method. Here, the phosphorescent fluorescent powder is a material that is irradiated by the sun or another light source, stores light, emits light in a dark place for a long time, and can repeatedly emit light and emit light.

【0002】[0002]

【従来の技術】従来の蓄光性蛍光粉は、そのほとんどが
硫黄化合物であり、例えばZnS:Cu、Co又はCaS:Ceなどか
ら形成されている。しかしながら、これらの蓄光性蛍光
粉は外部からエネルギーを吸収して、暗所で発光をする
ことができるが、その発光時間は1〜2時間程度に過ぎ
ないものであった。また、化学的安定性も低く、耐水性
に劣り、劣化しやすいため、数10時間で発光能力が急
激に低下し、使用寿命が短いなどの欠点があった。また
硫黄化合物系の蓄光性蛍光粉に放射性物質を添加したも
のは、長時間自己発光することができるが、放射性物質
は危険な汚染源と見られているのでかかる放射性物質の
使用により人体汚染及び環境汚染が生じる可能性を抑制
するために、国際的には使用が禁止されている。
2. Description of the Related Art Almost all conventional phosphorescent fluorescent powders are sulfur compounds and are formed of, for example, ZnS: Cu, Co or CaS: Ce. However, these phosphorescent fluorescent powders can absorb energy from the outside and emit light in a dark place, but the light emission time was only about 1 to 2 hours. Further, it has low chemical stability, poor water resistance, and is easily deteriorated, so that it has drawbacks such as a sharp decrease in luminous ability in several tens of hours and a short service life. In addition, a sulfur compound-based phosphorescent fluorescent powder to which a radioactive substance is added can self-luminece for a long time, but the radioactive substance is considered to be a dangerous pollution source. Its use is banned internationally to reduce the possibility of pollution.

【0003】従来の技術に見られる前記欠点に鑑み、長
年にわたる研究の結果、1990年代の初期にアルカリ土類
金属のアルミン酸塩を基質とする蓄光性蛍光粉が開発さ
れた。この蓄光性蛍光粉は、Euにより活性化されたアル
ミン酸塩であり、発光強度が高く、発光時間も24時間
以上と長いものであった。また、化学的にも安定であ
り、湿気に強く、耐光性に優れ、且つ使用寿命が長いな
どの長所があるため、各分野に幅広く応用されており、
例えば蛍光インク、蛍光塗料、蛍光ガラス印刷、各種標
識、装飾類及び低強度光源等に使用されている。
In view of the above-mentioned drawbacks of the prior art, as a result of many years of research, a phosphorescent fluorescent powder using an alkaline earth metal aluminate as a substrate was developed in the early 1990s. This phosphorescent fluorescent powder was an aluminate activated by Eu, had a high emission intensity, and had a long emission time of 24 hours or more. It is also chemically stable, resistant to moisture, excellent in light resistance, and has a long service life, so it is widely used in various fields.
For example, it is used for fluorescent ink, fluorescent paint, fluorescent glass printing, various signs, decorations, low-intensity light sources, and the like.

【0004】しかしながら、この種のアルミン酸塩の蓄
光性蛍光粉は、工業的にはα−Al2O 3と数種類の必要な
化合物とを混ぜ合わせ、1300℃以上の高温固相で反
応させることにより製造されているため、得られる生成
物はセラミック状の硬い固体となる。セラミック状の硬
い固体となるのは、α−Al2O3の化学活性が低いために
十分高い温度でなければ、アルカリ土類金属などの成分
と反応しないからであり、高温の反応では単斜結晶アル
ミン酸塩が生成し、Eu2O3のようなランタノイド金属活
性化剤が結晶の中に導入され、発光中心及び格子欠陥を
形成する。このセラミック状の固い製品は、強力な粉砕
の処理を施さないと、実際に応用できる10μm程度以
下、特に5μm以下の粒径の粉末を得ることができな
い。さらに、粉砕時において発光結晶に傷が生じると活
性化エネルギーが吸収されるので、発光能力が減じると
いう難点がある。また、粒径が10μm以上になると輝
度が急激に落ち、粒径が2μm以下になると発光が微弱
過ぎて、実用に供することが難しくなり、凹版印刷、オ
フセット印刷用蛍光インク、複写機用蛍光トナー、繊維
染料などにおいて、その微粉末状蓄光性蛍光粉の応用が
制限されることになる。
However, this type of aluminate storage
The fluorescent fluorescent powder is industrially α-Al.2O 3And some kind of required
Mix with the compound and react at a high temperature of 1300 ℃ or higher.
It is produced by accelerating, so the resulting production
The object becomes a ceramic-like hard solid. Ceramic hard
Α-Al is a solid substance.2O3Because of the low chemical activity of
If the temperature is not high enough, ingredients such as alkaline earth metals
This is because it does not react with
The mate is formed and Eu2O3Lanthanoid metal activity like
A activating agent is introduced into the crystal to prevent emission centers and lattice defects.
Form. This ceramic hard product is a strong crusher.
If the above process is not applied, it is possible to apply it in the range of about 10 μm or less.
In particular, it is not possible to obtain a powder having a particle size of 5 μm or less.
Yes. Furthermore, if the luminescent crystals are damaged during grinding,
Since activating energy is absorbed, if the light emitting ability is reduced
There is a drawback. Also, it is bright when the particle size is 10 μm or more.
When the particle size falls below 2 μm, the light emission is weak.
It becomes too difficult to put it into practical use,
Fluorescent ink for fusset printing, fluorescent toner for copiers, fiber
For dyes, etc., the application of the fine powdery phosphorescent fluorescent powder
You will be limited.

【0005】一方、アルミン酸塩からなる蓄光性蛍光粉
は、低価数Euイオンであり、周知のように、活性化剤と
しては、Euイオンは変価イオンであり、+2、+3価数の
Euイオンが蛍光物質の活性化剤になるとき、全く異なる
光スぺクトルを発する。アルカリ土類金属アルミン酸塩
には、2価のEuイオンのみが格子欠陥を形成できるの
で、蓄光性蛍光粉を製造をする際には、通常は+3価の
Eu2O3をEuイオン源として、高温加熱する前に混合物中
に添加する。Eu3+をEu2+に還元するために、固相反応は
還元性雰囲気で反応させなければならない、全部のEu3+
がEu2+に還元できるかどうかはその蓄光性蛍光粉の輝度
と蓄光性能を左右する重大な問題である。従来の方法は
5%のH2を含むフローのN2ガスを用いて、Eu3+をEu2+
還元しているので、該還元反応を密閉管状の容器の中で
行なわなければならず、操作上煩雑であり、また、設備
等装置面の費用が高くなり、大規模の生産は困難であっ
た。
On the other hand, the phosphorescent fluorescent powder made of an aluminate has a low valence of Eu ions, and as is well known, as an activator, Eu ions are a valence ion and have +2 and +3 valences.
When Eu ions act as a fluorescent activator, they emit a completely different photospectrum. Since only divalent Eu ions can form lattice defects in alkaline earth metal aluminate, when producing phosphorescent fluorescent powder, it is usually +3 valence.
Eu 2 O 3 is added to the mixture as a Eu ion source before heating at high temperature. In order to reduce Eu 3+ to Eu 2+ , the solid state reaction must be carried out in a reducing atmosphere, the whole Eu 3+
Whether or not it can be reduced to Eu 2+ is a serious issue that affects the brightness and luminous performance of the phosphorescent fluorescent powder. Since the conventional method uses a flow of N 2 gas containing 5% H 2 to reduce Eu 3+ to Eu 2+ , the reduction reaction must be carried out in a closed tubular container. However, the operation is complicated, and the cost of the equipment such as equipment is high, which makes large-scale production difficult.

【0006】[0006]

【発明が解決しようとする課題】従って、本発明の課題
は、前記した欠点を克服し、発光強度が強く、発光時間
が長く、耐水性に優れるとともに、粒径分布が狭い範囲
に制御された特性を有する微粒子状の蓄光性蛍光粉の製
造方法及び微粒子状蓄光性蛍光粉を提供することにあ
る。
SUMMARY OF THE INVENTION Therefore, the object of the present invention is to overcome the above-mentioned drawbacks and to have a strong emission intensity, a long emission time, excellent water resistance, and a narrow particle size distribution control range. It is intended to provide a method for producing a particulate phosphorescent fluorescent powder having characteristics and a particulate phosphorescent fluorescent powder.

【0007】[0007]

【課題を解決するための手段】そこで、本発明者は、前
記課題を解決するために鋭意検討を加えた結果、Al、S
r、Eu及びDyを構成成分として含有する蓄光性蛍光粉の
製造において、これらの構成成分の各原材料を特定の配
合割合とし、また、前記原材料の混合溶液に粒子細化剤
を滴下することにより前記蓄光性蛍光粉の前駆物質を製
造し、該前駆物質にプラズマを照射することにより化学
反応を行なわせることにより蓄光体を生成させると共に
最小粒径1μmのものが得られ、また、粒径分布の制御
された微粒子状蓄光性蛍光粉が得られることを見い出
し、これらの知見に基づいて本発明の完成に到達した。
The inventors of the present invention have made diligent studies to solve the above problems, and as a result, Al, S
In the production of the phosphorescent fluorescent powder containing r, Eu and Dy as constituent components, each raw material of these constituent components has a specific blending ratio, and by adding a particle-thinning agent to the mixed solution of the raw materials by dropping. A phosphorescent substance is produced by producing a precursor of the phosphorescent fluorescent powder and irradiating the precursor with plasma to cause a chemical reaction to obtain a phosphorescent substance having a minimum particle diameter of 1 μm. It was found that the controlled fine-particle phosphorescent fluorescent powder of 1) was obtained, and the present invention was completed based on these findings.

【0008】すなわち、本発明の第一は、Al、Sr、Eu及
びDyを構成成分とし、Al(NO3)3・9H2Oを構成成分Alの原
材料とし、Sr(NO3)2を構成成分Srの原材料とし、Eu2O3
を構成成分Euの原材料とし、Dy2O3を構成成分Dyの原材
料とする微粒子状の蓄光性蛍光粉の製造方法であって、
該蓄光性蛍光粉の前駆物質にプラズマを照射する工程を
含むことを特徴とする微粒子状蓄光性蛍光粉の製造方法
に関するものである。
That is, the first aspect of the present invention comprises Al, Sr, Eu and Dy as constituent components, Al (NO 3 ) 3 .9H 2 O as a raw material of constituent Al, and constitutes Sr (NO 3 ) 2 . Eu 2 O 3 as the raw material for the component Sr
A raw material of the constituent Eu, Dy 2 O 3 is a raw material of the constituent Dy, a method for producing a phosphorescent powder in the form of fine particles,
The present invention relates to a method for producing a particulate phosphorescent fluorescent powder, which comprises the step of irradiating the precursor of the phosphorescent fluorescent powder with plasma.

【0009】本発明によれば、前記前駆物質の原材料の
配合割合が、モル比で表わして下記の範囲にある微粒子
蓄光性蛍光粉の製造方法が提供される。 Sr(NO3)2:Al(NO3)3・9H2O=1:1.5〜4 Eu2O3:Dy2O3=1:1.5〜3 Sr(NO3)2:Eu2O3 =1:0.001〜0.02
According to the present invention, there is provided a method for producing fine particle phosphorescent fluorescent powder in which the mixing ratio of the precursor raw materials is in the following range in terms of molar ratio. Sr (NO 3) 2: Al (NO 3) 3 · 9H 2 O = 1: 1.5~4 Eu 2 O 3: Dy 2 O 3 = 1: 1.5~3 Sr (NO 3) 2: Eu 2 O 3 = 1: 0.001 to 0.02

【0010】また、本発明によれば、前記前駆物質が、
前記構成成分Eu及びDyの原材料のEu2O3とDy2O3とを混合
して得た硝酸塩溶液[Eu(NO3)3、Dy(NO3)3]と、前記構成
成分Sr及びAlの原材料である Sr(NO3)2とAl(NO3)3・9H2O
とを混合して得た溶液とを混合して得られる混合溶液に
アンモニウム化合物を添加しアンモニウム飽和溶液を得
て、該アンモニウム飽和溶液に1%〜10%の粒子細化
剤を滴下しつつ攪拌して沈殿物を生成させ、次いで熟成
させた後、生成した沈澱物を濾過、洗浄及び加熱乾燥さ
せて得られる蓄光性蛍光粉の粉粒体である微粒子状蓄光
性蛍光粉の製造方法が提供される。
According to the present invention, the precursor is
A nitrate solution [Eu (NO 3 ) 3 , Dy (NO 3 ) 3 ] obtained by mixing Eu 2 O 3 and Dy 2 O 3 which are raw materials of the constituents Eu and Dy, and the constituents Sr and Al it is a raw material Sr (NO 3) 2 and Al (NO 3) 3 · 9H 2 O
Ammonium compound is added to the mixed solution obtained by mixing and the solution obtained by mixing and to obtain a saturated ammonium solution, and 1% to 10% of a particle refiner is added dropwise to the saturated ammonium solution while stirring. To produce a precipitate, followed by aging, and then filtration, washing, and heat drying of the formed precipitate to provide a method for producing a particulate phosphorescent fluorescent powder, which is a powder or granular material of the phosphorescent fluorescent powder. To be done.

【0011】さらに、本発明によれば、前記プラズマ照
射工程が、プラズマ照射帯域において風力により供給さ
れた分散状態の前記前駆物質の粉末または溶液に対し、
プラズマを照射し、化学反応を生じさせ蓄光体を生成さ
せる工程を含んでなる請求項1に記載の微粒子状蓄光性
蛍光粉の製造方法が提供される。
Further, according to the present invention, in the plasma irradiation step, the powder or solution of the precursor substance in a dispersed state supplied by wind force in the plasma irradiation zone,
The method for producing a particulate phosphorescent fluorescent powder according to claim 1, comprising a step of irradiating plasma to cause a chemical reaction to generate a phosphor.

【0012】また、本発明の第二は、第一の発明に係る
蓄光性蛍光粉の製造方法により得られる蓄光性蛍光粉で
あって、平均粒径が1μm〜5μmの範囲に分布する特
性を有することを特徴とする微粒子状蓄光性蛍光粉に関
するものである。
[0012] A second aspect of the present invention is a phosphorescent fluorescent powder obtained by the method for producing a phosphorescent fluorescent powder according to the first aspect of the present invention, which has characteristics that the average particle size is distributed in the range of 1 µm to 5 µm. The present invention relates to a particulate phosphorescent fluorescent powder characterized by having.

【0013】本発明は、前記のように微粒子状蓄光性蛍
光粉の製造方法および該製造方法により得られる微粒子
状蓄光性蛍光粉に関するものであるが、さらに好ましい
実施の形態として少なくとも次のものを包含する。 (1)Al、Sr、Eu及びDyを構成成分として含有する微粒
子状蓄光性蛍光粉の製造方法であって、Eu2O3とDy2O3
をHNO3に溶解して得られる硝酸塩溶液I(Eu(NO3)3とDy(N
O3)3とからなる溶液)と硝酸塩溶液II(Sr(NO3)2とAl(NO
3)3・9H2Oとからなる溶液)とを混合して得られる混合溶
液にアンモニウム化合物を添加しアンモニウム飽和溶液
を調製し、該飽和溶液に粒子細化剤を滴下しつつ攪拌し
生成する沈殿物を熟成させる工程を含む蓄光性蛍光粉の
製造方法。 (2)前記構成成分の原材料の混合溶液に粒子細化剤を
添加し前記成分の共沈殿により得られた前駆物質の粉末
または溶液をプラズマ照射帯域に風力で供給し、制御さ
れた粒子径を有する微粒子集合体にプラズマを照射する
工程を含む蓄光性蛍光粉の製造方法。 (3)前記プラズマ照射帯域において、風速により粒子
径の大きさを制御する工程を含む蓄光性蛍光粉の製造方
法。
The present invention relates to a method for producing a particulate phosphorescent fluorescent powder and a particulate phosphorescent fluorescent powder obtained by the method as described above. At least the following are preferred embodiments. Include. (1) A method for producing a particulate phosphorescent fluorescent powder containing Al, Sr, Eu and Dy as constituent components, which is a nitrate solution obtained by dissolving Eu 2 O 3 and Dy 2 O 3 in HNO 3. I (Eu (NO 3 ) 3 and Dy (N
O 3 ) 3 ) and nitrate solution II (Sr (NO 3 ) 2 and Al (NO
3) 3 · 9H 2 O consisting of a solution) mixed solution obtained by mixing the added ammonium saturated solution of ammonium compound to the a prepared, stirred to produce while dropwise particles fine agent in saturated solution A method for producing a phosphorescent fluorescent powder, which comprises a step of aging a precipitate. (2) A particle refiner is added to a mixed solution of the raw materials of the constituents, and a powder or solution of the precursor obtained by co-precipitation of the constituents is supplied to the plasma irradiation zone by wind power to control the particle size. A method for producing a phosphorescent fluorescent powder, which comprises a step of irradiating a fine particle aggregate having the same with plasma. (3) A method for producing a phosphorescent fluorescent powder, which comprises a step of controlling the particle size by the wind speed in the plasma irradiation zone.

【0014】[0014]

【発明の実施の形態】本発明に係る蓄光性蛍光粉の製造
方法は、前記の如き構成をとり、新規な組成と特性を有
する蓄光性蛍光粉粒子集合体を提供することを特徴とす
るが、好適な形態として該製造方法において、構成成分
を共沈殿法により沈殿させる前に粒子細化剤を添加して
蓄光性蛍光粉前駆物質を調製する工程が採用される。該
粒子細化剤としては、庶糖、葡萄糖、澱粉及び繊維素エ
ーテルからなる群より選択される少なくとも一種以上を
選択することができる。また、該粒子細化剤の添加量
は、前駆物質の重量基準で0.5%〜10%、特に、1%〜9
%占めることが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The method for producing a phosphorescent fluorescent powder according to the present invention is characterized by providing a phosphorescent fluorescent powder particle aggregate having a novel composition and characteristics as described above. In a preferred form of the production method, a step of preparing a phosphorescent fluorescent powder precursor by adding a particle sizing agent before the constituents are precipitated by the coprecipitation method is adopted. As the particle refiner, at least one selected from the group consisting of sucrose, glucose, starch and fibrin ether can be selected. The amount of the particle refiner added is 0.5% to 10%, particularly 1% to 9% based on the weight of the precursor.
It is preferable to occupy%.

【0015】また、本発明に係る蓄光性蛍光粉の製造方
法における特異性は、前記前駆物質にプラズマを照射
し、化学反応に供し蓄光体を生成させる工程が採用され
る点にある。該工程において前記前駆物質の粉末を風力
によりプラズマ照射帯域に導入し、該帯域において前記
前駆物質の粉末が分散化した状態でプラズマ照射に供さ
れるものであり、制御された粒径の微粒子状(粒径が1
μm〜5μm)の蓄光性蛍光粉を得ることができる。本
発明の蓄光性蛍光粉の製造方法において用いられるプラ
ズマとしては特に限定されるものではなく、アーク放
電、放電管等の通常採用される装置を利用して得られる
ものでよい。また、照射条件としてもプラズマ温度2000
℃までの温度を採用することができ、任意に選択するこ
とができる。
Further, the peculiarity of the method for producing a phosphorescent fluorescent powder according to the present invention is that a step of irradiating the precursor with plasma and subjecting it to a chemical reaction to generate a phosphor is adopted. In this step, the powder of the precursor is introduced into the plasma irradiation zone by wind force, and the powder of the precursor is supplied to the plasma irradiation in a dispersed state in the zone, and is in the form of fine particles having a controlled particle size. (Particle size is 1
It is possible to obtain a phosphorescent fluorescent powder having a size of μm to 5 μm. The plasma used in the method for producing the phosphorescent fluorescent powder of the present invention is not particularly limited and may be one obtained by using a normally adopted device such as an arc discharge or a discharge tube. Also, as the irradiation condition, the plasma temperature is 2000
Temperatures up to ° C can be adopted and can be arbitrarily selected.

【0016】本発明によれば、前駆物質の粉末をプラズ
マ照射帯域に供給する手段としての風速の調節により粒
子径の大きさを制御することができ、蓄光性蛍光粉とし
ては、最小粒径1μmのものの製造が可能であり、1μ
m〜5μm粒径分布の狭い微粒子集合体を得ることがで
きる。また、蓄光性蛍光粉の形態は球形であり、発光揮
度も後述の実施例等で説明するように高揮度のものであ
る。
According to the present invention, the particle size can be controlled by adjusting the wind speed as a means for supplying the precursor powder to the plasma irradiation zone, and the minimum particle size of the phosphorescent fluorescent powder is 1 μm. It is possible to manufacture
A fine particle aggregate having a narrow particle size distribution of m to 5 μm can be obtained. In addition, the form of the phosphorescent fluorescent powder is spherical, and the luminescence luminosity has a high luminosity as described in Examples and the like described later.

【0017】前記前駆物質の調製原料は、Al(NO3)3・9H
2Oを構成成分Alの原材料とし、Sr(NO3)2を構成成分Srの
原材料とし、Eu2O3を構成成分Euの原材料とし、Dy2O3
構成成分Dyの原材料とすることにより得られるものであ
り、それぞれの原材料の配合割合はモル比で表わして以
下の通りのものである。 Sr(NO3)2:Al(NO3)3・9H2O=1:1.5〜4 Eu2O3:Dy2O3=1:1.5〜3 Sr(NO3)2:Eu2O3=1:0.001〜0.02
[0017] Preparation material of the precursor, Al (NO 3) 3 · 9H
By using 2 O as a raw material of constituent Al, Sr (NO 3 ) 2 as a raw material of constituent Sr, Eu 2 O 3 as a raw material of constituent Eu, and Dy 2 O 3 as a raw material of constituent Dy The raw materials are obtained, and the mixing ratio of each raw material is shown below in terms of molar ratio. Sr (NO 3) 2: Al (NO 3) 3 · 9H 2 O = 1: 1.5~4 Eu 2 O 3: Dy 2 O 3 = 1: 1.5~3 Sr (NO 3) 2: Eu 2 O 3 = 1: 0.001 to 0.02

【0018】[0018]

【実施例】次に、実施例により本発明をさらに具体的に
説明する。もっとも本発明は、実施例等により限定され
るものではない。
EXAMPLES Next, the present invention will be described more specifically by way of examples. However, the present invention is not limited to the examples.

【0019】本発明の実施例において、Al(NO3)3・9H2O
を構成成分Alの原材料とし、Sr(NO3) 2を構成成分Srの原
材料とし、Eu2O3を構成成分Euの原材料とし、Dy2O3を構
成成分Dyの原材料として製品を製造した。
In the embodiment of the present invention, Al (NO3)3・ 9H2O
Is used as the raw material for the constituent Al, and Sr (NO3) 2Raw material of Sr
Eu as a material2O3As the raw material of the constituent Eu2O3Construct
A product was manufactured as a raw material for the component Dy.

【0020】以下の原材料を正確に計量して用意した。 1.Al(NO3)3・9H2O 375.13g 2.Sr(NO3)2 105.8g 3.Eu2O3 1.76g 4.Dy2O3 3.73g 5.葡萄糖 9.7g 6.(NH4)2CO3 96g 7.NH4HCO3 79.06g 8.HNO3(65%) 10mlThe following raw materials were accurately weighed and prepared. 1. Al (NO 3) 3 · 9H 2 O 375.13g 2. Sr (NO 3 ) 2 105.8g 3. Eu 2 O 3 1.76 g 4. Dy 2 O 3 3.73 g 5. Glucose 9.7 g 6. (NH 4) 2 CO 3 96g 7. NH 4 HCO 3 79.06g 8. HNO 3 (65%) 10ml

【0021】先ずEu2O3とDy2O3とHNO3とによって、Eu3+
とDy3+を混合した溶液Iを得る。次いで、Sr(NO3)2とAl
(NO3)3・9H2Oとを同時に純水に溶かし、混合して溶液II
を得た。溶液Iと溶液IIを混合し得られた混合溶液に葡
萄糖を添加し、混合溶液(I+II)の葡萄糖溶液を調製し
た。最後に(NH4)2CO3とNH4HCO3とを飽和状態になるまで
純水に溶かし、混合したアンモニウム塩の飽和溶液III
を得た。混合したアンモニウム塩飽和溶液IIIに前記混
合溶液(I+II)の葡萄糖溶液をゆっくりと滴下し、激
しく攪拌して、反応が終わった後24時間保持・熟成
し、濾過、洗浄、加熱乾燥してから蓄光性蛍光粉の前駆
物質を得た。さらに、該前駆物質を電気炉で1100℃で焼
成し酸化物系前駆物質を得た。次に、該前駆物質を図1
に示す如きプラズマ照射帯域に風力で導入した。風速は
最小粒径1μmの蓄光粉が得られるように制御した。前
駆物質の微粉末はプラズマ照射帯域の容器内に微粒状に
充満させ微粉末の流通速度は風力で調整し、プラズマが
照射された微粉末をプラズマ照射帯域から連続的に排出
させた。また、プラズマ照射の帯域のプラズマの温度と
しては1800℃を採用した。以上の前駆物質の製造および
該前駆物質のプラズマ照射の操作によりEu、Dyにより活
性化されたアルミン酸塩蛍光粉の製造を完了させた。
First, Eu 3+ is formed by Eu 2 O 3 , Dy 2 O 3 and HNO 3.
A solution I is obtained by mixing and Dy 3+ . Then Sr (NO 3 ) 2 and Al
(NO 3) 3 · 9H 2 dissolved O at the same time in pure water, mixing the solution II
Got Glucose was added to the mixed solution obtained by mixing the solution I and the solution II to prepare a glucose solution of the mixed solution (I + II). Finally, (NH 4 ) 2 CO 3 and NH 4 HCO 3 were dissolved in pure water until saturated, and a saturated ammonium salt solution was mixed III
Got Glucose solution of the mixed solution (I + II) was slowly added dropwise to the mixed ammonium salt saturated solution III, stirred vigorously, kept and aged for 24 hours after the reaction was completed, filtered, washed, dried by heating, and then stored in the phosphorescent solution. A precursor of fluorescent fluorescent powder was obtained. Further, the precursor was fired at 1100 ° C. in an electric furnace to obtain an oxide precursor. Next, the precursor is shown in FIG.
Wind power was introduced into the plasma irradiation zone as shown in. The wind speed was controlled so that a phosphorescent powder having a minimum particle size of 1 μm was obtained. The fine powder of the precursor was filled into the container in the plasma irradiation zone in the form of fine particles, the flow rate of the fine powder was adjusted by wind force, and the fine powder irradiated with the plasma was continuously discharged from the plasma irradiation zone. The temperature of the plasma in the plasma irradiation zone was 1800 ° C. By the above-mentioned production of the precursor and plasma irradiation of the precursor, the production of the aluminate fluorescent powder activated by Eu and Dy was completed.

【0022】前記製造過程に関する沈殿生成段階の主な
化学反応は以下に示す通りである。 Dy2O3+6HNO3=2Dy(NO2)3+3H2O Eu2O3+6HNO3=2Eu(NO3)3+3H2O 4NH4HCO3+Al(NO3)3・9H2O=NH4AlO(OH)HCO3+3CO2↑+3NH4
NO3+10H2O Sr(NO3)2+(NH4)2CO3=SrCO3+2NH4NO3 2Dy3++3CO3 2-=Dy2(CO3)3 2Eu3++3CO3 2-=Eu2(CO3)3
The main chemical reactions in the precipitation forming step of the above manufacturing process are as follows. Dy 2 O 3 + 6HNO 3 = 2Dy (NO 2 ) 3 + 3H 2 O Eu 2 O 3 + 6HNO 3 = 2Eu (NO 3 ) 3 + 3H 2 O 4NH 4 HCO 3 + Al (NO 3 ) 3・ 9H 2 O = NH 4 AlO (OH) HCO 3 + 3CO 2 ↑ + 3NH 4
NO 3 + 10H 2 O Sr (NO 3 ) 2 + (NH 4 ) 2 CO 3 = SrCO 3 + 2NH 4 NO 3 2Dy 3+ + 3CO 3 2- = Dy 2 (CO 3 ) 3 2Eu 3+ + 3CO 3 2- = Eu 2 (CO 3 ) 3

【0023】前記の製造過程を経ることにより、発光強
度が強く、発光時間が長く、耐水性に優れ、かつ粒経分
布が狭い範囲の微粒子状蓄光性蛍光粉を得た。本発明の
蓄光蛍光粉の性能は、図1、図2、図3に開示するとお
りである。なお、蓄光性蛍光粉の性能は次の試験方法に
より評価した。
Through the above-mentioned manufacturing process, a fine particle phosphorescent fluorescent powder having a strong emission intensity, a long emission time, excellent water resistance and a narrow particle size distribution was obtained. The performance of the phosphorescent fluorescent powder of the present invention is as disclosed in FIGS. 1, 2 and 3. The performance of the phosphorescent fluorescent powder was evaluated by the following test method.

【0024】表面輝度測定 図5に示すように試料の上部約20cmの位置から蛍光
ランプ(FL30SEX−N)を用い、10分以上照射
した後、照射を停止する。照射停止後1分後から、表面
輝度を色彩輝度計(光電色彩計)を用い輝度の変化を測
定し記録した。試料は、粉末をプレス成形機(約4
+)を用い、直径約4cm、厚さ約3mmの板状に成
形したものを用いた。 計測器・試験条件:色彩輝度計BM−7、視野角度:2
°、測定距離:40cm。 光源、照射強度:FL30SEX−N.5.5001x。
Surface Luminance Measurement As shown in FIG. 5, using a fluorescent lamp (FL30SEX-N) from about 20 cm above the sample, irradiation was stopped for 10 minutes or more, and then the irradiation was stopped. One minute after the irradiation was stopped, the surface luminance was recorded by measuring the change in luminance using a color luminance meter (photoelectric colorimeter). The sample is a powder press molding machine (about 4
0 + ) was used to form a plate having a diameter of about 4 cm and a thickness of about 3 mm. Measuring instrument, test condition: color luminance meter BM-7, viewing angle: 2
°, measuring distance: 40 cm. Light source, irradiation intensity: FL30SEX-N.5.5001x.

【0025】粒径分布測定 株式会社堀場製作所製レーザ回析・散乱式粒度分布測定
製造LA−920を用い、湿式フローセル測定方式によ
り分散媒として水、分散剤としてヘキサメタリン酸ナト
リウムを用いた。
Particle size distribution measurement Laser diffraction / scattering particle size distribution measurement LA-920 manufactured by Horiba Ltd. was used, and water was used as a dispersion medium and sodium hexametaphosphate was used as a dispersant by a wet flow cell measurement method.

【0026】[0026]

【発明の効果】本発明は、以上説明した構成を有するこ
とから次の効果を奏するものであり、産業上の利用価値
も極めて高い。 1.蓄光性蛍光粉の前駆物質にプラズマを照射すること
により高輝度、長残光であり、残光発光減衰率の小さい
蓄光体を得ることができる。 2.風速の調整により粒径の制御された前駆物質をプラ
ズマ照射し供することができるため、蓄光性蛍光粉は粉
砕しなくても最小粒径1μmのものを得ることができ、
1μm〜5μmの範囲の粒子の粒子径に到達することが
でき、また、生成物は粉砕を必要としないために、突起
物の少ない球形であり、製品の収率も高い。 3.本発明による蛍光性蓄光粉(図3)の相対発光強度
は、マイクロ波照射により調製した蓄光性蛍光粉(図
4)の約110%になり、高い輝度を有する。また、本
発明による蓄光性蛍光粉は微粒子状であって、粉砕によ
って発光結晶に傷が発生し、活性化エネルギーを吸収し
て発光能力が低減するおそれがない。 4.残光時間は10mcd/m2 700分に達する。
Industrial Applicability The present invention has the following effects because it has the above-described structure, and has an extremely high industrial utility value. 1. By irradiating the precursor of the phosphorescent fluorescent powder with plasma, it is possible to obtain a phosphorescent body having high brightness, long afterglow, and a small afterglow emission decay rate. 2. Since the precursor whose particle size is controlled by adjusting the wind speed can be irradiated with plasma, the phosphorescent fluorescent powder can have a minimum particle size of 1 μm without crushing.
It is possible to reach a particle size of particles in the range of 1 μm to 5 μm, and since the product does not require grinding, it is a spherical shape with few protrusions and the product yield is high. 3. The relative luminous intensity of the fluorescent light-storing powder (FIG. 3) according to the present invention is about 110% of that of the fluorescent light-storing powder (FIG. 4) prepared by microwave irradiation, and has high brightness. Further, the phosphorescent fluorescent powder according to the present invention is in the form of fine particles, and there is no possibility that the luminescent crystals will be scratched by the pulverization and the activation energy will be absorbed to reduce the light emitting ability. 4. The afterglow time reaches 10 mcd / m 2 700 minutes.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に係るプラズマ照射帯域の一実施例を
示す説明図である。
FIG. 1 is an explanatory diagram showing an example of a plasma irradiation zone according to the present invention.

【図2】 本発明の実施例において調製したEu、Dyによ
り活性化されたアルミン酸塩蓄光性蛍光粉の発光スぺク
トル図である。
FIG. 2 is an emission spectrum diagram of the aluminate phosphorescent fluorescent powder activated by Eu and Dy prepared in the examples of the present invention.

【図3】 本発明の実施例において調製したEu、Dyによ
り活性化されたアルミン酸塩蓄光性蛍光粉の粒度分布図
である。
FIG. 3 is a particle size distribution diagram of the aluminate phosphorescent fluorescent powder activated by Eu and Dy prepared in the example of the present invention.

【図4】 本発明の実施例において調製したEu、Dyによ
り活性化されたアルミン酸塩蓄光性蛍光粉がD50=3μ
m時の残光特性図である。
FIG. 4 shows that the aluminate phosphorescent fluorescent powder activated by Eu and Dy prepared in the example of the present invention has D 50 = 3μ.
It is an afterglow characteristic figure at the time of m.

【図5】 比較例として同様の成分構成によってなり、
マイクロ波の使用により特願2001−10322の方
法により得られ、Eu、Dyにより活性化されたアルミン酸
塩蓄光性蛍光粉のD50=30μm時の残光特性図であ
る。
FIG. 5 has the same composition as a comparative example,
FIG. 3 is an afterglow characteristic diagram of the aluminate phosphorescent fluorescent powder obtained by the method of Japanese Patent Application No. 2001-10322 using microwaves and activated by Eu and Dy when D 50 = 30 μm.

【図6】 表面輝度測定概要を示す図である。FIG. 6 is a diagram showing an outline of surface luminance measurement.

【符号の説明】[Explanation of symbols]

1.プラズマの照射帯域 2.前駆物質の粉末 3.プラズマ照射処理後の微粒状体 1. Plasma irradiation zone 2. Precursor powder 3. Fine particles after plasma irradiation

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成14年4月24日(2002.4.2
4)
[Submission date] April 24, 2002 (2002.4.2)
4)

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0007[Correction target item name] 0007

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0007】[0007]

【課題を解決するための手段】そこで、本発明者は、前
記課題を解決するために鋭意検討を加えた結果、Al、S
r、Eu及びDyを構成成分として含有する蓄光性蛍光粉の
製造において、これらの構成成分の各原材料を特定の配
合割合とし、また、前記原材料の混合溶液に粒子細化剤
を滴下することにより前記蓄光性蛍光粉の前駆物質を製
造し、該前駆物質にプラズマを照射することにより化学
反応を行なわせ蓄光体を生成させると共に最小粒径1
μmのものが得られ、また、粒径分布の制御された微粒
子状蓄光性蛍光粉が得られることを見い出し、これらの
知見に基づいて本発明の完成に到達した。
The inventors of the present invention have made diligent studies to solve the above problems, and as a result, Al, S
In the production of the phosphorescent fluorescent powder containing r, Eu and Dy as constituent components, each raw material of these constituent components has a specific blending ratio, and by adding a particle-thinning agent to the mixed solution of the raw materials by dropping. A precursor of the phosphorescent fluorescent powder is manufactured, and a chemical reaction is performed by irradiating the precursor with plasma to generate a phosphor and a minimum particle size of 1
It was found that a fine particle-shaped phosphorescent fluorescent powder having a particle size distribution and a controlled particle size distribution can be obtained, and the present invention has been completed based on these findings.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に係るプラズマ照射帯域の一実施例を
示す説明図である。
FIG. 1 is an explanatory diagram showing an example of a plasma irradiation zone according to the present invention.

【図2】 本発明の実施例において調製したEu、Dyによ
り活性化されたアルミン酸塩蓄光性蛍光粉の発光スぺク
トル図である。
FIG. 2 is an emission spectrum diagram of the aluminate phosphorescent fluorescent powder activated by Eu and Dy prepared in the examples of the present invention.

【図3】 本発明の実施例において調製したEu、Dyによ
り活性化されたアルミン酸塩蓄光性蛍光粉の粒度分布図
である。
FIG. 3 is a particle size distribution diagram of the aluminate phosphorescent fluorescent powder activated by Eu and Dy prepared in the example of the present invention.

【図4】 本発明の実施例において調製したEu、Dyによ
り活性化されたアルミン酸塩蓄光性蛍光粉がD50=3μ
m時の残光特性図である。
FIG. 4 shows that the aluminate phosphorescent fluorescent powder activated by Eu and Dy prepared in the example of the present invention has D 50 = 3μ.
It is an afterglow characteristic figure at the time of m.

【図5】 比較例として同様の成分構成によってなり、
マイクロ波の使用により特願2001−10322の方
法により得られ、Eu、Dyにより活性化されたアルミン酸
塩蓄光性蛍光粉のD50μm時の残光特性図である。
FIG. 5 has the same composition as a comparative example,
FIG. 5 is an afterglow characteristic diagram of the aluminate phosphorescent fluorescent powder obtained by the method of Japanese Patent Application No. 2001-10322 using microwaves and activated by Eu and Dy when D 50 = 3 μm.

【図6】 表面輝度測定概要を示す図である。FIG. 6 is a diagram showing an outline of surface luminance measurement.

【符号の説明】 1.プラズマの照射帯域 2.前駆物質の粉末 3.プラズマ照射処理後の微粒状体[Explanation of symbols] 1. Plasma irradiation zone 2. Precursor powder 3. Fine particles after plasma irradiation

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 Al、Sr、Eu及びDyを構成成分とし、Al(N
O3)3・9H2Oを構成成分Alの原材料とし、Sr(NO3)2を構
成成分Srの原材料とし、Eu2O3を構成成分Euの原材料と
し、Dy2O3を構成成分Dyの原材料とする微粒子状の蓄光
性蛍光粉の製造方法であって、該蓄光性蛍光粉の前駆物
質にプラズマを照射する工程を含むことを特徴とする微
粒子状蓄光性蛍光粉の製造方法。
1. Al (Sr, Eu and Dy as constituents, Al (N
O 3) 3 · 9H 2 and O constituents Al raw material, the raw material of Sr (NO 3) 2 the component Sr, and a raw material component Eu a Eu 2 O 3, Dy 2 O 3 constituent components Dy A method for producing a particulate phosphorescent fluorescent powder, which is used as a raw material for the method, comprising a step of irradiating a precursor of the phosphorescent fluorescent powder with plasma.
【請求項2】 前記前駆物質の原材料の配合割合が、
モル比で表わして下記の範囲にある請求項1に記載の微
粒子蓄光性蛍光粉の製造方法。 Sr(NO3)2:Al(NO3)3・9H2O=1:1.5〜4 Eu2O3:Dy2O3=1:1.5〜3 Sr(NO3)2:Eu2O3 =1:0.001〜0.02
2. The mixing ratio of the precursor raw materials is
The method for producing fine particle phosphorescent fluorescent powder according to claim 1, wherein the molar ratio is within the following range. Sr (NO 3) 2: Al (NO 3) 3 · 9H 2 O = 1: 1.5~4 Eu 2 O 3: Dy 2 O 3 = 1: 1.5~3 Sr (NO 3) 2: Eu 2 O 3 = 1: 0.001 to 0.02
【請求項3】 前記前駆物質が、前記構成成分Eu及びD
yの原材料のEu2O3とDy2O3とを混合して得た硝酸塩溶液
[Eu(NO3)3 、Dy(NO3)3 ]と、前記構成成分Sr及びAlの原
材料である Sr(NO3)2とAl(NO3)3・9H2Oとを混合して得
た溶液とを混合してアンモニウム飽和溶液を得て、該ア
ンモニウム飽和溶液に粒子細化剤を滴下しつつ攪拌して
沈殿物を生成させ、次いで熟成させた後濾過、洗浄及び
加熱乾燥して得られる粉粒状体である請求項1又は2に
記載の微粒子状蓄光性蛍光粉の製造方法。
3. The precursors are the constituents Eu and D.
A nitrate solution obtained by mixing Eu 2 O 3 and Dy 2 O 3 as raw materials for y
[Eu (NO 3 ) 3 , Dy (NO 3 ) 3 ], and Sr (NO 3 ) 2 and Al (NO 3 ) 3・ 9H 2 O, which are raw materials of the constituents Sr and Al, are obtained by mixing them. The obtained solution is mixed with the above solution to obtain a saturated ammonium solution, and a particle refiner is added dropwise to the saturated ammonium solution to stir to form a precipitate, which is then aged, filtered, washed, and dried by heating to obtain. The method for producing the particulate phosphorescent fluorescent powder according to claim 1 or 2, which is a powdery granular material.
【請求項4】 前記粒子細化剤が、庶糖、葡萄糖、澱粉
及び繊維素エーテルからなる群より選択される少なくと
も一種である請求項3に記載の微粒子状蓄光性蛍光粉の
製造方法。
4. The method for producing a particulate phosphorescent fluorescent powder according to claim 3, wherein the particle sizing agent is at least one selected from the group consisting of sucrose, glucose, starch and fibrin ether.
【請求項5】 前記粒子細化剤の添加量が、前記前駆物
質の全重量基準で0.5重量%〜10重量%である請求項
3または4に記載の微粒子状蓄光性蛍光粉の製造方法。
5. The method for producing a particulate phosphorescent fluorescent powder according to claim 3, wherein the amount of the particle sizing agent added is 0.5% by weight to 10% by weight based on the total weight of the precursor.
【請求項6】 前記プラズマ照射工程が、プラズマ照射
帯域において風力により供給された分散状態の前記前駆
物質の粉末または溶液に対し、プラズマを照射し、化学
反応を生じさせ蓄光体を生成させる工程を含んでなる請
求項1に記載の微粒子状蓄光性蛍光粉の製造方法。
6. The step of irradiating the plasma, wherein the powder or solution of the precursor substance in a dispersed state supplied by wind force in the plasma irradiation zone is irradiated with plasma to cause a chemical reaction to generate a phosphorescent substance. The method for producing the particulate phosphorescent fluorescent powder according to claim 1, which comprises.
【請求項7】 請求項1の製造方法により得られた蓄光
性蛍光粉であって、平均粒径が1μm〜5μmの範囲に
分布する特性を有することを特徴とする微粒子状蓄光性
蛍光粉。
7. The phosphorescent fluorescent powder obtained by the manufacturing method according to claim 1, characterized in that it has a characteristic that the average particle size is distributed in the range of 1 μm to 5 μm.
JP2002116880A 2002-04-18 2002-04-18 Method for producing microparticle-shaped luminous fluorescent powder, and microparticle-shaped luminous fluorescent powder Pending JP2003313548A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002116880A JP2003313548A (en) 2002-04-18 2002-04-18 Method for producing microparticle-shaped luminous fluorescent powder, and microparticle-shaped luminous fluorescent powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002116880A JP2003313548A (en) 2002-04-18 2002-04-18 Method for producing microparticle-shaped luminous fluorescent powder, and microparticle-shaped luminous fluorescent powder

Publications (1)

Publication Number Publication Date
JP2003313548A true JP2003313548A (en) 2003-11-06

Family

ID=29534257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002116880A Pending JP2003313548A (en) 2002-04-18 2002-04-18 Method for producing microparticle-shaped luminous fluorescent powder, and microparticle-shaped luminous fluorescent powder

Country Status (1)

Country Link
JP (1) JP2003313548A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2003106588A1 (en) * 2002-06-13 2005-10-13 イージーブライト株式会社 Spherical phosphorescent phosphor powder and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2003106588A1 (en) * 2002-06-13 2005-10-13 イージーブライト株式会社 Spherical phosphorescent phosphor powder and method for producing the same

Similar Documents

Publication Publication Date Title
Bedekar et al. Rare-earth doped gadolinia based phosphors for potential multicolor and white light emitting deep UV LEDs
Peng et al. Combustion synthesis and photoluminescence of SrAl2O4: Eu, Dy phosphor nanoparticles
Verma et al. Shifting and enhanced photoluminescence performance of the Sr1-xEuxMgAl10O17 phosphor
Yadav et al. BaAl12O19: Mn2+ green emitting nanophosphor for PDP application synthesized by solution combustion method and its Vacuum Ultra-Violet Photoluminescence Characteristics
US3984586A (en) Method of making a manganese-activated zinc sulphide electroluminescent powder
Das et al. Morphology control and photoluminescence properties of Eu 3+-activated Y 4 Al 2 O 9 nanophosphors for solid state lighting applications
US7378038B2 (en) Process for producing phosphors
JP3699991B2 (en) Method for producing high-luminance luminescent material
CN105331365B (en) A kind of preparation method of LED fluorescent powder
JP2000212556A (en) Luminous phosphor, and luminous fluorescent powder, and their production
Shafia et al. Combusion synthesis, structural and photo-physical characteristics of Eu 2+ and Dy 3+ co-doped SrAl 2 O 4 phosphor nanopowders
WO2013048663A1 (en) Core-shell phosphor and method of making the same
Wang et al. Unlocking long-lasting green luminescence in manganese-doped magnesium gallate
Lakshmanan et al. Rare earth doped CaSO4 luminescence phosphors for applications in novel displays–new recipes
JP2000001672A (en) Luminous fluorescent particulate powder and its production
JP2003313548A (en) Method for producing microparticle-shaped luminous fluorescent powder, and microparticle-shaped luminous fluorescent powder
JP3559210B2 (en) Heat-resistant, water-resistant, high-brightness, long-lasting yellow-green luminescent color phosphor and a method for producing the same
CN100554363C (en) A kind of manufacture method of superfine fluorescent powder
JP4823649B2 (en) Luminescent phosphor and method for producing the same
Zhou et al. Synthesis and photoluminescence properties of SrLu2O4: Eu3+ superfine phosphor
JP2005179399A (en) Manufacturing method of aluminate salt fine particle light-accumulating powder
CN105419797B (en) A kind of orange red fluorescent powder of suitable near ultraviolet excitation and its preparation and application
JP2002327173A (en) Method for producing particulate luminous fluorescent powder and particulate luminous fluorescent powder
CN105586037B (en) A kind of potassium tungstate red fluorescence powder and preparation method
JP3209724B2 (en) Method for producing fine luminous phosphor powder and fine luminous phosphor powder

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20041020

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20050920