JP2002327173A - Method for producing particulate luminous fluorescent powder and particulate luminous fluorescent powder - Google Patents

Method for producing particulate luminous fluorescent powder and particulate luminous fluorescent powder

Info

Publication number
JP2002327173A
JP2002327173A JP2001133356A JP2001133356A JP2002327173A JP 2002327173 A JP2002327173 A JP 2002327173A JP 2001133356 A JP2001133356 A JP 2001133356A JP 2001133356 A JP2001133356 A JP 2001133356A JP 2002327173 A JP2002327173 A JP 2002327173A
Authority
JP
Japan
Prior art keywords
particulate
raw material
phosphorescent
powder
precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001133356A
Other languages
Japanese (ja)
Inventor
Hei Chin
萍 陳
Choshi Ei
肇 巳 栄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ARAKAWA MITSUROKU
UMEMARU TOSHIAKI
Original Assignee
ARAKAWA MITSUROKU
UMEMARU TOSHIAKI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ARAKAWA MITSUROKU, UMEMARU TOSHIAKI filed Critical ARAKAWA MITSUROKU
Priority to JP2001133356A priority Critical patent/JP2002327173A/en
Publication of JP2002327173A publication Critical patent/JP2002327173A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing particulate luminous fluorescent powder having strong emission intensity and long emission time, excellent in water resistance and having narrow particle size distribution, and to provide particulate luminous fluorescent powder by using the method. SOLUTION: The precursor of luminous fluorescent powder is obtained by using Al(NO3 )3 .9H2 O as the raw material for constituent Al, Sr(NO3 )2 as the raw material for constituent Sr, Eu2 O3 as the raw material for constituent Eu and Dy2 O3 as the raw material for constituent Dy and adding a particulate refining agent before precipitating the raw materials from a solution mixed with the raw materials by coprecipitation method. The particulate refining agent is one or more selected from saccharose, glucose, starch and cellulose ether. And, the precursor is irradiated with a microwave and applied to solid state reaction so as to directly obtain luminous fluorescent powder of particulate (having 2-5 μm particle diameter). The compounding mole ratios of the raw materials are preferably adjusted within the following ranges. Sr(NO3 )2 :Al(NO3 )3 .9H2 O=1:1.5-4, Eu2 O3 :Dy2 O3 =1:1.5-3 and Sr(NO3 )2 :Eu2 O3 =1:0.001-0.02.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、微粒子状の蓄光性
蛍光粉の製造方法及び該製造方法により得られる微粒子
状蓄光性蛍光粉に関するものであり、さらに詳しくは、
前記蓄光性蛍光粉の前駆物質にマイクロ波を照射して得
られる微粒子状蓄光性蛍光粉の製造方法及び該方法によ
り製造される微粒子状蓄光性蛍光粉に関するものであ
る。本明細書において、蓄光性蛍光粉とは、太陽または
他の光源により照射されて、光を蓄え、暗所で長時間に
わたって発光し、繰り返して蓄光と発光ができる材料を
いう。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing finely particulate luminous fluorescent powder and a finely particulate luminous fluorescent powder obtained by the method.
The present invention relates to a method for producing a particulate phosphorescent phosphor powder obtained by irradiating the precursor of the phosphorescent phosphor powder with microwaves, and a particulate phosphorescent phosphor powder produced by the method. In the present specification, the luminous fluorescent powder refers to a material which is irradiated by the sun or another light source, stores light, emits light for a long time in a dark place, and can repeatedly store and emit light.

【0002】[0002]

【従来の技術】従来の蓄光性蛍光粉は、ほとんど硫黄化
合物であり、例えばZnS:Cu、CoまたはCaS:Ceなどから形
成される。これらの蓄光性蛍光粉は外部からエネルギー
を吸収して、暗所で発光をすることができるが、その発
光時間は1〜2時間程度に過ぎず、化学的安定性も低
く、耐水性に劣り、劣化しやすいため、数10時間で発
光能力が急激に低下し、使用寿命が短いなどの欠点があ
った。また硫黄化合物系の蓄光性蛍光粉に放射性物質を
添加したものは、長時間自己発光することができるが、
放射性物質は危険な汚染源と見られている。従って、こ
のような放射性物質の使用により人体汚染及び環境汚染
が生じる可能性を抑制するために、国際的には使用が禁
止されている。
2. Description of the Related Art Conventional phosphorescent phosphor powders are almost sulfur compounds and are formed of, for example, ZnS: Cu, Co or CaS: Ce. These phosphorescent fluorescent powders can absorb energy from the outside and emit light in a dark place, but the emission time is only about 1 to 2 hours, the chemical stability is low, and the water resistance is poor. However, since it is liable to be deteriorated, the light emitting ability is rapidly lowered in several tens of hours, and there are drawbacks such as a short service life. The addition of radioactive substances to phosphorescent phosphor powders of sulfur compounds, can emit light for a long time,
Radioactive material is considered a dangerous source of pollution. Therefore, in order to suppress the possibility of causing human body pollution and environmental pollution due to the use of such radioactive materials, the use is prohibited internationally.

【0003】従来の技術に見られる以上述べた欠点に鑑
みて、長年にわたる研究の結果、1990年代の初期にアル
カリ土類金属のアルミン酸塩を基質とする蓄光性蛍光粉
が開発された。この蓄光性蛍光粉は、Euにより活性化さ
れたアルミン酸塩であり、発光強度が高く、発光時間も
24時間以上と長いものであり、また、化学的にも安定
であり、湿気に強く、耐光性に優れ、且つ使用寿命が長
いなどの長所があるため、各分野に幅広く応用されてお
り、例えば蛍光インク、蛍光塗料、蛍光ガラス印刷、各
種標識、装飾類及び低強度光源等に使用されている。
In view of the above-mentioned drawbacks of the prior art, many years of research led to the development of phosphorescent phosphor powders based on alkaline earth metal aluminates in the early 1990s. This phosphorescent phosphor powder is an aluminate activated by Eu, has a high luminous intensity, a long luminous time of 24 hours or more, is chemically stable, resistant to moisture, and resistant to light. It is widely used in various fields due to its excellent properties and long service life. For example, it is used for fluorescent ink, fluorescent paint, fluorescent glass printing, various signs, decorations, low intensity light source, etc. I have.

【0004】しかしながら、この種のアルミン酸塩の蓄
光性蛍光粉の工業生産はα−Al2O3と数種類の必要な化
合物とを混ぜ合わせ、1300℃以上の高温固相で反応
させることにより製造されているため、この製品はセラ
ミック状の硬い固体となる。この1300℃以上の高温
処理を行なうことにより、セラミック状の硬い固体とな
る理由は、α−Al2O3の化学活性が低く、十分高い温度
でなければ、アルカリ土類金属などの成分と反応しない
からであり、高温の反応では単斜結晶アルミン酸塩を生
成し、Eu2O3のようなランタノイド金属活性化剤が結晶
の中に導入され、発光中心及び格子欠陥を形成する。こ
のセラミック状の固い製品は強力な粉砕の処理を施さな
いと、実際に応用できる10μm程度以下、特に5μm
以下の粒径の粉末を得ることができない。しかしなが
ら、粉砕時において発光結晶に傷が生じると活性化エネ
ルギーを吸収するので、発光能力が減じる。また、粒径
が10μm以上になると輝度が急激に落ち、粒径が2μ
m以下になると発光が微弱過ぎて、実用に供することが
難しくなり、従って、凹版印刷、オフセット印刷用蛍光
インク、複写機用蛍光トナー、繊維染料などにおいて、
その微粉末状蓄光性蛍光粉の応用が制限されることにな
る。さらに、従来、粒径が過大であるか又は粒経分布が
広いなどの欠点を改良するため多くの研究が行われてき
たが、あまり成果をあげていなかった。
However, this kind of phosphorescent phosphorescent aluminate is industrially produced by mixing α-Al 2 O 3 and several kinds of necessary compounds and reacting them in a solid phase at a high temperature of 1300 ° C. or higher. As a result, the product becomes a ceramic-like hard solid. This high temperature treatment at 1300 ° C. or higher causes a ceramic-like hard solid because α-Al 2 O 3 has low chemical activity and reacts with components such as alkaline earth metals unless the temperature is high enough. The reaction at high temperatures produces monoclinic aluminates, and lanthanoid metal activators such as Eu 2 O 3 are introduced into the crystals to form luminescent centers and lattice defects. This ceramic-like hard product can be applied to practically 10 μm or less, especially 5 μm unless it is subjected to strong pulverizing treatment.
Powders of the following particle size cannot be obtained. However, when the luminescent crystal is damaged during the pulverization, it absorbs the activation energy, so that the luminescent ability is reduced. Further, when the particle diameter is 10 μm or more, the luminance sharply drops, and the particle diameter becomes 2 μm.
m or less, light emission is too weak, it is difficult to put to practical use, therefore, in intaglio printing, offset printing fluorescent ink, copier fluorescent toner, fiber dye,
The application of the finely powdered phosphorescent powder is limited. Further, conventionally, many studies have been made to improve disadvantages such as an excessively large particle size or a wide particle size distribution, but they have not been very successful.

【0005】一方、アルミン酸塩からなる蓄光性蛍光粉
は、低価数Euイオンであり、周知のように、活性化剤と
しては、Euイオンは変価イオンであり、+2、+3価数の
Euイオンが蛍光物質の活性化剤になるとき、全く異なる
光スぺクトルを発する。アルカリ土類金属アルミン酸塩
には、2価のEuイオンのみが格子欠陥を形成できるの
で、蓄光性蛍光粉を製造をする際には、通常は+3価の
Eu2O3をEuイオン源として、高温加熱する前に混合物中
に添加する。Eu3+をEu2+に還元するために、固相反応は
還元性雰囲気で反応させなければならない。全部のEu3+
がEu2+に還元できるかどうかはその蓄光性蛍光粉の輝度
と蓄光性能を左右する重要な問題である。従来の方法は
5%のH2を含むフローのN2ガスを用いて、Eu3+をEu2+
還元しているので、該還元反応を密閉管状の容器の中で
行なわなければならず、操作上煩雑であり、また、設備
等装置面の費用が高くなり、大規模の生産は困難であっ
た。
On the other hand, the phosphorescent phosphor powder composed of aluminate is a low-valent Eu ion. As is well known, as an activator, the Eu ion is a variable ion, and has +2 and +3 valences.
When Eu ions act as activators of the fluorescent material, they emit a completely different optical spectrum. In alkaline earth metal aluminates, only divalent Eu ions can form lattice defects, and therefore, when producing phosphorescent phosphor powder, usually +3 valent
Eu 2 O 3 is added to the mixture as a source of Eu ions before heating at high temperature. In order to reduce Eu 3+ to Eu 2+ , the solid-state reaction must be performed in a reducing atmosphere. All Eu 3+
It is an important issue to determine whether the phosphorescent phosphor can be reduced to Eu 2+ , which affects the luminance and phosphorescent performance of the phosphorescent phosphor. Since the conventional method uses a flow of N 2 gas containing 5% of H 2 to reduce Eu 3+ to Eu 2+ , the reduction reaction must be performed in a closed tubular container. In addition, the operation is complicated, and the cost of equipment such as facilities is high, and large-scale production is difficult.

【0006】[0006]

【発明が解決しようとする課題】従って、本発明の課題
は、前記した欠点を克服し、発光強度が強く、発光時間
が長く、耐水性に優れるとともに、粒径分布が狭い範囲
に制御された特性を有する微粒子状の蓄光性蛍光粉の製
造方法及び微粒子状蓄光性蛍光粉を提供することにあ
る。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to overcome the above-mentioned drawbacks, to provide a high luminous intensity, a long luminous time, excellent water resistance, and to control the particle size distribution in a narrow range. It is an object of the present invention to provide a method for producing a particulate phosphorescent phosphor powder having characteristics and a particulate phosphorescent phosphor powder.

【0007】[0007]

【課題を解決するための手段】そこで、本発明者らは、
上記課題を解決するために鋭意検討を加えた結果、Al、
Sr、Eu及びDyを構成成分として含有する蓄光性蛍光粉の
製造において、これらの構成成分の各原材料を特定の配
合割合とし、また、前記原材料の混合溶液に粒子細化剤
を滴下することにより前記蓄光性蛍光粉の前駆物質を製
造し、さらに、前記前駆物質にマイクロ波を照射するこ
とにより平均粒径2μm〜5μmの粒径分布の狭い微粒
子状蓄光性蛍光粉が得られることを見い出し、これらの
知見に基づいて本発明の完成に到達した。
Means for Solving the Problems Accordingly, the present inventors have:
As a result of intensive studies to solve the above problems, Al,
In the production of the phosphorescent phosphor powder containing Sr, Eu and Dy as constituents, each raw material of these constituents has a specific blending ratio, and by dropping a particle thinning agent to a mixed solution of the raw materials. The precursor of the phosphorescent phosphor powder is manufactured, and further, by irradiating the precursor with microwaves, it is found that a fine particulate phosphorescent phosphor powder having a narrow particle size distribution with an average particle size of 2 μm to 5 μm can be obtained, Based on these findings, the present invention has been completed.

【0008】すなわち、本発明の第一は、Al、Sr、Eu及
びDyを構成成分とし、Al(NO3)3・9H2Oを構成成分Alの原
材料とし、Sr(NO3)2を構成成分Srの原材料とし、Eu2O3
を構成成分Euの原材料とし、Dy2O3を構成成分Dyの原材
料とする微粒子状の蓄光性蛍光粉の製造方法であって、
それぞれの原材料の配合割合がモル比で表わして下記の
範囲に調整されることを特徴とする微粒子状蓄光性蛍光
粉の製造方法: Sr(NO3)2:Al(NO3) 3・9H2O=1:1.5〜4 Eu2O3:Dy2O3=1:1.5〜3 Sr(NO3)2:Eu2O3=1:0.001〜0.02 に関するものである。
Namely, first the of the present invention, Al, Sr, and constituents Eu and Dy, and a raw material of Al (NO 3) 3 · 9H 2 O constituents Al, constituting the Sr (NO 3) 2 Eu 2 O 3 as a raw material for component Sr
A raw material of the constituent Eu, a method for producing a fine phosphorescent powder in the form of Dy 2 O 3 as a raw material of the constituent Dy,
Method for producing a particulate phosphorescent powder blending ratio of each raw material, characterized in that it is adjusted to a range of below expressed in terms of mole ratios: Sr (NO 3) 2: Al (NO 3) 3 · 9H 2 O = 1: 1.5 to 4 Eu 2 O 3 : Dy 2 O 3 = 1: 1.5 to 3 Sr (NO 3 ) 2 : Eu 2 O 3 = 1: 0.001 to 0.02

【0009】また、本発明によれば、前記構成成分Eu及
びDyの原材料のEu2O3とDy2O3とを混合して得た硝酸塩溶
液[Eu(NO3)3、Dy(NO3)3]と、前記構成成分Sr及びAlの原
材料である Sr(NO3)2とAl(NO3) 3・9H2Oとを混合して得た
第2の溶液とを混合して得られる混合溶液にアンモニウ
ム化合物を添加しアンモニウム飽和溶液を得て、該アン
モニウム飽和溶液に1%〜10%の粒子細化剤を滴下し
つつ攪拌して沈殿物が生成させ、次いで熟成させた後、
生成した沈澱物を濾過、洗浄及び加熱乾燥させて蓄光性
蛍光粉の前駆物質を得る工程を含むことを特徴とする微
粒子状蓄光性蛍光粉の製造方法が提供される。
According to the present invention, the above-mentioned constituent Eu and
And Dy raw material EuTwoOThreeAnd DyTwoOThreeAnd nitrate solution obtained by mixing
Liquid [Eu (NOThree)Three, Dy (NOThree)Three] And the components Sr and Al
Sr (NOThree)TwoAnd Al (NOThree) Three・ 9HTwoObtained by mixing with O
Ammonium is added to the mixed solution obtained by mixing with the second solution.
To obtain a saturated ammonium solution,
1% to 10% of a particle thinning agent is dropped into a saturated solution of monium.
After stirring to form a precipitate, and then aging,
The precipitate formed is filtered, washed and dried by heating to luminesce
A step of obtaining a precursor of the fluorescent powder.
A method for producing a particulate phosphorescent powder is provided.

【0010】さらに、本発明によれば、前記粒子細化剤
を添加した後、共沈澱法により製造した蓄光性蛍光粉の
前駆物質にマイクロ波を照射して、該蓄光性蛍光粉の前
駆物質に固相反応を生じさせ、直接合成して微粒子の蓄
光性蛍光粉を得る工程をさらに含むことを特徴とする微
粒子状蓄光性蛍光粉の製造方法が提供される。
Further, according to the present invention, after the addition of the particle thinning agent, the precursor of the luminous fluorescent powder produced by the coprecipitation method is irradiated with microwaves, so that the precursor of the luminous fluorescent powder is Wherein the method further comprises a step of causing a solid-phase reaction to directly synthesize and obtain fine-grain phosphorescent powder.

【0011】また、本発明の第二は、第一の発明に係る
蓄光性蛍光粉の製造方法により得られる蓄光性蛍光粉で
あって、平均粒径が2μm〜5μmの範囲に分布する特
性を有することを特徴とする微粒子状蓄光性蛍光粉に関
するものである。
A second aspect of the present invention is a luminous phosphor powder obtained by the method for producing a luminous phosphor powder according to the first aspect of the present invention, which has an average particle size of 2 μm to 5 μm. The present invention relates to a particulate phosphorescent phosphor powder characterized by having.

【0012】本発明は、前記のように微粒子状蓄光性蛍
光粉の製造方法および該製造方法により得られる微粒子
状蓄光性蛍光粉に関するものであるが、さらに好ましい
実施の形態として少なくとも次の工程を包含する。 (1)Al、Sr、Eu及びDyを構成成分として含有する微粒
子状蓄光性蛍光粉の製造方法であって、Eu2O3とDy2O3
をHNO3に溶解して得られる硝酸塩溶液I(Eu(NO3)3とDy(N
O3)3との混合溶液)とSr(NO3)2とAl(NO3)3・9H2Oとの溶液
IIとを混合して得られる混合溶液にアンモニウム化合物
を添加しアンモニウム飽和溶液を調製し、該飽和溶液に
粒子細化剤を滴下しつつ攪拌し生成する沈殿物を熟成さ
せる工程を含む蓄光性蛍光粉の製造方法。 (2)前記構成成分の原材料の混合溶液に粒子細化剤を
添加し前記成分の共沈殿により得られた前駆物質にマイ
クロ波を照射し蓄光性蛍光粉微粒子集合体を調製する工
程。
The present invention relates to a method for producing a particulate phosphorescent phosphor powder and a particulate phosphorescent phosphor powder obtained by the method as described above. As a more preferred embodiment, at least the following steps are carried out. Include. (1) A method for producing a particulate luminous phosphor powder containing Al, Sr, Eu and Dy as constituent components, wherein a nitrate solution obtained by dissolving Eu 2 O 3 and Dy 2 O 3 in HNO 3 I (Eu (NO 3 ) 3 and Dy (N
O 3) 3 mixed solution of) the Sr (NO 3) 2 and Al (solution of NO 3) 3 · 9H 2 O
2. A phosphorescent fluorescence comprising a step of adding an ammonium compound to a mixed solution obtained by mixing II and an ammonium saturated solution to prepare an ammonium saturated solution, and agitating while dropping a particle thinning agent to the saturated solution to ripen a generated precipitate. Powder manufacturing method. (2) A step of adding a particle thinning agent to a mixed solution of the raw materials of the constituent components and irradiating the precursor obtained by co-precipitation of the components with microwaves to prepare an aggregate of luminescent phosphor fine particles.

【0013】[0013]

【発明の実施の形態】本発明に係る蓄光性蛍光粉の製造
方法は、前記の如き構成をとり、新規な組成と特性を有
する蓄光性蛍光粉粒子集合体を提供することを特徴とす
るが、好適な形態として該製造方法において、構成成分
を共沈殿法により沈殿させる前に粒子細化剤を添加して
蓄光性蛍光粉前駆物質を調製する工程が採用される。該
粒子細化剤は、庶糖、葡萄糖、澱粉及び繊維素エーテル
からなる群より選択される少なくとも一種以上を選択す
る。該粒子細化剤の添加量は、前駆物質の重量の0.5%
〜10%、特に、1%〜9%占めることが好ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The method for producing a phosphorescent phosphor powder according to the present invention is characterized by providing a phosphorescent phosphor particle aggregate having a novel composition and characteristics having the above-mentioned constitution. In a preferred embodiment, the production method employs a step of preparing a phosphorescent phosphor powder precursor by adding a particle thinner before precipitating the constituent components by a coprecipitation method. As the particle thinning agent, at least one selected from the group consisting of sucrose, glucose, starch, and cellulose ether is selected. 0.5% of the weight of the precursor was added
Preferably, it accounts for 〜10%, especially 1% 、 19%.

【0014】また、好ましい実施の形態として前記前駆
物質にマイクロ波を照射し、固相反応に供する工程が採
用される。該工程により直接微粒子状(粒径が2μm〜
5μm)の蓄光性蛍光粉を得ることができる。マイクロ
波としては極超短波であり、周波数として1000MHz以
上、遠赤外線に接する範囲のものまで用いられる。
As a preferred embodiment, a step of irradiating the precursor with microwaves and subjecting the precursor to a solid phase reaction is employed. Fine particles (with a particle size of 2 μm to
5 μm) can be obtained. The microwave is a very high frequency wave, and has a frequency of 1000 MHz or more and a range in contact with far infrared rays.

【0015】前記前駆物質の調製原料は、Al(NO3)3・9H
2Oを構成成分Alの原材料とし、Sr(NO3)2を構成成分Srの
原材料とし、Eu2O3を構成成分Euの原材料とし、Dy2O3
構成成分Dyの原材料とすることにより得られるものであ
り、それぞれの原材料の配合割合はモル比で表わして以
下の通りのものである。 Sr(NO3)2:Al(NO3)3・9H2O=1:1.5〜4 (分子比例) Eu2O3:Dy2O3=1:1.5〜3 (分子比例) Sr(NO3)2:Eu2O3=1:0.001〜0.02 (分子比例)
[0015] Preparation material of the precursor, Al (NO 3) 3 · 9H
By using 2 O as a raw material of the constituent Al, Sr (NO 3 ) 2 as a raw material of the constituent Sr, Eu 2 O 3 as a raw material of the constituent Eu, and Dy 2 O 3 as a raw material of the constituent Dy. The mixing ratio of each raw material is represented by a molar ratio as follows. Sr (NO 3) 2: Al (NO 3) 3 · 9H 2 O = 1: 1.5~4 ( Molecular proportional) Eu 2 O 3: Dy 2 O 3 = 1: 1.5~3 ( Molecular proportional) Sr (NO 3 ) 2 : Eu 2 O 3 = 1: 0.001 to 0.02 (molecular proportion)

【0016】[0016]

【実施例】次に、実施例により本発明をさらに具体的に
説明する。もっとも本発明は、実施例等により限定され
るものではない。
Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the examples and the like.

【0017】本発明の実施例において、Al(NO3)3・9H2O
を構成成分Alの原材料とし、Sr(NO3) 2を構成成分Srの原
材料とし、Eu2O3を構成成分Euの原材料とし、Dy2O3を構
成成分Dyの原材料として製品を製造した。
In the embodiment of the present invention, Al (NOThree)Three・ 9HTwoO
Is the raw material of the component Al, and Sr (NOThree) TwoThe component Sr
Material and EuTwoOThreeIs the raw material of the constituent Eu, and DyTwoOThreeIs composed
A product was manufactured as a raw material of the component Dy.

【0018】以下の原材料を正確に計量して用意した。 1.Al(NO3)3・9H2O 375.13g 2.Sr(NO3)2 105.8g 3.Eu2O3 1.76g 4.Dy2O3 3.73g 5.葡萄糖 9.7g 6.(NH4)2CO3 96g 7.NH4HCO3 79.06g 8.HNO3(65%) 10mlThe following raw materials were accurately measured and prepared. 1. Al (NO 3) 3 · 9H 2 O 375.13g 2. Sr (NO 3 ) 2 105.8 g 3. Eu 2 O 3 1.76 g 4. Dy 2 O 3 3.73 g 5. Glucose 9.7g 6. (NH 4 ) 2 CO 3 96 g 7. 7. NH 4 HCO 3 79.06 g HNO 3 (65%) 10ml

【0019】先ずEu2O3とDy2O3とHNO3とによって、Eu3+
とDy3+を混合した溶液Iを得る。次いで、Sr(NO3)2、とA
l(NO3)3・9H2Oとを同時に純水に溶かし、混合して溶液II
を得た。溶液Iと溶液IIを混合し得られた混合溶液に葡
萄糖を添加し、混合溶液(I+II)の葡萄糖溶液を調製し
た。最後に(NH4)2CO3とNH4HCO3とを飽和状態になるまで
純水に溶かし、混合したアンモニウム塩の飽和溶液III
を得た。混合したアンモニウム塩飽和溶液IIIに前記混
合溶液(I+II)の葡萄糖溶液をゆっくりと滴下し、激
しく攪拌して、反応が終わった後24時間保持・熟成
し、濾過、洗浄、加熱乾燥してから蓄光性蛍光粉の前駆
物質を得た。さらに、該蓄光性蛍光粉の前駆物質をやや
酸化雰囲気の電子レンジ内に置き30分間加熱した。こ
の場合、電子レンジの効率は800wで、周波数は2450M
Hzであった。次いで、前駆物質を還元性雰囲気の電子
レンジ内に置き30分間加熱し冷却した後、Eu、Dyによ
り活性化されたアルミン酸塩蓄光性蛍光粉の製造を完了
させた。
First, Eu 3+ by Eu 2 O 3 , Dy 2 O 3 and HNO 3
And a solution I in which Dy 3+ is mixed. Then, Sr (NO 3 ) 2 and A
l (NO 3 ) 3・ 9H 2 O and pure water at the same time
I got Dextrose was added to the mixed solution obtained by mixing the solution I and the solution II to prepare a glucose solution of the mixed solution (I + II). Finally, (NH 4 ) 2 CO 3 and NH 4 HCO 3 are dissolved in pure water until they are saturated, and a mixed ammonium salt saturated solution III
I got The glucose solution of the mixed solution (I + II) is slowly dropped into the mixed ammonium salt saturated solution III, and the mixture is vigorously stirred. After the reaction is completed, the mixture is kept and matured for 24 hours, filtered, washed, heated and dried, and then luminous. A precursor of the fluorescent powder was obtained. Further, the precursor of the phosphorescent phosphor powder was placed in a microwave oven in a slightly oxidizing atmosphere and heated for 30 minutes. In this case, the efficiency of microwave oven is 800w and the frequency is 2450M
Hz. Next, the precursor was placed in a microwave oven in a reducing atmosphere, heated and cooled for 30 minutes, and then the production of the aluminate phosphorescent powder activated by Eu and Dy was completed.

【0020】以上の製造過程に関する主な化学反応は以
下の通りである。 Dy2O3+6HNO3=2Dy(NO2)3+3H2O Eu2O3+6HNO3=2Eu(NO3)3+3H2O 4NH4HCO3+Al(NO3)3・9H2O=NH4AlO(OH)HCO3+3CO2↑+3NH4
NO3+10H2O Sr(NO3)2+(NH4)2CO3=SrCO3+2NH4NO3 2Dy3++3CO3 2-=Dy2(CO3)3 2Eu3++3CO3 2-=Eu2(CO3)3 2NH4AlO(OH)HCO3=Al2O3+2NH3+2CO2↑+3H2O (電子レン
ジ内における酸化段階) Dy2(CO3)3+3Al2O3=Dy2(Al2O4)33CO2↑ (電子レン
ジ内における還元段階) Eu2(CO3)3+2Al2O3+C=2EuAl2O4+3CO2↑+CO (電子レン
ジ内における還元段階)
The main chemical reactions involved in the above manufacturing process are as follows. Dy 2 O 3 + 6HNO 3 = 2Dy (NO 2) 3 + 3H 2 O Eu 2 O 3 + 6HNO 3 = 2Eu (NO 3) 3 + 3H 2 O 4NH 4 HCO 3 + Al (NO 3) 3 · 9H 2 O = NH 4 AlO (OH) HCO 3 + 3CO 2 ↑ + 3NH 4
NO 3 + 10H 2 O Sr (NO 3 ) 2 + (NH 4 ) 2 CO 3 = SrCO 3 + 2NH 4 NO 3 2Dy 3+ + 3CO 3 2- = Dy 2 (CO 3 ) 3 2Eu 3+ + 3CO 3 2- = Eu 2 (CO 3 ) 3 2NH 4 AlO (OH) HCO 3 = Al 2 O 3 + 2NH 3 + 2CO 2 ↑ + 3H 2 O (oxidation stage in microwave oven) Dy 2 (CO 3 ) 3 + 3Al 2 O 3 = Dy 2 (Al 2 O 4 ) 3 3CO 2 ↑ (reduction step in microwave oven) Eu 2 (CO 3 ) 3 + 2Al 2 O 3 + C = 2EuAl 2 O 4 + 3CO 2 ↑ + CO (Reduction stage in microwave oven)

【0021】前記の製造過程を経ることにより、発光強
度が強く、発光時間が長く、耐水性に優れ、かつ粒経分
布が狭い範囲の微粒子状蓄光性蛍光粉を得た。本発明の
蓄光蛍光粉の性能は、図1、図2、図3に開示するとお
りである。なお、蓄光性蛍光粉の性能は次の試験方法に
より評価した。
Through the above-described production process, a fine-grain phosphorescent powder having a high luminous intensity, a long luminous time, excellent water resistance, and a narrow particle size distribution was obtained. The performance of the phosphorescent powder of the present invention is as disclosed in FIGS. 1, 2, and 3. The performance of the phosphorescent phosphor powder was evaluated by the following test method.

【0022】表面輝度測定 図5に示すように試料の上部約20cmの位置から蛍光
ランプ(FL30SEX−N)を用い、10分以上照射
した後、照射を停止する。照射停止後1分後から、表面
輝度を色彩輝度計(光電色彩計)を用い輝度の変化を測
定し記録した。試料は、粉末をプレス成形機(約40
t)を用い、直径約4cm、厚さ約3mmの板状に成形
したものを用いた。 計測器・試験条件:色彩輝度計BM−7、視野角度:2
°、測定距離:40cm。 光源、照射照度:FL30SEX−N.5.500lx。
Surface Luminance Measurement As shown in FIG. 5, irradiation is performed for 10 minutes or more using a fluorescent lamp (FL30SEX-N) from a position about 20 cm above the sample, and then the irradiation is stopped. One minute after the irradiation was stopped, the change in luminance was measured and recorded using a color luminance meter (photoelectric colorimeter). The sample was prepared by pressing the powder with a press molding machine (about 40
Using t), a plate formed about 4 cm in diameter and about 3 mm in thickness was used. Measuring instrument / test conditions: color luminance meter BM-7, viewing angle: 2
°, measuring distance: 40 cm. Light source, irradiation illuminance: FL30SEX-N.

【0023】粒径分布測定 (株)堀場製作所製レーザ回析・散乱式粒度分布測定製
造LA−920を用い、湿式フローセル測定方式により
分散媒として水、分散剤としてヘキサメタリン酸ナトリ
ウムを用いた。
Particle size distribution measurement LA-920 manufactured by Horiba Seisakusho Co., Ltd. was used, and water was used as a dispersion medium and sodium hexametaphosphate was used as a dispersant by a wet flow cell measurement method.

【0024】[0024]

【発明の効果】本発明は、以上説明した構成を有するこ
とから次の効果を奏するものであり、産業上の利用価値
も極めて高い。 1.蓄光性蛍光粉の前駆物質にマイクロ波を照射して固
相反応させるため、反応時間が短くなり、省エネルギー
で環境を汚染することがない。 2.粒子細化剤を使用して、マイクロ波により加熱し固
相反応させるため、製造した蓄光性蛍光粉は粉砕しなく
ても2μm〜5μmの範囲の粒子の粒子径に到達するこ
とができ、かつ図2に開示するように該粒子径の分布範
囲は狭く、粉砕を必要としないために、突起物の少ない
粒子形状の製品を製造することができ、製品の収率が高
い。 3.図3と、図4とを比較すると、本発明による蛍光性
蓄光粉(図3)の相対発光強度は、高温固相反応により
合成した蓄光性蛍光粉(図4)の130%になり、高い
輝度を有することが理解できる。また、本発明による蓄
光性蛍光粉は微粒子状であって、粉砕を必要としないた
め、粉砕によって発光結晶に傷が発生し、活性化エネル
ギーを吸収して発光能力が低減することがない。 4.残光時間は10mcd/m2 600分に達する。
The present invention has the following effects because it has the above-described structure, and has extremely high industrial utility value. 1. Since the precursor of the phosphorescent phosphor powder is irradiated with microwaves to cause a solid-phase reaction, the reaction time is shortened, and energy is saved and the environment is not polluted. 2. Since the solid-phase reaction is performed by heating with microwaves using a particle thinner, the produced phosphorescent fluorescent powder can reach the particle diameter of the particles in the range of 2 μm to 5 μm without pulverization, and As shown in FIG. 2, the distribution range of the particle size is narrow, and pulverization is not required, so that a product having a particle shape with few protrusions can be manufactured, and the product yield is high. 3. Comparing FIG. 3 with FIG. 4, the relative luminous intensity of the fluorescent phosphorescent powder according to the present invention (FIG. 3) is 130% higher than that of the phosphorescent fluorescent powder synthesized by a high-temperature solid-state reaction (FIG. 4), which is high. It can be seen that it has brightness. In addition, since the phosphorescent phosphor powder according to the present invention is in the form of fine particles and does not need to be pulverized, the pulverization does not damage the luminescent crystal and does not reduce the luminous ability by absorbing activation energy. 4. The afterglow time reaches 10 mcd / m 2 600 minutes.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施例において調製したEu、Dyによ
り活性化されたアルミン酸塩蓄光性蛍光粉の発光スぺク
トル図である。
FIG. 1 is a luminescence spectrum diagram of a phosphorescent phosphorescent aluminate activated by Eu and Dy prepared in an example of the present invention.

【図2】 本発明の実施例において調製したEu、Dyによ
り活性化されたアルミン酸塩蓄光性蛍光粉の粒度分布図
である。
FIG. 2 is a particle size distribution diagram of a phosphorescent phosphorescent aluminate activated by Eu and Dy prepared in an example of the present invention.

【図3】 本発明の実施例において調製したEu、Dyによ
り活性化されたアルミン酸塩蓄光性蛍光粉がD50=3μ
m時の残光特性図である。
FIG. 3 shows that the aluminate phosphorescent powder activated by Eu and Dy prepared in the example of the present invention has a D 50 = 3 μm.
FIG. 14 is a graph showing the afterglow characteristic at the time of m.

【図4】 比較例として同様の成分構成によってなり、
1300℃以上の条件で、熱固相反応により得られ、Eu、Dy
により活性化されたアルミン酸塩蓄光性蛍光粉のD50
10μm時の残光特性図である。
FIG. 4 is a comparative example having the same component configuration,
Obtained by thermal solid-state reaction under conditions of 1300 ° C or higher, Eu, Dy
= 50 of the aluminate phosphorescent fluorescent powder activated by
FIG. 10 is a graph showing the afterglow characteristics at 10 μm.

【図5】 表面輝度測定概要を示す図である。FIG. 5 is a diagram showing an outline of surface luminance measurement.

フロントページの続き (72)発明者 陳 萍 中華人民共和国江蘇省無錫市芦庄小区50号 302室 (72)発明者 栄 肇 巳 中華人民共和国江蘇省無錫市湯巷60−1号 Fターム(参考) 4H001 CA02 CF01 XA13 XA38 YA63 YA66 Continued on the front page (72) Inventor Chen Ping, No. 50, Ashizhuang District, Wuxi City, Jiangsu People's Republic of China Room 302 Room (72) Inventor Satoshi Sakae 60-1 Yusang, Wuxi City, Jiangsu Province, People's Republic of China F-term (Reference) 4H001 CA02 CF01 XA13 XA38 YA63 YA66

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 Al、Sr、Eu及びDyを構成成分とし、Al(N
O3)3・9H2Oを構成成分Alの原材料とし、Sr(NO3)2を構
成成分Srの原材料とし、Eu2O3を構成成分Euの原材料と
し、Dy2O3を構成成分Dyの原材料とする微粒子状の蓄光
性蛍光粉の製造方法であって、それぞれの原材料の配合
割合が、モル比で表わして下記の範囲に調整されること
を特徴とする微粒子状蓄光性蛍光粉の製造方法: Sr(NO3)2:Al(NO3)3・9H2O=1:1.5〜4 Eu2O3:Dy2O3=1:1.5〜3 Sr(NO3)2:Eu2O3 =1:0.001〜0.02
1. An Al (N) comprising Al, Sr, Eu and Dy as constituents.
O 3) 3 · 9H 2 and O constituents Al raw material, the raw material of Sr (NO 3) 2 the component Sr, and a raw material component Eu a Eu 2 O 3, Dy 2 O 3 constituent components Dy A method for producing a particulate phosphorescent fluorescent powder as a raw material of the particulate phosphorescent phosphor powder, characterized in that the blending ratio of each raw material is adjusted to the following range expressed by a molar ratio. Production method: Sr (NO 3 ) 2 : Al (NO 3 ) 3 .9H 2 O = 1: 1.5 to 4 Eu 2 O 3 : Dy 2 O 3 = 1: 1.5 to 3 Sr (NO 3 ) 2 : Eu 2 O 3 = 1: 0.001 to 0.02
【請求項2】 前記構成成分Eu及びDyの原材料のEu2O3
とDy2O3とを混合して得た硝酸塩溶液[Eu(NO3)3 、Dy(NO
3)3 ]と、前記構成成分Sr及びAlの原材料である Sr(N
O3)2とAl(NO3)3・9H2Oとを混合して得た第2の溶液とを
混合してアンモニウム飽和溶液を得て、該アンモニウム
飽和溶液に粒子細化剤を滴下しつつ攪拌して沈殿物を生
成させ、次いで熟成させた後、沈澱物を濾過、洗浄及び
加熱乾燥させて蓄光性蛍光粉の前駆物質を得る工程を含
むことを特徴とする請求項1に記載の微粒子状蓄光性蛍
光粉の製造方法。
2. Eu 2 O 3 as a raw material of the constituent components Eu and Dy
And Dy 2 O 3 and mixed nitrate solution [Eu (NO 3 ) 3 , Dy (NO
3 ) 3 ] and Sr (N
O 3) 2 and Al (NO 3) 3 · 9H 2 O-and by mixing a second solution obtained by mixing the resulting saturated ammonium solution was added dropwise a particulate fine agent to said ammonium saturated solution The method according to claim 1, further comprising a step of forming a precipitate by stirring while stirring, and then aging, and then filtering, washing and heating and drying the precipitate to obtain a precursor of the phosphorescent fluorescent powder. A method for producing a particulate phosphorescent phosphor powder.
【請求項3】 前記粒子細化剤が、庶糖、葡萄糖、澱粉
及び繊維素エーテルからなる群より選択される少なくと
も一種であることを特徴とする請求項2に記載の微粒子
状蓄光性蛍光粉の製造方法。
3. The fine phosphorescent powder according to claim 2, wherein the particle thinning agent is at least one selected from the group consisting of sucrose, glucose, starch and cellulose ether. Production method.
【請求項4】 前記粒子細化剤の添加量が、前記前駆物
質の全重量基準で0.5重量%〜10重量%であることを
特徴とする請求項2又は3に記載の微粒子状蓄光性蛍光
粉の製造方法。
4. The particulate phosphorescent fluorescence according to claim 2, wherein the amount of the particle thinner added is 0.5% by weight to 10% by weight based on the total weight of the precursor. Powder manufacturing method.
【請求項5】 前記粒子細化剤を添加した後、共沈澱法
により製造した蓄光性蛍光粉の前駆物質にマイクロ波を
照射して、該蓄光性蛍光粉の前駆物質に固相反応を生じ
させ、直接合成して微粒子状蓄光性蛍光粉を得る工程を
さらに含むことを特徴とする請求項2に記載の微粒子状
蓄光性蛍光粉の製造方法。
5. After the addition of the particle thinning agent, the precursor of the phosphorescent phosphor powder produced by the coprecipitation method is irradiated with microwaves to cause a solid phase reaction on the precursor of the phosphorescent phosphor powder. The method according to claim 2, further comprising a step of directly synthesizing and obtaining a finely particulate luminous phosphor powder.
【請求項6】 請求項5の製造方法により得られた蓄光
性蛍光粉であって、平均粒径が2μm〜5μmの範囲に
分布する特性を有することを特徴とする微粒子状蓄光性
蛍光粉。
6. A luminescent phosphor powder obtained by the production method according to claim 5, wherein the luminescent phosphor powder has an average particle diameter in a range of 2 μm to 5 μm.
JP2001133356A 2001-04-27 2001-04-27 Method for producing particulate luminous fluorescent powder and particulate luminous fluorescent powder Pending JP2002327173A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001133356A JP2002327173A (en) 2001-04-27 2001-04-27 Method for producing particulate luminous fluorescent powder and particulate luminous fluorescent powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001133356A JP2002327173A (en) 2001-04-27 2001-04-27 Method for producing particulate luminous fluorescent powder and particulate luminous fluorescent powder

Publications (1)

Publication Number Publication Date
JP2002327173A true JP2002327173A (en) 2002-11-15

Family

ID=18981227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001133356A Pending JP2002327173A (en) 2001-04-27 2001-04-27 Method for producing particulate luminous fluorescent powder and particulate luminous fluorescent powder

Country Status (1)

Country Link
JP (1) JP2002327173A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2003106588A1 (en) * 2002-06-13 2005-10-13 イージーブライト株式会社 Spherical phosphorescent phosphor powder and method for producing the same
KR100669372B1 (en) 2004-03-03 2007-01-15 삼성에스디아이 주식회사 A preparation method of green emitting phosphor for vuvvacuum ultraviolet excited light emitting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2003106588A1 (en) * 2002-06-13 2005-10-13 イージーブライト株式会社 Spherical phosphorescent phosphor powder and method for producing the same
KR100669372B1 (en) 2004-03-03 2007-01-15 삼성에스디아이 주식회사 A preparation method of green emitting phosphor for vuvvacuum ultraviolet excited light emitting device

Similar Documents

Publication Publication Date Title
Peng et al. Synthesis of SrAl2O4: Eu, Dy phosphor nanometer powders by sol–gel processes and its optical properties
Bedekar et al. Rare-earth doped gadolinia based phosphors for potential multicolor and white light emitting deep UV LEDs
Peng et al. Combustion synthesis and photoluminescence of SrAl2O4: Eu, Dy phosphor nanoparticles
Das et al. Morphology control and photoluminescence properties of Eu 3+-activated Y 4 Al 2 O 9 nanophosphors for solid state lighting applications
Zheng et al. Ba3 (ZnB5O10) PO4: Tb3+ green phosphor: microwave-assisted sintering synthesis and thermally stable photoluminescence
Pradal et al. Investigation on combustion derived BaMgAl 10 O 17: Eu 2+ phosphor powder and its corresponding PVP/BaMgAl 10 O 17: Eu 2+ nanocomposite
Guanghuan et al. Preparation and luminescent properties of CaAl2O4: Eu3+, R+ (R= Li, Na, K) phosphors
Khattab et al. Preparation of strontium aluminate: Eu2+ and Dy3+ persistent luminescent materials based on recycling alum sludge
CN102206489B (en) Blue luminescent material for white light LED and novel preparation method thereof
Han et al. Photoluminescence properties of Y3Al5O12: Eu nanocrystallites prepared by co-precipitation method using a mixed precipitator of NH4HCO3 and NH3· H2O
Shafia et al. Synthesis and characterization of SrAl2O4: Eu2+, Dy3+ nanocrystalline phosphorescent pigments
Zhang et al. Rapid formation of red long afterglow phosphor Sr3Al2O6: Eu2+, Dy3+ by microwave irradiation
Zhou et al. Synthesis and luminescent properties of BaGd2O4: Eu3+ phosphor
Singh et al. Synthesis of Sr (1-xy) Al 4 O 7: Eu x 2+, Ln y 3+(Ln= Dy, Y, Pr) nanophosphors using rapid gel combustion process and their down conversion characteristics
Shafia et al. Combusion synthesis, structural and photo-physical characteristics of Eu 2+ and Dy 3+ co-doped SrAl 2 O 4 phosphor nanopowders
CN105802617A (en) Method for improving luminescent property of SrAl2B2O7:Tb<3+> green fluorescent powder
JP2002327173A (en) Method for producing particulate luminous fluorescent powder and particulate luminous fluorescent powder
JP2000001672A (en) Luminous fluorescent particulate powder and its production
CN107338045A (en) A kind of method of microwave irradiation synthesis long after glow luminous material
Zhou et al. Synthesis and photoluminescence properties of SrLu2O4: Eu3+ superfine phosphor
CN103694998B (en) A kind of oxysulfide red long afterglow luminous material and preparation method thereof
JP2005179399A (en) Manufacturing method of aluminate salt fine particle light-accumulating powder
Venkatesh et al. Effects of monovalent cation doping on the structure and photoluminescence of GdAlO3: Eu3+ phosphor
CN105419798A (en) Preparation method and application of orange-red antimonate fluorescent material
CN105586037B (en) A kind of potassium tungstate red fluorescence powder and preparation method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20041020

A072 Dismissal of procedure

Effective date: 20050920

Free format text: JAPANESE INTERMEDIATE CODE: A073