JP2005179399A - Manufacturing method of aluminate salt fine particle light-accumulating powder - Google Patents

Manufacturing method of aluminate salt fine particle light-accumulating powder Download PDF

Info

Publication number
JP2005179399A
JP2005179399A JP2003418574A JP2003418574A JP2005179399A JP 2005179399 A JP2005179399 A JP 2005179399A JP 2003418574 A JP2003418574 A JP 2003418574A JP 2003418574 A JP2003418574 A JP 2003418574A JP 2005179399 A JP2005179399 A JP 2005179399A
Authority
JP
Japan
Prior art keywords
aluminate
fine particle
mol
powder
double hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003418574A
Other languages
Japanese (ja)
Inventor
Yasuro Fukui
靖郎 福井
Tokuo Fukita
徳雄 吹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP2003418574A priority Critical patent/JP2005179399A/en
Publication of JP2005179399A publication Critical patent/JP2005179399A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Luminescent Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To industrially advantageously obtain an aluminate salt fine particle light-accumulating powder having a particle size favorable for dispersion in resins or coatings and exhibiting excellent light-accumulating characteristics. <P>SOLUTION: A precursor comprising a double hydroxide comprised of an activating agent Eu, a co-activating agent R (wherein R is at least one element selected from the group consisting of Dy and Nd), Al and M (wherein M is at least one element selected from the group consisting of Ca, Sr and Ba) is prepared. The precursor is dry-baked to give the aluminate salt fine particle light-accumulating powder. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、アルミン酸塩系微粒子蓄光粉末の製造方法に関する。   The present invention relates to a method for producing aluminate-based fine particle phosphorescent powder.

蛍光体の中でも、残光時間の長いものは蓄光体として知られており、生活用品、弱照明夜間標識看板、時計などの分野で広く用いられている。例えば、ユーロピウムで賦活したアルミン酸塩は、代表的な蓄光体であり、ディスプロシウム等の共賦活剤をさらに添加することで特性を改良して使用されている(特許文献1参照)。   Among phosphors, those having a long afterglow time are known as phosphorescent materials, and are widely used in fields such as daily necessities, weakly illuminated night signboards, and watches. For example, aluminate activated with europium is a typical phosphor, and is used with improved properties by further adding a co-activator such as dysprosium (see Patent Document 1).

上記アルミン酸塩系蓄光体は、特許文献1では酸化アルミニウム、炭酸ストロンチウム等の原料酸化物若しくは炭酸塩をほう酸等のフラックスと共に混合し、乾式で焼成することで製造されている(乾式混合焼成法)。   The aluminate phosphor is manufactured in Patent Document 1 by mixing a raw material oxide such as aluminum oxide and strontium carbonate or carbonate together with a flux such as boric acid and firing it in a dry manner (dry blend firing method). ).

また、微粒子のアルミン酸塩系蓄光粉末を製造する方法として、アルミニウム化合物と有機酸を有機溶媒を用いて混合して得られたスラリーとユーロピウム等の陽イオン水溶液とを混合しアルミニウム化合物の表面に陽イオンを有機酸塩として析出させた前駆体を焼成する方法、所謂、被着焼成法(特許文献2参照)、原料金属イオンを含む混合溶液とブドウ糖等の粒子細化剤をアンモニウム溶液に添加して沈殿物を生成させた後にマイクロ波を照射して酸化する方法、所謂、マイクロ波照射法(特許文献3参照)が知られている。
特開平7−11250号公報(第4頁) 特開2001−107039号公報(第2頁) 特開2002−327173号公報(第2頁)
In addition, as a method for producing a particulate aluminate-based phosphorescent powder, a slurry obtained by mixing an aluminum compound and an organic acid using an organic solvent and a cation aqueous solution such as europium are mixed to form a surface of the aluminum compound. A method in which a precursor in which a cation is precipitated as an organic acid salt is calcined, a so-called deposition firing method (see Patent Document 2), a mixed solution containing raw material metal ions and a particle refining agent such as glucose are added to an ammonium solution. Then, a method of oxidizing by irradiating with microwaves after generating a precipitate, so-called microwave irradiation method (see Patent Document 3) is known.
JP 7-11250 A (page 4) JP 2001-107039 A (second page) JP 2002-327173 A (second page)

しかしながら、上記乾式混合焼成法で合成し、粉砕して得られるアルミン酸塩系蓄光体は、その平均粒子径としては数十μm程度のものであるため、このものをバインダー並びに溶剤と混合して塗料とした場合、粒子径に起因して分散安定性等の塗料特性に優れた塗料を製造すること、プラスチックへの練りこみ、射出による繊維化などは困難であった。   However, the aluminate phosphors synthesized by the above dry mixed firing method and pulverized have an average particle size of about several tens of μm, so this is mixed with a binder and a solvent. In the case of a coating material, it was difficult to produce a coating material having excellent coating properties such as dispersion stability due to the particle size, kneading into plastic, and fiberization by injection.

上記特許文献1に記載の製造方法で得られるアルミン酸塩系蓄光粉体はガラス状になかば熔融している。このものを機械的粉砕により強力に粉砕すると蓄光強度、蓄光時間が著しく劣化し、かつ均質に粉砕されないために粒度分布が非常に広いものしか得られない。   The aluminate-based phosphorescent powder obtained by the production method described in Patent Document 1 is melted in a glass form. When this material is pulverized strongly by mechanical pulverization, the luminous intensity and the luminescence time are remarkably deteriorated, and since it is not uniformly pulverized, only a very wide particle size distribution can be obtained.

また、上記特許文献2に記載の製造方法は有機酸塩と有機溶媒を用いるため取り扱いが困難で、かつ製造コストがかさむという課題があった。   Moreover, since the manufacturing method described in Patent Document 2 uses an organic acid salt and an organic solvent, there is a problem that handling is difficult and manufacturing cost is increased.

さらに、上記特許文献3に記載の製造方法は、マイクロ波照射装置を必要とするため、工業的に製造するには困難である。   Furthermore, since the manufacturing method described in Patent Document 3 requires a microwave irradiation device, it is difficult to manufacture industrially.

本発明者らは、樹脂系、塗料系での分散性に有利な粒子径を有し、しかも優れた蓄光特性を有するアルミン酸塩系微粒子蓄光粉末を工業的に有利に得るべく、種々検討し、賦活剤Eu、共賦活剤R(但し、RはDy、Ndからなる群より選ばれる少なくとも1種の元素である)、Al及びM(但し、MはCa、Sr及びBaからなる群より選ばれる少なくとも1種の元素である)を含む複水酸化物を前駆体として用い、このものを乾式で焼成することで所望の蓄光特性と粒子径を有するアルミン酸塩系微粒子蓄光粉末が得られることを見出し、本発明を完成した。   The inventors of the present invention have made various studies in order to obtain industrially advantageous aluminate-based fine-particle luminous powders having particle diameters advantageous for dispersibility in resin-based and paint-based systems and having excellent luminous characteristics. , Activator Eu, coactivator R (where R is at least one element selected from the group consisting of Dy and Nd), Al and M (where M is selected from the group consisting of Ca, Sr and Ba) Aluminate-based fine particle phosphorescent powder having desired phosphorescent characteristics and particle diameter can be obtained by using a double hydroxide containing at least one element) as a precursor and firing it dry. The present invention has been completed.

すなわち、本発明は、賦活剤Eu、共賦活剤R(但し、RはDy、Ndからなる群より選ばれる少なくとも1種の元素である)、Al及びM(但し、MはCa、Sr及びBaからなる群より選ばれる少なくとも1種の元素である)を含む複水酸化物を乾式焼成することを特徴とするアルミン酸塩系微粒子蓄光粉末の製造方法である。   That is, the present invention includes activator Eu, coactivator R (where R is at least one element selected from the group consisting of Dy and Nd), Al and M (where M is Ca, Sr and Ba). And a double hydroxide containing at least one element selected from the group consisting of dry firing of the aluminate-based fine particle phosphorescent powder.

本発明の製造方法により、樹脂系、塗料系での分散性に有利な粒子径を有し、しかも十分な蓄光特性を有するアルミン酸塩系微粒子蓄光粉末を、工業的に有利に得ることができる。   By the production method of the present invention, it is possible to industrially advantageously obtain an aluminate-based fine particle phosphorescent powder having a particle size advantageous for dispersibility in a resin system and a paint system and having sufficient phosphorescent properties. .

本発明は、アルミン酸塩系微粒子蓄光粉末の製造方法であって、賦活剤Eu、共賦活剤R(但し、RはDy、Ndからなる群より選ばれる少なくとも1種の元素である)、Al及びM(但し、MはCa、Sr及びBaからなる群より選ばれる少なくとも1種の元素である)を含む複水酸化物を乾式焼成することを特徴とする。   The present invention is a method for producing an aluminate-based fine particle phosphorescent powder, comprising an activator Eu and a coactivator R (where R is at least one element selected from the group consisting of Dy and Nd), Al And M (wherein M is at least one element selected from the group consisting of Ca, Sr, and Ba) is dry-fired.

アルミン酸塩系蓄光材料の焼成原料(前駆体という)としては、蓄光材料を構成する金属元素の化合物(酸化物、炭酸塩等)の混合物、アルミニウム化合物粒子表面にアルミニウム以外の構成金属元素を被着したものが知られている。本発明において用いる前駆体は、前記の混合物及び被着組成物とは異なり、賦活剤Eu、共賦活剤R(但し、RはDy、Ndからなる群より選ばれる少なくとも1種の元素である)、Al及びM(但し、MはCa、Sr及びBaからなる群より選ばれる少なくとも1種の元素である)を含む複水酸化物である。前駆体は、少なくともAlとMが複水酸化物となっていればよく、賦活剤及び共賦活剤はAlとMの複水酸化物粒子中に存在していても、また、粒子表面に付着されていてもよい。本発明で用いる複水酸化物は、個々の粒子中に少なくともAl及びMを均質に含んでいるため、加熱によりAlとMの複合酸化物が生成し易く、焼成時にほう酸等の融剤を敢えて添加する必要がない。   As the firing raw material (precursor) of the aluminate-based phosphorescent material, a mixture of metal element compounds (oxides, carbonates, etc.) constituting the phosphorescent material, and the constituent metal elements other than aluminum are coated on the surface of the aluminum compound particles. What is worn is known. The precursor used in the present invention is different from the mixture and the deposition composition described above, and is an activator Eu and a coactivator R (where R is at least one element selected from the group consisting of Dy and Nd). , Al and M (wherein M is at least one element selected from the group consisting of Ca, Sr and Ba). The precursor only needs to have at least Al and M as double hydroxides, and the activator and co-activator are present in the Al and M double hydroxide particles, and also adhere to the particle surface. May be. Since the double hydroxide used in the present invention contains at least Al and M homogeneously in individual particles, a composite oxide of Al and M is easily generated by heating, and a flux such as boric acid is intentionally used during firing. There is no need to add.

前記複水酸化物を得るには、(1)それを構成する各々の元素(M、Al、Eu及びR)の水酸化物を含むスラリーを湿式加熱処理する方法、(2)各々の元素のイオンを含む溶液を中和して共沈殿物をを含むスラリーとした後、湿式加熱処理する方法、(3)各々の元素のイオンを含む溶液を中和して共沈殿物を生成させた後、ろ過水洗して可溶性塩類を除去した後スラリ−化して湿式加熱処理する方法、(4)Al、Mの各々の水酸化物を含むスラリーを湿式加熱処理して得たAlとMの複水酸化物の表面にEu及びRで表される元素の水酸化物を付着させる方法などを用いることができる。本発明においては、上記(1)の方法が粒径を制御し易いため好ましい。また、上記スラリーにアンモニア水を添加してアルカリ濃度を高くした後に湿式加熱処理すると複水酸化物が成長し易いので好ましい。   In order to obtain the double hydroxide, (1) a method of subjecting each of the elements (M, Al, Eu and R) constituting the hydroxide to a wet heat treatment, (2) each element A method in which a solution containing ions is neutralized to form a slurry containing coprecipitate, followed by wet heat treatment. (3) After a solution containing ions of each element is neutralized to produce a coprecipitate (4) Al and M double water obtained by wet heat treatment of a slurry containing each of Al and M hydroxides A method of attaching a hydroxide of an element represented by Eu and R to the surface of the oxide can be used. In the present invention, the method (1) is preferable because the particle size can be easily controlled. Further, it is preferable to perform wet heat treatment after adding aqueous ammonia to the slurry to increase the alkali concentration because double hydroxides are likely to grow.

湿式加熱処理は、均一な組成の複水酸化物粒子を生成させる工程であって、目的とする蓄光粉末の組成、粒子径に応じて適宜処理条件を設定することができる。例えば、スラリー濃度としては10〜700g/リットルの範囲が好ましく100〜500g/リットルの範囲がより好ましい。スラリー濃度を高くする方が生成する複水酸化物の粒子径を均質にすることができるがスラリ−粘度の関係から上記範囲が好ましい。   The wet heat treatment is a step of generating double hydroxide particles having a uniform composition, and the treatment conditions can be appropriately set according to the composition and particle diameter of the intended phosphorescent powder. For example, the slurry concentration is preferably in the range of 10 to 700 g / liter, more preferably in the range of 100 to 500 g / liter. Increasing the slurry concentration can make the particle size of the double hydroxide produced uniform, but the above range is preferred from the slurry-viscosity relationship.

また、湿式加熱処理のスラリーpHは6.5以上が好ましく、アンモニア水などでアルカリ濃度を高くすると複水酸化物が生成しやすくなるので好ましい。さらに、湿式加熱処理の温度は80〜300℃の範囲が好ましく100〜250℃の範囲がより好ましい。スラリーの沸点を超える温度で処理する場合には、オートクレーブを用いて処理する。上記の範囲に処理pH及び処理温度を設定することで、複水酸化物の生成反応が進み、適切な粒子径に制御できる。   In addition, the slurry pH of the wet heat treatment is preferably 6.5 or more, and it is preferable to increase the alkali concentration with ammonia water or the like because double hydroxides are easily generated. Furthermore, the temperature of the wet heat treatment is preferably in the range of 80 to 300 ° C, and more preferably in the range of 100 to 250 ° C. When processing at a temperature exceeding the boiling point of the slurry, it is processed using an autoclave. By setting the treatment pH and treatment temperature within the above ranges, the formation reaction of double hydroxide proceeds and it can be controlled to an appropriate particle size.

湿式加熱処理したスラリーは噴霧乾燥、蒸発乾固又はろ過・乾燥して複水酸化物粉末を得る。   The wet-heated slurry is spray-dried, evaporated to dryness, or filtered and dried to obtain a double hydroxide powder.

次いで、得られた複水酸化物を乾式で焼成して、本発明のアルミン酸塩系微粒子蓄光粉末が得られる。複水酸化物は約900℃より高温で複合酸化物になるが、生成粒子の結晶性を高め、所望の粒子径及び蓄光特性を得るために焼成温度は、1100〜1600℃の範囲の温度が好ましく、1300〜1550℃の範囲の温度がより好ましい。焼成に際しては、ほう酸等の融剤を少量使用しても支障はないが、必ずしも必要ではない。   Next, the obtained double hydroxide is fired dry to obtain the aluminate-based fine particle phosphorescent powder of the present invention. The double hydroxide becomes a complex oxide at a temperature higher than about 900 ° C., but the firing temperature is in the range of 1100 to 1600 ° C. in order to increase the crystallinity of the generated particles and obtain the desired particle size and luminous characteristics. A temperature in the range of 1300 to 1550 ° C is more preferable. In firing, there is no problem even if a small amount of a flux such as boric acid is used, but this is not always necessary.

また、乾式焼成時の雰囲気は非酸化性雰囲気が好ましい。非酸化性雰囲気としては、窒素雰囲気等の不活性雰囲気、不活性雰囲気に少量の水素等の還元性気体を含ませた弱還元性雰囲気などが挙げられる。例えば、弱還元性雰囲気の水素濃度としては、水素/窒素比で表して0.5/99.5〜30/70である。   Further, the atmosphere during dry firing is preferably a non-oxidizing atmosphere. Examples of the non-oxidizing atmosphere include an inert atmosphere such as a nitrogen atmosphere, and a weak reducing atmosphere in which a small amount of a reducing gas such as hydrogen is included in the inert atmosphere. For example, the hydrogen concentration in the weak reducing atmosphere is 0.5 / 99.5 to 30/70 in terms of hydrogen / nitrogen ratio.

M、Al、Eu及びRで表される各々の金属元素の構成比を変えた複水酸化物を前駆体として用い、このものを乾式焼成することで前駆体に含まれる金属元素の構成比を承継した種々の組成のアルミン酸塩系微粒子蓄光粉末を得ることができる。MとしてSrを選択し、RとしてDyを選択したアルミン酸塩系微粒子蓄光粉末は、蓄光特性に優れているため好ましい。構成比(モル比)としては、M/Alで表して0.05〜2、Eu/Alで表して0.0001〜0.5、R/Alで表して0.0001〜0.5が好ましい。構成比を上記範囲で適宜設定することで種々の組成のアルミン酸塩系微粒子蓄光粉末、例えば、SrAl:Eu、Dyを得ることができる。 Using double hydroxides with different constituent ratios of the respective metal elements represented by M, Al, Eu and R as precursors, and by subjecting these to dry firing, the constituent ratios of the metal elements contained in the precursors are changed. Various inherited aluminate-based fine-particle phosphorescent powders can be obtained. An aluminate-based fine particle phosphorescent powder in which Sr is selected as M and Dy is selected as R is preferable because it has excellent phosphorescent characteristics. The composition ratio (molar ratio) is preferably 0.05 to 2 in terms of M / Al, 0.0001 to 0.5 in terms of Eu / Al, and 0.0001 to 0.5 in terms of R / Al. . By appropriately setting the composition ratio within the above range, aluminate-based fine-particle phosphorescent powders having various compositions, for example, SrAl 2 O 4 : Eu, Dy can be obtained.

上記のとおり、本発明においては、複水酸化物の生成条件、乾式焼成条件を変えることで、広い範囲の粒子径を有する蓄光粉末を得ることができ、例えば、0.5〜10μの範囲の平均粒子径を有し、しかも、粒度分布の揃ったアルミン酸塩系微粒子蓄光粉末が得られる。   As described above, in the present invention, a phosphorescent powder having a wide range of particle diameters can be obtained by changing the double hydroxide production conditions and the dry firing conditions, for example, in the range of 0.5 to 10 μm. An aluminate-based fine particle phosphorescent powder having an average particle diameter and a uniform particle size distribution can be obtained.

以下に本発明を実施例により説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples.

実施例1〜3
酸化ユーロピウム1.174gと酸化ディスプロシウム1.244gを秤取り内容量が300ミリリットルのビーカーに入れ少量の水でスラリーとし加熱しながら硝酸を少量づつ添加して溶解させた。この中に純水を加えて200ミリリットルにした後アンモニア水を加えてpHを8.0にして、EuとDyの水酸化物を含むスラリーを得た。得られたスラリーを内容量2.5リットルのオートクレーブ(チタンライニング)に移し、純水を加えて1リットルにした。この中に水酸化アルミニウム52.00gと水酸化ストロンチウム八水塩85.02gを添加し、さらに純水を加えて2リットルにした後170℃の温度で5時間水熱処理をした。
水熱処理後のスラリ−を蒸発乾固してEu、Dy、Sr及びAlを含む複水酸化物を得た。得られた複水酸化物をエネルギ−分散型X線分析装置で分析したところ、同一粒子内にSrとAlを含むことを確認した。得られた複水酸化物を瑪瑙乳鉢で粉砕した後3%H/97%N雰囲気下、1300℃、1400℃、1500℃の温度で夫々2時間乾式焼成した。焼成物を粗砕して本発明の蓄光粉末(試料A、B及びC)を得た。それぞれを実施例1〜3とする。得られた蓄光粉末の組成は、何れもAl1モルに対してSrを0.48モル、Euを0.01モル、Dyを0.01モル含んでいた。
Examples 1-3
1.174 g of europium oxide and 1.244 g of dysprosium oxide were weighed and placed in a beaker having an internal volume of 300 ml to form a slurry with a small amount of water, and nitric acid was added little by little while being heated and dissolved. Pure water was added to make 200 ml, and ammonia water was added to adjust the pH to 8.0 to obtain a slurry containing Eu and Dy hydroxides. The obtained slurry was transferred to an autoclave (titanium lining) having an internal volume of 2.5 liters, and pure water was added to make 1 liter. Into this, 52.00 g of aluminum hydroxide and 85.02 g of strontium hydroxide octahydrate were added, and pure water was added to make 2 liters, followed by hydrothermal treatment at a temperature of 170 ° C. for 5 hours.
The slurry after the hydrothermal treatment was evaporated to dryness to obtain a double hydroxide containing Eu, Dy, Sr and Al. When the obtained double hydroxide was analyzed with an energy dispersive X-ray analyzer, it was confirmed that Sr and Al were contained in the same particle. The obtained double hydroxide was pulverized in an agate mortar and then subjected to dry firing at a temperature of 1300 ° C., 1400 ° C. and 1500 ° C. for 2 hours in a 3% H 2 /97% N 2 atmosphere. The fired product was coarsely crushed to obtain phosphorescent powders (samples A, B and C) of the present invention. Respectively, it is set as Examples 1-3. The composition of the obtained luminous powder contained 0.48 mol of Sr, 0.01 mol of Eu, and 0.01 mol of Dy with respect to 1 mol of Al.

得られた試料A〜Cの比表面積と残光輝度を測定した。なお、比表面積の測定には湯浅アイオニクス社製比表面積計モノソーブを用いた。また、残光輝度は、下記の方法で測定した。結果を表1に示した。   The specific surface areas and afterglow luminances of the obtained samples A to C were measured. The specific surface area was measured using a specific surface area meter monosorb manufactured by Yuasa Ionics. The afterglow brightness was measured by the following method. The results are shown in Table 1.

(残光輝度の測定方法)
試料にD65ランプを用い、200ルクスの照度で20分間光照射し、その後光照射を停止し30分後の輝度をホトセンサ−を用いて測定した。なお、試料Cの残光輝度を100とする相対強度で表した。
(Measurement method of afterglow brightness)
A D65 lamp was used as a sample, and the sample was irradiated with light at an illuminance of 200 lux for 20 minutes. Thereafter, the light irradiation was stopped, and the luminance after 30 minutes was measured using a photosensor. In addition, it represented with the relative intensity | strength which made the afterglow brightness | luminance of the sample C 100.

Figure 2005179399
Figure 2005179399

(残光の視認)
さらに、試料Aを1日間暗室に保管した後、D65ランプを用い200ルクスの照度で20分間光照射した。光照射停止1時間後でも試料Aは暗室で残光が容易に視認できた。
また、同様に、試料Cを1日間暗室に保管した後、D65ランプを用い200ルクスの照度で20分間光照射した。光照射停止10時間後でも試料Cは暗室で残光が容易に視認できた。
(Visibility of afterglow)
Furthermore, after the sample A was stored in a dark room for 1 day, it was irradiated with light for 20 minutes at an illuminance of 200 lux using a D65 lamp. Even after 1 hour from the stop of light irradiation, the sample A was easily visible in the dark room.
Similarly, after the sample C was stored in a dark room for 1 day, it was irradiated with light for 20 minutes at an illuminance of 200 lux using a D65 lamp. Even after 10 hours from the stop of the light irradiation, the sample C was easily visible in the dark room.

さらに、試料Cの走査型電子顕微鏡写真を図1に示した。図1、表1及び残光の視認により、本発明の製造方法で得られるアルミン酸塩系蓄光粉末は比表面積が大きい(粒子径が小さい)にも係らず、十分な残光輝度を有することがわかった。   Further, a scanning electron micrograph of Sample C is shown in FIG. As shown in FIG. 1, Table 1, and afterglow, the aluminate-based phosphorescent powder obtained by the production method of the present invention has sufficient afterglow brightness despite having a large specific surface area (small particle diameter). I understood.

実施例4
酸化ユーロピウム3.522gと酸化ディスプロシウム7.464gを秤取り内容量が300ミリリットルのビーカーに入れ少量の水でスラリーとし加熱しながら硝酸を少量づつ添加して溶解させた。これに純水を加えて200ミリリットルにした後、アンモニア水を加えてpHを8.0にしてEuとDyの水酸化物を含むスラリーを得た。得られたスラリーを内容量2.5リットルのオートクレーブ(チタンライニング)に移し純水を加えて1リットルにした。この中に水酸化アルミニウム156.00gと水酸化ストロンチウム八水塩249.75gを添加した後、純水を加えて2リットルにした後、200℃の温度で5時間水熱処理をした。
水熱処理後のスラリーを蒸発乾固してEu、Dy、Sr及びAlを含む複水酸化物を得た。得られた複水酸化物を瑪瑙乳鉢で粉砕した後3%H/97%N雰囲気下、1500℃の温度で2時間乾式焼成した。
焼成物を粗砕した後、石川式粉砕機を用い3gを3分間粉砕して本発明の蓄光粉末(試料D)を得た。試料DはAl1モルに対してSrを0.47モル、Euを0.01モル、Dyを0.02モル含んでいた。
Example 4
3.522 g of europium oxide and 7.464 g of dysprosium oxide were weighed and placed in a beaker with an internal volume of 300 ml to form a slurry with a small amount of water, and nitric acid was added in small portions while heating and dissolved. Pure water was added to make 200 ml, and then ammonia water was added to adjust the pH to 8.0 to obtain a slurry containing Eu and Dy hydroxides. The obtained slurry was transferred to an autoclave (titanium lining) having an internal volume of 2.5 liters, and pure water was added to make 1 liter. After adding 156.00 g of aluminum hydroxide and 249.75 g of strontium hydroxide octahydrate, 2 liters of pure water was added thereto, followed by hydrothermal treatment at 200 ° C. for 5 hours.
The slurry after the hydrothermal treatment was evaporated to dryness to obtain a double hydroxide containing Eu, Dy, Sr and Al. The obtained double hydroxide was pulverized in an agate mortar and then dry-baked at a temperature of 1500 ° C. for 2 hours in a 3% H 2 /97% N 2 atmosphere.
After roughly crushing the fired product, 3 g was pulverized for 3 minutes using an Ishikawa-type pulverizer to obtain a phosphorescent powder (sample D) of the present invention. Sample D contained 0.47 mol of Sr, 0.01 mol of Eu, and 0.02 mol of Dy with respect to 1 mol of Al.

実施例5
乾式焼成の雰囲気を10%H/90%Nとした以外は実施例4と同様にして本発明の蓄光粉末(試料E)を得た。
Example 5
A phosphorescent powder (sample E) of the present invention was obtained in the same manner as in Example 4 except that the dry firing atmosphere was changed to 10% H 2 /90% N 2 .

実施例6
乾式焼成の雰囲気を30%H/70%Nとした以外は実施例4と同様にして本発明の蓄光粉末(試料F)を得た。
Example 6
A phosphorescent powder (sample F) of the present invention was obtained in the same manner as in Example 4 except that the dry firing atmosphere was changed to 30% H 2 /70% N 2 .

実施例7
酸化ディスプロシウムの添加量を3.732g、水酸化ストロンチウム八水塩の添加量を255.06gとし、乾式焼成の雰囲気を10%H/90%Nとした以外は実施例4と同様にして本発明の蓄光粉末(試料G)を得た。試料GはAl1モルに対してSrを0.48モル、Euを0.01モル、Dyを0.01モル含んでいた。
Example 7
Example 4 except that the amount of dysprosium oxide added was 3.732 g, the amount of strontium hydroxide octahydrate added was 255.06 g, and the dry firing atmosphere was 10% H 2 /90% N 2 Thus, the phosphorescent powder (sample G) of the present invention was obtained. Sample G contained 0.48 mol of Sr, 0.01 mol of Eu, and 0.01 mol of Dy with respect to 1 mol of Al.

実施例8
酸化ユ−ロピウムの添加量を7.044g、水酸化ストロンチウム八水塩の添加量を239.34gとし、乾式焼成の雰囲気を10%H/90%Nとした以外は実施例4と同様にして本発明の蓄光粉末(試料H)を得た。
試料HはAl1モルに対してSrを0.46モル、Euを0.02モル、Dyを0.02モル含んでいた。
Example 8
Example 4 except that the amount of europium oxide added was 7.044 g, the amount of strontium hydroxide octahydrate added was 239.34 g, and the dry firing atmosphere was 10% H 2 /90% N 2. Thus, the phosphorescent powder (sample H) of the present invention was obtained.
Sample H contained 0.46 mol of Sr, 0.02 mol of Eu, and 0.02 mol of Dy with respect to 1 mol of Al.

実施例9
酸化ユ−ロピウムの添加量を1.761g、酸化ディスプロシウムの添加量を3.732g、水酸化ストロンチウム八水塩の添加量を93.01gとした以外は実施例4と同様にして本発明の蓄光粉末(試料I)を得た。
試料IはAl1モルに対してSrを0.175モル、Euを0.005モル、Dyを0.01モル含んでいた。
Example 9
The present invention was carried out in the same manner as in Example 4 except that the amount of europium oxide added was 1.761 g, the amount of dysprosium oxide added was 3.732 g, and the amount of strontium hydroxide octahydrate added was 93.01 g. A phosphorescent powder (Sample I) was obtained.
Sample I contained 0.175 mol of Sr, 0.005 mol of Eu and 0.01 mol of Dy with respect to 1 mol of Al.

実施例4〜9で得られた試料D〜Iの比表面積と残光輝度を測定した。結果を表2に示した。なお、残光輝度は試料Dの値を100とする相対強度で表した。   The specific surface area and afterglow brightness of samples D to I obtained in Examples 4 to 9 were measured. The results are shown in Table 2. The afterglow luminance was expressed as a relative intensity with the value of Sample D as 100.

Figure 2005179399
Figure 2005179399

表2より、賦活剤及び共賦活剤の添加量、AlとSrの比率並びに乾式焼成時の雰囲気を変化させても、十分な残光輝度を有する微粒子蓄光粉末が得られることがわかった。   From Table 2, it was found that even if the addition amount of the activator and the coactivator, the ratio of Al and Sr, and the atmosphere during the dry firing were changed, a fine particle phosphor powder having sufficient afterglow luminance was obtained.

次いで、実施例3で得られた蓄光粉末(試料C)3gを用いて粉砕度合い(粉砕時間)による比表面積と残光輝度の変化を調べた。結果を表3に示した。
また、6分間粉砕した試料の粒度分布を走査型電子顕微鏡写真から読み取り図2に示した。6分間粉砕した試料の平均粒子径は2.4μmであった。
Subsequently, using 3 g of the phosphorescent powder (sample C) obtained in Example 3, changes in specific surface area and afterglow luminance depending on the degree of grinding (grinding time) were examined. The results are shown in Table 3.
Further, the particle size distribution of the sample ground for 6 minutes was read from a scanning electron micrograph and shown in FIG. The average particle size of the sample ground for 6 minutes was 2.4 μm.

Figure 2005179399
Figure 2005179399

表3及び図2より、本発明の製造方法で得られるアルミン酸塩系蓄光体は粉砕により容易に微細化し、粒度分布が良好で、しかも十分な残光輝度を有することがわかった。 From Table 3 and FIG. 2, it was found that the aluminate phosphors obtained by the production method of the present invention were easily refined by grinding, had a good particle size distribution, and had sufficient afterglow luminance.

試料Cの粒子形状を示す走査型電子顕微鏡写真(倍率5000倍)である。2 is a scanning electron micrograph (magnification 5000 times) showing the particle shape of sample C. FIG. 試料Cの粒度分布を示すヒストグラムである。3 is a histogram showing the particle size distribution of Sample C.

Claims (8)

賦活剤Eu、共賦活剤R(但し、RはDy、Ndからなる群より選ばれる少なくとも1種の元素である)、Al及びM(但し、MはCa、Sr及びBaからなる群より選ばれる少なくとも1種の元素である)を含む複水酸化物を乾式焼成することを特徴とするアルミン酸塩系微粒子蓄光粉末の製造方法。 Activator Eu, co-activator R (where R is at least one element selected from the group consisting of Dy and Nd), Al and M (where M is selected from the group consisting of Ca, Sr and Ba) A method for producing an aluminate-based fine particle phosphorescent powder comprising dry firing a double hydroxide containing at least one element). 複水酸化物を、それを構成する各々の元素(Eu、R、Al及びM)の水酸化物を含むスラリーを湿式加熱処理して得ることを特徴とする請求項1に記載のアルミン酸塩系微粒子蓄光粉末の製造方法。 2. The aluminate according to claim 1, wherein the double hydroxide is obtained by wet-treating a slurry containing a hydroxide of each element (Eu, R, Al and M) constituting the double hydroxide. Of producing fine-particle-based phosphorescent powder. 湿式加熱処理を80〜300℃の範囲の温度で行うことを特徴とする請求項2に記載のアルミン酸塩系微粒子蓄光粉末の製造方法。 The method for producing an aluminate-based fine particle phosphorescent powder according to claim 2, wherein the wet heat treatment is performed at a temperature in the range of 80 to 300 ° C. 非酸化性雰囲気で乾式焼成することを特徴とする請求項1に記載のアルミン酸塩系微粒子蓄光粉末の製造方法。 The method for producing an aluminate-based fine particle phosphorescent powder according to claim 1, wherein dry firing is performed in a non-oxidizing atmosphere. 1100℃〜1600℃の範囲の温度で乾式焼成することを特徴とする請求項5に記載のアルミン酸塩系微粒子蓄光粉末の製造方法。 6. The method for producing an aluminate-based fine-particle phosphorescent powder according to claim 5, wherein dry firing is performed at a temperature in the range of 1100 ° C. to 1600 ° C. MがSrであることを特徴とする請求項1に記載のアルミン酸塩系微粒子蓄光粉末の製造方法。 M is Sr, The manufacturing method of the aluminate type fine particle luminous powder of Claim 1 characterized by the above-mentioned. RがDyであることを特徴とする請求項1に記載のアルミン酸塩系微粒子蓄光粉末の製造方法。 R is Dy, The manufacturing method of the aluminate type fine particle luminous powder of Claim 1 characterized by the above-mentioned. 複水酸化物がAl1モルに対してMを0.05〜2モル、Euを0.0001〜0.5モル、Rを0.0001〜0.5モルの範囲でAl、M、Eu及びRを含むことを特徴とする請求項1に記載のアルミン酸塩系微粒子蓄光粉末の製造方法。

The double hydroxide is Al in the range of 0.05 to 2 mol, Eu in the range of 0.0001 to 0.5 mol, R in the range of 0.0001 to 0.5 mol with respect to 1 mol of Al, Al, M, Eu and R. The manufacturing method of the aluminate type fine particle luminous powder of Claim 1 characterized by the above-mentioned.

JP2003418574A 2003-12-16 2003-12-16 Manufacturing method of aluminate salt fine particle light-accumulating powder Pending JP2005179399A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003418574A JP2005179399A (en) 2003-12-16 2003-12-16 Manufacturing method of aluminate salt fine particle light-accumulating powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003418574A JP2005179399A (en) 2003-12-16 2003-12-16 Manufacturing method of aluminate salt fine particle light-accumulating powder

Publications (1)

Publication Number Publication Date
JP2005179399A true JP2005179399A (en) 2005-07-07

Family

ID=34780754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003418574A Pending JP2005179399A (en) 2003-12-16 2003-12-16 Manufacturing method of aluminate salt fine particle light-accumulating powder

Country Status (1)

Country Link
JP (1) JP2005179399A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014157337A1 (en) * 2013-03-29 2014-10-02 堺化学工業株式会社 Mechanoluminescent material and use applications thereof, raw material composition for mechanoluminescent material, and method for producing mechanoluminescent material
JP2014198769A (en) * 2013-03-29 2014-10-23 堺化学工業株式会社 Raw material composition for stress luminescent material, stress luminescent material, and application of the same
JP2014198758A (en) * 2013-03-29 2014-10-23 堺化学工業株式会社 Stress luminescent material, application of the same, and method for producing stress luminescent material
JP2018080215A (en) * 2016-11-14 2018-05-24 太平洋セメント株式会社 Manufacturing method of phosphate fluophor
WO2018135106A1 (en) * 2017-01-19 2018-07-26 国立研究開発法人産業技術総合研究所 Mechanoluminescent material, coating containing mechanoluminescent material, mechanoluminescent body, and method for producing mechanoluminescent material
JP2019131779A (en) * 2017-03-28 2019-08-08 デンカ株式会社 Light storing material
CN114096641A (en) * 2019-07-10 2022-02-25 沙索德国有限公司 Strontium aluminate mixed oxide and preparation method thereof

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105209572B (en) * 2013-03-29 2018-06-19 堺化学工业株式会社 The manufacturing method of stress light emitting material and its application, stress light emitting material feedstock composition and stress light emitting material
KR102134941B1 (en) 2013-03-29 2020-07-16 사카이 가가쿠 고교 가부시키가이샤 Mechanoluminescent material and use applications thereof, raw material composition for mechanoluminescent material, and method for producing mechanoluminescent material
JP2014198758A (en) * 2013-03-29 2014-10-23 堺化学工業株式会社 Stress luminescent material, application of the same, and method for producing stress luminescent material
KR20150136130A (en) * 2013-03-29 2015-12-04 사카이 가가쿠 고교 가부시키가이샤 Mechanoluminescent material and use applications thereof, raw material composition for mechanoluminescent material, and method for producing mechanoluminescent material
CN105209572A (en) * 2013-03-29 2015-12-30 堺化学工业株式会社 Mechanoluminescent material and use applications thereof, raw material composition for mechanoluminescent material, and method for producing mechanoluminescent material
WO2014157337A1 (en) * 2013-03-29 2014-10-02 堺化学工業株式会社 Mechanoluminescent material and use applications thereof, raw material composition for mechanoluminescent material, and method for producing mechanoluminescent material
JP2014198769A (en) * 2013-03-29 2014-10-23 堺化学工業株式会社 Raw material composition for stress luminescent material, stress luminescent material, and application of the same
JP2018080215A (en) * 2016-11-14 2018-05-24 太平洋セメント株式会社 Manufacturing method of phosphate fluophor
JPWO2018135106A1 (en) * 2017-01-19 2019-11-07 国立研究開発法人産業技術総合研究所 Stress-stimulated luminescent material, paint containing the same-stressed luminescent material, stress-stimulated luminescent material, and method for producing stress-stimulated luminescent material
WO2018135106A1 (en) * 2017-01-19 2018-07-26 国立研究開発法人産業技術総合研究所 Mechanoluminescent material, coating containing mechanoluminescent material, mechanoluminescent body, and method for producing mechanoluminescent material
US11225603B2 (en) 2017-01-19 2022-01-18 National Institute Of Advanced Industrial Science And Technology Mechanoluminescent material, coating containing mechanoluminescent material, mechanoluminescent substance and method for producing mechanoluminescent material
JP2019131779A (en) * 2017-03-28 2019-08-08 デンカ株式会社 Light storing material
CN114096641A (en) * 2019-07-10 2022-02-25 沙索德国有限公司 Strontium aluminate mixed oxide and preparation method thereof
CN114096641B (en) * 2019-07-10 2024-04-26 沙索德国有限公司 Strontium aluminate mixed oxide and preparation method thereof
JP7515565B2 (en) 2019-07-10 2024-07-12 サゾル ジャーマニー ゲーエムベーハー Strontium aluminate mixed oxide and method for its preparation

Similar Documents

Publication Publication Date Title
US9062251B2 (en) Phosphor particles, light-emitting diode, and illuminating device and liquid crystal panel backlight device using them
Chang et al. Eu2+ activated long persistent strontium aluminate nano scaled phosphor prepared by precipitation method
US6544438B2 (en) Preparation of high emission efficiency alkaline earth metal thiogallate phosphors
CN106544025B (en) A kind of preparation method of rear-earth-doped gadolinium oxysulfide fluorescent powder
US20120175559A1 (en) Phosphor particles and making method
Biswas et al. Synthesis, structural and luminescence studies of LiSrVO 4: Sm 3+ nanophosphor to fill amber gap in LEDs under n-UV excitation
CN103911147A (en) Near-infrared long-afterglow fluorescent powder and preparation method thereof
Omar et al. Development and characterization studies of Eu3+-doped Zn2SiO4 phosphors with waste silicate sources
Kim et al. Synthesis and characterization of red phosphor (Y, Gd) BO 3: Eu by the coprecipitation method
US6423247B1 (en) Phosphorescent pigment and process for preparing the same
EP2690154A1 (en) Method for preparing phosphor precursor and phosphor, and wavelength converter
JP2005179399A (en) Manufacturing method of aluminate salt fine particle light-accumulating powder
Wu et al. Uniform KCaY (PO 4) 2: Eu 3+ phosphors: sol–gel method, morphology and luminescence properties
KR101414948B1 (en) PROCESS FOR PRODUCTION OF Eu-ACTIVATED ALKALINE EARTH METAL SILICATE PHOSPHOR
EP3168279A1 (en) Phosphor and method for manufacturing the same
Schiopu et al. Ce, Gd codoped YAG nanopowder for white light emitting device
KR100387659B1 (en) Manufacturing method of strontium aluminate phosphor by the sol-gel method
CN107722978A (en) A kind of multi-component oxide long after glow luminous material and preparation method thereof
JP4829524B2 (en) Strontium aluminate-based phosphorescent material and method for producing the same
WO2005103197A1 (en) Strontium aluminate light storing material and process for producing the same
JPH09255950A (en) Preparation of light-storing luminescent pigment
JP2010100763A (en) Method of producing luminous fluorescent substance and luminous fluorescent substance
Rekha et al. Photoluminescence Investigations of UV, Near UV, and Visible Light Excited CaS: Eu Nanophosphors
CN110003910A (en) A kind of Eu3+Fluorine telluric acid bismuth red fluorescence powder of activation and the preparation method and application thereof
JP3559449B2 (en) Orthorhombic hydroxide phosphor and its manufacturing method